
Logical Methods in Computer Science

Vol. 8(4:2)2012, pp. 1–27

www.lmcs-online.org

Submitted Jan. 31, 2012

Published Oct. 5, 2012

LINEAR-USE CPS TRANSLATIONS

IN THE ENRICHED EFFECT CALCULUS ∗

JEFF EGGER a, RASMUS EJLERS MØGELBERG b, AND ALEX SIMPSON c

a Department of Physics and Atmospheric Science, Dalhousie University, Halifax, N.S., Canada
e-mail address: jeffegger@yahoo.ca

b IT University of Copenhagen, Copenhagen, Denmark
e-mail address: mogel@itu.dk

c LFCS, School of Informatics, University of Edinburgh, Scotland, UK
e-mail address: Alex.Simpson@ed.ac.uk

Abstract. The enriched effect calculus (EEC) is an extension of Moggi’s computational
metalanguage with a selection of primitives from linear logic. This paper explores the
enriched effect calculus as a target language for continuation-passing-style (CPS) transla-
tions in which the typing of the translations enforces the linear usage of continuations. We
first observe that established call-by-value and call-by name linear-use CPS translations
of simply-typed lambda-calculus into intuitionistic linear logic (ILL) land in the fragment
of ILL given by EEC. These two translations are uniformly generalised by a single generic
translation of the enriched effect calculus into itself. As our main theorem, we prove
that the generic self-translation of EEC is involutive up to isomorphism. As corollaries,
we obtain full completeness results, both for the generic translation, and for the original
call-by-value and call-by-name translations.

1. Introduction

Under a continuation-passing-style (CPS) interpretation, a call-by-value program from X
to Y is interpreted as a “continuation transformer”, that is, as a map (Y →R) → (X →
R), where R represents the possible “results” of a computation. Such maps are in one-
to-one correspondence with Kleisi maps for the continuations monad ((−) → R) → R,
introduced by Moggi in [Mog89, Mog91]. In [BORT02], Berdine et al. observe that, in
many programming situations, continuation transformers satisfy an additional property:
their argument, the continuation Y → R, is used just once, that is, it is used linearly.
Thus a call-by-value program can be more informatively modelled as a linear function

1998 ACM Subject Classification: D3.1, F3.3, F4.1.
Key words and phrases: Continuations, Linear logic, Computational effects.

∗ The results in this paper first appeared in the proceedings of FoSSaCS 2010, [EMS10].
a Research carried out while Egger was at LFCS, University of Edinburgh. Research supported by EPSRC

Research Grant “Linear Observations and Computational Effects”, and by the Danish Agency for Science,
Technology and Innovation.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(4:2)2012

c© J. Egger, R. E. Møgelberg, and A. Simpson
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

(Y → R) ⊸ (X → R), corresponding to a Kleisli map for the linearly-used continuations
monad ((−) → R) ⊸ R.

One goal of the present paper is to address the question: what is the natural type-
theoretic context for modelling linearly-used continuations? With the presence of both
intuitionistic (→) and linear (⊸) arrows, intuitionistic linear logic (ILL) [Gir87] seems a
natural answer. Indeed, ILL has been used as the basis of a systematic study of linearly-
used continuations by Hasegawa. In [Has02], he presents a continuation passing style (CPS)
translation of Moggi’s call-by-value computational λ-calculus into ILL, using the linearly-
used continuations monad, and establishes a full completeness result for this. A follow-up
paper [Has04] considers call-by-name.

In this paper we use a more general type theory, the enriched effect calculus (EEC)
introduced in [EMS09, EMS12], as a target language for linear-use CPS translations. On
the one hand, EEC can be seen as a fragment of ILL and, as such, its models strictly
generalise models of ILL. On the other hand, it is a conservative extension of the standard
calculi for modelling computational effects (Moggi’s computational metalanguage [Mog91],
and Levy’s call-by-push-value (CBPV) [Lev04]) with a selection of constructs from linear
logic. In fact, any adjunction model of CBPV [Lev05] (and hence any model of Moggi’s
computational metalanguage) expands to a model of EEC [EMS09, EMS1x]. This provides
an abundant supply of computationally interesting models of EEC that are not models of
ILL.

The paper begins with a brief presentation of the enriched effect calculus, in Section 2.
The standard call-by-value and call-by-name translations of typed λ-calculus into effect cal-
culi (cf. Moggi [Mog91], Filinski [Fil96], Levy [Lev04]) are then reviewed in Section 3, using
EEC as the target language. This is followed, in Section 4, by giving corresponding linear-
use CPS translations within EEC. The starting point is the observation that Hasegawa’s
call-by-value [Has02] and call-by-name [Has04] linear-use CPS translations of simply-typed
λ-calculus both fall inside the fragment of ILL corresponding to EEC. One contribution of
the paper is to show that, using EEC, we can recover these translations in a particularly
interesting way. This is achieved by identifying, in Section 5, a single generic linear-use
CPS-translation of the entire enriched effect calculus into itself. In Section 6, it is shown
how Hasegawa’s call-by-value and call-by-name translations are derived from this by com-
posing the generic translation with the standard call-by-value and call-by-name encodings
of typed λ-calculus into effect calculi, reviewed in Section 3.

The generic linear-use CPS-translation of EEC into itself is the principal contribution
of the paper. It possesses a remarkable property, unexpected in the context of CPS transla-
tions: it is involutive up to isomorphism. That is, the translation of a translated term equals
the original term modulo type isomorphism. This property is stated as Theorem 5.4, which
is the main theorem of the paper. As consequences, we obtain full-completeness results,
both for the generic self-translation itself (Theorem 5.5), and also for the call-by-value and
call-by-name linear-use CPS translations into EEC, mirroring Hasegawa’s results for the
translations into ILL.

In the conference presentation of these results [EMS10], the main syntactic theorem was
given a semantic proof using category-theoretic models of EEC. In contrast, in the present
paper, we provide purely syntactic proofs of all results. It is hoped that this decision will
enlarge the potential readership of the paper. Nevertheless, in Section 7, we briefly outline
the semantic context within which the syntactic results can be understood. Even at an
informal level, the semantic picture provides an illuminating perspective on the definition

LINEAR-USE CPS TRANSLATIONS IN EEC 3

and properties of the generic self-translation of EEC. A full treatment of the semantic
side, which requires considerable technical machinery, will be presented in a companion
paper [EMS1x], devoted entirely to the category-theoretic model theory of EEC.

A few words on the style of the paper. Since the presentation is syntactic, there are many
proofs by induction. Some of these have numerous cases. (The proof of Theorem 5.4, for
example, has 41 cases.) In order to keep the paper concise and readable, in such proofs, we
present only a few illustrative cases, including the most interesting. However, we take care
to establish all the side results (for example, the substitution property of Proposition 5.1)
needed to make completing the main proofs routine in principle (if lengthy in practice).

2. The enriched effect calculus

The enriched effect calculus (EEC) [EMS09, EMS12] is an extension of Moggi’s computa-
tional metalanguage [Mog91] with constructors from linear type theory. Similar to Filinski’s
effect PCF [Fil96] and Levy’s CBPV [Lev04], it has two notions of types: value types and
computation types. We use α, β, . . . to range over a set of value type constants, and α, β, . . .
to range over a disjoint set of computation type constants. We then use A,B, . . . to range
over value types, and A,B, . . . to range over computation types, which are specified by the
grammar below.

A ::= α | 1 | A× B | A → B | A | A ⊸ B

A ::= α | 1 | A&B | A ⇒ B | I | !A | !A⊗B | 0 | A⊕ B .

As in [EMS09, EMS12], our notation has been heavily influenced by linear logic. Indeed,
EEC can be roughly understood as a fragment of intuitionistic linear logic. However, there
are some discrepancies, both in content and in syntax. An important difference is that,
in EEC, computation types are the sole source of linearity. Thus linear function space
A ⊸ B is defined between computation types only. However, the type A ⊸ B itself is a
value type not a computation type. As discused in op. cit., this choice seems essential for
EEC to be compatible with arbitrary (possibly non-commutative) computational effects. A
consequence is that the linear function space cannot be iterated (neither (A ⊸ B) ⊸ C nor
A ⊸ (B ⊸ C) is allowed).

Concerning notation, we remark that the type !A⊗B is obtained by the application of
a single primitive binary type constructor !(−)⊗ (−) to a value type A and computation
type B. The hybrid notation for this constructor is chosen to emphasise the connection
with linear logic. In the present paper, we distinguish notationally between products of
computation types 1 and A&B, and products of value types 1 and A × B. Similarly, we
distinguish notationally between computation-type function types A ⇒ B (note that the
the domain is a value type) and value-type function types A → B. These choices, while
adding redundancy to the streamlined syntax of [EMS09, EMS12], have the advantage
of simplifying certain properties of the syntactic translations we shall give in Section 4. A
further redundancy, introduced to simplify the presentation in Section 5, is that we introduce
a primitive computation type I, which plays a role analogous to the tensor-product unit in
linear logic.1 This is redundant because I can be defined as !1. As in linear logic, in addition
to the linear isomorphism I ∼= !1, the type I enjoys the further isomorphisms !A ∼= !A⊗ I, and
A ∼= I ⊸ A in EEC (the latter isomorphism is not linear, since I ⊸ A is not a computation

1Our choice of notation for units differs from that of linear logic. In linear logic, the tensor unit, which
we call I, is written 1, and the unit of the linear product &, which we call 1, is written ⊤.

4 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

type). Finally, in EEC, the exponential type !A plays the role of Moggi’s monadic type
TA and Levy’s type FA. The linear exponential notation is motivated by the many formal
analogies between the properties of !(−) in EEC and in ILL. For example, EEC has the
type isomorphisms A ⇒ B ∼= !A ⊸ B ∼= A → B (although only the first is a computation
type). As in [EMS09, EMS12], we choose to make Levy’s U type constructor (see [Lev04])
invisible by including computation types as value types.

The enriched effect calculus has two typing judgements:

(i) Γ |− ⊢ t : B (ii) Γ |z :A ⊢ t : B ,

where Γ is a context of value-type assignments to variables. On the right of Γ is a stoup,
which may either be empty, as in the case of judgement (i), or may consist of a unique type
assignment z :A, in which case the type on the right of the turnstyle is also required to be
a computation type, as in (ii). The typing rules are given in Figure 1. In them, ∆ ranges
over an arbitrary (possibly empty) stoup, and the rules are only applicable in the case of
typing judgements that conform to (i) or (ii) above.

Proposition 2.1 (Weakening). If Γ | ∆ ⊢ t : A and variable x is not contained in Γ,∆
then Γ, x :B |∆ ⊢ t : A.

Proposition 2.2 (Substitution).

(1) If Γ, x :A |∆ ⊢ t : B and Γ |− ⊢ u : A and then Γ |∆ ⊢ t[u/x] : B.
(2) If Γ |x :A ⊢ t : B and Γ |∆ ⊢ u : A then then Γ |∆ ⊢ t[u/x] : B.

A simple consequence of the propositions above is that EEC satisfies the “shift” property:
if Γ | x :A ⊢ t : B then Γ, x :A | − ⊢ t : B. See [EMS12] for further discussion of syntactic
properties of EEC.

Rules for equalities between typed terms are presented in Figure 2. They are to be
considered in addition to the expected (typed) congruence and α-equivalence rules. The
equations of Figure 2 have been formulated in such a way that the smallest α-equivalence-
respecting congruence containing these equalities is automatically closed under the substi-
tution operations of Proposition 2.2.

The relationship between the enriched effect calculus and other calculi is discussed in
detail in [EMS12]. We summarise the main points relevant to the present paper.

The fragment of EEC obtained by removing the type constructors A → B, A ⊸ B,
!A⊗B, 0 and A ⊕ B is called the effect calculus (EC) in [EMS12].2 The effect calculus
is equivalent to Levy’s CBPV (with complex stacks, finitary syntax version) modulo the
difference that CBPV has one further type constructor: value-type sums. Since, on the one
hand, value-type sums can be easily added to the effect calculus [EMS09], and, on the other,
just as easily removed from CBPV, we consider this difference as minor. Thus it seems fair
to view the effect calculus (where value-type sums can be included if desired) as, essentially,
a reformulation of CBPV using a syntax and presentation influenced by linear logic. In
particular, the style of typing rule we have given owes a debt to Barber and Plotkin’s Dual
Intuitionistic Linear Logic [Bar97]. The influence of linear logic is, of course, even more
apparent in the case of the enriched effect calculus. In [EMS09, EMS1x], it is shown that
EEC is a conservative extension of EC, thus the presence of the additional linear primitives
does not alter the properties of the core type constructors from EC.

2This differs mildly from the “effect calculus” of [EMS12] through not having value-type function spaces.

LINEAR-USE CPS TRANSLATIONS IN EEC 5

Γ, x :A |− ⊢ x : A Γ |− ⊢ ∗ : 1

Γ |− ⊢ t : A Γ |− ⊢ u : B

Γ |− ⊢ 〈t, u〉 : A× B

Γ |− ⊢ t : A× B

Γ |− ⊢ fst(t) : A

Γ |− ⊢ t : A× B

Γ |− ⊢ snd(t) : B

Γ, x :A |− ⊢ t : B

Γ |− ⊢ λx :A. t : A → B

Γ |− ⊢ s : A → B Γ |− ⊢ t : A

Γ |− ⊢ s(t) : B

Γ |z :A ⊢ z : A Γ |∆ ⊢ ∗ : 1

Γ |∆ ⊢ t : A Γ |∆ ⊢ u : B

Γ |∆ ⊢ 〈t, u〉 : A&B

Γ |∆ ⊢ t : A&B

Γ |∆ ⊢ fst(t) : A

Γ |∆ ⊢ t : A&B

Γ |∆ ⊢ snd(t) : B

Γ, x :A |∆ ⊢ t : B

Γ |∆ ⊢ λx :A. t : A ⇒ B

Γ |∆ ⊢ s : A ⇒ B Γ |− ⊢ t : A

Γ |∆ ⊢ s(t) : B

Γ |− ⊢ ⊤ : I

Γ |∆ ⊢ t : I Γ |− ⊢ u : A

Γ |∆ ⊢ let⊤ be t in u : A

Γ |− ⊢ t : A

Γ |− ⊢ !t : !A

Γ |∆ ⊢ t : !A Γ, x :A |− ⊢ u : B

Γ |∆ ⊢ let !x be t in u : B

Γ |− ⊢ t : A Γ |∆ ⊢ u : B

Γ |∆ ⊢ !t⊗u : !A⊗B

Γ |∆ ⊢ s : !A⊗B Γ, x :A |y :B ⊢ t : C

Γ |∆ ⊢ let !x⊗y be s in t : C

Γ |∆ ⊢ t : 0

Γ |∆ ⊢ ?(t) : A

Γ |∆ ⊢ t : A

Γ |∆ ⊢ inl(t) : A⊕ B

Γ |∆ ⊢ t : B

Γ |∆ ⊢ inr(t) : A⊕ B

Γ |∆ ⊢ s : A⊕ B Γ |x :A ⊢ t : C Γ |y :B ⊢ u : C

Γ |∆ ⊢ case s of (inl(x). t; inr(y). u) : C

Γ |z :A ⊢ t : B

Γ |− ⊢ λ◦z :A. t : A ⊸ B

Γ |− ⊢ s : A ⊸ B Γ |∆ ⊢ t : A

Γ |∆ ⊢ s[t] : B

Figure 1: Typing rules for the enriched effect calculus

6 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

Γ |− ⊢ t = ∗ : 1 if Γ |− ⊢ t : 1

Γ |− ⊢ fst(〈t, u〉) = t : A if Γ |− ⊢ t : A and Γ |− ⊢ u : B

Γ |− ⊢ snd(〈t, u〉) = u : B if Γ |− ⊢ t : A and Γ |− ⊢ u : B

Γ |− ⊢ 〈fst(t), snd(t)〉 = t : A× B if Γ |− ⊢ t : A× B

Γ |− ⊢ (λx :A. t)(u) = t[u/x] : B if Γ, x :A |− ⊢ t : B and Γ |− ⊢ u : A

Γ |− ⊢ λx :A. (t(x)) = t : A → B if Γ |− ⊢ t : A → B and x 6∈ Γ

Γ |∆ ⊢ t = ∗ : 1 if Γ |∆ ⊢ t : 1

Γ |∆ ⊢ fst(〈t, u〉) = t : A if Γ |∆ ⊢ t : A and Γ |∆ ⊢ u : B

Γ |∆ ⊢ snd(〈t, u〉) = u : B if Γ |∆ ⊢ t : A and Γ |∆ ⊢ u : B

Γ |∆ ⊢ 〈fst(t), snd(t)〉 = t : A&B if Γ |∆ ⊢ t : A&B

Γ |∆ ⊢ (λx :A. t)(u) = t[u/x] : B if Γ, x :A |∆ ⊢ t : B and Γ |− ⊢ u : A

Γ |∆ ⊢ λx :A. (t(x)) = t : A ⇒ B if Γ |∆ ⊢ t : A ⇒ B and x 6∈ Γ,∆

Γ |− ⊢ let ⊤ be⊤ in t = t : A if Γ |− ⊢ t : A

Γ |∆ ⊢ let⊤ be t in u[⊤/x] = u[t/x] : A if Γ |∆ ⊢ t : I and Γ |x : I ⊢ u : A

Γ |− ⊢ let !x be !t in u = u[t/x] : B if Γ |− ⊢ t : A and Γ, x :A |− ⊢ u : B

Γ |∆ ⊢ let !x be t in u[!x/y] = u[t/y] : B if Γ |∆ ⊢ t : !A and Γ |y : !A ⊢ u : B

Γ |∆ ⊢ let !x⊗y be !t⊗s in u = u[t,s/x,y] : C if Γ |− ⊢ t : A, Γ |∆ ⊢ s : B, and

Γ, x :A |y :B ⊢ u : C

Γ |∆ ⊢ let !x⊗y be t in u[!x⊗y/z] = u[t/z] : C if Γ |∆ ⊢ t : !A⊗B and Γ |z : !A⊗B ⊢ u : C

Γ |∆ ⊢ ?(t) = u[t/x] : A if Γ |∆ ⊢ t : 0 and Γ |x : 0 ⊢ u : A

Γ |∆ ⊢ case inl(t) of (inl(x). u; inr(y). u′) if Γ |x :A ⊢ u : C and Γ |y :B ⊢ u′ : C

= u[t/x] : C and Γ |∆ ⊢ t : A

Γ |∆ ⊢ case inr(t) of (inl(x). u; inr(y). u′) if Γ |x :A ⊢ u : C and Γ |y :B ⊢ u′ : C

= u′[t/y] : C and Γ |∆ ⊢ t : B

Γ |∆⊢case t of (inl(x). u[inl(x)/z]; inr(y). u[inr(y)/z])

= u[t/z] : C if Γ |∆ ⊢ t : A⊕ B and Γ |z :A⊕ B ⊢ u : C

Γ |∆ ⊢ (λ◦x :A. t)[u] = t[u/x] : B if Γ |x :A ⊢ t : B and Γ |∆ ⊢ u : A

Γ |− ⊢ λ◦x :A. (t[x]) = t : A ⊸ B if Γ |− ⊢ t : A ⊸ B and x /∈ Γ

Figure 2: Equality rules for the enriched effect calculus

LINEAR-USE CPS TRANSLATIONS IN EEC 7

Θ, x :σ ⊢ x : σ Θ |− ⊢ ∗ : 1

Θ ⊢ M : σ Θ ⊢ N : τ

Θ ⊢ 〈M,N〉 : σ × τ

Θ ⊢ M : σ × τ

Θ ⊢ fst(M) : σ

Θ ⊢ M : σ × τ

Θ ⊢ snd(M) : τ

Θ, x : σ ⊢ M : τ

Θ ⊢ λx :σ. M : σ → τ

Θ ⊢ M : σ → τ Θ ⊢ N : σ

Θ ⊢ MN : τ

Figure 3: Typing rules for simply-typed λ-calculus

It is also natural to compare EEC with ILL. In the present paper, we do this informally
and crudely.3 We include EEC in ILL by ignoring the distinction between value and com-
putation types, and mapping all type constructors to their evident (mainly synonymous)
linear counterparts. For example, both → and ⇒ get mapped to the intuitionistic function
space of ILL; both × and & get mapped to the linear “with” &; both 1 and 1 get mapped
to the unit of the intuitionistic “with”, which is usually denoted ⊤; and I gets mapped to
the unit of the linear tensor, which is usually denoted 1. This translation from EEC to ILL
is “sound” in the sense that terms that are equal in EEC get mapped to equal terms in
ILL. (This is a consequence of the simple observation that the typing rules and equations of
EEC are all have direct counterparts in the presentation of ILL of [Bar97].) However, the
translation is not “complete”: terms of the same type whose translations are equal in ILL
need not be equal in EEC. It is also not “full”, there exist terms in ILL whose type lies in
the EEC fragment of ILL, but which are not equal to the translation of any EEC term.

3. Call-by-value and call-by-name translations into EEC

There is a standard call-by-value translation of typed λ-calculus into Moggi’s computational
metalanguage [Mog91], Filinski’s effect PCF [Fil96], and Levy’s CBPV [Lev04]. Similarly,
there is a standard call-by-name translation into the latter two, which exploits the existence
of computation types.4 We recall these translations using the syntax of the enriched effect
calculus.

As a source calculus, we use the simply-typed λ-calculus with types σ, τ, . . . given by:

σ ::= α | 1 | σ × τ | σ → τ ,

where α ranges over a collection of type constants. We use Θ to range over finite contexts
x1 : σ1, . . . , xn :σn, and M,N to range over terms of the simply-typed λ-calculus, using the
syntax given by the typing rules in Figure 3.

The call-by-value interpretation translates a type σ to a value type σv. The call-by-
name interpretation translates it to a computation type σn. Both translations are defined
in Figure 4. For the translations of type constants, we assume that each type constant α
of the typed λ-calculus, is included as a value-type constant in EEC, and has an associated
computation-type constant α. Note that the definition of (σ → τ)v could equally well

3A less crude comparison retains the distinction between computation and value type, and compares
with Benton’s mixed linear/non-linear logic [Ben95], in which a similar distinction is maintained. Such a
comparison produces identical results: the translation is sound, but neither complete nor full.

4Moggi [Mog91] and Benton and Wadler [BW96] refer to a different “lazy” translation as call-by-name.

8 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

αv = α αn = α

1v = 1 1n = 1

(σ × τ)v = σv × τv (σ × τ)n = σn & τn

(σ → τ)v = σv → !(τv) (σ → τ)n = σn ⇒ τn .

Figure 4: Cbv and cbn translations of simply-typed λ-calculus

have been given as σv ⇒ !τv, which, considered as a value type, is isomorphic to the gven
translation. Our reason for instead choosing σv → !(τv) is that this simplifies the statement
of Theorem 6.1 below.

On terms, the cbv translation maps a judgement x1 : σ1, . . . , xn :σn ⊢ M : τ to

x1 : σ
v
1 , . . . , xn :σ

v
n |− ⊢ Mv : !τv .

It is inductively defined by:

xv = !x

∗v = !∗

〈M,N〉v = let !x beMv in let !y beNv in !〈x, y〉

(fst(M))v = let !z beMv in !fst(z)

(snd(M))v = let !z beMv in !snd(z)

(λx : σ. M)v = !(λx : σv. Mv)

(MN)v = let !f beMv in let !x beNv in f(x) .

The cbn translation maps a judgement x1 :σ1, . . . , xn : σn ⊢ M : τ to

x1 :σ
n
1 , . . . , xn :σ

n
n |− ⊢ Mn : τn ,

and simply uses the constructs associated with the computation-type constructors 1, & and
⇒ to mimic the corresponding constructs for 1, × and → in the simply-typed λ-calculus.
Since this is essentially trivial, we omit the details.

The call-by-value and call-by-name translations into EEC induce equational theories
on simply-typed λ-terms. In the case of call-by-value, the resulting equational theory is
that of Moggi’s computational λ-calculus, λc, [Mog89]. In the case of call-by-name, it is
the usual βη-equality theory. The propositions below state this formally, and also assert
that the translations into EEC are full in the sense that every EEC term of translated type
is equal to the translation of a simply-typed term. In the statements, and henceforth, we
write Θ ⊢ M =λc

N : τ for equality in Moggi’s λc, and Θ ⊢ M =βη N : τ for βη-equality.

Proposition 3.1 (Soundness and full completeness of (·)v).

(1) If Θ ⊢ M =λc
N : τ then Θv |− ⊢ Mv = Nv : ! τv.

(2) If Θ ⊢ M,N : τ and Θv |− ⊢ Mv= Nv: !τv then Θ ⊢ M=λc
N: τ .

(3) If Θv |− ⊢ t : !τv then there exists a term Θ ⊢ M : τ such that Θv |− ⊢ Mv = t : ! τv.

Here, statement 1 asserts soundness, statement 2 completeness, and statement 3 fullness.

Proposition 3.2 (Soundness and full completeness of (·)n).

(1) If Θ ⊢ M =βη N : τ then Θn |− ⊢ Mn = Nn : τn.
(2) If Θ ⊢ M,N : τ and Θn |− ⊢ Mn = Nn : τn then Θ ⊢ M =βη N : τ .

LINEAR-USE CPS TRANSLATIONS IN EEC 9

(3) If Θn |− ⊢ t : τn then there exists a term Θ ⊢ M : τ such that Θn |− ⊢ Mn = t : τn.

Outline proof of Propositions 3.1 and 3.2. The call-by-value and call-by-name translations
of typed λ-calculus into Levy’s CBPV are known to be fully complete [Lev04, Appendix A].
These translations thus transfer to the effect calculus (EC) of [EMS12], which is essentially
equivalent to CBPV. The resulting translations into EC are essentially identical to those
given above, modulo the inclusion of EC in the enriched effect calculus. This inclusion is
shown to be fully complete in [EMS09, EMS1x].

The repeat appearance of the word “essentially” in the outline proof above calls for clari-
fication. As already discussed in Section 2, the equivalence between CBPV and the effect
calculus requires choosing the correct version of CBPV (with complex stacks and finitary
syntax), and ignoring the fact that CBPV has value-type sums but EC does not. Any-
way, such issues are a distraction here, since the translations do not involve sum types,
and Levy’s proofs of full completeness transfer directly to EC. Second, the call-by-value
translation we have given into EEC is not literally identical to the translation into EC. The
difference is that, in the case of EC (as defined in [EMS12], see Section 2), one has to define
(σ→ τ)v = σv⇒ !τv, because value-type function space is not available. This difference is,
however, trivial since the two function spaces are isomorphic as value types.

Via the inclusion of EEC as a fragment of ILL, the translations defined above can also
be viewed as translations into ILL. In the case of call-by-value, the resulting translation into
ILL is exactly Benton and Wadler’s call-by-value translation from [BW96]. As emphasised in
op. cit., this translation is not complete relative to =λc

because it enforces the commutativity
of effects. For example, the two terms below,

f : 1 → 1, g : 1 → 1 ⊢ (λx : 1. λy : 1. ∗)(f∗)(g∗) : 1 (3.1)

f : 1 → 1, g : 1 → 1 ⊢ (λx : 1. λy : 1. ∗)(g∗)(f∗) : 1 , (3.2)

which are not equated by =λc
, are equated by the translation. It is also known that the

call-by-value translation into ILL is not full [Has02].

4. Linearly-used continuations in EEC

In [Plo75], Plotkin gave continuation passing style (CPS) translations of call-by-value and
call-by-name λ-calculi into the λ-calculus. As emerged from the work of Moggi [Mog89,
Mog91], the typed version of Plotkin’s call-by-value translation is sound relative to the
equational theory, =λc

, of the computational λ-calculus. Although Plotkin’s original call-
by-name translation validates only the β-law, a variation due to Reus and Streicher [RS98]
is sound for =βη. A feature shared by all these translations is that the usage of continuations
within them is linear. This aspect has been formalized by Hasegawa. In [Has02], he studies
a call-by-value translation from typed λ-calculus into intuitionistic linear type theory (ILL)
in which the types of the translation enforce the linear usage of continuations. In essence,
this translation is Plotkin’s original call-by-value translation, but carried out within a linear
typing discipline. In [Has04], Hasegawa gives a corresponding linear version of the (Reus-
Streicher) call-by-name CPS translation. Although Hasegawa’s translations are into ILL,

10 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

αvR = α αnR = α

1vR = 1 1nR = 0

(σ × τ)vR = σvR × τvR (σ × τ)nR = σnR ⊕ τnR

(σ → τ)vR = σvR → ((τvR ⇒ R) ⊸ R) (σ → τ)nR = !(σnR
⊸ R)⊗ τnR .

Figure 5: Cbv and cbn linear-use CPS translations of typed λ-calculus.

one sees straightforwardly that they land inside the EEC fragment of ILL.5 We now recall
these translations, defining them directly as translations into EEC.

The call-by-value interpretation translates a type σ to a value type σvR , and the call-by-
name interpretation translates σ to a computation type σnR , as defined in Figure 5. As is
standard for CPS translations, they are defined relative to the choice of a “result” type, R.
Using EEC as the target language, it is essential that R be a computation type, otherwise
the translations would not produce legal types. Unless specified otherwise, we let R be an
arbitrary but fixed computation type. However, we shall often need to specify otherwise.
As will be seen, many results below will work in two special cases only: when R is either a
computation-type constant or the type I.

We remark that the combination of function-space constructs that appears in the call-
by-value translation of σ → τ , in Figure 5, is forced by the desire to ensure that continuations
are linearly used. The linear usage itself is implemented by selecting ⊸ for the right-hand
arrow. This, in turn, requires the computation-type arrow⇒ to be used in the type τvR ⇒ R,
which types continations. The left-hand arrow is then forced to be → since its codomain
(τvR ⇒ R) ⊸ R is a value type. (It is possible to reduce the number of different function-
space constructs that appear in the definition of (σ → τ)vR to two. For example, one could
define (σ → τ)vR to be (τvR ⇒ R) ⊸ (σvR ⇒ R), which is isomorphic to the definition
of Figure 5. Another possibility is to reformulate EEC using a single type constructor
to implement both value-type and computation-type function spaces, as in the conference
version of this paper [EMS10]. However, both these alternatives have the disadvantage,
compared with the route we have taken, of complicating the results of Sections 5 and 6.

For a typing context Θ = x1 : σ1, . . . , xn : σn, define

ΘvR = x1 :σ
vR
1 , . . . , xn :σ

vR
n .

Then the cbv translation on terms [Has02] maps a judgement Θ ⊢ M : τ to

ΘvR |− ⊢ MvR : (τvR ⇒ R) ⊸ R ,

5Actually, in [Has04], Hasegawa gives a call-by-name translation for a variant of Parigot’s λµ-
calculus [Par92] extending typed λ-calculus. The full translation goes outside of EEC. Here, we consider
just the translation restricted to typed λ-calculus, which does land in EEC.

LINEAR-USE CPS TRANSLATIONS IN EEC 11

It is defined inductively by (using the typings of Figure 3):

xvR = λ◦k : σvR ⇒ R. k(x)

∗vR = λ◦k : 1 ⇒ R. k(∗)

〈M,N〉vR = λ◦k : (σvR × τvR) ⇒ R. MvR [λx :σvR . NvR [λy : τvR . k(〈x, y〉)]]

(fst(M))vR = λ◦k : σvR ⇒ R. MvR [λz : σvR × τvR . k(fst(z))]

(snd(M))vR = λ◦k : τvR ⇒ R. MvR [λz : σvR × τvR . k(snd(z))]

(λx : σ. M)vR = λ◦k : (σvR → (τvR ⇒ R) ⊸ R) ⇒ R. k(λx : σvR MvR .)

(MN)vR = λ◦k : τvR ⇒ R. MvR [λf : σvR → (τvR ⇒ R) ⊸ R. NvR [λx :σvR . f(x)[k]]]

Similarly, define

ΘnR
⊸ R = x1 : σ

nR
1 ⊸ R, . . . , xn :σ

nR
n ⊸ R .

The cbn translation [Has04] maps a typing judgement Θ ⊢ M : τ , as above, to

ΘnR
⊸ R |− ⊢ MnR : τnR ⊸ R .

Its inductive definition is given by:

xnR = x

∗nR = λ◦k : 0. ?(k)

〈M,N〉nR = λ◦k :σvR ⊕ τvR . case k of (inl(x). MnR [x]; inr(y). NnR [y])

(fst(M))nR = λ◦k :σnR . MnR [inl(k)]

(snd(M))nR = λ◦k : τnR . MnR [inr(k)]

(λx : σ. M)nR = λ◦k : !(σnR
⊸ R)⊗ τnR . let !x⊗h be k in MnR [h]

(MN)nR = λ◦k : τnR . MnR [!(NnR)⊗ k]

The results below list the properties we shall establish of the two translations. Proofs
will be given in Section 6.

Proposition 4.1 (Soundness of (·)vR). If Θ ⊢ M =λc
N : τ then ΘvR | − ⊢ MvR =

NvR : (τvR ⇒ R) ⊸ R.

Proposition 4.2 (Soundness of (·)nR). If Θ ⊢ M =βη N : τ then ΘnR
⊸ R |− ⊢ MnR =

NnR : τnR ⊸ R.

Theorem 4.3 (Full completeness of (·)vR). Suppose R is either: (i) a computation-type
constant, or (ii) the type I. Then:

(1) If Θ ⊢ M,N : τ and ΘvR |− ⊢ MvR =NvR : (τvR ⇒R) ⊸ R then Θ ⊢ M=λc
N : τ .

(2) If ΘvR |− ⊢ t : (τvR ⇒ R) ⊸ R then there exists a term Θ ⊢ M : τ such that ΘvR |− ⊢
MvR = t : (τvR ⇒ R) ⊸ R.

Theorem 4.4 (Full completeness of (·)nR). Suppose R is either: (i) a computation-type
constant different from α, for every simply-typed λ-calculus type constant α; or (ii) the type
I. Then:

(1) If Θ ⊢ M,N : τ and ΘnR
⊸ R |− ⊢ MnR = NnR : τnR ⊸ R then Θ ⊢ t =βη u : τ .

(2) If ΘnR
⊸ R |− ⊢ t : τnR ⊸ R then there exists a term Θ ⊢ M : τ such that ΘnR

⊸ R |
− ⊢ MnR = t : τnR ⊸ R.

12 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

Theorems 4.3 and 4.4 are analogous to full completeness results obtained by Hasegawa
for the linear-use CPS translations into ILL. In [Has02] he proves full completeness for
the call-by-value linear-use CPS translation of Moggi’s computational λ-calculus [Mog89]
into ILL. A similar result holds for the call-by-name translation of [Has04] restricted to
the simply-typed λ-calculus (private communication). In both cases, Hasegawa considers
translations in which R is taken to be a computation-type constant.

We remark that, in the case that R is a computation-type constant, Theorems 4.3 and
4.4 follow as a consequence of Hasegawa’s full completeness results for the translations into
ILL. This is because, even though the inclusion of EEC in ILL is neither complete (faithful)
nor full, it is sound (preserves equalities) [EMS12]. Hence, for any fully complete translation
into ILL that factors through this inclusion, such as the linear-use CPS translations, the fac-
toring translation into EEC is also fully complete. A little thought shows that a similar style
of argument cannot be used to derive Hasegawa’s results as a consequence of Theorems 4.3
and 4.4. Thus, full completeness with respect to ILL seems a strictly stronger property than
full completeness with respect to EEC. Nevertheless, even though Theorems 4.3 and 4.4,
in the case that R is a computation-type constant, follow from Hasegawa’s results (and not
vice-versa), our method of proof is different, and of interest in its own right — see below.

Furthermore, Theorems 4.3 and 4.4 extend Hasegawa’s result in a different direction.
They apply also when the type I is used for R. In the case of the call-by-value translation,
this property distinguishes between the translations into EEC and ILL. Indeed, the call-
by-value linear-use CPS translation into ILL is not complete if I is used for R. A simple
counterexample is given by the two λ-calculus terms (3.1) and (3.2), which translate to
terms:

f : (1 → 1)vR , g : (1 → 1)vR ⊢ ((λx : 1. λy : 1. ∗)(f∗)(g∗))vR : !(1vR)

f : (1 → 1)vR , g : (1 → 1)vR ⊢ ((λx : 1. λy : 1. ∗)(g∗)(f∗))vR : !(1vR) .

Noting that (1 → 1)vR = 1 → ((1 ⇒ I) ⊸ I), which is isomorphic, in EEC and (hence)
in ILL, to I; and !(1vR) = !1, which is also isomorphic to I, on can calculuate that the two
translated terms are transported along these isomorphisms to:

f : I, g : I |− ⊢ let⊤ be f in let⊤ be g in⊤ : I

f : I, g : I |− ⊢ let⊤ be g in let⊤ be f in⊤ : I .

These terms are equal in ILL but not in EEC. (This is reminiscent of the fact that the
cbv translation (·)v of Section 3, when taken into ILL, enforces the commutativity of ef-
fects [BW96]; but not identical, because (·)vR is not, in general, isomorphic to (·)v.)

Our proof of Theorems 4.3 and 4.4 goes via factoring the (·)vR and (·)nR through a
single generic linear-use CPS translation of the entire enriched effect calculus into itself.
This translation, which is the main contribution of the paper, is presented in the next
section.

5. Generic linear-use CPS self-translation of EEC

The generic linear-use CPS translation, from EEC to itself, maps a value type A to a value
type A

VR and a computation type A to a computation type A
CR , as defined in Figure 6.

Note that the translation of a computation type A as a computation type, ACR , is defined
prior to its translation as a value type, AVR . Note also that, in the case that the result type
R is a computation-type constant, it is given special treatment. Otherwise it is translated

LINEAR-USE CPS TRANSLATIONS IN EEC 13

αVR = α αCR =

{

α if α 6= R

I if α = R

1VR = 1 1CR = 0

(A× B)VR = A
VR × B

VR (A&B)CR = A
CR ⊕ B

CR

(A → B)VR = A
VR → B

VR (A ⇒ B)CR = !(AVR)⊗B
CR

A
VR = A

CR
⊸ R I

CR = R

(A ⊸ B)VR = B
CR

⊸ A
CR (!A)CR = A

VR ⇒ R

(!A⊗B)CR = A
VR ⇒ B

CR

0CR = 1

(A⊕ B)CR = A
CR &B

CR

Figure 6: Linear-use CPS translation of EEC types.

zCR = kz

∗CR = ?D(kz)

〈t, u〉CR = case kz of (inl(kx). t
CR [kx/kz]; inr(ky). u

CR [ky/kz])

fst(t)CR = tCR [inl(kz)/kz]

snd(t)CR = tCR [inr(kz)/kz]

(λx :A. t)CR = let !x⊗h be kz in tCR [h/kz]

(s(t))CR = sCR [!(tVR)⊗kz / kz]

(let⊤ be t in u)CR = tCR [uVR [kz] / kz]

(let !x be t in u)CR = tCR [(λx :AVR. uVR [kz]) / kz]

(!t⊗u)CR = uCR [kz(t
VR) / kz]

(let !x⊗y be s in t)CR = sCR [(λx :AVR . tCR [kz/ky]) / kz]

(?(t))CR = tCR [∗ / kz]

(inl(t))CR = tCR [fst(kz) / kz]

(inr(t))CR = tCR [snd(kz) / kz]

(case s of (inl(x). t; inr(y). u))CR = sCR [〈tCR [kz/kx], u
CR [kz/ky]〉 / kz]

(s[t])CR = tCR [sVR [kz] / kz]

Figure 7: Linear-use CPS translation of computation terms.

14 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

xVR = x

∗VR = ∗

〈t, u〉VR = 〈tVR , tVR〉

(fst(t))VR = fst(tVR)

(snd(t))VR = snd(tVR)

(λx :A. t)VR = λx :A. tVR

(t(u))VR = tVR (uVR)

∗VR = λ◦k : 0. ?R(k)

〈t, u〉VR = λ◦k :ACR ⊕ B
CR . case k of (inl(kx). t

VR [kx]; inr(ky). u
VR [ky])

fst(t)VR = λ◦k :ACR . tVR [inl(k)]

snd(t)VR = λ◦k :BCR . tVR [inr(k)]

(λx :A. t)VR = λ◦k : !AVR ⊗B
CR . let !x⊗h be k in tVR [h]

(s(t))VR = λ◦k :BCR . sVR [!(tVR)⊗k]

⊤VR = λ◦k :R. k

(let ⊤ be t in u)VR = λ◦k :ACR . tVR [uVR [k]]

(!t)VR = λ◦k :AVR ⇒ R. k (tVR)

(let !x be t in u)VR = λ◦k :BCR . tVR [λx :AVR . uVR [k]]

(!t⊗u)VR = λ◦k :AVR ⇒ B
CR . uVR [k (tVR)]

(let !x⊗y be s in t)VR = λ◦k :CCR . sVR [λx :AVR . tCR [k/ky]]

(?(t))VR = λ◦k :ACR . tVR [∗]

(inl(t))VR = λ◦k :ACR &B
CR . tVR [fst(k)]

(inr(t))VR = λ◦k :ACR &B
CR . tVR [snd(k)]

(case s of (inl(x). t; inr(y). u))VR = λ◦k :CCR . sVR [〈tCR [k/kx], u
CR [k/ky]〉]

(λ◦z :A. t)VR = λ◦k :BCR . tCR [k/kz]

(s[t])VR = λ◦k :BCR . tVR [sVR [k]]

Figure 8: Linear-use CPS translation of value terms.

in the same way as any other type. This means that, when R is either a computation-type
constant or I, we obtain the complementary equations R

CR = I and I
CR = R, exhibiting

the computation types R and I as a dual pair. Other examples of dual pairs are: 1 and
0; A&B and A ⊕ B; A ⇒ B and !A⊗B; and α (for α 6= R) with itself. Thus the only
computation types without a dual (in this simple sense) are those of the form !A. The reason
that such dual pairs arise in the translation is that the translation acts contravariantly
on computation types, in a sense which will be made clear below, but which is already

LINEAR-USE CPS TRANSLATIONS IN EEC 15

implicit in the identity (A ⊸ B)VR = B
CR

⊸ A
CR . For this reason, each computation

type is translated to a computation type that possesses the dual universal property to its
own. The contravariance of the computation-type translation also underlies the identity
A
VR = A

CR
⊸ R, which “negates” the computation-type translation of a computation type

in order to bring it into the covariant world of value-type translations. We remark that in the
conference version of this paper [EMS10], this identity held only up to isomorphism, leading
to syntactic complications. The implementation of the equality as a syntactic identity, in
Figure 6, is possible in the present paper, because we distinguish between value-type and
computation-type products and between value- and computation-type function spaces.

To define the translation of terms, we translate a typing judgement Γ |− ⊢ t : A as:

ΓVR |− ⊢ tVR : AVR ,

where ΓVR is the context obtained by applying (−)VR to every type in Γ. A typing judgement
Γ |z :A ⊢ t : B is translated to:

ΓVR |kz :B
CR ⊢ tCR : ACR .

The change of direction here is the contravariance we referred to above. The translations
are given in Figures 8 and 7 respectively. In these figures, each line corresponds to one
of the typing rules in Figure 1, and the type and term names are taken from these rules.
Observe that each typing rule that mentions ∆ has two cases: one, in Figure 8, for empty
stoup in Figure 7, and one for non-empty stoup. Also note that, in Figure 7, we always use
z :D for the content of a non-empty stoup called ∆ in Figure 1. We remark that, because
we have the identity (A ⊸ B)VR = B

CR
⊸ A

CR , the translations are simpler than those given
in the conference version of the paper [EMS10], which involved specified isomorphisms in
lieu of the identity.

The remainder of the section is devoted to establishing properties of the self-translation.
As a first observation, we note that if Γ |− ⊢ t : A, where x is not contained in Γ, then the
terms, appearing in each of the translated judgements (cf. Proposition 2.1)

ΓVR |− ⊢ tVR : AVR ΓVR , x :BVR |− ⊢ tVR : AVR ,

are identical (as the notation suggests). Similarly, if Γ | z :A ⊢ t : B, where again x is not
in Γ, then the two terms

ΓVR |kz :B
CR ⊢ tCR : ACR ΓVR , x :CVR |kz :B

CR ⊢ tCR : ACR

are identical. These observations are easily seen to hold by a straightforward induction on
the structure of t.

The interaction between the self-translation and substitution is more subtle. Each of
the two cases of Proposition 2.2 splits into two subcases, one for empty ∆, and one for
non-empty ∆, resulting in the four cases considered in the proposition below.

Proposition 5.1 (Substitution).

(1) If Γ, x :A |− ⊢ t : B and Γ |− ⊢ u : A then ΓVR |− ⊢ (t[u/x])VR = tVR [uVR /x] : BVR.
(2) If Γ, x :A |z :D ⊢ t : B and Γ |− ⊢ u : A then

ΓVR |kz :B
CR ⊢ (t[u/x])CR = tCR [uVR /x] : DCR .

(3) If Γ |x :A ⊢ t : B and Γ |− ⊢ u : A then

ΓVR |− ⊢ (t[u/x])VR = λ◦k :BCR . uVR [tCR [k / kx]] : B
CR

⊸ R .

16 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

(4) If Γ |x :A ⊢ t : B and Γ |z :D ⊢ u : A then

ΓVR |kz :B
CR ⊢ (t[u/x])CR = uCR [(tCR [kz /kx]) / kz] : D

CR .

Proof. By induction on t.
Statements 1 and 2 are proved simultaneously. For example, if t is λ◦z :B1. t

′, where
B is B1 ⊸ B2, then statement 1 applies, and we must show that ((λ◦z : B1. t

′)[u/x])VR =
(λ◦z : B1. t

′)VR [uVR /x]. The induction hypothesis, given by statement 2, is (t′[u/x])CR =
(t′)CR [uVR /x]. And indeed:

((λ◦z :B1. t
′)[u/x])VR = (λ◦z :B1. t

′[u/x])VR

= λ◦kz :B
CR

2 . (t′[u/x])CR

= λ◦kz :B
CR

2 . (t′)CR [uVR /x] by induction hypothesis

= (λ◦z :B1. t
′)VR [uVR /x] .

We illustrate the proof of statement 3 in the case that t is case t′ of (inl(y). t1; inr(z). t2),
where Γ |x :A ⊢ t′ : C1 ⊕ C2, and Γ |y :C1 ⊢ t1 : B, and Γ |z :C2 ⊢ t2 : B. Then:

(t[u/x])VR = (case t′[u/x] of (inl(y). t1; inr(z). t2))
VR

= λ◦k :B. (t′[u/x])VR [〈t
CR

1 [k/ky], t
CR

2 [k/kz]〉]

= λ◦k :B. uVR [(t′)CR [〈t
CR

1 [k/ky], t
CR

2 [k/kz]〉 / kx]] by induction hypothesis

= λ◦k :B. uVR [(case t′ of (inl(y). t1; inr(z). t2))
CR [k/kx]]

= λ◦k :BCR . uVR [tCR [k/kx]] .

We omit the proof of statement 4, which is straightforward.

We now have the machinery necessary to establish the first of the main properties of
the self-translation, its equational soundness.

Theorem 5.2 (Soundness).

(1) If Γ |− ⊢ t = u : A then ΓVR |− ⊢ tVR = uVR : AVR.
(2) If Γ |z :A ⊢ t = u : B then ΓVR |kz :B

CR ⊢ tCR = uCR : ACR.

Proof. Define Γ | − ⊢ t ∼ u : A to hold if ΓVR | − ⊢ tVR = uVR : AVR, and similarly
Γ | z : A ⊢ t ∼ u : B to hold if ΓVR | kz : B

CR ⊢ tCR = uCR : ACR . Trivially, ∼ is a type-
respecting equivalence relation. By the compositional definition of (·)VR and (·)CR it is an
α-equivalence respecting congruence. It remains to verify that ∼ satisfies the equalities of
Figure 2. Once again, every equality in which ∆ appears, splits into two cases, one for
empty ∆, and one for non-empty ∆. This means that the 24 equalities of Figure 2, give
rise to 39 equalities that need verifying. We consider two cases, by way of illustration.

For the first case, suppose Γ |− ⊢ t : A and Γ, x :A |− ⊢ u : B. We show that

ΓVR |− ⊢ (let !x be !t in u)VR = (u[t/x])VR : BCR
⊸ R .

LINEAR-USE CPS TRANSLATIONS IN EEC 17

For this,

(let !x be !t in u)VR = λ◦k :BCR . (!t)VR [λx :AVR . uVR [k]]

= λ◦k :BCR . (λx :AVR . uVR [k]) (tVR) def. of (!t)VR

= λ◦k :BCR . uVR [tVR /x] [k] β equality

= uVR [tVR /x] η equality

= (u[t/x])VR Prop. 5.1.1 .

For the second case, suppose Γ |z :D ⊢ t : !A and Γ |y : !A ⊢ u : B. We show that

Γ |kz :B
CR ⊢ (let !x be t in u[!x/y])CR = (u[t/y])CR : DCR .

For this,

(let !x be t in u[!x/y])CR = tCR [(λx :AVR . (u[!x/y])VR [kz]) / kz]

= tCR [(λx :AVR . (!x)VR [uCR [kz/ky]]) / kz] Prop. 5.1.3

= tCR [(λx :AVR . (uCR [kz/ky])(x
VR)) / kz] def. of (!x)VR

= tCR [(λx :AVR . (uCR [kz/ky])(x)) / kz] def. of xVR

= tCR [(uCR [kz/ky]) / kz] η equality

= (u[t/y])CR Prop. 5.1.4 .

We comment that the second step above, employs the equality

(u[!x/y])VR = λ◦k :BCR . (!x)VR [uCR [k / ky]] ,

whose strict derivation from Proposition 5.1.3 invokes the coincidence of the two terms:

ΓVR |ky :B ⊢ u : AVR ⇒ R ΓVR , x :AVR |ky :B ⊢ u : AVR ⇒ R .

Having made this point once, we shall not comment further on such small issues arising
from weakening.

We now come to the central result of the paper: if R is either a computation-type
constant or I then the self-translation is involutive up to isomorphism (Theorem 5.4). That
is, the translation of the translation of a term is equal, modulo type isomorphism, to the
original term. To state the involution property, we first define the required isomorphisms.
For each value type A, we define a closed EEC term, iA : A

VRVR → A, for which there exists
a corresponding closed term i−1

A
: A → A

VRVR such that the equations λx :A. iA(i
−1
A

(x)) =

λx : A. x and λx : AVRVR . iA−1(iA(x)) = λx : AVRVR . x hold in the EEC equational theory.

Similarly, for each computation type A, we define a closed EEC term jA : A
CRCR

⊸ A that

is a linear isomorphism. That is, the inverse is given by a closed term j−1
A

: A ⊸ A
CRCR

such that the equations asserting the mutual inverse properties again hold. The families of
terms iA and jA are mutually defined by induction on their types in Figure 9. Note that,
for a computation type A, the linear isomorphism jA is defined first, and the definition
of iA depends on it. Note also that the clauses for function types require the inverses
of previously defined terms, which, since they are inverses, are uniquely determined up to
provable equality. Their existence is assured by the lemma below, which therefore establishes
that Figure 9 is a good definition.

18 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

iα = λx :α. x

i1 = λx : 1. ∗

iA×B = λz :AVRVR × B
VRVR . 〈iA(fst(z)), iB(snd(z))〉

iA→B = λf :AVRVR → B
VRVR . λx :A. iB(f(i

−1
A

(x)))

iA = λh : I ⊸ A
CRCR . jA [h [⊤]]

iA⊸B = λh :ACRCR
⊸ B

CRCR . λ◦x :A. jB [h [j−1
A

[x]]]

jα = λ◦z :α. z

j1 = λ◦z : 1. ∗

jA&B = λ◦z :ACRCR &B
CRCR . 〈 jA [fst(z)], jB [snd(z)] 〉

jA⇒B = λ◦f :AVRVR ⇒ B
CRCR . λx :A. jB [f(i−1

A
(x))]

jI = λ◦z : I. z

j!A = λ◦z : !(AVRVR)⊗ I. let !x⊗y be z in let⊤ be y in !(iA(x))

j!A⊗B = λ◦z : !(AVRVR)⊗B
CRCR . let !x⊗y be z in !(iA(x))⊗(jB [y])

j0 = λ◦z : 0. z

jA⊕B = λ◦z :ACRCR ⊕ B
CRCR . case z of (inl(x). inl(jA [x]); inr(y). inr(jB [y]))

Figure 9: Type isomorphisms for the involution property

Lemma 5.3. Suppose R is either a computation-type constant or I. Then each term
iA : A

VRVR → A is an isomorphism, and each jA : A
CRCR

⊸ A is a linear isomorphism.

Proof. The two statements are proved simultaneously by induction on the type, with, in the
case of a computation type A, the inverse for jA being established before that of iA. The

assumption that R is either a computation-type constant or I implies that RCR = I, and this
fact is used frequently in the proof. We consider just two illustrative cases: iA and j !A.

In the case of iA, we have A
VRVR = (ACR

⊸ R)VR = R
CR

⊸ A
CRCR = I ⊸ A

CRCR , and the

inverse i−1
A

: A → (I ⊸ A
CRCR) is defined by

i−1
A

= λx :A. λ◦z : I. let⊤ be z in j−1
A

[x] .

Then we have (using the obvious definition for composition):

i−1
A

◦ iA = λh : I ⊸ A
CRCR . λ◦z : I. let⊤ be z in j−1

A
[jA [h [⊤]]]

= λh : I ⊸ A
CRCR . λ◦z : I. let⊤ be z in h [⊤] by induction hypothesis

= λh : I ⊸ A
CRCR . λ◦z : I. h [z]

= λh : I ⊸ A
CRCR . h ,

and the verification that iA ◦ i−1
A

= λx :A. x is similarly straightforward.

In the case of j !A, we have (!A)
CRCR =!(AVRVR)⊗ I and the inverse j−1

!A : !A ⊸!(AVRVR)⊗ I

is defined by
j−1
!A = λ◦w : !A. let !x be w in !(i−1

A
(x))⊗⊤ . (5.1)

LINEAR-USE CPS TRANSLATIONS IN EEC 19

Then:

j−1
!A ◦ j !A

= λ◦z : !(AVRVR)⊗ I. let !x′ be (let !x⊗y be z in let⊤ be y in !(iA(x))) in !(i−1
A

(x′))⊗⊤

= λ◦z : !(AVRVR)⊗ I. let !x⊗y be z in let⊤ be y in let !x′ be !(iA(x)) in !(i−1
A

(x′))⊗⊤

= λ◦z : !(AVRVR)⊗ I. let !x⊗y be z in let⊤ be y in !(i−1
A

(iA(x)))⊗⊤

= λ◦z : !(AVRVR)⊗ I. let !x⊗y be z in let⊤ be y in !x⊗⊤

= λ◦z : !(AVRVR)⊗ I. let !x⊗y be z in !x⊗y

= λ◦z : !(AVRVR)⊗ I. z ,

where the third equality applies the induction hypothesis, and all others, including the
rearrangement of “let” expressions in the second equation, justified by the equalities of
Figure 2. The verification that j !A ◦ j−1

!A = λx : !A. x is straightforward.

We remark that the main reason for including I as a primitive EEC construct, in the
present paper, was to permit the uniform definition of the type isomorphisms, given in
Figure 9, which covers both cases of interest: when R is a computation-type constant, and
when it is I. The alternative would have beeen to have omitted I from the primitive syntax,
defining it as !1. Had this been done, we would have obtained: R

CRCR = 1⇒R, in the case
that R is a computation-type constant; and R

CRCR = !1⊗ (1⇒R), in the case that R is I

(i.e., R = !1). In both cases, linear isomorphisms between R and R
CRCR still exist, they can

no longer be given uniformly.
In order to state the fundamental involution property enjoyed by the self-translation

on EEC, for a context
Γ = x1 :C1, . . . , xn :Cn ,

we introduce the notation [i−1(Γ)] for the substitution

[i−1
C1

(x1), . . . , i
−1
Cn

(xn) /x1, . . . , xn] .

Theorem 5.4 (Involution property). Suppose R is either a computation-type constant or I.

(1) If Γ |− ⊢ t : A then Γ |− ⊢ t = iA(t
VRVR) [i−1(Γ)] : A.

(2) If Γ |z :A ⊢ t : B then Γ |z :A ⊢ t = jB [tCRCR] [j−1
A

[z] / kkz] [i
−1(Γ)] : B.

Proof. The statements are proved simultaneously, by induction on t. There are 41 cases in
the proof, one for each of the equations in Figures 7 and 8. By way of illustration, we verify
two of them, the second being among the most complex cases in the proof.

For the first case, suppose Γ |− ⊢ t : A. We verify that:

Γ |− ⊢ !t = i!A((!t)
VRVR) [i−1(Γ)] : !A .

The basic strategy is to first expand the inner (·)VR , then the outer (·)VR , applying the
definitions of i!A and j!A until the induction hypothesis can be invoked. Between these
steps, we use the equalities of Figure 2 to simplify the terms as far as possible. Henceforth,
we treat applications of equalities from Figure 2 as trivial. So, in the detailed derivation
below, we do not annotate such steps. Nor do we explain obvious expansions of (·)VR and
(·)CR .

i!A((!t)
VRVR) [i−1(Γ)]

= i!A((λ
◦k :AVR ⇒ R. k (tVR))VR) [i−1(Γ)]

20 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

= i!A(λ
◦k′ :RCR . (k (tVR))CR [k′/kk]) [i

−1(Γ)]

= i!A(λ
◦k′ :RCR . kCR [!(tVRVR)⊗kk /kk] [k

′/kk]) [i
−1(Γ)]

= i!A(λ
◦k′ :RCR . kk [!(t

VRVR)⊗kk /kk] [k
′/kk]) [i

−1(Γ)]

= i!A(λ
◦k′ :RCR . !(tVRVR)⊗k′) [i−1(Γ)]

= j!A[(λ
◦k′ :RCR . !(tVRVR)⊗k′) [⊤]] [i−1(Γ)] def. of i!A

= j!A[!(t
VRVR)⊗⊤] [i−1(Γ)]

= let !x⊗y be !(tVRVR)⊗⊤ in let ⊤ be y in !(iA(x)) [i
−1(Γ)] def. of j!A

= let⊤ be⊤ in !(iA(t
VRVR)) [i−1(Γ)]

= !(iA(t
VRVR)) [i−1(Γ)]

= !(iA(t
VRVR) [i−1(Γ)])

= !t induction hypothesis .

For the second case, suppose Γ |z :D ⊢ t : !A and Γ, x :A |− ⊢ u : B. We verify that

Γ |z :D ⊢ let !x be t in u = jB [(let !x be t in u)CRCR] [j−1
B

[z] / kkz] [i
−1(Γ)] : B .

Adopting a similar strategy to above, we obtain:

jB [(let !x be t in u)CRCR] [j−1
D

[z]/kkz] [i
−1(Γ)]

= jB [(tCR [(λx :AVR. uVR [kz]) / kz])
CR] [j−1

D
[z]/kkz] [i

−1(Γ)]

= jB [(λx :AVR . uVR [kz])
CR [tCRCR / kkz]] [j

−1
D

[z]/kkz] [i
−1(Γ)] (5.2)

= jB [(let !x⊗h be kkz in (uVR [kz])
CR [h/kkz]) [t

CRCR / kkz]] [j
−1
D

[z]/kkz] [i
−1(Γ)]

= jB [(let !x⊗h be tCRCR in (uVR [kz])
CR [h/kkz])] [j

−1
B

[z]/kkz] [i
−1(Γ)]

= jB [(let !x⊗h be tCRCR in (k
CR
z [uVRVR [kkz] / kkz]) [h/kkz])] [j

−1
D

[z]/kkz] [i
−1(Γ)]

= jB [(let !x⊗h be tCRCR in (kkz [u
VRVR [kkz] / kkz]) [h/kkz])] [j

−1
D

[z]/kkz] [i
−1(Γ)]

= jB [(let !x⊗h be tCRCR in uVRVR [kkz] [h/kkz])] [j
−1
D

[z]/kkz] [i
−1(Γ)]

= jB [(let !x⊗h be tCRCR in uVRVR [h])] [j−1
D

[z]/kkz] [i
−1(Γ)]

= (let !x⊗h be tCRCR in jB [uVRVR [h]]) [j−1
D

[z]/kkz] [i
−1(Γ)]

= (let !x⊗h be tCRCR in let⊤ be h in jB [uVRVR [⊤]]) [j−1
D

[z]/kkz] [i
−1(Γ)]

= (let !x⊗h be tCRCR in let⊤ be h in iB [uVRVR]) [j−1
D

[z]/kkz] [i
−1(Γ)] (5.3)

= let !x⊗h be (tCRCR [j−1
D

[z]/kkz] [i
−1(Γ)]) in let⊤ be h in (iB [uVRVR] [i−1(Γ)])

= let !x⊗h be j−1
!A [t] in let⊤ be h in (iB [uVRVR] [i−1(Γ)]) (5.4)

= let !x⊗h be (let !x be t in !(i−1
A

(x))⊗⊤) in let⊤ be h in (iB [uVRVR] [i−1(Γ)]) (5.5)

= let !x be t in let !x⊗h be !(i−1
A

(x))⊗⊤ in let⊤ be h in (iB [uVRVR] [i−1(Γ)])

= let !x be t in let⊤ be⊤ in (iB [uVRVR] [i−1(Γ)] [i−1
A

(x) /x])

= let !x be t in (iB [uVRVR] [i−1(Γ, x :A)])

LINEAR-USE CPS TRANSLATIONS IN EEC 21

= let !x be t in u . (5.6)

Here, (5.2) is by Proposition 5.1.4, (5.3) is by definition of jB, (5.4) applies the induction

hypothesis for t, (5.5) expands j−1
!A using (5.1), and (5.6) applies the induction hypothesis

for t (which is applicable only at this point in the argument, because t is typed relative to
the context Γ, x :A rather than Γ).

We end the present section by applying Theorem 5.4 to derive the full completeness of
the self-translation.

Theorem 5.5 (Full completeness of self-translation). Suppose R is either a computation-
type constant or I.

(1) If Γ |− ⊢ t, u : A and ΓVR |− ⊢ tVR = uVR : AVR then Γ |− ⊢ t = u : A.
(2) If ΓVR |− ⊢ t : AVR then there exists Γ |− ⊢ u : A such that ΓVR |− ⊢ t = uVR : AVR.
(3) If Γ |z :A ⊢ t, u : B and ΓVR |kz :B

CR ⊢ tCR = uCR : ACR then Γ |z :A ⊢ t = u : B.
(4) If ΓVR |kz :B

CR ⊢ t : ACR then there exists Γ |z :A ⊢ u : B such that
ΓVR |kz :B

CR ⊢ t = uCR : ACR .

Proof. For statement 1, suppose Γ |− ⊢ t, u : A and tVR = uVR . Then:

t = iA (tVRVR [i−1(Γ)]) (Theorem 5.4.1)

= iA (uVRVR [i−1(Γ)]) (Theorem 5.2)

= u (Theorem 5.4.1) .

For statement 2, suppose ΓVR |− ⊢ t : AVR . Define u = iA(t
VR [i−1(Γ)]). Then:

uVR = i
A
VR
(uVRVRVR [i−1(ΓVR)]) (Theorem 5.4.1)

= i
A
V
R
((i−1

A
(u [i(Γ)]))VR [i−1(ΓVR)]) (Theorem 5.4.1)

= i
A
VR
(tVRVR [i−1(ΓVR)]) (Definition of u)

= t (Theorem 5.4.1) .

The proofs of statements 3 and 4 are similar.

6. Recovering linear-use CPS translations of typed lambda-calculus

In this section, we use the self-translation to establish properties of the call-by-value and
call-by-name linear-use CPS translations of Section 4. The main property we exploit is
that the generic self-translation subsumes the call-by-value and call-by-name translations.
Indeed, the latter are obtained uniformly by precomposing the generic self-translation on
EEC with the standard call-by-value and call-by-name translations from λ-calculus to EEC,
given in Section 3.

Theorem 6.1 (Recovering (·)vR). For every simple type σ, we have σvR = (σv)VR ; and, for
every simply-typed term Θ ⊢ M : σ, we have ΘvR |− ⊢ MvR = (Mv)VR : (σvR ⇒ R) ⊸ R.

Theorem 6.2 (Recovering (·)nR). Suppose R is different from α, for every simply-typed
λ-calculus type constant α. Then, for every σ, we have σnR = (σn)CR , hence σnR

⊸ R =
(σn)VR; and, for every term Θ ⊢ M : σ, we have ΘnR

⊸ R |− ⊢ MnR = (Mn)VR : σnR
⊸ R.

The proofs are by induction on the structure of σ and M .

22 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

Proof of Theorem 6.1. For the type equality, we consider the case of σ → τ .

((σ → τ)v)VR = (σv → ! τv)VR

= (σv)VR → (! τv)VR

= (σv)VR → ((! τv)CR ⊸ R)

= (σv)VR → (((τv)VR ⇒ R) ⊸ R)

= σvR → ((τvR ⇒ R) ⊸ R) by induction hypothesis

= (σ → τ)vR .

And, in the case of the term MN , where Θ ⊢ M : σ → τ and Θ ⊢ N : σ, we have:

((MN)v)VR = (let !f beMv in let !x beNv in f(x))VR

= λ◦k : (τv)VR ⇒ R. (Mv)VR [λf : ((σ → τ)v)VR . (let !x beNv in f(x))VR [k]]

= λ◦k : (τv)VR ⇒ R. (Mv)VR [λf : ((σ → τ)v)VR . (Nv)VR [λx : (σv)VR . f(x)[k]]]

= λ◦k : τvR ⇒ R. MvR [λf : σvR → (τvR ⇒ R) ⊸ R. NvR [λx :σvR . f(x)[k]]]

= (MN)vR .

Proof of Theorem 6.2. First, we observe that for a type-constant α, we have

αnR = α = αCR = (αn)CR ,

where the middle equality relies on the asumption that α is different from R.
Of the other cases, we again consider σ → τ .

((σ → τ)n)CR = (σn ⇒ τn)CR

= !((σn)VR)⊗ (τn)CR

= !((σn)CR ⊸ R)⊗ (τn)CR

= !(σnR
⊸ R)⊗ τnR by induction hypothesis

= (σ → τ)nR .

And the case of an application MN works out as:

((MN)n)VR = (Mn (Nn))VR

= λ◦k : (τn)CR . (Mn)VR [!((Nn)VR)⊗ k]

= λ◦k : τnR . MnR [!(NnR)⊗ k]

= (MN)nR .

We comment that many of the syntactic choices of this paper have been made in order
to obtain Theorems 6.1 and 6.2 in the simple form stated. For example, in the conference
version of the paper [EMS10], where neither value-type and computation-type products nor
value- and computation-type function spaces are distinguished syntactically, Theorem 6.2
holds only up to type isomorphism, rather than up to equality. Similarly, had a different
choice been made for (σ → τ)vR in Figure 5, for example (τvR ⇒ R) ⊸ (σvR ⇒ R), as
discussed in Section 4, then Theorem 6.1 would have held only up to isomorphism.

LINEAR-USE CPS TRANSLATIONS IN EEC 23

Using Theorems 6.1 and 6.2, it is now straightforward to provide the postponed proofs of
soundness and full completeness for the cbv and cbn linear-use CPS translations of simply-
typed λ-calculus from Section 4, by deriving these results as consequences of soundness and
full completeness for the self-translation (Theorems 5.2 and 5.5). We give the proofs for the
call-by-value case only (Proposition 4.1 and Theorem 4.3). The proofs for the corresponding
call-by-name results (Proposition 4.2 and Theorem 4.4), are similarly straightforward.

Proof of Proposition 4.1 (Soundness (·)vR). Suppose Θ ⊢ M =λc
N : τ . Proposition 3.1.1

shows Θv | − ⊢ Mv = Nv : !(τv). Whence, by Theorem 5.2, (Θv)VR | − ⊢ (Mv)VR =
(Nv)VR : (! τv)VR . That is, by Theorem 6.1, ΘvR |− ⊢ MvR = NvR : (τvR ⇒ R) ⊸ R.

Proof of Theorem 4.3 (Full completeness of (·)vR). For statement 1, suppose Θ ⊢ M,N : τ
and ΘvR | − ⊢ MvR = NvR : (τvR ⇒ R) ⊸ R. By Theorem 6.1, this is equivalent to
(Θv)VR |− ⊢ (Mv)VR = (Nv)VR : (! τv)VR . So, by Theorem 5.5.1, Θv |− ⊢ Mv = Nv : !(τv).
Whence, by Proposition 3.1.2, Θ ⊢ M =λc

N : τ , as required.
For statement 2, suppose ΘvR | − ⊢ t : (τvR ⇒ R) ⊸ R. That is, by Theorem 6.1,

(Θv)VR | − ⊢ t : (! τv)VR . Then, by Theorem 5.5.2 there exists Θv | − ⊢ u : ! τv such that
(Θv)VR |− ⊢ t = uVR : (! τv)VR . And, by Proposition 3.1.3, there exists Θ ⊢ M : τ such that
Θv | − ⊢ u = Mv : ! τv. Therefore, by Theorem 5.2, (Θv)VR | − ⊢ t = (Mv)VR : (! τv)VR .
That is, again by Theorem 6.1, ΘvR |− ⊢ t = MvR : (τvR ⇒ R) ⊸ R, as required.

7. Perspectives

Throughout the paper, we have taken EEC for granted. However, linear-use CPS transla-
tions can themselves be used as a motivation for the selection of type constructors appearing
in EEC. Given Hasegawa’s call-by-value and call-by-name linear-use CPS translations into
ILL [Has02, Has04], it is natural to ask if these translations can be encompassed within a
single linear-use CPS translation of Levy’s CBPV into ILL — since one of the raisons d’être
of CBPV is to have a uniform language generalising cbv and cbn [Lev04]. For our effect
calculus (EC), that is, for CBPV without value-type sums (see the discussion in Section 2),
the answer is provided by our generic self-translation on EEC. A linear-use CPS translation
of the effect calculus is obtained by restricting the source of the self-translation to EC, and
by reinterpreting the target of the translation as ILL. Having done this, one sees that the
fragment of ILL that is used in performing this translation is EEC. Thus EEC arises as
naturally the smallest fragment of ILL able to act as a target language for a linear-use CPS
translation of EC. Value-type sums, that is the whole of CBPV, can be accommodated
in the picture by simply adding value-type sums to EEC, see [EMS12]. The generic self-
translation of Section 5 easily extends to a self-translation on the resulting system EEC+.
Thus there is a linear-use CPS translation of full CBPV into EEC+.6

It is a remarkable fact that EEC supports its own linear-use CPS translation as a self-
translation. As we have seen, this property does not hold of smaller fragments, such as the
effect calculus, whose linear-use CPS translation requires the full expressivity of EEC. It
also does not extend to ILL itself. That is, the linear-use CPS translation of EEC cannot be
extended to obtain an analogous linear-use CPS translation from ILL to itself. To appreciate

6It is less straightforward to give a linear-use CPS translation of the whole of CBPV into ILL. Because
there is no distinction between “linear” and “intuitionistic” types, analogous to the distinction between
computation and value types, there is no natural interpretation for value-type sums in ILL. Sums are best
incorporated by moving to a version of linear logic that includes such a type distinction [Ben95].

24 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

this, it is necessary to say something about the category-theoretic model theory underlying
linear-use CPS translations. This model theory provides an illuminating perspective on the
syntactic material presented in the paper.

Roughly speaking, a model M of EEC is given by a tuple

(V, C, F ⊣ G : C → V) ,

where: V is a category modelling functions between value types; C is a category modelling
linear functions between computation types; and F ⊣ G is an adjunction, with F modelling
the !(·) type construction, and G providing the coercion from computation types to value
types. A significant amount of additional structure, all of which is determined by universal
properties, is also required on the categories, to interpret the other type constructors of
EEC. The reader is referred to [EMS09, EMS12, EMS1x] for further details, which are
somewhat technical — substantial use is made of enriched category theory [Kel82]. The
point relevant to the content of the present paper is that the categorical models of EEC
are closed under an interesting construction. Given a model as above, let R be a chosen
object of C. We call the structure (V, C, F ⊣ G : C → V, R) a pointed model. Such a pointed
model, N , has a dual (pointed) model :

N ⋆ = (V, Cop, F ⋆ ⊣ G⋆ : Cop → V, I) ,

where F ⋆ corresponds to the contravariant mapping A 7→ A ⇒ R from value to computation
types, G⋆ corresponds to the contravariant mapping A 7→ A ⊸ R in the other direction,
and I is the object of C chosen to model the type I in N . Thus the monad GF on V, which
models !(·) in N , is converted to the monad G⋆F ⋆ = ((·) ⇒ R) ⊸ R on V, which models
!(·) in the dual model N ⋆. Monads of the form G⋆F ⋆ have been called dual monads by
Lawvere [Law69]. In our setting, the dual terminology is particularly apt, since we have:

Fact 7.1. Every pointed model N is isomorphic to its double dual N ⋆⋆.

Importantly, the isomorphism preserves the pointed-model structure, but only up to coher-
ent natural isomorphism. Up-to-isomorphism structure preservation is taken as the basic
notion of morphism of EEC models [EMS09, EMS1x]. Those special morphisms that pre-
serve structure up to equality (“on the nose”) are referred to as strict.

Given the description of G⋆F ⋆ as ((·) ⇒ R) ⊸ R, a connection with linear-use CPS
translations is apparent at the level of monads. Accordingly, one might call N ⋆ a linearly-
used continuations model relative to N . By Fact 7.1, every (pointed) model of EEC arises
as a linearly-used continuations model relative to another model, namely relative to its own
dual model — a property, which is somewhat surprising at first sight.

The dual monad construction also allows us to reconstruct the self-translation of Sec-
tion 5 semantically. There is a syntactic model Msyn whose objects are EEC types and
whose morphisms are terms modulo provable equality. This enjoys an initiality property:
for any interpretation of type constants in a model M there is a unique strict morphism of
models from Msyn to M that maps type constants in the specified way. Let R be a chosen
computation type. Define NsynR be the pointed model with R as its point. Interpret all type
constants as themselves, except for R which, if it is a type constant, gets interpreted as I.
Then the induced strict morphism of models from Msyn to the underlying model of N ⋆

synR

is exactly the generic self-translation of Section 5. That is, the action of the morphism on
(objects and morphisms of) V is given by (·)VR (on types and terms respectively), and its
action on C is given by (·)CR .

LINEAR-USE CPS TRANSLATIONS IN EEC 25

It is now possible to substantiate the claim made earlier that the self-translation of
EEC does not extend to the whole of ILL. Any model of ILL (of the general form described
in [Ben95]) is also a model of ECC. Let N be a pointed model of ILL. Then, in general, its
dual N ⋆, although still a model of EEC, is not a model of ILL (the linear category need
not be symmetric monoidal closed). In particular, when N is the syntactic (initial) model
of ILL (with chosen R), the dual model N ⋆ is not a model of ILL. Thus there is no induced
morphism of models from the syntactic ILL model to its dual. That is, there is no linear-use
CPS translation of ILL to itself.

Returning to the self-translation of EEC, we now outline how the semantic perspec-
tive provides a conceptually clean proof of the involution property and full completeness.
Suppose R is either a type constant or I. Then the morphism from Msyn to N ⋆

synR, de-

scribed above as corresponding to the self-translation, extends (trivially) to a morphism
of pointed models from NsynR to N ⋆

synR. The operation of taking duals is functorial (in

an appropriate 2-categorical sense), and so we obtain a morphism of pointed models from
N ⋆

synR to N ⋆⋆
synR; whence, by composition, a morphism from NsynR to N ⋆⋆

synR. The composite

morphism preserves type constants. Furthermore Msyn enjoys a universal property with
respect to non-strict morphisms: for any interpretation of type constants in a model M
there is a unique-up-to-coherent-natural-isomorphism morphism of models from Msyn to M
that maps type constants (up to isomorphism) in the specified way. This means that, the
induced morphism from NsynR to N ⋆⋆

synR is coherently naturally isomorphic to the morphism

implementing the double-duality of Fact 7.1. This is literally the involution property of the
self-translation (Theorem 5.4) in semantic form. With a little more manipulation of the
universal property of Msyn, one obtains:

Fact 7.2. The morphism from NsynR to N ⋆
synR is an equivalence of pointed models.

This result corresponds to the full completeness of the self translation (Theorem 5.5). Se-
mantically, it states the surprising, at first sight, fact that the syntactic (pointed) model is
self-dual.

There is, however, an alternative perspective on models, from which the self-duality of
the initial model is less surprising. It is possible to omit the adjunction F ⊣ G from the
structure of the model, and instead simply specify the object I. The adjunction is then
recovered using the requirement that C have copowers (a concept from enriched category
theory), which is part of the assumed structure of a model. The operation of taking the
dual of a pointed model, with point R, then has a simple description: instead of redefining
the adjunction, the rôles of the objects I and R are simply swapped in the structure.

Detailed definitions and proofs of all the semantic facts referred to above in this section
will appear in a paper devoted entirely to the category-theoretic models of EEC [EMS1x].
Unfortunately, although the high-level ideas are straightforward, considerable technicalities
arise in getting the details correct. The reader who wishes to see a slightly fuller treatment
than the outline given above, but not all details, is referred to the conference version of the
present paper [EMS10].

To finish, we return to syntax. The alternative formulation of models, referred to
above, has a syntactic counterpart. Since I is included as a primitive computation type
in our formulation of EEC, it would be possible to omit, from the syntax of EEC, both
the type constructor !A and the inclusion of computation types amongst value types. The
former can be defined as !A⊗ I. And the value type corresponding to a computation type
A can be recovered as I ⊸ A. (Thus Levy’s U constructor [Lev04] is rendered visible.)

26 J. EGGER, R. E. MØGELBERG, AND A. SIMPSON

Using this restricted syntax, the involution property of Theorem 5.4 has a simplified form.
There is no longer any need for the isomorphisms iA and jA, since one obtains identities

A
VRVR = A and A

CRCR = A. The very mild drawback of this formulation is that it requires
the slightly more complex definition of (σ → τ)v = σv → (I ⊸ !τv⊗ I) in Figure 4. Or
alternatively, one could take (σ → τ)v = !σv⊗ I ⊸ !τv⊗ I, which would fit in with redefining
(σ → τ)vR = (τvR ⇒ R) ⊸ (σvR ⇒ R), as discussed in Section 4, leaving the value-type-
function-space constructor, →, superfluous to the translations.

However, for the present paper, we have preferred to retain !(·) as a primitive type
construct, due to the basic rôle it plays in related type systems: as T in Moggi’s com-
putational metalanguage [Mog91], as F in Levy’s CBPV [Lev04], and as the exponen-
tial in linear logic [Gir87]. For one thing, our choice of primitives has allowed us to
give the various translations of Sections 3 and 4 just as they appear in the literature
[Mog91, Fil96, Lev04, Has02, Has04], modulo the change to EEC notation. We also com-
ment that it is perhaps the standard focus on !(·) (or T or F) as the key construct in effect
languages that makes the involution property of the self-translation translation come as a
surprise when first encountered. For, amongst computation types, the type !A has the most
interesting translation — the only one which is not part of a dual pair. It is for this reason
that the proofs of Section 5 mainly focus on constructs associated with types of the form
!A as providing the interesting cases.

In the present paper, we have investigated the enriched effect calculus as a metalanguage
for formalising one possible interaction between linearity and CPS translations. It is the
belief of the authors that EEC will prove a useful language for modelling other ways in
which linearity and effects combine. Some potential examples of such interactions are
briefly discussed in the main paper introducing EEC [EMS12]. It would be interesting to
see further convincing examples worked out in detail.

Acknowledgements

We thank Masahito Hasegawa, Paul Levy and the anonymous referees for helpful sugges-
tions.

References

[Bar97] A. Barber. Linear Type Theories, Semantics and Action Calculi. PhD thesis, Department of
Computer Science, University of Edinburgh, 1997.

[Ben95] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In Proc. Computer
Science Logic (CSL) 1994, volume 933 of LNCS. Springer, 1995.

[BORT02] J. Berdine, P. W. O’Hearn, U. Reddy, and H. Thielecke. Linear continuation-passing. Higher
Order and Symbolic Computation, 15:181–208, 2002.

[BW96] P. N. Benton and P. Wadler. Linear logic, monads, and the lambda calculus. In Proc. 11th Annual
Symposium on Logic in Computer Science (LICS), 1996.

[EMS09] J. Egger, R. E. Møgelberg, and A. Simpson. Enriching an effect calculus with linear types. In
Proc. Computer Science Logic (CSL), volume 5771 of LNCS, pages 240–254. Springer, 2009.

[EMS10] J. Egger, R. E. Møgelberg, and A. Simpson. Linearly-used continuations in the enriched effect cal-
culus. In Proc. Foundations of Software Science and Computation Structures (FoSSaCS), volume
6014 of LNCS, pages 18–32. Springer, 2010.

[EMS12] J. Egger, R. E. Møgelberg, and A. Simpson. The enriched effect calculus: Syntax and semantics.
Journal of Logic and Computation, Advance Access published June 19, 2012. doi: 10.1093/log-
com/exs025.

LINEAR-USE CPS TRANSLATIONS IN EEC 27

[EMS1x] J. Egger, R. E. Møgelberg, and A. Simpson. Categorical models for the enriched effect calculus,
201x. In preparation.

[Fil96] A. Filinski. Controlling Effects. PhD thesis, Carnegie Mellon University, 1996.
[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
[Has02] M. Hasegawa. Linearly used effects: Monadic and CPS transformations into the linear lambda

calculus. In Proc. 6th International Symposium on Functional and Logic Programming (FLOPS),
volume 2441 of LNCS, pages 167–182. Springer, 2002.

[Has04] M. Hasegawa. Semantics of linear continuation-passing in call-by-name. In Proc. 7th International
Symposium on Functional and Logic Programming (FLOPS), volume 2998 of LNCS, pages 229–
243. Springer, 2004.

[Kel82] G. M. Kelly. Basic Concepts of Enriched Category Theory, volume 64 of LMS Lecture Notes.
Cambridge University Press, 1982.

[Law69] F. W. Lawvere. Ordinal sums and equational doctrines. In Seminar on Triples and Categorical
Homology Theory (ETH, Zürich), pages 141–155. Springer, 1969.

[Lev04] P. B. Levy. Call-by-push-value. A functional/imperative synthesis. Semantic Structures in Com-
putation. Springer, 2004.

[Lev05] P. B. Levy. Adjunction models for call-by-push-value with stacks. Theory and Applications of
Categories, 14:75–110, 2005.

[Mog89] E. Moggi. Computational lambda-calculus and monads. In Proc. 4th Annual Symposium on Logic
in Computer Science (LICS), pages 14–23, 1989.

[Mog91] E. Moggi. Notions of computation and monads. Information and Computation, 93:55–92, 1991.
[Par92] M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduction. In Proc.

Logic Programming and Automated Reasoning (LPAR), volume 624 of LNCS, pages 190–201.
Springer, 1992.

[Plo75] G. D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theoretical Computer Sci-
ence, 1:125–159, 1975.

[RS98] B. Reus and Th. Streicher. Classical logic, continuation semantics and abstract machines. Journal
of Functional Programming, 8:543–572, 1998.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. The enriched effect calculus
	3. Call-by-value and call-by-name translations into EEC
	4. Linearly-used continuations in EEC
	5. Generic linear-use CPS self-translation of EEC
	6. Recovering linear-use CPS translations of typed lambda-calculus
	7. Perspectives
	Acknowledgements
	References

