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Abstract. The reachability analysis of recursive programs that communicate asynchro-
nously over reliable Fifo channels calls for restrictions to ensure decidability. Our first
result characterizes communication topologies with a decidable reachability problem re-
stricted to eager runs (i.e., runs where messages are either received immediately after being
sent, or never received). The problem is ExpTime-complete in the decidable case. The
second result is a doubly exponential time algorithm for bounded context analysis in this
setting, together with a matching lower bound. Both results extend and improve previous
work from [21].

Introduction

Checking safety properties for distributed programs like client/server environments, peer-
to-peer applications, or asynchronous programs on multi-core processors is a standard task
in verification. However, it is well established that the automatic analysis of distributed
programs is a quite challenging objective.

A basic feature of the programs used in the applications mentioned above is that they
need to exchange information asynchronously, over point-to-point channels that are un-
bounded and reliable. Such information is used for instance to perform function calls on
remote processes. This amounts to considering a model that combines recursion with asyn-
chronous communication. Such a combined model is similar in spirit to, e.g., process rewrite
systems [25], that mix recursion and Petri nets. We denote the combination of recursion
and asynchronous communication as Recursive Communicating ProcesseS (RCPS for short)
here. The model has been recently studied by LaTorre, Madhusudan, and Parlato [21], who
were mainly interested in applying bounded context analysis to this setting.

Since RCPS subsume the well-studied class of communicating finite-state machines [8],
reachability is already undecidable without recursion. Moreover, it is well-known that reach-
ability for pushdown systems that synchronize by rendezvous is undecidable as well [28].
Therefore, our main motivation was to separate these two sources of undecidability. We
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consider here behavioral restrictions for which reachability for communicating finite-state
machines is decidable, and then look under which conditions recursion can be added to the
model.

The reachability question for communicating finite-state machines can be tackled in
three different ways, either by restricting the communication topology, or by assuming that
channels are lossy, or by considering only executions on channels of fixed size. In general,
the last two approaches provide approximated solutions to the reachability problem. On
the positive side, the last idea yields exact solutions in some special cases, either for certain
restricted topologies (e.g., acyclic ones) or under certain behavioral restrictions on the
communication (e.g., mutex communication, see below).

As already mentioned, our starting point is the work of LaTorre et al. [21]. They
introduced a syntactic restriction on the combined use of channels and pushdowns, that
prevents the synchronization of pushdowns leading to an undecidable reachability question.
An RCPS is called well-queueing in [21] if pushdown processes can only read messages
when their stack is empty (they can send messages without any restriction). Well-queueing
expresses an event-based programming paradigm: tasks are executed by threads without
interrupt, i.e., a thread accepts the next task only after it finished the current one. One
of the results of [21] is that well-queueing RCPS have a decidable reachability problem if
and only if the topology is a directed forest; in the decidable case, they provide a doubly
exponential algorithm by a reduction to bounded-phase multi-stack pushdown systems [20].

We extend the results of [21] in several directions. First, we add a dual notion to
well-queueing: a pushdown process can send messages only with empty stack (but can
read messages without restriction). This dual notion arises naturally if one wants to model
interrupts: a server might need to accept tasks from high priority clients independently of
the status of the running task. We use these two restrictions by fixing the type of each
communication channel, to be either well-queueing or the dual notion. A communication
topology, together with channel types, is called a typed topology.

We give in Section 2 a precise characterization of those typed topologies for which the
RCPS model has a decidable reachability problem over so-called eager runs. A run is eager
if the sending of a message is immediately followed by its reception (if any). This notion
is closely related to bounded communication [23]. Communicating finite-state machines
with existential channel bounds, i.e., where each run can be reordered into a run over
bounded channels, are a well-studied model enjoying good expressiveness and decidability
properties [15]1. Here, we simply use eager runs in order to rule out undecidability due
to unbounded channels, since reachability for finite-state communicating machines over
eager runs is decidable. We show that reachability of RCPS over eager runs is ExpTime-
complete in the decidable case. Our result generalizes and improves the doubly exponential
time decision procedure of [21], which holds for topologies without undirected cycles (called
polyforests).

The restriction to eager runs appears to be strong at a first glance. However, we show
in Section 3 that it arises rather naturally, by imposing a behavioral restriction on the
communication: the mutex restriction requires that in every reachable configuration there
is no more than one non-empty channel per cycle of the network. In particular, RCPS

over polyforest architectures are mutex. Mutex can also be seen as a generalization of the
half-duplex restriction studied in [9].

1Machines with the property that each run can be reordered into an eager one, are a special instance of
existentially 1-bounded machines. Eagerness is related to a global channel bound [23].
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LaTorre et al. propose in [21] a second approach to solve the reachability problem for
RCPS, inspired by successful work on reachability with bounded contexts in the verification
of concurrent Boolean programs [27]. They show that bounded-context reachability for well-
queueing RCPS is decidable in time doubly exponential in the number of contexts. Again,
this result is obtained by a reduction to bounded-phase multi-stack pushdown systems [20].
Our result in Section 4 extends the bounded-context result of [20] to RCPS that allow
for the two dual notions of well-queueing. Moreover, our algorithm is direct and simpler
than the one involving bounded-phase multi-stack pushdown systems. We also provide a
matching lower bound for the complexity.

Related work. In the context of multi-thread programming, other notions of synchronization
between pushdowns arise naturally. Earlier publications considered synchronization via
shared memory, such as local/global memory in [6, 7] or bags in [29, 17]. The paper [6]
showed that bounded-context reachability can be solved in exponential time, whereas [29]
provided an exponential space lower bound for reachability with atomic methods (without
context bounds). Also, synchronization in the form of state observation was considered
in [4]. The latter model was shown to be decidable only for acyclic architectures, and is
strongly related to lossy systems [1, 14]. For the shared memory model, [18] shows how
to reduce concurrent pushdowns to a single pushdown, assuming a priority preemptive
scheduling policy. Lately, [30, 2] proposed a general strategy to reduce bounded-phase
reachability questions on different multi-stack pushdown automata models to a single stack.
This is close in spirit to our proof technique in Section 2, although we do not rely on a phase-
bounded model for our first result.

1. Recursive Communicating Processes

Given a set P and a P -indexed family of sets (Sp)p∈P , we write elements of the Cartesian
product

∏

p∈P S
p in bold face. For any s in

∏

p∈P S
p and any p ∈ P , we let sp ∈ Sp denote

the p-component of s. Moreover, we identify s with the indexed family of elements (sp)p∈P .
An alphabet is any finite set of letters. Given an alphabet Σ, we write Σ∗ for the set of

all finite words (words for short) over Σ, and we let ε denote the empty word.
A labeled transition system (LTS for short) A = 〈S, sI , A,→〉 is given by a set of states

S, an initial state sI , an action alphabet A, and a (labeled) transition relation →, which

is a subset of S ×A× S. For simplicity, we usually write s
a
−→ s′ in place of (s, a, s′) ∈ →.

The size of A is defined by |A| = |S|2 · |A| when S is finite.
Throughout the paper we use standard complexity classes such as polynomial space

(PSpace), deterministic exponential time (ExpTime), and deterministic doubly-exponential
time (2-ExpTime). For detailed definitions the reader is referred to, e.g., [26].

1.1. Communication Topologies. In this paper, we consider processes from a finite set
P , that communicate over point-to-point, error-free Fifo channels from a set C. They
exchange messages over a given topology, which is simply a directed graph whose vertices
are processes and whose edges represent channels:

Definition 1.1. A topology T is a tuple 〈P,C, src, dst〉 where P is a finite set of processes,
and C is a finite set of point-to-point channels equipped with two functions src, dst : C → P
that map every channel c ∈ C to a source src(c) ∈ P and a destination dst(c) ∈ P , such
that src(c) 6= dst(c).
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The size of T is defined by |T | = |P | + |C|. For each channel c ∈ C, we write
c
−→ for

the binary relation on the set of processes P defined by p
c
−→ q if p = src(c) and q = dst(c).

We also use the undirected binary relation
c
←→, defined by p

c
←→ q if p

c
−→ q or q

c
−→ p.

An undirected path in T is an alternating sequence (p0, c1, p1, . . . , cn, pn), of processes

pi ∈ P and channels ci ∈ C, such that pi−1
ci←→ pi for all i. Moreover, the undirected path

is called simple if the processes p0, . . . , pn are distinct. A simple undirected cycle in T is an
undirected path (p0, c1, p1, . . . , cn, pn) with p0 = pn such that p1, . . . , pn are distinct, and
c1, . . . , cn are distinct. The topology T is called polyforest if it contains no simple undirected
cycle.

1.2. Communicating Processes. Consider a topology T = 〈P,C, src, dst〉. Given a mes-
sage alphabet M , we denote by Comp(T ,M) the set of possible communication actions of
a process p ∈ P , defined by Comp(T ,M) = {c!m | c ∈ C, src(c) = p,m ∈ M} ∪ {c?m | c ∈
C, dst(c) = p,m ∈ M}. As usual, c!m denotes sending message m into channel c, whereas
c?m denotes receiving message m from channel c. Note that Comp(T ,M) and Comq(T ,M)
are disjoint when p and q are distinct processes.

Definition 1.2. A system of communicating processes (CPS for short) Q = 〈T ,M, (Ap)p∈P 〉
is given by a topology T , a message alphabet M , and, for each process p ∈ P , an LTS
Ap = 〈Sp, spI , A

p,→p〉 such that:

• the action alphabets Ap, p ∈ P , are pairwise disjoint, and
• Ap

com = Ap ∩ (C × {!, ?} ×M) is contained in Comp(T ,M) for each p ∈ P .

Actions in Ap
com are called communication actions of p, whereas Ap

loc
= Ap\Ap

com is the set
of local actions. States sp ∈ Sp are called local states of p. We write S =

∏

p∈P S
p for

the set of global states. Note that the sets Sp, and hence S, may be infinite. Indeed, the
local transition systems Ap could be, for example, counter or pushdown systems. When S

is finite, Q is called a finite CPS, and its size is defined by |Q| = |T |+ |M |+
∑

p∈P |A
p|.

As usual, the semantics of CPS is defined in terms of a global LTS 〈X,xI , A,→〉, where
X = S × (M∗)C is the set of configurations, xI = (sI , (ε)c∈C) is the initial configuration,
A =

⋃

p∈P A
p is the set of actions, and → ⊆X × A × X is the transition relation with

(s1,w1)
a
−→ (s2,w2), where a ∈ A

p, if the following conditions are satisfied:

(i) sp1
a
−→p s

p
2 and sq1 = sq2 for all q ∈ P with q 6= p,

(ii) if a ∈ Ap
loc then w1 = w2,

(iii) if a = c!m then wc
2 = wc

1 ·m and wd
2 = wd

1 for all d ∈ C with d 6= c,
(iv) if a = c?m then m · wc

2 = wc
1 and wd

2 = wd
1 for all d ∈ C with d 6= c.

Given a process p ∈ P , we call move of p any transition x1
a
−→ x2 with a ∈ Ap. A move is

local if a ∈ Ap
loc
.

A run in the LTS Q is a finite, alternating sequence ρ = (x0, a1, x1, . . . , an, xn) of

configurations xi ∈ X and actions ai ∈ A satisfying xi−1
ai−→ xi for all i. We say that

ρ is a run from x0 to xn. The length of ρ is n, and is denoted by |ρ|. A run of length
zero consists of a single configuration. The trace of a run ρ = (x0, a1, x1, . . . , an, xn) is the
sequence of actions trace(ρ) = a1 · · · an. A pair of send/receive actions ai = c!m,aj = c?m
is called matching in ρ if i < j and the number of receives on c within ai · · · aj equals the
length of c in xi. If ρ, ρ′ are two runs such that the last configuration of ρ is equal to the
first configuration of ρ′, then we write ρ · ρ′ for their concatenation.
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We define the order-equivalence relation ∼ over runs as the finest congruence such
that (x0, a, x1, b, x2) ∼ (x0, b, x

′
1, a, x2) whenever a, b are actions on different processes. In-

formally, ρ ∼ ρ′ if they can be transformed one into the other by iteratively commuting
adjacent transitions that (i) are not located on the same process, and (ii) do not form a
matching send/receive pair. The following is easy to check:

Fact 1.3. If ρ, ρ′ are order-equivalent runs of a CPS, then they start in the same configu-
ration and end in the same configuration.

A configuration x ∈ X is reachable in a CPS Q if there exists a run of Q from the
initial configuration xI to x. We define the reachability set of Q as Reach(Q) = {x ∈ X |
x is reachable in Q}.

The state reachability problem for CPS asks, for a given CPS Q and a global state
s ∈ S, whether Reach(Q) intersects {s} × (M∗)C . It is well-known that this problem is
undecidable for finite CPS, even if we restrict the topology to two processes connected by
two channels [8].

The undecidability of the state reachability problem for CPS is based on the fact that
one cannot control how “fast” messages are received. A simple idea that rules out such
behaviors is to consider only runs where the reception is immediate (if it exists):

Definition 1.4. A run ρ = (x0, a1, x1, . . . , an, xn) is eager if for all 1 ≤ i ≤ n, if ai is a
receive action then i > 1 and ai−1 is its matching send action.

Thus, each send action along an eager run is either immediately followed by its matching
receive, or it is never matched. In the latter case, all later sends into the channel are never
received, and we say that the channel is in its “growing phase”. In the former case, the
adjacent matched send/receive actions act like a rendezvous synchronization between the
two processes. Formally, given a channel c ∈ C, we call rendezvous on c any run (of length 2)
ρ = (x, c!m,x′, c?m,x′′) such that x = (s,w) with wc = ε. The rendezvous involves process
p if p ∈ {src(c), dst (c)}.

We introduce now the “eager” variants of the reachability notions presented previously.
A configuration x ∈ X is eager-reachable in a CPS Q if there exists an eager run from
the initial configuration xI to x. The eager-reachability set of Q is the set Reacheag(Q)
of eager-reachable configurations. We say that a CPS Q is eager when Reacheag(Q) =
Reach(Q). In the next section, we show how eager CPS occur under some natural (and
decidable) restrictions on cyclic communication. The simplest example arises over polyforest
topologies.

The state eager-reachability problem for CPS asks, for a CPS Q and a global state
s ∈ S, whether Reacheag(Q) intersects {s} × (M∗)C . It is readily seen that this problem is
decidable for finite CPS in PSpace.

Eager runs, modulo the fact that Definition 1.4 allows for runs which end in a sequence
of (unmatched) send actions, are closely related to the notion of globally 1-bounded runs.
Eager CPS subsume existentially globally 1-bounded communicating machines [23, 16].
However, as we will see in Section 3, it is undecidable whether a finite CPS is eager (in
contrast, one can decide whether a finite, deadlock-free communicating machine is existen-
tially globally 1-bounded [16]). On the positive side, Section 3 shows a decidable subclass
of finite, eager CPS.
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1.3. Recursive Communicating Processes. In the following we introduce RCPS to-
gether with a symmetric version of the “well-queueing” restriction used in [21]. Informally,
RCPS (recursive CPS) are CPS where each local transition system is a pushdown system.

A well-queueing RCPS in [21] is one where a process can only receive when its stack is
empty. Here, we dualize this concept by also allowing channels where the sender (but not
the receiver) must have an empty stack. Well-queueing was motivated in [21] by the case
where recursive processes need to finish their tasks before accepting new ones. Adding the
dual notion of well-queueing is interesting when modeling interrupts: a recursive process
may have to interrupt its current task to treat one with a higher priority, hence, it has to
preserve its current state on the stack to return later.

Definition 1.5. A typed topology 〈T , τ〉 consists of a topology T , together with a type
τ ⊆ P × C, such that (p, c) ∈ τ implies p ∈ {src(c), dst (c)}.

Given a process p ∈ P and a channel c ∈ C, we call p restricted on c if (p, c) ∈ τ (and
unrestricted otherwise). Informally, a communicating pushdown process p as defined below
will be restricted on c if p’s stack must be empty when communicating over channel c.

Definition 1.6. A pushdown system D = 〈Z, zI , A,Aε,Γ,∆〉 is given by a finite set Z of
control states, an initial control state zI ∈ Z, an alphabet A of actions, a subset Aε ⊆ A, a
stack alphabet Γ, and a transition relation ∆ ⊆ Z × A × Z, such that A contains the set
Astack = {push(γ), pop(γ) | γ ∈ Γ} of stack actions.

We define the size of D by |D| = |Z|2 · |A|. Actions in Aε ⊆ A\Astack are tests for empty
stack. Naturally, for a pushdown system embedded in a CPS, the set of actions A \ Astack

may contain communication (and local) actions. Depending on the typed topology, some
communication actions may require an empty stack. This will be enforced by putting these
communication actions in the set Aε.

According to the informal description given above, we define now the semantics of
pushdown processes. The semantics of D = 〈Z, zI , A,Aε,Γ,∆〉 is the LTS 〈S, sI , A,→〉
with set of states S = Z × Γ∗, initial state sI = (zI , ε), and (labeled) transition relation
→ defined as expected: stack actions push(γ) and pop(γ) behave as usual (pop(γ) blocks if
the top of the stack is not γ), actions from A \ Astack do not change the stack, and actions
in Aε are possible only if the stack is empty.

Definition 1.7. A recursive CPS (RCPS for short) R = 〈T , τ,M, (Dp)p∈P 〉 is given by a
typed topology 〈T , τ〉, a message alphabet M , and, for each process p ∈ P , a pushdown
system Dp = (Zp, zpI , A

p, Ap
ε,Γp,∆p) such that:

• the action alphabets Ap, for p ∈ P , are pairwise disjoint,
• Ap

com = Ap ∩ (C × {!, ?} ×M) is contained in Comp(T ,M) for each p ∈ P , and
• Ap

ε ⊇ {c!m ∈ A
p
com | (p, c) ∈ τ} ∪ {c?m ∈ A

p
com | (p, c) ∈ τ} for each p ∈ P .

We associate with R the CPS 〈T ,M, (Ap)p∈P 〉 where, for each p ∈ P , the LTS Ap is
the semantics of the pushdown system Dp. The size of R is defined by |R| = |T | + |M | +
∑

p∈P |D
p|.

We write Z =
∏

p∈P Z
p for the set global control states. Abusing notation, a global

state s of R will also be written s = (z,u) where sp = (zp, up) for each p ∈ P . The state
reachability problem for RCPS asks, for a given RCPS R and a global control state z ∈ Z,
whether Reach(R) intersects {z} × (

∏

p∈P (Γ
p)∗) × (M∗)C . The state eager-reachability

problem for RCPS is defined similarly, using Reacheag(R) instead of Reach(R).
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2. Topologies with Decidable State Reachability

Several factors lead to the undecidability of the state reachability problem for RCPS. In
particular, the model is already undecidable without any pushdown. Our goal in this section
is a decidability condition that concerns the interplay between pushdowns and communica-
tion, assuming that the communication is not the reason for undecidability. For this reason,
we consider a restricted version of the state reachability problem, namely the one on eager
runs.

Definition 2.1. A typed topology 〈T , τ〉 is called confluent if it contains a simple undi-
rected path (p0, c1, p1, . . . , cn, pn), with n ≥ 1, such that p0 is unrestricted on c1 and pn is
unrestricted on cn.

Notice that non-confluence implies that every channel is either restricted at the source,
or at the destination, or at both ends (see Figure 1).

We say that a typed topology 〈T , τ〉 has a decidable RCPS state eager-reachability
problem if the latter question is decidable for the class of RCPS with typed topology 〈T , τ〉.
We show in this section that the notion of confluence gives a complete characterization of
typed topologies with respect to the decidability of the above problem.

Theorem 2.2. A typed topology has a decidable RCPS state eager-reachability problem if
and only if it is non-confluent. Moreover, the problem is ExpTime-complete in the latter
case.

The rest of the section is devoted to the proof of this theorem. We first show the
undecidability result in the confluent case.

Proposition 2.3. Every confluent typed topology has an undecidable RCPS state (eager-)
reachability problem.

Proof. Consider a typed topology 〈T , τ〉 that is confluent. There is a simple undirected path

p0
c1←→ p1 · · · pn−1

cn←→ pn satisfying the conditions of Definition 2.1. Since p0 is unrestricted
on c1 and pn is unrestricted on cn, both may use their stack while communicating over the
channels c1 and cn, respectively. Recall that checking non-emptiness of the intersection of
two context-free languages is undecidable. To prove the lemma, we reduce this problem to
the state eager-reachability problem for RCPS with typed topology 〈T , τ〉.

Given two context-free languages K and L over the alphabet {0, 1}, the process p0
guesses a word in K while pn guesses a word in L, and both processes check that they

guessed the same word via synchronizations along the undirected path p0
c1←→ p1 · · · pn−1

cn←→
pn. Intermediate processes p1, . . . , pn−1 do not use their stack, they simply convey the

p

q1 qn

restricted

unrestricted

p1

p2

p3

p4

Figure 1: Examples of non-confluent typed topologies
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information about the common input guessed by p0 and pn. The labeled transition system
Api , 1 ≤ i < n, is depicted below.

✁ =

{

! if pi = src(ci)

? if pi = dst(ci)

✄ =

{

! if pi = src(ci+1)

? if pi = dst(ci+1)

ci ✁ 0

ci+1 ✄ 0

ci ✁ 1

ci+1 ✄ 1

Similarly, the pushdown systems Dp0 and Dpn are obtained from pushdown automata
accepting K and L, respectively, by replacing tape-reading actions with communications
(c1 ✄ 0/1 for p0 and cn ✁ 0/1 for pn).

Finally, we only need to make sure that the channels are empty at the end. As usual,
this can be enforced by augmenting M with a new symbol $, and by sending and receiving
$ on each channel c at the end of the simulation.

The construction guarantees that the intersection K ∩ L is non-empty if and only if
there is an (eager) run in the RCPS from the initial configuration to a global control state
where each process is accepting.

We now focus on non-confluent typed topologies. Let us first prove the ExpTime lower
bound of Theorem 2.2.

Proposition 2.4. The state eager-reachability problem for RCPS with non-confluent typed
topology is ExpTime-hard.

Proof. It is well-known (and probably folklore) that the following problem is ExpTime-
complete: given a context-free language K and n regular languages Li, check the non-
emptiness of K ∩

⋂

i Li. The hardness follows easily by a reduction from linearly bounded
alternating Turing machines. Actually, a closely related problem is shown to be ExpTime-
hard in [12], namely the reachability problem for pushdown systems with checkpoints.

Notice that the intersection K ∩
⋂

i Li can be simulated on the non-confluent, typed

topology 〈T , τ〉 where P = {p, q1, . . . , qn}, C = {c1, . . . , cn}, and, for each 1 ≤ i ≤ n, p
ci−→ qi

with p unrestricted on ci and qi restricted on ci (see left part of Figure 1). That is, process
p simulates a pushdown automaton accepting the context-free language K, whereas process
qi simulates a finite-state automaton accepting Li. Communication guarantees that the
simulations use the same input word. As in the previous proposition, one needs to enforce
the emptiness of the channels by using an extra symbol.

Before considering the upper bound we need to introduce some vocabulary. Consider
a run ρ = (x0, a1, x1, . . . , an, xn) of an RCPS R. Given a process p ∈ P , we say that ρ is
well-formed for p if the projection of a1 · · · an on Ap

stack is a Dyck word. This well-formedness
condition merely stipulates that each push action of p in ρ is matched by a pop action, and
vice versa. We call ρ well-formed if ρ is well-formed for each process p ∈ P . For instance,
every run that starts and ends with empty stacks is well-formed. A stronger condition is
that of well-bracketing, which requires that push and pop actions for distinct processes must
be nested recursively. Formally, we say that ρ = (x0, a1, x1, . . . , an, xn) is well-bracketed if
the following two conditions are satisfied:

(1) the projection of a1 · · · an on the disjoint union
⋃

p∈P A
p
stack is a Dyck word, and
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(2) for every process p and every h < i < j < k, if the pairs (ah, ak) and (ai, aj)
are matching push/pop actions of p, then the sub-runs (xh−1, ah, xh, . . . , ai, xi) and
(xj−1, aj , xj , . . . , ak, xk) are well-formed for all q 6= p.

Observe that if ρ · ρ′ is defined, then ρ · ρ′ is well-formed (resp. well-bracketed) if ρ and
ρ′ are both well-formed (resp. well-bracketed). Note also that well-formedness is preserved
under order-equivalence: if ρ is well-formed and ρ ∼ ρ′ then ρ′ is also well-formed. However,
well-bracketing is not preserved under order-equivalence.

The following proposition provides the main ingredient to show the ExpTime upper
bound of Theorem 2.2.

Proposition 2.5. Given an RCPS R with non-confluent typed topology, every eager, well-
formed run in R is order-equivalent to an eager, well-bracketed run.

Proof. By induction on the length of runs. The basis is trivial. Consider a run ρ, of non-zero
length, that is both eager and well-formed. We assume that ρ starts with a push action
(otherwise, the existence of an order-equivalent run that is both eager and well-bracketed
immediately follows by induction). Let a = push(γ) denote the first action of ρ, and let p
denote the process with a ∈ Ap. Let ρ′ denote an order-equivalent eager run obtained from
ρ by scheduling the actions of p as early as possible, while maintaining adjacent send/receive
pairs. It is readily seen that ρ′ may be written as:

ρ′ = x
push(γ)
−−−−−→ x′ · π0 · χ1 · σ1 · π1 · · ·χn · σn · πn · y

pop(γ)
−−−−→ y′ · µ

where the runs πi, χi and σi satisfy the following conditions:

(a) πi consists of moves of process p which are either local actions or sends that are un-
matched in ρ,

(b) χi contains no move of process p,
(c) σi is a rendezvous involving p,

(d) the transitions x
push(γ)
−−−−−→ x′ and y

pop(γ)
−−−−→ y′ are matching stack actions (of process p),

(e) for each 1 ≤ i ≤ n, the run χi ·σi is not order-equivalent to a run of the form χ′
i · σ

′
i ·χ

′′
i

where |χ′
i| < |χi| and σ

′
i is a rendezvous involving p.

The scheduling of p’s actions as early as possible is expressed by condition (e) (notice that
σi and σ

′
i correspond to the same send/receive pair).

We first show the following claim.

Claim. For each 1 ≤ i ≤ n, all processes that move in χi have an empty stack at the start
and end of χi.

To prove the claim, let us denote by Pi = {q1, . . . , qk} the set of processes that move
in χi, ordered by their last occurrence in χi. Since the last action in χi is performed by
qk, we derive from (e) that the rendezvous σi is on a channel between p and qk. Now let
1 ≤ h < k. It follows from (e) that the last action of qh in χi is a communication action bh.
We have two cases to consider:

• bh is a send action: If there was no matching receive in ρ′, then this send action could
be scheduled after σi, contradicting (e). Hence, ρ′ contains a matching receive, which, by
eagerness, is the next action in ρ′. This matching receive is performed by a process qg
with h < g.
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• bh is a receive action: Since ρ′ is eager, the matching send is the previous action in ρ′.
This matching send is performed by a process qg. Moreover, we must have h < g since,
otherwise, this matched send/receive pair could be scheduled after σi, contradicting (e).

We obtain that, for every 1 ≤ h < k, the last action of qh in χi is a communication action

over a channel ch satisfying qh
ch←→ qg for some h < g ≤ k. Let ck denote the channel of the

rendezvous σi, and recall that qk
ck←→ p. Observe that p is unrestricted on ck since, according

to (d), the stack of p is non-empty in σi. As the typed topology of R is non-confluent, we
derive that qh is restricted on ch for each 1 ≤ h ≤ k, since there is a simple undirected path

qh
ch←→ · · · ←→ qk

ck←→ p for each h. It follows that qh has an empty stack at the end of χi.
We have thus shown that, for each 1 ≤ i ≤ n, all processes that move in χi have an

empty stack at the end of χi. Now, recall that ρ
′ is well-formed since it is order-equivalent

to ρ. Therefore, all processes that move in χi also have an empty stack at the start of χi,
which concludes the proof of the claim.

It follows from the claim that each run χi is well-formed, so µ is also well-formed.
Since the runs χi and µ are eager, we derive from the induction hypothesis that each χi

is order-equivalent to a run χ′
i that is both eager and well-bracketed, and, similarly, µ is

order-equivalent to a run µ′ that is both eager and well-bracketed. Replacing in ρ′ each χi

by χ′
i and µ by µ′, yields a run ρ′′ ∼ ρ that is both eager and well-bracketed (the second

condition for well-bracketed runs is satisfied since the runs χi contain no move of p). This
concludes the proof of the proposition.

Well-bracketed runs in an (arbitrary) RCPS cannot exploit the full power of the multi-
ple stacks. Indeed, the well-bracketing property ensures that the individual process stacks
do not “interact” with each other: a single, global stack is sufficient to simulate the run.
More precisely, given an RCPS R = 〈T , τ,M, (Dp)p∈P 〉, with D

p = (Zp, zpI , A
p,Γp,∆p) for

each p ∈ P , we construct a product pushdown system D⊗ that simulates the well-bracketed
eager runs of R. Its set of control states is Z⊗ = P × (

∏

p∈P Z
p) × 2P × 2C . A control

state (p, z, E,G) ∈ Z⊗ means that p is the active process, z is the current global control
state, E is the set of processes that have an empty stack, and G is the set of channels that
are “growing”, i.e., for which no receive action is possible anymore. The stack alphabet of
D⊗ is the disjoint union Γ⊗ =

⋃

p∈P Γp. The stack of D⊗ will be the concatenation of |P |
words up ∈ (Γp)∗, one for each process p, where up is empty if and only if p ∈ E.

Let us explain how the simulation of eager, well-bracketed runs works. First, an ac-
tive process r is non-deterministically chosen, leading to the control state (r, (zpI )p∈P , P, ∅).
Then, D⊗ simulates the behavior of r as expected, using its stack as r would do, but also
updates the set E accordingly. To simulate send actions c!m, D⊗ non-deterministically de-
cides whether c!m is actually part of a rendezvous on c (provided that c 6∈ G), or will never
be matched. In the former case, D⊗ simulates (in a single step) the rendezvous c!m · c?m.
In the latter case, the channel c is added to the set G of “growing” channels. Moreover, in
both cases, the communication is performed only if the typed topology allows it, which can
be checked using the set E.

The pushdown system D⊗ may choose non-deterministically, at any time, to switch the
active process to some process q. Since the run simulated by D⊗ is well-bracketed, either
q’s stack is empty (q ∈ E) or the top stack symbol must belong to Γq. Thus, D⊗ performs
this check and then sets the active process to q.

By construction, the pushdown system D⊗ simulates all runs of R that are both ea-
ger and well-bracketed, and only those runs. Moreover, the size of D⊗ is bounded by
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|R|O(|P |·|C|). Since every RCPS can be easily modified in order to reach a given state with
all stacks empty we obtain:

Proposition 2.6. State eager-reachability of an RCPS of size n with non-confluent typed
topology 〈T = (P,C), τ〉 reduces in ExpTime to state reachability for a pushdown system

of size nO(|P |·|C|).

Since the state reachability problem for pushdown systems is decidable in deterministic
polynomial time, we obtain the upper bound:

Proposition 2.7. The state eager-reachability problem for RCPS over a non-confluent
typed topology is in ExpTime.

3. Eager CPS and the Mutex Restriction

The previous section showed how to decide the state eager-reachability problem provided
that the topology behaves well w.r.t. pushdowns and communication. A first natural ques-
tion is whether one can decide if eager runs suffice for solving the reachability problem. A
second legitimate question is whether the restriction to eager runs is realistic. We answer
to the first question negatively. However, on the positive side we show a restricted class of
CPS where eager runs suffice: CPS over cyclic topologies with the mutex restriction. We
focus in this section on CPS since the eager condition talks about communication only.

Definition 3.1. A configuration x of a CPS Q is mutex if for every simple undirected cycle
(p0, c1, p1, . . . , cn, pn = p0) in the topology of Q, at most one of the channels ci is non-empty
in x. A run ρ in Q is mutex if each configuration in ρ is mutex.

A CPS Q is called mutex if every configuration reachable in Q is mutex. We show later
in this section that the mutex property is decidable for finite CPS. Notice also that every
CPS with polyforest topology is mutex.

Before discussing mutex we first comment on the results of [21] and explain their relation
with Theorem 2.2 and Corollary 3.4 below. The latter paper shows that state reachability
is decidable for finite CPS over polyforest topologies, and for well-queueing RCPS over di-
rected forests. The proof of the result for RCPS relies on the idea that, on tree topologies,
one can reorder runs such that the resulting run has a bounded number of contexts, where
in each context only one process executes all its actions by reading on one unique incoming
channel from its tree parent (and—in the case of RCPS—solely when its local stack is
empty). Hence, the problem reduces to the control-state reachability for a bounded-phase
multi-stack pushdown system, a question which was proven to be decidable in doubly ex-
ponential time [20]. A simple channel reversal argument allows us to reduce the question
for finite CPS over polyforest topologies to directed forests.

We show in the following that mutex CPS are eager. This allows us to apply the re-
sults of the previous section and to obtain the decidability of state reachability (for both
finite CPS over polyforest topologies and well-queueing RCPS over directed forests) via
a direct proof. Moreover, recall that the complexity of the algorithm of the previous sec-
tion is ExpTime, so one exponential less than the results obtained in [20] for polyforest
architectures.
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Remark 3.2. Over a topology of two finite processes connected by two channels, mutex
runs are referred to as “half-duplex communication”. For these, it is known how to decide
the reachability problem through an effective construction of the recognizable reachability
set [10]. Quasi-stable systems are a semantic ad-hoc extension of this idea to finite CPS

with larger, cyclic topologies [9].

Proposition 3.3. Given a CPS Q, every mutex run starting with empty channels admits
an order-equivalent eager run.

Proof. By induction on the length of runs. The basis is trivial. Consider a mutex run ρ
of non-zero length, that starts with empty channels. In particular, each receive action in ρ
has a matching send in ρ. We write Pρ ⊆ P for the (non-empty) set of all processes p that
move in ρ. For each p ∈ Pρ, let ep denote the last action of p in ρ. If some ep is a local
action, or a send action that is not matched in ρ, we may schedule it last, which preserves
the run’s mutex property, and derive the existence of an eager run ρ′ ∼ ρ by induction.
Otherwise, for each p ∈ Pρ, the action ep is a communication action that is matched in
ρ, and we let cp denote the channel of ep. Note that each cp, for p ∈ Pρ, is a channel
between p and another process in Pρ, which we call its last peer. We may build an infinite
sequence of processes in Pρ by picking an arbitrary process in Pρ and iteratively moving to
its last peer. By the pigeonhole principle, there exist p0, . . . , pn in Pρ, with n > 0, such that
(p0, cp0 , . . . , pn, cpn , p0) is an undirected path in T and p0, . . . , pn are distinct. Moreover,
we may assume w.l.o.g. that p0 is the process that moves last in ρ among {p0, . . . , pn}. To
simplify notation, let us simply write ei in place of epi , and ci in place of cpi . Remark that
the undirected path (p0, c0, . . . , pn, cn, p0) must be a simple undirected cycle if c0 6= c1.

Let us show that e1, e0 is a pair of matching send/receive actions. Since p0
c0←→ p1 and

p1 stops moving before p0 in ρ, the communication action e0, which is matched in ρ, must
be a receive action e0 = c0?m0. We obtain that ρ is of the form:

ρ = χ · x′
e1−→ y′ · χ′ · x′′

c0?m0−−−−→ y′′ · χ′′

with no move of p1 in χ′, and no move of p0, p1 in χ′′. It follows that c0 is non-empty in
y′. Since ρ is a mutex run, x′ and y′ are mutex configurations. If c0 6= c1, then c0 is also
non-empty in x′, hence c1 must be empty in both x′ and y′, which is impossible since e1 is
communication action on c1. Therefore, we get that c0 = c1, and, hence, e1 is the last send
action on c0 in ρ. Since e1 is matched in ρ, it follows that e1 is the matching send of e0,
which implies that e1 = c0!m0.

We may now conclude the proof of the proposition. Recall that e1, e0 are the last actions
of p1 and p0 in ρ, respectively. Since e1 = c0!m0 and e0 = c0?m0 are matched, we may
schedule e1, e0 last. This leads to a run ρ′ that is order-equivalent to ρ, and of the form:

ρ′ = χ · µ · x0
c0!m0−−−→ x1·

c0?m0−−−−→ ·x2

where the trace of µ satisfies trace(µ) = trace(χ′) · trace(χ′′). It follows from the previous
trace equality that, for each configuration (s,w) occurring in µ, there exists

• either a configuration (s′,w′) in χ′′ with w = w′,
• or a configuration (s′,w′) in χ′ such that w′c0 = wc0 ·m0 and w′c = wc for all c 6= c0.

In both cases, we derive that (s,w) is mutex since (s′,w′) is mutex. Therefore, the run
µ is mutex. Moreover, the run χ is also mutex since it is a prefix of the mutex run ρ.
We derive from the induction hypothesis that χ · µ is order-equivalent to an eager run µ′.
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Replacing χ ·µ by µ′ in ρ′ yields a run ρ′′ ∼ ρ that is eager. This concludes the proof of the
proposition.

Corollary 3.4. Every mutex CPS is eager.

Remark 3.5. A closer look at the proof of Proposition 3.3 shows that the result still holds
for the following weaker variant of the mutex property: a configuration x of a CPS Q is
weakly mutex if for every simple undirected cycle (p0, c1, p1, . . . , cn, pn) in the topology of
Q, at most one of the channels c1, c2 is non-empty in x.

We derive the following result as an immediate consequence of Corollary 3.4. The upper
bound is obtained as an on-the-fly simulation: since we simulate eager runs we do not have
to store any message, but keep track of growing channels. The lower bound follows from
the non-emptiness test of the intersection of several regular languages.

Proposition 3.6. The state reachability problem for finite, mutex CPS is PSpace-complete.

Remark 3.7. State reachability remains decidable for particular infinite-state mutex CPS.
For example, if each local LTS is a Petri net (i.e., the CPS in question is a Fifo net [13]),
then the state reachability problem reduces to the Petri net reachability problem, which is
known to be decidable [24, 19].

We end this section by showing that, for finite CPS, the mutex property is decidable
(unlike the eager one).

Proposition 3.8. The question whether a finite CPS is mutex, is PSpace-complete.

Proof. Assume that Q is not mutex and consider a run ρ of minimal length from xI to a
configuration x that is not mutex. By minimality, all configurations in ρ up to x are mutex.
Let x′ be the predecessor of x in ρ.

By Proposition 3.3 we can reach x′ by an eager run ρ′ (which is generated on-the-fly in

PSpace) and test whether there exists in Q a transition x′
c!m
−→ x that violates the mutex

condition for x. We guess ρ′ in PSpace (see remark above) and check whether there exists
a simple undirected cycle (p0, c1, p1, . . . , cn, pn) in the topology of Q such that one channel
ci is non-empty in x′ and the action c!m would write on another channel of this cycle (i.e.,
c = cj for some j 6= i).

PSpace-hardness follows, again, by reducing from the non-emptiness test of the inter-
section of several regular languages.

Proposition 3.9. The question whether a finite CPS is eager, is undecidable.

Proof. We show a reduction from the universality problem for rational relations [5]. Given
such a relation K ⊆ A∗ × B∗, we ask whether K = A∗ × B∗. Here, K is described by a
finite automaton AK over the alphabet A ∪B.

We describe a finite CPS over four processes, called p0, . . . , p3, and four channels

c01, c10, c12, c13 satisfying p0
c01−−→ p1, p1

c10−−→ p0, p0
c02−−→ p2, p0

c03−−→ p3. Process p0 is de-
scribed in Fig. 2. The ingoing (outgoing, resp.) edges of AK lead to the initial state (from
the final states, resp.). Transition labels a ∈ A in AK are replaced by c02!a, and labels
b ∈ B are replaced by c03!b.

Process p1 is described in Fig. 3. The LTS Ap2 = Ap3 of processes p2, p3 consist
of a single (initial) state without any transition. Therefore, when talking about “state
components” below we only mention processes p0, p1.
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0start 1 2

AK

c01!$

ε

c10?$

c02!a, c03!b

ε

Figure 2: Process p0 (a ∈ A, b ∈ B)

3start 4 5
c10!$

ε

c01?$

Figure 3: Process p1

The only runs of the above CPS that cannot be reordered into an eager run are produced
by p0 and p1 using all four $-transitions. The state component of these configurations is
(2, 5). The channel contents are ε for c01 and c10, A

∗ for c02 and B∗ for c03. Each of these
configurations can be also reached by an eager run if and only if K = A∗ ×B∗.

4. Bounded Phase Reachability

Bounded-context reachability has shown to be a successful under-approximation method
for the analysis of concurrent Boolean programs [27]. For RCPS, bounded-context reacha-
bility allows us to attack the reachability problem from a different angle than in Section 2.
In this section, we neither restrict the typed topology, nor constrain the runs to be eager
(or mutex). The price to pay is a (strong) restriction on the form of the possible runs,
namely a bounded number of switches between processes (i.e., phases). Our construction
subsumes the 2-ExpTime algorithm for bounded-context reachability of well-queueing re-
cursive communicating processes, as described in [21]. Recall that the latter algorithm is
based on a reduction to bounded-phase reachability for multi-stack systems. In contrast,
our construction below is direct and simpler.

A phase of an RCPS is a run consisting of moves of a unique process, called the phase
process. In order to get decidability results one needs to introduce further restrictions over
the communications performed during a phase. The first, obvious, restriction is on the
typed topology 〈T , τ〉: for every channel c, either the source or the destination process is
restricted on c. Moreover, we assume for simplicity that for each channel c, one of the
two processes is unrestricted on c. The second type of restriction concerns the kind of
communication a process is allowed to perform during a phase, and is defined by two (dual)
types of phases, called mux-phases and demux-phases, respectively.

Let c be a channel with source process p that is restricted on c. A phase of process p
is a mux-phase (with channel c) if the allowed communication for p is either sending into c,
or receiving on channels d such that the source process is restricted on d, see also Figure 4.
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p
c

restricted

unrestricted

p
c

Figure 4: Phases of an RCPS: mux (on the left) and demux (on the right)

Dually, let c be a channel with destination p that is restricted on c. A phase of process p is
a demux-phase (with channel c) if the allowed communication for p is either receiving on c,
or sending on channels d such that the destination process is restricted on d. Demux-phases
are precisely the phases/contexts used by [21].

A run ρ of an RCPS is said to be k-bounded, if it can be decomposed as ρ = ρ1 · · · ρk
where each ρj is a mux- or demux-phase. A configuration x ∈ X is k-bounded-reachable
in a RCPS R if there exists a k-bounded run of R from the initial configuration xI to
x. We define the k-bounded-reachability set of R as Reachk(R), the set of x ∈ X that are
k-bounded-reachable in R. The state bounded-reachability problem for RCPS asks for a
given RCPS R, a global control state z ∈ Z and an integer k (in unary encoding), whether
Reachk(R) intersects {z} × (

∏

p∈P (Γ
p)∗)× (M∗)C .

In the remainder of this section we will use an extended version of phases, still denoted
as phase for convenience. A phase φ = (p,D, zF ) will consist, as previously, of a phase
process p ∈ P and a pushdown system D = (Z, zI , A,Aǫ,Γ

p,∆) as in Section 1.3 (which
may be, e.g., the pushdown system of process p in the RCPS, up to changing the initial
state). In addition we specify a (control) state zF ∈ Z, which will be the target state
of the phase. A phase is said to be local if Acom is empty. The size |φ| of a phase φ is

the number of control states of D. We associate with a phase φ the binary relation
φ
−→

over (
∏

p∈P (Γ
p)∗) × (M∗)C , defined by (uI ,vI)

φ
−→ (uF ,vF ) if there exists a run from the

configuration (zI ,uI ,vI) to the configuration (zF ,uF ,vF ) in the RCPS obtained by fixing
the processes q 6= p to the trivial pushdown system with one state and no transition and the
process p to the pushdown system D. A sequence Φ = (φ1, . . . , φk) of mux- or demux-phases
is called an md-sequence. Such a sequence is said to be satisfiable if the following relation
holds:

((ε)p∈P , (ε)c∈C)
φ1

−→ · · ·
φk−→ ((ε)p∈P , (ε)c∈C )

The size of an md-sequence Φ = (φ1, . . . , φk) is |Φ| = |φ1|+ · · ·+ |φk|.
We will decide the satisfiability of md-sequences by reducing the problem to sequences

of local phases. The reduction is performed by replacing one by one (de)mux-phases by
local phases. We introduce a preorder over md-sequences, that will decrease during the
reduction. Let us first define the preorder ⊑ over phases by letting φ ⊑ ψ if phases φ and
ψ have the same phase process and the communication actions of φ are included in the
communication actions of ψ. This preorder is extended component-wise over md-sequences
by letting (φ1, . . . , φk) ⊑ (ψ1, . . . , ψk) if φj ⊑ ψj for every j.

Proposition 4.1. Let Φ = (φ1, . . . , φk) be an md-sequence with at least one non-local phase.
We can compute a finite set F of md-sequences with |F | ≤ |Φ|k in time O(|F |) such that
Φ is satisfiable if and only if F contains a satisfiable md-sequence, and such that for every
Ψ = (ψ1, . . . , ψk) ∈ F :
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• |Ψ| ≤ 2|Φ|2

• Ψ ⊑ Φ and there exists j such that ψj is local whereas φj is not local.

Proof. Since Φ contains at least one non-local phase, there exists a maximal index j such
that φj is demux non-local, or there exists a minimal index j such that φj is mux non-
local. We first explain why these two cases are symmetric. Given a phase φ = (p,D, zF )
where D = (Z, zI , A,Aǫ,Γ,∆), let φ̄ = (p, D̄, zI) be the phase with D̄ = (A, zF , A,Aǫ, ∆̄)
the pushdown system obtained from D by reversing the channels, exchanging push/pop
actions and send/receive actions, and reversing the transition relation. We observe that

(u,v)
φ
−→ (u′,v′) if and only if (u′,v′)

φ̄
−→ (u,v). In particular (φ1, . . . , φk) is satisfiable if

and only if (φ̄k, . . . , φ̄1) is satisfiable. Since φ is a mux (resp. demux) phase if and only if φ̄
is a demux (resp. mux) phase, we obtain that the two cases above are symmetric. Thus, in
the remainder of this proof we assume that there exists a maximal index j such that φj is
a non-local demux-phase.

Let φj = (p,D, zF ) and D = (Z, zI , A,Aǫ,Γ,∆) be the pushdown system of φj. Since
φj is a demux-phase, messages are received from a unique channel, say c. Moreover, process
p is restricted on this channel. Let us define the md-sequence Φε from Φ by removing
communication actions in the j-th phase.

In the sequel, we show how to build md-sequences Φπ = (φπ1 , . . . , φ
π
k), where Φπ is

parametrized by a sequence π = (zr)s≤r≤j of control states zr ∈ Z with s < j. Each
sequence Φπ is such that Φπ ⊑ Φ with φπj a local phase. In order to obtain a local phase
φπj , i.e., a phase without any communication action, all communications with the pushdown
system D are simulated in the phases φs, . . . , φj . Here, the integer s is the index of the first
phase that sends messages into channel c, that are received in the j-th phase. We show
below that Φ is satisfiable if and only if Φε or Φπ is satisfiable for some sequence π.

The state sequence π = (zr)s≤r≤j provides checkpoints of the simulation of D during
the phases φs, . . . , φj . In particular, states zr ∈ Z in π will be assumed by process p with
empty stack, and the communication on channel c during phase r takes place between state
zr and state zr+1.

Since p is restricted on channel c, it receives messages from c in the j-th phase with
empty stack. Moreover, by the choice of j and the fact that a satisfiable md-sequence
must end with empty channels, process p sends no message during phase j (otherwise,
there would exist some demux, non-local phase after j, namely one where such messages
would be received). By a well-known saturation algorithm we can compute in polynomial
time (see for example [11]) from D the set R of pairs of control states (z, z′) ∈ Z × Z
such that there exists an execution of D, consisting of stack actions and local actions only,
from (z, ǫ) to (z′, ǫ), (i.e., from empty stack to empty stack). Let φr = (qr,Dr, tF,r) where
Dr = (Tr, tI,r, A,Γ,∆r) with s ≤ r ≤ j.

We first provide the definition of φπr with s < r < j. Recall that π = (zr)s≤r≤j. The
pushdown system Dπ

r is obtained by considering |Z| many copies of Dr. Control states
of these copies are identified by pairs (t, z) ∈ Tr × Z. In these copies, actions that send
messages to the channel c are directly matched with actions that receive messages in D.
More formally for every (t, c!m, t′) ∈ ∆r and (z, c?m, z′) ∈ ∆ we add a local action from
(t, z) to (t′, z′). We also add transitions that simulate the effect of the stack of D. More
precisely we add a local action from (t, z) to (t, z′) for every t ∈ Tr and for every (z, z′) ∈ R.
The initial state tI,r and the final state tF,r are replaced by (tI,r, zr) and (tF,r, zr+1), resp.
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The definition of φπs follows almost the same construction except that we should take
into account the fact that in this phase we first perform moves that potentially send messages
in c and then non-deterministically we start to simulate the pushdown system D. The
difference is due to the fact that some messages into channel c can be received during some
phase before the j-th one. The simulation is performed with the construction presented in
the previous paragraph. However we keep in Dπ

s the original pushdown system Ds and we
add a local action from t to (t, zs) for every t ∈ Tr. The initial state tI,s is left unchanged
and the final state ts,F is replaced by (ts,F , zs+1).

The definition of φπj is obtained by a simpler construction. Since messages received
from c are simulated in the previous phases, we can remove the communication actions of
D. Since the j-th phase may start or end with non-empty stack, we need in addition an
extra copy of D (also without communication actions). The copy of a control state z is
denoted by z̃. We then add a local action from zs to z̃j with the empty stack guard, i.e.,
this local action belongs to Aǫ. This action accounts for the simulation of D between state
zs and state zj . Moreover, the initial control state zI is left unchanged and the final state
is replaced by z̃F .

Finally, the phases φπr with r < s or r > j are equal to φr. We observe that Φ
is satisfiable if and only if Φε is satisfiable or there exists a sequence π such that Φπ is
satisfiable. Defining F as the set of md-sequences Φπ and the additional md-sequence Φε

concludes the proof.

Corollary 4.2. The satisfiability of an md-sequence Φ of length k can be checked in time
doubly exponential in k (but polynomial in the size of Φ).

Proof. Since the reduction introduced by applying Proposition 4.1 transforms at least one
non local phase into a local one, after at most k steps we obtain a finite set F of local phases.
Moreover an immediate induction based on Proposition 4.1 also shows that every Ψ ∈ F

has size |Ψ| ≤ 2k|Φ|2
k

. The size of F can be bounded by the number of leaves of a tree of

height k with rank bounded by (2k|Φ|2
k

)k. Thus |F | ≤ ((2k|Φ|2
k

)k)k. The satisfiability of
a sequence Ψ ∈ F can be performed in time O(|Ψ|2), since the empty stack control state
reachability problem for pushdown systems is decidable in polynomial time. We conclude
that the satisfiability of an md-sequence can be checked in 2-ExpTime, but polynomially
in |Φ| when k is fixed.

Theorem 4.3. The state bounded-reachability problem for RCPS with typed topology such
that each channel is restricted at least at one extremity, is 2-ExpTime-complete. If the
number of phases and the typed topology are not part of the input, the problem can be solved
in polynomial time.

Proof. For the upper bound we can assume w.l.o.g. that we reach the target control state
with all stacks and channels empty. For this, we can choose non-deterministically the push
actions that will not be matched and, for each channel, the first message that will be no
longer received. The bound follows then from Corollary 4.2.

For the lower bound we can adapt proof ideas from [3, 22], by showing how to simulate
alternating Turing machines M of exponential space by RCPS with typed topology as in
the statement of the theorem. If the space bound of M is 2k we use O(k) processes, called
p0 and pi, q

o
i , q

e
i , 1 ≤ i ≤ k. Process p0 is the only one using a stack, storing an accepting

computation tree of M . We will not go into the details how to encode the tree (it is the
usual depth-first traversal of the tree, plus appropriate encoding of transitions), see e.g. [3]
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for details. Instead we explain now how to check that the contents of the stack of p0 is a

word of the form (w#)m for some w ∈ {0, 1}2
k

and m > 0.
In the first phase, process p0 empties its stack and while doing this, sends the following

to qo1, q
e
1:

• qo1: every symbol of w at an odd position,
• qe1: every symbol of w at an even position.

Assuming that the stack content of p0 is w1# · · ·wm#, the outgoing channels of p0 will
contain after this first stage, the following words (uo and ue denotes the subword of u at
odd and even positions, respectively):

• wo
1# · · ·#w

o
m# for (p0, q

o
1),

• we
1# · · ·#w

e
m# for (p0, q

e
1).

In the second and third phase, process qo1, and then qe1, receives from p0 and resends each
message to p1. In phases 4 and 5, process p1 receives wo

1# · · ·#w
o
m# from qo1, and then

we
1# · · ·#w

e
m# from qe1. In each of these phases p1 resends to qo2 and qe2 its odd/even

subwords as p0 above, adding a separator $ between the two halves. So process p1 acts
basically like p0, but on “input” of the form wo

1# · · ·#w
o
m#$we

1# · · ·#w
e
m#, where one has

to check equality for words of length 2k−1: wo
1 = · · · = wo

m and we
1 = · · · = we

m, respectively.
This procedure is iterated up to process pk, that simply checks that it receives two words
from qok, q

e
k of the form ((0#0# + 1#1#)$+)∗.

The above proof for stack contents of the form w#w# · · ·w# for some w ∈ {0, 1}2
k

,
is of course a special case of the Turing machine simulation, however it captures the main
idea. For the Turing machine it is readily seen how to extend the proof to a sequence of
configurations w1#w2# · · ·wk#, where wi+1 is the successor configuration of wi. Here, it
helps to see each wi as a sequence of 3 tape symbols, i.e., each position stores the current
symbol, plus its neighbors. In addition, one encodes the transitions leading from wi to wi+1,
say after each #. For the final check, process pk will check that the first triple is consistent
with the middle symbol of the second triple.

5. Conclusion

Applications. CPS combine an automata-based local process model with point-to-point
communication, which results in an intuitive and simple framework.

Since we subsume well-queueing RCPS, we also inherit their application domains, e.g.,
event-based programs. The dual restriction to well-queueing (i.e., that sending on a channel
is only possible if the stack is empty) covers, e.g., “interrupt based” programming models,
i.e., threads that can receive messages while still in recursion, as well as extended sensor
networks where peers can collect and send data while using their pushdown for computa-
tions.

Figure 5 shows an example for non-confluent typed topologies that are on the rise with
the current focus on distributed computing. The topology corresponds to a hierarchical
overlay network as implemented, for example, in master-worker protocols. Intuitively, each
master distributes tasks to its workers and uses their results during its own computation.
When the latter is finished, i.e., when its stack is empty, the master sends a result to its own
master. Therefore, channel restrictions respect the hierarchy: channels between a master
and a worker must be restricted on the worker’s side. In fact, our generic non-confluence
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Figure 5: Non-confluent typed topology in a hierarchical master-worker setting

criterion permits additional communications: workers of the same master may communicate
with each other via channels on which they are restricted (e.g., p5 and p6), and we may
have a communication cycle between top-level masters (e.g., p1 and p2). Notice also the use
of the dual notion to well-queueing, when sending information from lower to higher levels.

Proposition 3.3 allows for further applications, since it does not assume that the CPS

is finite: we can combine locally decidable models for multi-threaded programs (with or
without local data), as well as local event-based programs together with eager (or mutex)
communication architectures; natural candidates for local models would be Petri Nets, well-
structured transition systems [14], or multi-set pushdown systems [29].

Summary. We discussed in detail the class of eager RCPS (as well as mutex CPS) which
both generalize the current lineup of decidable models for asynchronously communicating
pushdown systems. Further, we presented an optimal decision procedure for eager RCPS

over non-confluent architectures in ExpTime, as well as a direct and simpler construction
for bounded phase reachability for RCPS.

Outlook. This paper dealt with the most basic form of verification, namely control-state
reachability. More general reachability questions (w.r.t. configurations) may be interesting
to consider. Further decision problems for CPS, like boundedness or liveness, will be
investigated in future work.
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