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Abstract. We present XTT, a version of Cartesian cubical type theory specialized for
Bishop sets à la Coquand, in which every type enjoys a definitional version of the uniqueness
of identity proofs. Using cubical notions, XTT reconstructs many of the ideas underlying
Observational Type Theory, a version of intensional type theory that supports function
extensionality. We prove the canonicity property of XTT (that every closed boolean is
definitionally equal to a constant) using Artin gluing.

1. Introduction

Little attention has been paid to notions of liberty and fraternity in dependent type theory,
but the same cannot be said about equality. Why? To define the typing judgment a : A we
must determine which types are equal—because terms of type A may be cast (coerced) to
any type A′ equal to A—but in the presence of dependency, equality of types is contingent
on equality of terms. In this way, dependency transmutes term equality from a purely
semantic consideration to a core aspect of syntax.

As a practical matter, it is desirable to automate as many of these coercions as possible.
To that end, type theorists have spent decades refining decision procedures for type equality
modulo e.g ., α-, β-, δ-, and certain η-laws [Coq91, Coq96, SH00, HP05, SH06, ACD08,
ACP09, AS12, Abe13, AOV17, GSB19]. Unfortunately, not all desirable coercions can be
automated—for instance, mathematical equality of functions N→ N is famously undecidable.
The collection of automated equations in a given type theory is called definitional equality ;1

the more equations are definitional, the less time users must spend providing coercions.
Next, one must determine which coercions, if any, are recorded in terms. A priori,

which coercions are recorded is independent of which equations are definitional, but in
practice these considerations are inextricably linked—silent coercions along non-definitional

Key words and phrases: cubical type theory, Bishop sets, proof irrelevance, Artin gluing, logical predicates.
1Historically, philosophical considerations have motivated explanations of definitional equality as a sci-

entific concept independent of a specific theory, sometimes leading to a notion of “equality” that is not a
congruence (e.g ., not respected by λ) [ML75a]; we argue that our theory-specific notion, based on the phe-
nomenal aspect of automated conversion, is more reflective of everyday practice. As a programmatic matter,
we moreover rule out any kind of “equality” for which the operations of type theory are not functional.
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equations typically disrupt the aforementioned decision procedures. The canonical example
is extensional type theory [Hof97], in which one can silently coerce terms from any type to
any other under a contradictory assumption. In particular, elements of A and A→ A are
identified in context x : 0, allowing users to encode fixed point combinators; as a result, any
decision procedure which relies on β-reduction will no longer terminate.

A third consideration is the relationship between judgmental and propositional equality.
Following Martin-Löf [ML87], type theorists arrange concepts of interest into judgments,
or top-level forms of assertion, such as typehood (A type), membership (a : A), entailment
(Γ ` J ), and judgmental equality of types (A = A′ type) and terms (a = a′ : A). To account
for higher-order concepts, rather than admit higher-order judgments, we usually internalize
judgmental notions as types: dependent sums internalize context extension, dependent
products internalize entailment, and propositional equality should in some sense internalize
judgmental equality.

1.1. Notions of equality in type theory. In the past fifty years, researchers have consid-
ered myriad presentations of equality in type theory. Almost always, judgmental equality is
a congruence (reflexive, symmetric, transitive, and respected by all type and term formers)
along which coercion is silent, expressed by the conversion rule that if Γ ` A = A′ type
and Γ ` a : A then Γ ` a : A′. However, formulations of coercion, definitional equality, and
propositional equality differ widely; we proceed by outlining several existing approaches.

1.1.1. Equality reflection. The simplest way to internalize judgmental equality as a type is
to provide introduction and elimination rules making the existence of a proof of EqA(a, a′)
equivalent to the judgment a = a′ : A:

introduction
Γ ` a = a′ : A

Γ ` refl(a) : EqA(a, a′)

elimination
Γ ` p : EqA(a, a′)

Γ ` a = a′ : A

unicity
Γ ` p : EqA(a, a)

Γ ` p = refl(a) : EqA(a, a)

The elimination rule above is known as equality reflection, and is characteristic of
extensional versions of type theory [ML84]. Reflection immediately endows EqA(a, a′) with
many desirable properties: it is automatically a congruence, admits coercion (via conversion),
and enjoys uniqueness of identity proofs (UIP, that any two elements of EqA(a, a′) are equal).

Unfortunately, because propositional equality is undecidable, equality reflection ensures
that it is undecidable whether a judgment of the theory holds; worse, as hinted previously,
even the “definitional fragment” of the resulting judgmental equality can no longer be
automated, because β-reduction of open terms may diverge.2 Therefore, proof assistants for
extensional type theories cannot support type checking, and rely instead on tactic-based
construction of typing derivations.

One exemplar of this approach is the Nuprl proof assistant [CAB+86] along with its
descendants, including MetaPRL [Hic01] and RedPRL [ACH+18b]. These type theories are
designed as “windows on the truth” of a single intended semantics inspired by Martin-Löf’s
computational meaning explanations, interpreting types as partial equivalence relations over
untyped terms [ML79, All87]. Nuprl-family proof assistants employ a host of reasoning
principles not validated by other models of type theory, including intuitionistic continuity

2If, on the other hand, one omits β-equivalence from judgmental equality, it is possible to retain decidability
of judgments in a dependently-typed language with divergent terms, as in the Zombie language [SW15].
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principles [RB16], computational phenomena such as exceptions and partiality [Cra98], and
“direct computation” rules which use untyped rewrites to establish well-formedness subgoals.

As a consequence of its fundamentally untyped nature, formalizing a theorem in Nuprl
does not imply the correctness of the corresponding theorem in standard classical math-
ematics (the global mathematics of constant or discrete sets), nor even in most forms of
constructive mathematics (the local mathematics of variable and cohesive sets). It is worth
noting that the problem is not located in the presence of anti-classical principles (which are
interpretable in logic over a variety of topoi), and rather arises from the commitment to
untyped ontology.

The creators of the Andromeda proof assistant [BGH+18] have introduced another
approach to implementing equality reflection, in which judgmental equality is negotiated by
means of algebraic effects and handlers [BP15]; in essence, handlers allow users to provide
the out-of-band proofs of judgmental equality that are present in the derivations (but not the
terms) of extensional type theory. In contrast to Nuprl, a proof formalized in Andromeda
can be seen to imply the corresponding informal statement in any variety of classical or
constructive mathematics, a consequence of the fact that an interpretation of Andromeda’s
extensional type theory may be found lying over any topos.

1.1.2. Intensional type theory. The identity type of intensional type theory (ITT) [ML75b,
NPS90] offers a much more restrictive internalization of judgmental equality, characterized
by the following rules:

Γ ` a : A

Γ ` refl(a) : IdA(a, a)

Γ, x : A, y : A, z : IdA(x, y) ` C(x, y, z) type
Γ ` p : IdA(a, a′) Γ, x : A ` c : C(x, x, refl(x))

Γ ` Jx,y,z.C(p;x.c) : C(a, a′, p)

Γ ` Jx,y,z.C(refl(a);x.c) = [a/x]c : C(a, a, refl(a))

The elimination form J endows IdA(a, a′) with many properties expected of an equality
connective, including symmetry, transitivity, and coercion, which can be defined as follows:

coerce (p : IdU (A,B)) : A→ B
def
== Jx,y,z.x→y(p; .λx.x)

The tradeoffs of ITT are well-understood. By requiring explicit coercion for non-
α/β/δ/η equations, ITT presents a theory with decidable judgments. In practice, however,
explicit coercions accumulate in types and terms, requiring even more explicit coercions to
mediate between previously-used coercions. This is because coercions simplify only when
applied to identity proofs of the form refl(A); a coercion may mediate between definitionally
equal types and nevertheless fail to reduce (e.g ., for a variable of type IdU (A,A)).

In addition to these practical considerations, identity types also fail to evince several
properties which some may expect of an equality connective, such as UIP and function
extensionality, the principle that (x : A)→ IdB(f(x), g(x)) implies IdA→B(f, g) [Str94, HS98].
In light of homotopy type theory [Uni13], it is reasonable to consider an equality connective
without UIP, but theorists and practitioners alike generally agree that function extensionality
is desirable. These shortcomings are sometimes addressed by adjoining axioms for function
extensionality or UIP (or univalence), but axioms in the identity type cause even more
coercions to become irreducible.
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1.1.3. Setoids. Another way to avoid the shortcomings of identity types in ITT is to work
in setoids [Hof95], or Bishop sets [Bis67], an exact completion which replaces types by pairs
of a carrier type |A| and a type-valued “equivalence relation” =A. Each type former is lifted
to setoids extensionally: the setoid of functions (|A|,=A)→ (|B|,=B) consists of functions
f : |A| → |B| equipped with proofs f= : (x, y : |A|) → x =A y → f(x) =B f(y) that they
respect equivalence.

The framework of setoids allows users of type theory to ensure their constructions are
appropriately extensional, at the cost of manually proving those conditions. In contrast,
respect for the identity type is automatic (by its elimination principle) but insufficiently
powerful to imply function extensionality. An ideal treatment of equality should, unlike
setoids, take advantage of the fact that constructions in type theory do respect function
extensionality; syntactically well-behaved examples of this approach include Observational
Type Theory, cubical type theory, and XTT, discussed below. Another recent proposal is
to translate a type-theoretic language, setoid type theory, into setoids in ITT; however, it is
unknown whether this language is complete or enjoys good syntactic properties [ABKT19].

1.1.4. Observational Type Theory. The first systematic account of extensional equality types
in intensional type theory was Observational Type Theory (OTT) [AM06, AMS07], which
built on earlier work by Altenkirch and McBride [Alt99, McB99]. The main idea of OTT
is to consider a closed (inductive-recursive) universe of types, and to define propositional
equality and its operations by recursion on type structure. Concretely, for any two types
A,B there is a type of proofs that A equals B, and a coercion operation sending these
proofs to functions A → B; then, for any a : A and b : B, there is a type of proofs that
a heterogeneously equals b, and a coherence operation stating that terms heterogeneously
equal their coercions. Propositional equality in OTT satisfies a definitional form of UIP.

Because OTT’s equality types are defined by recursion, they will unfold into complex
types (reminiscent of the equality relations on setoids) when sufficiently specialized; in XTT,
path types do not unfold, but are easily characterized up isomorphism when necessary. In
both OTT and XTT, however, any algorithm to check definitional equality of coercions must
rely on type constructors being injective up to the equality type, which we have ensured
by adding a type-case operator to the universe. Although type-case is acceptable or even
desirable in programming [Con82, CZ84, HM95, Dag13], it is not justified by standard
interpretations of the universe as a Grothendieck universe.

Observational Type Theory also pioneered the idea that coercions should compute on
non-reflexive proofs of equality, a design principle which also plays a significant role in the
usability of cubical path types in contrast to standard identity types. Recently, McBride
and collaborators have made progress toward a cubical version of OTT based on a different
cube category and coercion operation than the ones considered in XTT [CFM18].

We discuss in more detail the relationship to observational type theory, as well as the
type-case problem, in Section 8.

1.1.5. Cubical type theory. Homotopy type theory arises from the observation that ITT is
compatible with Voevodsky’s univalence axiom, which states that every equivalence (coherent
isomorphism) between types A and B gives rise to an identity proof IdU (A,B) [KL21, Uni13].
Univalence solves longstanding difficulties with type-theoretic universes—transforming them
into object classifiers in the sense of higher topos theory [Lur09]—and contradicts UIP
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because two types can be equivalent in several inequivalent ways. Unfortunately, adding
univalence to ITT as an axiom results in coercions that are “stuck” on non-reflexive identity
proofs, as in the case of adding axioms for function extensionality or UIP.

To address this problem, researchers have developed a number of cubical type theo-
ries [CCHM17, ABC+21, AHH18] whose propositional equality and coercion operations
support univalence in a computationally well-behaved way. The core idea is to introduce a
judgmental notion of equality proof which is then internalized as the path type.

Concretely, cubical type theories extend type theory with an abstract interval I pop-
ulated by dimension variables i : I and constant endpoints 0, 1 : I. A type parametrized
by a dimension variable i : I ` A type represents a proof that [0/i]A and [1/i]A are equal
types, and a term i : I ` a : A is a heterogeneous equality proof between [0/i]a : [0/i]A and
[1/i]a : [1/i]A. Coercion in cubical type theory is a primitive operation which computes
based on the structure of the proof i : I ` A type, and admits an OTT-style “coherence”
operation as a special case. Because cubical type theory defines propositional equality
in A using parametrized elements of A, propositional equality automatically inherits the
properties of each type and therefore satisfies function extensionality and related principles.

There are several versions of cubical type theory. For instance, the Cubical Agda
proof assistant [VMA19] implements a variant of the De Morgan version of cubical type the-
ory [CCHM17], which equips I with negation and binary minimum and maximum operations.
Cartesian cubical type theory [ABC+21, AHH18], implemented in the RedPRL [ACH+18b]
and redtt [ACH+18a] proof assistants, imposes no further structure on I but requires
a stronger coercion operation. In addition, Awodey, Cavallo, Coquand, Riehl, and Sat-
tler [Rie19] have recently proposed an equivariant Cartesian cubical type theory which is
homotopically well-behaved, and Cavallo, Mörtberg, and Swan [CMS20] have developed a
common generalization of the De Morgan and Cartesian type theories.

1.1.6. Our contribution: XTT. We describe XTT, a type theory without equality reflection
whose propositional equality connective satisfies function extensionality and definitional
UIP. XTT was introduced in a preliminary version of this work, which appeared in the 4th
International Conference on Formal Structures for Computation and Deduction under the
title Cubical Syntax for Reflection-Free Extensional Equality [SAG19].

Using ideas from Cartesian cubical type theory, XTT reconstructs the decisive aspects
of OTT in a more modular, judgmental fashion. For instance, instead of defining equality
separately at each type, we define path types uniformly in terms of dimension variables;
similarly, we impose UIP by means of a boundary separation rule which does not mention
path types.

Compared to other cubical type theories [CCHM17, ABC+21, AHH18], XTT has clear
advantages and disadvantages. Whereas other cubical type theories have two separate
connectives for path types and identity types, XTT’s path types strictly satisfy the rules of
Martin-Löf’s identity types definitionally. In addition, the rules governing composition—the
most complex rules of every cubical type theory—are substantially simpler in XTT than in
Cartesian cubical type theory. On the other hand, these simplifications are only possible
because XTT is concerned with Bishop sets, a specific kind of cubical set analogous to a
setoid [Coq17], of which univalent universes and higher inductive types are not instances.

In addition to the XTT calculus, our second contribution is an abstract canonicity proof
for XTT using the language of categorical gluing, summarized in Section 1.2.3.
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1.2. Metatheory. Type checkers rely on global invariants of type theories that are easily
disrupted—indeed, we have already seen that the equality reflection rule single-handedly
destroys the decidability of type checking. Consequently, type theorists devote much effort to
proving that various calculi are well-behaved, in the form of the canonicity and normalization
metatheorems.

Canonicity states that any closed term of boolean (or natural number) type is judg-
mentally equal to either tt or ff (resp., a numeral). Canonicity expresses a weak form of
completeness for base types which is analogous to the existence property of intuitionistic
logic [Tv88]. Although most type theories (including ETT, ITT, OTT, and XTT) enjoy
canonicity, it can fail when a type theory is extended by a new construct whose behavior
is not sufficiently determined by new equations, as in the extension of ITT by function ex-
tensionality or univalence axioms. Indeed, the main motivation behind cubical type theory
was to develop a univalent type theory satisfying canonicity.

Normalization is a generalization of canonicity to open terms which characterizes the
open terms of every type up to judgmental equality. These characterizations can be quite
complex: the normal forms of boolean type include constants tt and ff, variables x : bool,
projections of variables x : bool × bool, etc. Unlike canonicity, normalization does not
measure the strength of judgmental equality: normalization theorems can hold for ITT
extended with axioms, and hold trivially if one limits judgmental equality to α-equivalence.3

Conversely, while a failure of canonicity may indicate that judgmental equality is too
weak, a failure of normalization usually indicates that judgmental equality is altogether
intractable. Consider the judgmental injectivity of type constructors, typically a consequence
of normalization: if Γ ` A→ B = A′ → B′ type then Γ ` A = A′ type and Γ ` B = B′ type.
Injectivity is crucial for type checking because it enables the well-typedness of the application
of f : A → B to a : A′ to be reduced to checking whether A = A′. A priori, two function
types may be equal because both are equal to a third type C by a sequence of β/η equalities;
ruling this out generally requires a full characterization of equality via normalization.

1.2.1. Categories of models. The rules of type theory are a complex mutual definition and
simultaneous quotient of the collections of contexts, types, and terms. Type theorists
often make such definitions precise by passing to a specialized setting known as a logi-
cal framework, offloading the bureaucratic aspects of the theory, including in many cases
the treatment of variable binding and hypothetical judgment (as in the Edinburgh Logi-
cal Framework [HHP93]), but far more importantly, the compatibility of every operation
with definitional equality (as in Martin-Löf’s Logical Framework [NPS90] and Cartmell’s
generalized algebraic theories [Car86]).

Recall that canonicity and normalization will not hold for an arbitrary model of the type
theory but only for the ‘smallest’ model, containing only what is forced by the collection
of rules; they may be easily refuted by adding rules. Thus, for the purposes of metatheory,
the construction of a type theory must come equipped with an induction principle stating
in what sense it is the smallest. These induction principles are in fact up for debate, as
choosing an induction principle is tantamount to fixing the range of possible interpretations
of the syntax. For example, in an Edinburgh LF encoding of type theory, judgmental

3In fact, without further constraints on what, precisely, constitutes a normal form, normalization can
be quite trivial. If one defines a normal form to be simply the terms taken up to definitional equality then
normalization is trivial but useless. In practice, type theorists are careful to isolate normal forms so as to
make proving properties like decidability, injectivity of type constructors, etc. trivial.
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equality can have no special status and therefore admits non-trivial interpretations, whereas
mathematicians generally require that it be interpreted as mathematical equality.

In the language of category theory, these considerations amount to specifying a category
of models of a type theory and exhibiting an initial object in that category. Luckily, the rules
of XTT are sufficiently non-exotic as to allow us to obtain its functorial semantics by appeal-
ing to general existence theorems [Car86, KKA19, Uem19, Uem21], thereby sidestepping
the so-called conjecture of initiality famously raised by Voevodsky [Voe16].

In previous work [SAG19], we specified an early version of XTT’s logical semantics by
regarding XTT as a generalized algebraic theory (GAT) in the sense of Cartmell [Car86].
Models of GATs determine choices of objects up to equality, and morphisms of models
preserve these choices strictly; models of the GAT of type theory thus determine up to
isomorphism a category of contexts, and up to equality the context extension. This is
a much stronger notion of “category” than can be comfortably manipulated using the
language of category theory: universal properties determine object-level structure only up
to canonical isomorphism, and category-level structure only up to categorical equivalence
(“isomorphism up to isomorphism”). Accordingly, in the GAT discipline, one cannot usually
leverage general existence theorems but must instead provide explicit constructions in order
to strictly determine and preserve object-level structures.

We advocate for a more categorical viewpoint, in which morphisms of models pre-
serve structures only up to coherent isomorphism. In this paper, following Sterling and
Angiuli [SA20], we instantiate Uemura’s framework [Uem19] to generate a functorial se-
mantics for XTT; models form a 2-category with a bi-initial object, and morphisms satisfy
compatibilities like F (Γ.A) ∼= F (Γ).F (A) which generalize pseudomorphisms of natural
models [CD14, New18]. While it may seem at first that these canonical isomorphisms would
incur additional bureaucracy, these weaker morphisms in fact enable us to work much more
abstractly, choosing representations of objects only locally and as needed. Consequently, we
have managed to avoid nearly all the concrete computations that characterized the technical
development of our previous work on XTT [SAG19].

1.2.2. Artin gluing. Many important metatheorems famously cannot be proven by a straight-
forward induction on the rules of type theory but require instead a more semantic induction
principle, such as the method of computability pioneered by Tait for the simply typed
λ-calculus [Tai67] and further developed by Girard [Gir71, Gir72], Martin-Löf [ML75b], and
others. These methods associate to each type/context a proof-irrelevant predicate or relation
over its elements, and then establish that every element satisfies the predicate associated
to its type. To prove canonicity, one defines the elements of a type to be its closed terms,
and the predicate over · ` b : bool states that b ⇓ tt or b ⇓ ff where ⇓ is a deterministic
evaluation relation contained in judgmental equality.

These techniques have a few major disadvantages in the context of dependent type theory.
First, evaluation must be defined on typed terms modulo α-equivalence, not judgmental
equality, because evaluation draws distinctions between β-equivalent terms (e.g ., tt is an
output of evaluation whereas (λx.x)(tt) is not); therefore, evaluation cannot be studied
using the machinery of models of type theory.4 Secondly, the predicate over · ` A : U should

4This subequational aspect of evaluation is particularly thorny in cubical type theories because evaluation
does not strictly respect dimension substitution, necessitating a technical condition known as closure under
“coherent expansion” [Hub18, Ang19].
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intuitively state that A determines a type and thence a predicate over its elements, but a
(proof-irrelevant) predicate for U cannot store the data of a predicate for each A; instead,
we define a global lookup table for predicates [All87, Har92], and store in the predicate over
· ` A : U the assertion that A has an entry in the table. However, constructing these type
systems requires fixing a collection of types at the outset, making these proofs brittle and
difficult to extend.

Recently, type theorists have discovered that these difficulties can be overcome by
considering instead proof-relevant predicates [AK16, Coq19, Shu15b], and that the resulting
constructions are best understood as instances of Artin gluing [AGV72, Exposé I, Ch. 9].5

Gluing-based techniques for type theory are perhaps most developed in the context
of weak metatheorems such as homotopy canonicity [KS19, Shu15b] and homotopy para-
metricity [Uem17], where it suffices to consider mathematically natural notions of model
in which substitution does not strictly commute with the constructs of type theory [Joy17].
Canonicity and normalization are also susceptible to gluing arguments, but these arguments
have generally relied on explicit constructions and computations rather than leveraging
categorical results as in the weak case [Coq19, KHS19]. Subsequent to the writing of this
paper, Sterling and Angiuli [SA21] have used proof-relevant logical predicates to establish
normalization for cubical type theory, building on Sterling and Harper’s observation that
such arguments can be carried out in the internal type theory of a gluing model [SH21].

1.2.3. Our contribution. In this paper, we prove a canonicity theorem for XTT stating that
any closed term of boolean type in the initial model is judgmentally equal to either tt or ff.
Our canonicity proof builds on results of Sterling and Angiuli [SA20] concerning the gluing
of models of type theory along a flat functor. We emphasize the conceptual nature of our
canonicity proof, which avoids the explicit computations that pervaded both our prior work
on XTT [SAG19] and much of the related work.

2. XTT: a cubical language for Bishop sets

We begin by introducing the XTT language informally (Figure 1) and sketching how we
recover (and improve upon) ordinary type-theoretic equality reasoning for Bishop sets. For
the sake of exposition, we elide structural rules, congruence rules, and obvious premises to
equational rules; formally, we define XTT as the bi-initial object in a 2-category of models
in Section 4, presented by the signature in Uemura’s logical framework [Uem19, Uem21] in
Section 2.4. Our presentation differs slightly from the original formulation of XTT [SAG19];
we remark on these differences as they appear.

2.1. Judgmental structure of XTT. Like other cubical type theories [CCHM17, ABC+21,
AHH18, RS17], XTT extends the judgmental apparatus of type theory with an abstract
interval I and a collection F of face formulas, or propositions ranging over the interval.
Neither I nor F are types, but we can extend contexts by assumptions of either sort, in
addition to ordinary typing assumptions. (Previously, we collected assumptions of I and F
in a separate context Ψ to the left of Γ.)

5Researchers have been aware of connections between computability predicates and gluing for much longer,
but restricted to the fiberwise proof-irrelevant fragment of a gluing category [MS93, JT93, FS99].
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(contexts) Γ,∆ ::= · | Γ, i : I | Γ, φ | Γ, x : A
(dimensions) r, s ::= i | 0 | 1
(face formulas) φ, ψ ::= r = s | φ ∨ ψ
(types) A,B ::= el(a) | (x : A)→ B | (x : A)×B | pathi.A(a, b) | bool | set
(terms) a, b ::= x | λx.a | a b | 〈a, b〉 | fst(a) | snd(a) | λi.a | a r | tt | ff |

ifx.A(a; b, b′) | [ ] | [φ→ a | ψ → b] | com〈s〉r r′i.a i.b |
coer r

′
i.a b | (x : a) →̂ b | (x : a) ×̂ b | p̂athi.a(b, b

′) | b̂ool |
casex.A a [pi(x, x′) 7→ a′ | · · · | bool 7→ a′′]

Figure 1: A summary of the informal syntax of XTT. Note that some binders, e.g . those
in λi.a and pathi.A(a, b), range over dimensions rather than terms.

· ctx

Γ ctx

Γ, i : I ctx

Γ ctx Γ ` φ : F
Γ, φ ctx

Γ ctx Γ ` A type

Γ, x : A ctx

Assumptions of all three sorts are subject to the structural rules of hypothesis, substi-
tution, and weakening. In addition to dimension variables i : I, the interval has two global
elements 0 and 1 representing its endpoints. (We call such an interval Cartesian because
it is the free finite-product theory on two generators [Awo18a].) The face formulas F are
closed under disjunction (unlike [SAG19]) and equality of dimensions.

Γ ` 0 : I Γ ` 1 : I
Γ ` r : I Γ ` s : I

Γ ` r = s : F
Γ ` φ : F Γ ` ψ : F

Γ ` φ ∨ ψ : F

Given Γ ` φ : F, we write Γ ` φ true when φ holds under the assumptions in Γ. The
rules governing this judgment are the evident ones, with the caveat that under an assumption
of r = s, one obtains a judgmental equality r = s : I; we may safely adopt this principle
because, unlike propositional equality in arbitrary types, r = s is decidable.

Γ ` r = s : I
Γ ` r = s true

Γ ` r = s true

Γ ` r = s : I
Γ ` φ true

Γ ` φ ∨ ψ true

Γ ` ψ true

Γ ` φ ∨ ψ true

Γ ` φ ∨ ψ true Γ, φ ` χ true Γ, ψ ` χ true

Γ ` χ true

In XTT, maps out of I correspond to equality proofs: i : I ` A type is a proof that [0/i]A
and [1/i]A are equal types, and i : I ` a : A is a proof that [0/i]a : [0/i]A and [1/i]a : [1/i]A
are equal elements, modulo the proof A that [0/i]A and [1/i]A are equal types. Assumptions
of face formulas act as constraints, restricting the domain of maps out of In. A hypothesis
of i = 0 sets i to 0 in the hypotheses and conclusions that follow, whereas a type/element
under the false constraint 0 = 1 is nothing at all. Finally, an element under a disjunction
φ ∨ ψ is a pair of elements under φ and ψ that agree on the overlap φ, ψ.

Unlike [SAG19], and following [CCHM17], we include syntax for these partial elements
defined on nullary and binary disjunctions:



43:10 sc. J. Sterling, C. Angiuli, and D. Gratzer Vol. 18:1

Γ ` 0 = 1 true Γ ` A type

Γ ` [ ] : A

Γ ` 0 = 1 true Γ ` a : A

Γ ` a = [ ] : A

Γ ` φ ∨ ψ true Γ, φ ` aφ : A Γ, ψ ` aψ : A Γ, φ, ψ ` aφ = aψ : A

Γ ` [φ→ aφ | ψ → aψ] : A

Γ ` φ true

Γ ` [φ→ aφ | ψ → aψ] = aφ : A

Γ ` ψ true

Γ ` [φ→ aφ | ψ → aψ] = aψ : A

Γ ` φ ∨ ψ true Γ ` a : A

Γ ` a = [φ→ a | ψ → a] : A

Notation 2.1 (Boundary). The interval has more generalized points than 0 and 1; therefore,
it is not the case that i : I ` i = 0 ∨ i = 1 true. This formula, called the boundary of i, is
important for expressing the rules of path types and compositions; we therefore impose the
following notation:

∂(r)
def
== r = 0 ∨ r = 1 ¦

Notation 2.2 (Judgmental restriction). We often want to consider a total term whose
subcube coincides with some other term. We will write Γ ` a : A [φ→ b] to abbreviate that
a is a term that restricts on φ to b, that is:

Γ ` a : A Γ, φ ` a = b : A

Γ ` a : A [φ→ b] ¦

Example 2.3. Combining Notations 2.1 and 2.2, we may succinctly express the situation
where p(i) : A exhibits a path (proof of equality) between two elements a0, a1 : A, writing

i : I ` p(i) : A [∂(i)→ a] where a
def
== [i = 0→ a0 | i = 1→ a1]. ¦

2.2. Dependent path types in XTT. The rules for dependent product, dependent sum,
and boolean types in XTT are completely standard and are located in Figure 2. Cubical
type theories internalize the judgmental “equality situation” of Example 2.3 by means of
(dependent) path types; a path type is, in essence, a dependent function out of the interval
subject to a restriction on the boundary of this function (i.e. the behavior of this function
on the endpoints 0, 1 : I).

Given a line of types i : I ` A type and two elements a0 : [0/i]A, a1 : [1/i]A, the type
of paths between a0 and a1 is written pathi.A(a0, a1); because the type A can depend on i,
path types express a kind of heterogeneous equality (though different from the one proposed
by McBride [McB99]). The rules for path types are summarized below:
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Γ ` A type Γ, x : A ` B type

Γ ` (x : A)→ B type

Γ, x : A ` b : B

Γ ` λx.b : (x : A)→ B

Γ ` f : (x : A)→ B Γ ` a : A

Γ ` f(a) : [a/x]B Γ ` (λx.b)(a) = [a/x]b : [a/x]B

Γ ` f = λx.f(x) : (x : A)→ B

Γ ` A type Γ, x : A ` B type

Γ ` (x : A)×B type

Γ, x : A ` B type Γ ` a : A Γ ` b : [a/x]B

Γ ` 〈a, b〉 : (x : A)×B

Γ ` p : (x : A)×B
Γ ` fst(p) : A

Γ ` p : (x : A)×B
Γ ` snd(p) : [fst(p)/x]B Γ ` fst(〈a, b〉) = a : A

Γ ` snd(〈a, b〉) = b : [a/x]B Γ ` p = 〈fst(p), snd(p)〉 : (x : A)×B

Γ ` bool type Γ ` tt : bool Γ ` ff : bool

Γ, x : bool ` C type Γ ` b : bool Γ ` ctt : [tt/x]C Γ ` cff : [ff/x]C

Γ ` ifx.C(b; ctt, cff) : [b/x]C

Γ ` ifx.C(tt; ctt, cff) = ctt : [tt/x]C Γ ` ifx.C(ff; ctt, cff) = cff : [ff/x]C

Figure 2: Rules for dependent products, dependent sums, and booleans.

formation
Γ, i : I ` A type Γ ` a0 : [0/i]A Γ ` a1 : [1/i]A

Γ ` pathi.A(a0, a1) type

introduction
Γ, i : I ` a : A

Γ ` λi.a : pathi.A([0/i]a, [1/i]a)

elimination
Γ ` p : pathi.A(a0, a1) Γ ` r : I

Γ ` p(r) : [r/i]A [∂(r)→ [r = 0→ a0 | r = 1→ a1]]

computation

Γ ` (λi.a)(r) = [r/i]a : [r/i]A

uniqueness

Γ ` p = λi.p(i) : pathi.A(a0, a1)

Remark 2.4. One can also express the data of a path type as a line of types i : I ` A type
together with a partial element i : I, ∂(i) ` a : A; then, the elements of the path type
pathi.A(i.a) would consist in elements i : I ` p : A [∂(i)→ a]. In fact, we use exactly this
style of definition in our mathematical version of the syntax of XTT (see Section 4). ¦

We are already prepared to see one of the advantages of cubical type theories over
intensional Martin-Löf type theory. Because we use maps out of the interval to represent
equality, equations in A naturally take the form of (parametrized) elements of A; therefore,
the “introduction rules” for equality in A are the same as the introduction rules for A itself.

Example 2.5. Function extensionality, provable in cubical type theories, provides a partic-
ularly convincing example, considering that it can be derived directly using only the rules
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for dependent function and path types. Given two functions f, g : (x : A)→ B and a family
of paths h : (x : A)→ path .B(f(x), g(x)), we have:

λi.λx.h(x)(i) : path .(x:A)→B(f, g) ¦

2.3. Universe of Bishop sets. XTT is equipped with a universe of Bishop sets, i.e. types
that satisfy a definitional version of the unicity of identity proofs. As was the case for
Observational Type Theory, it is essential that that this universe is closed — a matter we
will discuss in more detail in Sections 2.3.4 and 8.1.

In our original presentation of XTT [SAG19], we required that all types were Bishop
sets. Here, we require this property only of elements of the universe, in order to suggest
how one might integrate XTT into a standard (univalent) Cartesian cubical type theory
in which not all types are Bishop sets (notably, univalent universes and higher inductive
types). Additionally, whereas we previously described an infinite and cumulative hierarchy
of universes à la Coquand,6 here we have opted to specify only a single universe à la Tarski
for the sake of simplicity and clarity of presentation.

We begin with the basic formation rules for the universe of Bishop sets:

Γ ` set type

Γ ` Â : set

Γ ` el(Â) type

Notation 2.6. As above, we adopt the convention of writing Â for an element of set; then,
we will write a ∈ Â as a shorthand for a : el(Â). ¦

2.3.1. Boundary separation and UIP. What makes types classified by set special is that they
satisfy the boundary separation principle below, a modular reconstruction of the uniqueness
of identity proofs:

boundary separation

Γ ` Â : set Γ ` r : I Γ, ∂(r) ` a = b ∈ Â
Γ ` a = b ∈ Â

To see that boundary separation implies the unicity of identity proofs, consider the

context Γ
def
== (∆, Â : set, a ∈ Â, b ∈ Â, p : path .el(Â)(a, b), q : path .el(Â)(a, b)); we may derive

Γ ` p = q : path .el(Â)(a, b) as follows:

Γ, i : I, ∂(i) ` [i = 0→ a | i = 1→ b] = [i = 0→ a | i = 1→ b] ∈ Â
Γ, i : I, ∂(i) ` [i = 0→ p(i) | i = 1→ p(i)] = [i = 0→ q(i) | i = 1→ q(i)] ∈ Â

Γ, i : I, ∂(i) ` p(i) = q(i) ∈ Â
boundary separation

Γ, i : I ` p(i) = q(i) ∈ Â
Γ ` λi.p(i) = λi.q(i) : path .el(Â)(a, b)

Γ ` p = q : path .el(Â)(a, b)

6Universes à la Coquand [Coq13] differ from universes à la Tarski in a few ways: one eschews the standard
Γ ` A type judgment for a stratified judgment Γ ` A typei, and then the rules for each universe Ui exhibit
an isomorphism between the collection of types of level i and the collection of elements of Ui.
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2.3.2. Coercion and composition. Another important aspect of Bishop sets in XTT is that
they support coercion and composition operations:

Γ, i : I ` Â : set Γ ` a ∈ [r/i]Â

Γ ` coer r
′

i.Â
a ∈ [r′/i]Â [r′ = r → a]

Γ, i : I ` Â : set Γ, i : I, i = r ∨ ∂(s) ` a ∈ Â
Γ ` com〈s〉r r′

i.Â
i.a ∈ [r′/i]Â [r′ = r ∨ ∂(s)→ [r′/i]a]

In essence, these operations implement the action of paths in every set, simultaneously
enabling coercions between equal types, as well providing a way to compose and invert paths.
The coercion operation above allows, in particular, an element of a set to be transformed into
an element of any equal set: this is the action of coe0 1

i.Â
a. In Observational Type Theory,

there is an additional coherence operation that (heterogeneously) equates a with its coercion
coe0 1

i.Â
a; in XTT (and Cartesian cubical type theories generally), this is accomplished using

another instance of the general coercion operator called a “filler”:(
λi.coe0 i

i.Â
a
)

: pathi.el(Â)

(
a, coe0 1

i.Â
a
)

Composition is analogous to coercion, except that it may additionally constrain the result
to match a partial element defined on a boundary ∂(s) for some s : I. (Because of boundary
separation and regularity, XTT’s composition operator is substantially simpler than those
of other cubical type theories, which consider partial elements defined on arbitrary φ : F.)
Composition can be used to define combinators expressing the symmetry and transitivity
of equality, as well as to implement Martin-Löf’s J eliminator. In fact, to express symmetry
and transitivity, it suffices to first consider the case where Â doesn’t depend on i, called
homogeneous composition:

hcom〈s〉r r′
Â

i.a
def
== com〈s〉r r′

.Â
i.a

Example 2.7 (Symmetry). Let Â : set and let a, b ∈ Â and let p : path .el(Â)(a, b). We may

use homogeneous composition to define an inverse path p̄ : path .el(Â)(b, a):

p̄
def
== λi.hcom〈i〉0 1

Â
j.[j = 0 ∨ i = 1→ p(0) | i = 0→ p(j)] ¦

Example 2.8 (Transitivity). Let Â : set and let a, b, c ∈ Â and let p : path .el(Â)(a, b), q :

path .el(Â)(b, c). We may use homogeneous composition to define a composite path p · q :

path .el(Â)(a, c):

p · q def
== λi.hcom〈i〉0 1

Â
j.[j = 0 ∨ i = 0→ p(i) | i = 1→ q(j)] ¦

Remark 2.9. By boundary separation, the symmetry and transitivity operators act very
strictly. For instance, given p : pathi.A(a, b) one has p̄ · p = (λi.b) definitionally. Similarly,
composition of paths is definitionally associative: p · (q · w) = (p · q) · w. In the absence of
boundary separation, these coherences would hold up to another path, using a more complex
instance of the composition operation. ¦

Example 2.10 (Identity type). Using composition, we may define a combinator with

the same type as Martin-Löf’s J eliminator for the identity type. Let Â : set be a set
and x ∈ Â, y ∈ Â, z : path .el(Â)(x, y) ` Ĉ(x, y, z) : set be a motive of induction. Fixing
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a, b ∈ Â and p : path .el(Â)(a, b) and x : A ` c(x) ∈ Ĉ(x, x, λ .x), we may define an element

JĈ(p, c) ∈ Ĉ(a, b, p) as follows:

JĈ(p, c)
def
== coe0 1

i.Ĉ
(
p(0),p(i),λj.hcom〈i〉0 j

Â
k.[k=0∨i=0→p(0)|i=1→p(k)]

) c(p(0)) ¦

What is the behavior of the J combinator from Example 2.10 on a reflexive proof of
equality λ .a : path .el(Â)(a, a)? From Martin-Löf type theory, we would expect JĈ(λ .a, c)

to compute to c(a); in ordinary cubical type theory, this equation only holds up to another
path, but in XTT we can force it to hold using the following regularity principle:

coercion regularity

Γ, i : I, j : I ` Â = [j/i]Â : set

Γ ` coer r
′

i.Â
a = a ∈ [r′/i]Â

Remark 2.11. Considering the boundary ∂(s), the boundary separation rule ensures
that the standard decomposition of composition into homogeneous composition and co-
ercion [ABC+21, AHH17] holds definitionally:

com〈s〉r r′
i.Â

i.a = hcom〈s〉r r′
[r′/i]Â

i.coei r
′

i.Â
a

Consequently, the following regularity rule for composition is also derivable:

Γ, i : I, j : I ` Â = [j/i]Â : set

Γ, i : I, i = r ∨ ∂(s), j : I, j = r ∨ ∂(s) ` a = [j/i]a ∈ Â
Γ ` com〈s〉r r′

i.Â
i.a = [r′/i]a ∈ [r′/i]Â ¦

2.3.3. Closure of the universe under connectives. The universe is closed under codes for
connectives in the standard way, by adding introduction forms for each code and equations
governing the behavior of el(−) on codes:

Γ ` Â : set Γ, x ∈ Â ` B̂ : set

Γ ` (x : Â) →̂ B̂ : set

Γ ` Â : set Γ, x ∈ Â ` B̂ : set

Γ ` (x : Â) ×̂ B̂ : set

Γ, i : I ` Â : set Γ ` a ∈ [0/i]Â Γ ` b ∈ [1/i]Â

Γ ` p̂athi.Â(a, b) : set Γ ` b̂ool : set

Γ ` el((x : Â) →̂ B̂) = (x : el(Â))→ el(B̂) type

Γ ` el((x : Â) ×̂ B̂) = (x : el(Â))× el(B̂) type

Γ ` el(p̂athi.Â(a, b)) = pathi.el(Â)(a, b) type

Γ ` el(b̂ool) = bool type

Considering that boundary separation applies to all elements of set, we are restricted
to connectives that preserve the condition of being boundary separated. Next, we must
include equations specifying the behavior of coe and com on each type code. We begin with
coercion, verifying in each case that the equation is compatible with coercion regularity.

coer r
′

i.(x:Â)→̂B̂ f = λx.coer r
′

i.
[

coer
′ i
i.Â

x/x
]
B̂
f
(
coer

′ r
i.Â

x
)
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coer r
′

i.(x:Â)×̂B̂ p =
〈
coer r

′

i.Â
fst(p), coer r

′

i.
[

coer i
i.Â

fst(p)/x
]
B̂

snd(p)
〉

coer r
′

i.p̂athj.Â(a0,a1)
p = λj.com〈j〉r r′

i.Â
.p(j)

Of course, coercion regularity implies coer r
′

i.b̂ool
a = a. We additionally observe

that the behavior of homogeneous composition (and thence general composition) is totally
determined by the combination of the above and boundary separation; in particular, the
following equations are derivable by pivoting on ∂(s):

hcom〈s〉r r′
(x:Â)→̂B̂ i.f = λx.hcom〈s〉r r′

B̂
i.f(x)

hcom〈s〉r r′
(x:Â)×̂B̂ i.p =

〈
hcom〈s〉r r′

Â
i.fst(p), com〈s〉r r′

i.
[

hcom〈s〉r i
Â

i.fst(p)/x
]
B̂
i.snd(p)

〉
hcom〈s〉r r′

p̂athj.Â(a,b)
i.p = λj.hcom〈s〉r r′

Â
i.p(j)

2.3.4. Algorithmic type checking and type-case. Although a type checking algorithm for
XTT is beyond the scope of this paper, such an algorithm is important to fully substantiate
our claim that XTT can act as a more tractable alternative to extensional type theory. As
a step towards applying existing type checking algorithms to XTT, we include one final
construct.

Most type checking algorithms going back to the work of Coquand [Coq96] check M : A
by first evaluating A to a weak-head normal form, in order to determine whether A is a
dependent product type, a dependent sum type, the booleans, etc. Such a determination is
crucial because the head constructor of A, in turn, determines how to type check M (e.g .,
by applying it to an argument, considering its projections, etc.).

Consider the case that we have a variable x : path .set(Â ×̂ B̂, Ĉ ×̂ D̂) in scope, and we
are attempting to check 〈u, v〉 ∈ x(i) for some variable i : I. The equational rules of XTT
do not suggest any reductions for x(i), so we might näıvely return a type error: 〈u, v〉 can
only be an element of a product type, but el(x(i)) appears to be neutral.

However, such a strategy is not complete in the presence of the boundary separation
rule. Suppose that in addition, we have proofs p : path .set(Â, Ĉ) and q : path .set(B̂, D̂) in

scope. Then we may form the path λj.p(j) ×̂ q(j) : path .set(Â ×̂ B̂, Ĉ ×̂ D̂); by boundary
separation, el(x(i)) = el(p(i)) × el(q(i)) definitionally, and therefore we must proceed to
check u ∈ p(i) and v ∈ q(i) (and possibly succeed).

Of course, an algorithm cannot guess out of thin air whether such p, q exist! A way
around this impasse, pioneered in OTT [AM06, AMS07], is to ensure that from a path

between Â ×̂ B̂ and Ĉ ×̂ D̂, we can always obtain a path between Â and Ĉ. Under those
circumstances, we have a uniform strategy to type check terms on neutral equations between
product types (etc.): ignore the proof of equality, and consider only its boundary.

This approach does not make sense for mathematical sets or spaces, since there are more
ways for two product sets to be equal than that their components are equal, but it does make
sense for closed universes, such as the inductive-recursive universes of Martin-Löf [ML84].
We discuss the semantic disadvantages of these closed universes in Section 8.1.
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Concretely, we achieve this “injectivity up to paths” of type constructors in XTT by
including a “type-case” operator enabling intensional analysis of sets [Con82, CZ84, HM95].

Γ, u : set ` C type
Γ, u : set, v : el(u)→ set ` cΠ : [(x : u) →̂ v(x)/u]C
Γ, u : set, v : el(u)→ set ` cΣ : [(x : u) ×̂ v(x)/u]C

Γ, u0 : set, u1 : set, up : path .set(u0, u1), x0 ∈ u0, x1 ∈ u1 ` cp : [p̂athi.up(i)(x0, x1)/u]C

Γ ` cb : [b̂ool/u]C

Γ ` Â : set

Γ ` caseu.C Â


pi(u, v)→ cΠ

sg(u, v)→ cΣ

path(u0, u1, up, x0, x1)→ cp
bool→ cb

 : [Â/u]C

This operator is equipped with the obvious reduction rules:

caseu.C ((z : Â) →̂ B̂) [· · · ] = [Â, λz.B̂/u, v]cΠ

caseu.C ((z : Â) ×̂ B̂) [· · · ] = [A, λz.B/u, v]cΣ

caseu.C (p̂athi.Â(a, b)) [· · · ] = [[0/i]Â, [1/i]Â, λi.Â, a, b/u0, u1, up, x0, x1]cp

caseu.C b̂ool [· · · ] = cb

2.4. The LF signature of XTT. Thus far, we have presented the syntax of XTT as a series
of informal inference rules; formally, however, XTT is the bi-initial object in the 2-category
of models defined in Section 4. As a middle ground between those two styles, we now give
a definition of XTT as a sequence of constants (Figure 4) in a logical framework (LF). By
results of Uemura [Uem19, Uem21], these constants can be systematically elaborated into
the definitions of Section 4, and automatically induce a 2-category of models with a bi-
initial object. Conversely, connecting these LF constants to standard (but highly annotated)
inference rule presentations requires an adequacy theorem [HHP93]; we are using Uemura’s
logical framework [Uem19, Uem21], which is adequate for a wide variety of type theories.

2.4.1. Uemura’s logical framework. Uemura’s LF is essentially a fragment of extensional
dependent type theory; the only important difference is that Uemura’s LF stratifies types
into two kinds: representable types ? and types �. Elements J : ? correspond to judgments
that can be hypothesized (such as object-level term judgments), whereas elements J : �
correspond to arbitrary judgments (such as object-level type judgments, which generally
cannot be hypothesized). We summarize the rules of Uemura’s LF in Figure 3, omitting the
standard definitional equalities for dependent products and extensional equality; readers
can consult Section 5 of [Uem19] for a thorough introduction.7

In addition to the model theory and initiality result mentioned above, another major
advantage of using a logical framework is higher-order abstract syntax, in which variable
binders are encoded using the LF’s λ-abstractions over representable types. As a result,

7Note that [Uem19] does not explicitly include dependent sums, but these are present in the semantics
and do not impact any of the results of that paper.
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Γ ` A : ?

Γ ` A : �

Γ ` A : ? Γ, x : A ` B : �

Γ `
∏
x:AB : �

Γ ` A : � Γ `M0,M1 : A

Γ `M0 =A M1 : �

Γ ` A : � Γ, x : A ` B : �

Γ `
∑

x:AB : �

Γ, x : A `M : B

Γ ` λx.M :
∏
x:AB

Γ `M :
∏
x:AB Γ ` N : A

Γ `M(N) : [N/x]B

Γ `M : A

Γ ` refl : M =A M

Γ `M0,M1 : A Γ ` N : M0 =A M1

Γ `M0 = M1 : A

Γ `M0 : A Γ, x : A ` B : � Γ `M1 : [M0/x]B

Γ ` 〈M0,M1〉 :
∑

x:AB

Γ `M :
∑

x:AB

Γ ` fst(M) : A Γ ` snd(M) : [fst(M)/x]B

Figure 3: A summary of Uemura’s logical framework.

unlike inference rules, LF encodings need not explicitly represent the object-level contexts,
and in fact automatically ensure that all operations are stable under substitution.

2.4.2. The signature of XTT. In Figure 4, we present XTT as a signature, or sequence of con-
stants, in Uemura’s LF. In accordance with the judgments-as-types methodology [HHP93],
we render each judgment of XTT as a type constant in its LF signature. We encode the
judgment Γ ` r : I as a nullary representable type with two elements; it is representable
because XTT allows context extension by dimension variables (Γ, i : I).

I : ? 0 : I 1 : I
We encode the face formula judgment Γ ` φ : F as a (non-representable) type equipped

with a representable decoding function [−]; contexts cannot be extended by face formula
variables, but we can extend contexts by an assumption that φ holds, (Γ, φ).

F : � [−] : F→ ?

Note that [−] is silent in our earlier notation; in both the inference rules and in Figure 4,
we suppress the instantiation of partial elements by (the unique) proofs of [φ].

Likewise, we encode Γ ` A type as a (non-representable) type and Γ ` a : A as a
representable type family.

tp : � tm : tp→ ?

We do not add constants for the equality judgments of XTT, as these are encoded by LF
equality at the corresponding type.

Finally, we encode the connectives and rules of XTT as constants, taking advantage of
the LF’s type structure for brevity. For example, the formation rule for dependent products
corresponds to the following LF constant:

A : tp, B :
∏
x:tm(A)tp ` pi(A,B) : tp

The force of the remaining rules for dependent product types is simply to assert an isomor-
phism between tm(pi(A,B)) and

∏
x:tm(A)tm(B(a)). To express this pattern concisely, we

introduce the notation Γ ` f : A ∼= B for the following four constants:
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I : ?

F, tp : �

[−] : F→ ?

tm : tp→ ?

0, 1 : I
(=) : I× I→ F
(∨) : F× F→ F

: {φ}
∏
p,q:[φ]p =[φ] q

: {r, s} (r =I s) ∼= [r = s]

: {φ, ψ} [φ]→ [φ ∨ ψ]

: {φ, ψ} [ψ]→ [φ ∨ ψ]

∂(r) = (r = 0 ∨ r = 1)

For each J ∈ {tp, [φ], tm(A)}:
{J | φ→ xφ} =

∑
x:J

∏
p:[φ]x =J xφ(p)

abortJ : [0 = 1]→ J

:
∏
p:[0=1]

∏
x:Jx =J abortJ(p)

splitJ : {φ, ψ}
∏
xφ:[φ]→J

∏
xψ :{J|φ→xφ}[φ ∨ ψ]→ J

: {φ, ψ}
∏

:[φ]splitJ(xφ, xψ) =J xφ

: {φ, ψ}
∏

:[ψ]splitJ(xφ, xψ) =J xψ

: {φ, ψ, x}
∏

:[φ∨ψ]x =J splitJ(x, x)

pi, sg : (
∑

A:tp(tm(A)→ tp))→ tp

path : (
∑

A:I→tptm(A(0))× tm(A(1)))→ tp

bool, set : tp

pi/tm : {A,B} (
∏
x:tm(A)tm(B(x))) ∼= tm(pi(A,B))

sg/tm : {A,B} (
∑

x:tm(A)tm(B(x))) ∼= tm(sg(A,B))

path/tm : {A, a0, a1} (
∏
i:I{tm(A(i)) | ∂(i)→ splittm(A(i))(a0, a1)}) ∼= tm(path(A, a0, a1))

tt,ff : tm(bool)

if :
∏
C:tm(bool)→tp

∏
b:tm(bool)tm(C(tt))→ tm(C(ff))→ tm(C(b))

: {C, ctt, cff} if(C, tt, ctt, cff) =tm(C(tt)) ctt

: {C, ctt, cff} if(C,ff, ctt, cff) =tm(C(ff)) cff

el : tm(set)→ tp

:
∏
Â:tm(set)

∏
r:I
∏
a,b:tm(el(Â))([∂(r)]→ a =tm(el(Â)) b)→ a =tm(el(Â)) b

coe :
∏
Â:I→tm(set)

∏
r,r′:I

∏
a:tm(el(Â(r))){tm(el(Â(r′))) | r = r′ → a}

:
∏
Â:tm(set)

∏
r,r′:I

∏
a:tm(el(Â))coe(λ .Â, r, r′, a) =tm(el(Â)) a

com : {Â}
∏
s,r,r′:I

∏
a:
∏

i:I

∏
:[i=r∨∂(s)]

tm(el(Â(i)))
{tm(el(Â(r′))) | r′ = r ∨ ∂(s)→ a(r′)}

p̂i, ŝg : (
∑

Â:tm(set)(tm(el(Â))→ tm(set)))→ tm(set)

: {Â, B̂} el(p̂i(Â, B̂)) =tp pi(el(Â), λx.el(B̂(x)))

: {Â, B̂, r, r′, f} coe(λi.p̂i(Â(i), B̂(i)), r, r′, f) =
tm(el(p̂i(Â(r′),B̂(r′)))) λx.coe(. . . )

Figure 4: The signature of XTT in Uemura’s logical framework. For space reasons, we omit
the remainder of the rules pertaining to the universe of Bishop sets.
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Γ, x : A ` f→(x) : B Γ, x : B ` f←(x) : A

Γ, x : A ` : f←(f→(x)) =A x Γ, x : B ` : f→(f←(x)) =B x

Using this notation, we encode the introduction, elimination, β, and η laws of dependent
products in one stroke:

A : tp, B :
∏
x:tm(A)tp ` pi/tm :

∏
x:tm(A)tm(B(x)) ∼= tm(pi(A,B))

3. Categorical preliminaries

All the categorical machinery we assume can be found in standard introductory textbooks
and references [ML98, Bor94a, Bor94b, Bor10, Awo10, Joh02]; in order to fix notations
and render our presentation as self-contained as possible, however, we have included a
number of definitions. The beginning of Section 3.1 recalls basic categorical definitions
and fixes notation, while Section 3.1.1 covers more specific facts related to presheaves and
representables. The remaining sections discuss functorial semantics and the categorical
machinery necessary to account for the semantics of type theory.

We recommend only skimming this section on a first read, and return to it as needed.

3.1. Basic categorical definitions.

Notation 3.1. Given a category C and objects C,D : C, we write C[C,D] for the collection
of arrows between C and D. We will also write [ C,D] for the category of functors C D
and natural transformations between them. ¦

Convention 3.2. Conventionally, we write Set and Cat for the categories of sets and
categories respectively; of course, to be more precise, we should instead refer to Setα and
Catα for some strongly inaccessible cardinal α, or equivalently a Grothendieck universe U.
We leave the resolution of these universes implicit, noting them explicitly in sensitive places.

Notation 3.3. We will write ∆n for the n-simplex regarded as a category; in particular,
∆0 is the terminal category {∗}, and ∆1 is the category {• ◦} of the walking arrow.
Therefore [∆1, C] is the category of arrows and commutative squares in C. ¦

Definition 3.4 (Cartesian arrow category). We write [∆1, C]cart [∆1, C] for the wide
subcategory of arrows and cartesian squares between them. Concretely, given f, g : [∆1, C]cart

a morphism between them exhibits f as a pullback of g:

∂0f

∂1f

f

∂0f

∂1g

g

¦

Definition 3.5 (Cartesian morphism). Given a functor E B
p

, a morphism E0 E1
f

is cartesian if for every E′ E1
g

and pE′ pE0
u such that pg = pf ◦ u, there exists a
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unique E′ E0
h over u such that f ◦ h = g. Diagrammatically:

E0

pE0

E1

pE1

f

pf

E′

pE′

u

h

g

E

B ¦

Definition 3.6 (Opcartesian morphism). Dually, given a functor E B
p

, a morphism

E0 E1
f

is opcartesian if for every E0 E′
g

and pE1 pE′u such that pg = u◦pf , there
exists a unique factor E1 E′h lying over u such that h ◦ f = g:

E0

pE0

E1

pE1

f

pf

E′

pE′

u

g

h

E

B ¦

Definition 3.7 (Fibration). A fibration is a functor E B
p

such that for each morphism

B pEu there exists a cartesian morphism u∗E Eu†E lying over u:

u∗E

B

E

pE

u†E

u

E

B

We emphasize the property of an arrow being a fibration by using an open triangular
tip, e.g . E B

p
. ¦

Definition 3.8 (Opfibration). Dually, an opfibration is a functor E B
p

such that for

each morphism pE Bu there exists an opcartesian morphism E u!E
u†E lying over u:

E

pE

u!E

B

u†E

u

E

B

We emphasize the property of an arrow being an opfibration by using a filled triangular tip,
e.g . E B

p
. ¦

Fact 3.9. The codomain functor [∆1, C] C∂1 which sends X Y
f

to Y is always an
opfibration, with opcartesian lifts implemented by postcomposition (dependent sum). ¦
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Fact 3.10. In a category C with pullbacks, the codomain functor [∆1, C] C∂1 is a
fibration. Cartesian lifts may are implemented by pullbacks in C. ¦

Definition 3.11 (Comma category). Given a pair of functors D CF , E CG , the comma
category F ↓ G has as objects arrows FD GEX and commutative squares of the following
kind for arrows:

FD

GE

X

FD′

GE′

Fd

X ′

Ge
¦

The comma category F ↓ G may be constructed more abstractly in terms of the following
(1-categorical) pullback in Cat, the category of categories and functors:

F ↓ G

D× E

[∆1, C]

C× C

(∂0, ∂1)

(F,G)
(3.12)

Notation 3.13. Let X : C; we will write ∆0 C
{X}

for the constant functor ∗ 7→ X. ¦

Notation 3.14. A common abuse of notation in the comma construction is that, when

either F or G is the identity functor C C
idC , they shall be written simply C. For instance,

C ↓ G is written for idC ↓ G. ¦

An important instance of the comma construction is the slice category.

Definition 3.15 (Slice category). Given an object X : C, the slice or “over-category” of C
at X is the comma category C/X = C ↓ {X}. The objects of C/X can be seen to be arrows
Y X; morphisms in the slice are commutative triangles. ¦

Fact 3.16. In a category with pullbacks C, a morphism X Y
f

induces a functor

C/Y C/X
f∗

sending Z Y
g

to Z ×Y X X
f∗g

. ¦

Notation 3.17. We will adopt a common abuse of notation and suppress the weakening

functor C C/X
!∗X when it is unambiguous. ¦

Definition 3.18. Let κ be a regular cardinal; we say that a category C is κ-(co)complete
when C has all (co)limits of κ-small diagrams; a functor that preserves these (co)limits is
called κ-(co)continuous. When κ is omitted, a sufficiently large strongly inaccessible cardinal
is assumed. ¦
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3.1.1. Presheaves, representability, and discrete fibrations.

Definition 3.19. A presheaf on C is a functor Cop SetF ; the category of presheaves
[ Cop,Set] is written Pr( C). ¦

Presheaves capture the geometric intuition of probing a space or other object by small
figures: the role of contexts and substitutions in (strict) type theory supplies type theorists
and logicians with a useful concrete intuition for presheaves. A more structural perspective
on presheaves is, however, essential: the category Pr( C) may be characterized universally
as the free cocompletion of C, equipping C with new colimits. When C already has some
colimits, it is important to note that the new ones do not coincide with the old ones.

Construction 3.20 (The Yoneda embedding). To be more precise, there is a universal
functor C Pr( C)

y C , called the Yoneda embedding, taking each object C : C to a “formal
colimit” y CC = C[•, C], such that every functor C E with E cocomplete factors as y C

and a cocontinuous functor F̃ in an essentially unique way:

C E

Pr( C)

F

y
C F̃

¦

Lemma 3.21 (Yoneda). For each presheaf X : Pr( C), we have the following isomorphism:

Pr( C)[y CC,X] ∼= X(C)

As a consequence, the Yoneda embedding is full and faithful.

Definition 3.22. A presheaf X : Pr( C) is called representable when it lies in the essential
image of y C, i.e. X is isomorphic to y CC for some C : C. ¦

The notion of representable object is extended to maps in a canonical way, by considering
fibers over representable objects.

Definition 3.23 (Representable natural transformation). A representable natural trans-

formation is a map Y X
f

: Pr( C) whose every fiber over a representable object is
representable. In other words, the fiber product of f with any y CC Xx is representable.

y C(C.x)

y CC

x∗f

Y

X

f

x

In Section 3.2, we observe that the representing object of this fiber product plays a role
analogous to context extension, so we denote it C.x. ¦

Representable natural transformations are a prime example of Grothendieck’s “relative
point of view”, extending a notion that is first defined on objects to have sense on morphisms.
It is useful to remark that the slice Pr( C)/X is itself the category of presheaves Pr( C/X)
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on the category of elements C/X of X, and that the representability of the map Y X
f

agrees with the representability of the object f : Pr( C)/X .

Construction 3.24 (Category of elements). The category of elements C/X of a presheaf

X : Pr( C) has as objects pairs C/x with x ∈ X(C) and morphisms D/f∗x C/x
f†x

for

each D C
f

and x ∈ X(C). ¦

In fact, the category of elements of a presheaf X : Pr( C) is the total category of a
discrete fibration over C.

Definition 3.25. A fibration p : E → B is discrete if pf = idB implies that f = idE;
equivalently, if the fibers of p are discrete categories. The collection of discrete fibrations over
C forms a full subcategory DFC ⊆ FibC ⊆ Cat/C, with morphisms given by commuting
triangles. ¦

Lemma 3.26. Let X : Pr( C) be a presheaf; the functor C/X C
pX that takes each C/x to

C is a discrete fibration. Conversely, letting E CF be a discrete fibration, we may define

a presheaf F• : Pr( C) in which each FC is the pullback of F along ∆0 C
!C .

As might be expected, the assignment X 7→ pX extends to a functor Pr( C) DFC
p•

which is full, faithful, and essentially surjective (i.e. an equivalence of categories). There-
fore DFC may be used as an alternative to Pr( C), and has its own Yoneda embedding
C DFC

y C .
In the context of discrete fibrations, there is an alternative characterization of repre-

sentable maps in addition to the Grothendieck-style extension of the essential image of the
Yoneda embedding C DFC

y C to maps via pullbacks.

Lemma 3.27 (Representability in discrete fibrations [ABSS14, Awo18b]). A map G F
f

:

DFC is representable iff the upstairs functor ∂0G ∂0F
∂0f : Cat has a (non-fibered) right

adjoint, which we may write ∂0f a qf .

In contrast with presheaves, it is natural to simultaneously work with discrete fibrations
over different base categories: we may write DF ⊆ Fib ⊆ [∆1,Cat] for the category of
fibrations over arbitrary base, rendered a full subcategory of the category of arrows of Cat.
Therefore, a morphism of discrete fibrations is a commuting square:

E0

B0

p0

E1

B1

α1

p1

α0

Lemma 3.28. The map sending a discrete fibration to its base category DF Cat∂1 is a
fibration. We will write DFC for the fiber ∂1[ C].
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3.1.2. Density of the Yoneda embedding. The Yoneda lemma (Lemma 3.21) is indispensable,
but the closely related density theorem more deeply exposes the character of Pr( C) as free
cocompletion.

Definition 3.29 (Density). A functor C EF is called dense if for each E : E, the canonical

cocone DE
F {E}δEF is universal (i.e. a colimit). ¦

Lemma 3.30 (Density). The Yoneda embedding C Pr( C)
y C is a dense functor.

Of course, to understand Lemma 3.30 we must first have an understanding of density
in the category theoretic sense. Every functor C EF generates a canonical cocone over

each object E : E for the following diagram F ↓ {E} E
DEF :

DE
F

def
== F ↓ {E} C E∂0 F

The canonical cocone DE
F {E}δEF takes each αi : F ↓ {E} to the underlying map

F (Ei) E
αi . Visually, the cocone might look something like this:

EFEi

FEj

FEh

FEk

αi

α
j

αk

αh

Ff

(3.31)

Therefore, Lemma 3.30 says exactly that every presheaf is a formal colimit of repre-
sentable objects in a canonical way.

3.1.3. Philo-logie and Diaconescu’s theorem. Categories of presheaves E = Pr( C) are com-
plete, cocomplete, locally cartesian closed, and exhibit certain non-trivial compatibilities
between certain limits and colimits which may be boiled down to the existence of a classify-
ing family for subobjects (monomorphisms). This subobject classifier is a monomorphism

1E ΩE
trE that is universal in the sense that all monomorphisms arise in a unique way from

trE by pullback:

Y

X

m

1E

ΩE

trE

∃!m̃
(3.32)

A category with these properties may be referred to as a logos following the terminology
of Anel and Joyal [AJ21], though we defer the actual definition of logoi until Definition 3.34.
Recalling our characterization of Pr( C) as the free cocompletion of C, we argue that the
correct way to understand categories of presheaves is as a class of logoi that are generated
in a specific way: namely, all colimits are added freely without imposing any relations.
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We may also generate logoi in which the added colimits satisfy some relations; historically,
the most common way to do so is to augment the category C with the data of a coverage.
The canonical motivating example arises when considering presheaves on the frame of open
sets O(X) of a topological space X. The logos of presheaves Pr(O(X)) does not have the
geometrically correct colimits corresponding to the gluing together of components of an
open cover {Ui U}, but some presheaves treat yO(X)U “as if” it were the appropriate
colimit of the covering diagram to varying degrees:

(1) A presheaf X that has no more than one section x ∈ XU compatible with a family of
sections {xi ∈ XUi} defined on the cover is called separated.

(2) A presheaf X that has exactly one such section x ∈ XU for each such compatible family
of sections is called local.8

Separated presheaves will play an important role in the algebraic syntax and semantics
of XTT (Section 4), in which we wish to ensure that there is at most one path I A
compatible with a boundary 1 + 1 A in the following sense:

1 + 1

I

A
a

[0 | 1]

un
iq

ue
if

ex
is
ts

(3.33)

Not all presheaves are local; one may correct this defect by quotienting or localizing
the logos, forcing certain maps out of colimits to become isomorphisms. Although generally
localizing a category may result in a category which is almost entirely unrecognizable, in this
case the resultant localization has a straightforward characterization: it is precisely the full
subcategory spanned by local presheaves. More formally, the inclusion of this subcategory
into Pr( C) has a left adjoint which preserves finite limits and this left adjoint sends certain
maps out of colimits to isomorphisms. This adjunction presents the subcategory of local
presheaves as a left exact localization of Pr( C). We may therefore define a logos to be a
left exact localization of the category of presheaves on a small category C.

Definition 3.34 (Logos). A logos is a left exact localization of the category of presheaves on
a small category C; a morphism E F between logoi is a functor between the underlying
categories that is both left exact and cocontinuous. Such a morphism is often called an
algebraic morphism. We will write Logos for the 2-category of logoi, with 2-cells given by
natural transformations between the underlying functors. ¦

Remark 3.35 (Direct image). Because logoi are left exact localizations of presheaves, they
are locally presentable [AR94]. While we do not make extensive use of this fact, we do require
the following consequences of local presentability: all logoi are complete and cocomplete

and every algebraic morphism E F
f∗

has a right adjoint F E
f∗ . ¦

Two different base categories C,D may yet generate the same presheaf logos; however,
presheaf logoi enjoy a special relationship with their base categories embodied in Diaconescu’s
Theorem below [Bor94b].

8Typically local presheaves are referred to as sheaves, but we adopt this non-standard terminology for
symmetry with separated presheaves.
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Theorem 3.36 (Diaconescu’s Theorem). A presheaf logos Pr( C) classifies flat functors
out of C in the sense that the comparison map Logos[Pr( C), E] → [ C, E]flat determined
by precomposing with the Yoneda embedding is an equivalence of categories. In particular,

each algebraic morphism Pr( C) E
f∗

corresponds to an essentially unique flat functor

C E
f∗ ◦ y C .

A flat functor is a generalization of the notion of left exact functor which may be used
in case the domain category C is not finitely complete: in other words, a flat functor C E
is one that preserves “even the finite limits that don’t exist”. While the general definition
is slightly complex (see [Bor94a, Definition 8.2.8]), for our purposes it suffices to consider
the special case where C is finitely complete and when a flat functor is precisely one which
preserves finite limits.

Flat functors play an essential role in the general gluing theorem for models of Martin-
Löf type theory into logoi developed by Sterling and Angiuli [SA20] which we have applied
in this paper.

3.1.4. Topos–logos duality. Following the philosophy of Anel and Joyal [AJ21], we have
(perhaps surprisingly to some readers) not referred to categories of presheaves as “topoi”.
This is because we prefer to think of a topos as a geometrical object, whereas a logos is
algebraic in nature: for instance, Diaconescu’s Theorem (Theorem 3.36) shows that the
category of presheaves is an invariant form of the theory of flat functors in the style of
Lawvere’s functorial semantics [Law63].

It is instructive to start from the prototype of geometry–algebra duality embodied in
the relationship between (sober) topological spaces and their frames of open sets; in this
case, the frame of opens is an algebraic object, and the corresponding space is its geometric
dual. By an analogy that may be substantiated in a precise way, a logos is the algebraic
object corresponding to a topos, which is in contrast a kind of generalized space.

The duality between topoi and logoi is captured in a formal equivalence of categories
Sh : Toposop Logos' , taking a topos to its “logos of sheaves”. While historically, many
authors have thought of sheaves as local presheaves for a specific generators-and-relations
presentation of a logos, Grothendieck insisted that this presentation is not at all the main
object of study [AGV72, Gro86]: sheaves should be thought of as algebraic data varying
over a (generalized) space, including both topological spaces and topoi. Indeed, it is enough
to consider sheaves on topoi, recalling that any sober space corresponds to an essentially
unique enveloping topos [AJ21].

On the other hand, the algebraic perspective of logoi and their algebraic morphisms is
the most germane to this paper, so we do not refer to topoi in subsequent sections.

3.2. Functorial semantics of dependent type theory à la Uemura. Classically, the
notion of an “algebraic theory” was understood in terms of sets of operations and equations.
For instance, the theory of monoids may be written in terms of two operations: ε of arity
[0] and � of arity [2]. Then, a set of equations is imposed on the set of trees generated by
{ε,�} to express the associativity and unit laws of a monoid. A model of a theory in this
old-fashioned sense was then a structure comprising the following data:

(1) a carrier set A,
(2) a map εA : 1→ A,
(3) a map �A : A×A→ A,
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(4) subject to the following equations:

�A(εA, x) = x

�A(x, εA) = x

�A(�A(x, y), z) = �A(x,�A(y, z))

Models in this sense arrange themselves into a category, with morphisms given by functions
between carrier sets that commute with the specified maps; of course, this is nothing more
than the category of monoids in Set. Generally, one considers models in categories other
than Set, a notion that makes sense for any category C having the requisite structure (in
this case, finite products).

However, there are many other collections of operations and axioms that equally well
express the concept of monoid, evidently exhibiting the same categories of models. For
instance, one may use the set of operations {listn | n ∈ N} ∪ {�} where each operation
listn has arity [n]. Lawvere famously observed that none of the important computations
in universal algebra actually depend on which specific operations and axioms are used to
encode a theory, advocating a perspective that regards the presentations above not as the
theories themselves, but as structures lying over the theories.

A theory for Lawvere is a category T closed under certain structures (e.g . finite products,
finite limits, etc.); a model of a theory in a category C is a functor T C preserving (finite
products, finite limits, etc.). A collection of operations and axioms that generates a theory
is called a equational presentation of that theory.

Lawvere’s functorial perspective on theories and their models is called the functorial
semantics [Law63]. Lawvere has observed that many of the fundamental operations by
which new theories are constructed from old theories are unnatural to describe in terms of
presentations, but are simple at the level of categories and functors. One may continue to
present theories T by sets of operations and axioms as before, but the spirit of the functorial
method is to freely adopt whichever presentation is most useful in a specific context.

3.2.1. Natural models, the judgmental essence of strict type theory. We recall from Defini-
tion 3.23 the notion of a representable natural transformation of presheaves: it is a family
of presheaves that, at every fiber over a representable object, is a representable object.
This notion, which first arose in the context of algebraic geometry in the Grothendieck
school [AGV72], plays a fundamental role in the semantics of dependent type theory as well
as the categorical study of set theory and universes [Awo18b, Awo08, Str05, Str14b].

From the type theoretic perspective, the importance of representable maps is easy to
explain. In type theory, the basic objects under consideration are contexts Γ, types in
context Γ ` A, and typed terms in context Γ ` a : A. The collection of types carries an
action for each substitution ∆ Γ

γ
of contexts, and so does the collection of elements: we

have ∆ ` γ∗A and ∆ ` γ∗a : γ∗A. Moreover, while there is no context that represents the
collection of all types, for any specific type Γ ` A, we have a context Γ.A that represents
the elements of the type A.

This type theoretic situation can be captured mathematically in three steps:

(1) First of all, the collection of contexts may be organized into a category C with morphisms
given by simultaneous substitutions.

(2) Next, the collection of types may be viewed as a presheaf TC : Pr( C): a section
A ∈ TC(Γ) is exactly a type Γ ` A, and the functorial action implements substitution
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on types. Likewise, the collection of typed elements is a presheaf indexed in the presheaf

of types, i.e. a family T̃C TC
τC .

(3) From the perspective of the Yoneda lemma, one may think of contexts as representable
presheaves Γ : Pr( C), and a type in context Γ is a morphism Γ TC

A . We therefore
obtain representing contexts Γ.A for each such type A by requiring that the family

T̃C TC
τC be a representable natural transformation:

Γ.A

Γ

pA

T̃C

TC

qA

τC

A
(3.37)

The map Γ.A Γ
pA is the weakening substitution, and the map Γ.A T̃C

qA is the variable
term. By chasing Diagram 3.37, it is easy to see that the type of the term qA is p∗AA
as expected. The structure defined above captures the decisive judgmental aspects of
dependent type theory, and has been referred to by Awodey as a natural model : natural
in both the informal sense, and in the sense that it is defined in terms of a representable
natural transformation.

Definition 3.38 [Awo18b]. A natural model is a category C with a terminal object, together
with a representable natural transformation in Pr( C). ¦

3.2.2. Representable map categories and the semantics of type theory. A given type theory
is more than just a natural model in the sense of Definition 3.38: one must also specify
other generators, such as type connectives and their elements. Most type connectives can be
specified by writing down a family in Pr( C) and then asking for a cartesian square between
that family and the natural model. This raises some questions:

(1) What kinds of structures can be added to the notion of a natural model and still give
rise to a type theory?

(2) What is a morphism between models of such a type theory?

Uemura proposes to answer this question by developing a notion of “general type theory”
and associated functorial semantics [Uem19, Uem21]; while Lawvere defines an algebraic
theory to be (roughly) a category with finite products, Uemura defines a type theory T to be
a representable map category, which is a lex category C together with a distinguished class
R of “representable maps” which captures the decisive aspects of the class of representable
natural transformations in presheaf logoi.

Definition 3.39. A class of representable maps in a lex category C is a collection of maps
R with the following closure conditions:

(1) Each identity map is representable, and the composition of representable maps is repre-
sentable.

(2) Every pullback of a representable map along an arbitrary map is representable.
(3) Pullback along a representable map has a right adjoint, pushforward. ¦
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Notation 3.40. In particular, if the terminal map X 1C is representable, then all
exponentials (internal homs) out of X may be computed by pushforward, which we may
write either X ⇒ Y or JX,Y K. ¦

Definition 3.41. A representable map category is a lex category C together with a class
R of representable maps in C; a representable map functor between two representable map
categories is a functor between the underlying categories that takes representable maps to
representable maps. ¦

Remark 3.42. Every lex category C can be thought of as a very weak kind of extensional
type theory, in which dependent types are maps and substitutions are given by pullback. A
representable map structure on C does nothing more than enrich this language as follows:

(1) There is a class of small types called “representable” types.
(2) Representable types are closed under dependent sums.
(3) Types are closed under dependent products with representable base.

The “type theory” of a representable map category T = ( C,R) can be thought of as a logical
framework in the sense of [HHP93, NPS90], in which hypothetical judgments are represented
by pushforward. From this perspective, it is most appropriate to refer to arbitrary objects
and families in T as judgments, following the “judgments as types” philosophy of Harper,
Honsell, and Plotkin [HHP93]. ¦

Example 3.43 (The walking natural model). The type theory with judgments for types and
terms is specified by the representable map category T generated by a single representable

map T̃ Tτ . ¦

Example 3.44. Pr( C) supports the structure of a representable map category with the
class of representable maps given by representable natural transformations. ¦

The classic notion of a representable map in a category of presheaves is of course an
instance, giving rise to the “canonical representable structures” on Pr( C) and DFC.

Example 3.45. DFC supports the structure of a representable map category, with rep-
resentable maps given by a functors between discrete fibrations that have a non-fibered

right adjoint [Awo18b, ABSS14]. Explicitly, a morphism X Y
f

: DFC is a representable

morphism if there is a functor Y X
qf

: Cat such that f a qf .
Moreover, with this class of representable maps, the equivalence between DFC and

Pr( C) induces an equivalence between representable map categories. In other words, viewing
a representable natural transformation of presheaves as a functor between categories of
elements, one has such a right adjoint, and vice versa. ¦

The functorial semantics of type theories à la Uemura is then given in terms of these
canonical representable map categories:

Definition 3.46 (Models). A model of a type theory T = ( C,R) is a representable map

functor T DFC
MC where C is a category with a terminal object. ¦

In Definition 3.46, the base category C is the category of contexts, and each JC is the
interpretation of a “judgment” J : T as a presheaf over C.

Notation 3.47. Given any object J : T, we write JC for JC; likewise, for each J I
f

: T,

we write JC IC
fC : DFC for fC. ¦
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To a first approximation, a morphism MF between two T-models MC,MD should be a
functor C DF together with a natural assignment of functors X 7→ XF for each X : T:

XC

C

XD

D

XF

F

DF

Cat (∗)

In addition to these requirements, a morphism of models should also preserve context
extension up to isomorphism; from a categorical perspective, there is not much meaning
in asking for context extension to be preserved “on the nose”, since contexts are objects of
a category and therefore considered only up to isomorphism. Therefore, given a context
C : C and a type y CC TC

A , we would expect that the context extension FC.TFA shall
be isomorphic to F (C.A).

In Uemura’s framework, as with natural models [Awo18a], context extension is modeled

by the representability of T̃ Tτ . In fact, calculation shows that the (non-fibered) right

adjoint qτC
to τC sends a type y CC TC

A to the variable term y C(C.A) T̃C in the
extended context. We may therefore phrase the preservation of context extensions, called
Beck-Chevalley by Uemura, in terms of qfC

and qfD
for each representable map f , including

T̃ Tτ .
First, observe that for each representable map J I

f
, we have a canonical 2-cell in

Cat with the following boundary:

IC

JC

qfC

ID

JD

IF

qfD

JF

⇒

(3.48)

The 2-cell of Diagram 3.48 may be computed as follows:

fC ◦ qfC
idIC

IF ◦ fC ◦ qfC
IF

fD ◦ JF ◦ qfC
IF

JF ◦ qfC
qfD
◦ IF

The Beck-Chevalley condition for J I
f

is, then, that the 2-cell in Diagram 3.48 is
invertible.

Definition 3.49 (Morphism of Models). A morphism between T DFC
MC and T DFD

MD

is a functor C DF preserving the terminal object, together with an assignment of functors

XC XD
XF lying over F , natural in X : T, such that each representable map X Y

f

satisfies the Beck-Chevalley condition. ¦

Notation 3.50. Let MC MD
MF be a morphism of T-models; given X : T, x : XC, we will

abusively write Fx for XFx. ¦
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Because morphisms of models necessarily require preservation of context extensions only
up to isomorphism, a higher level of morphism naturally arises, lending the collection of
models ModT with the structure of a 2-category.

Definition 3.51 (2-morphisms of models). Given a pair of morphisms MC MD
MF ,MG ,

a 2-morphism MF MG
Mα is a natural transformation F Gα between the underlying

functors such that for each X : T, there exists a necessarily unique natural transformation

XF XG
Xα lying over α. ¦

Remark 3.52. The uniqueness of the map XF XG
Xα lying over α is ensured by the

discreteness of XD. Summarizing, the existence of Xα is nothing more than the condition
that for each x : XC lying over Γ : C, the following equation obtains:

α∗ΓGx = Fx ¦

Theorem 3.53. The 2-category of models ModT has a bi-initial object: an object I such
that for each X : ModT, the category of morphisms [I,X] is contractible.

This bi-initial object is the democratic heart of the embedding T DFT
y

: the smallest
full subcategory of T containing the terminal object and closed under context extension.
The universal property of this bi-initial object ensures that there is at most one morphism
MI MC for each MC, up to a unique invertible 2-morphism.

3.3. Left lifting structures, orthogonality, and separation. In this section, let E be
a category with finite limits. We call an object X : E exponentiable when every exponential
JX,Y K exists. We begin by recalling some basic definitions and facts from [Awo18b, ABFJ18,
ABFJ20].

Definition 3.54 (Cartesian gap map). Let the following square commute in E:

A

B

f

X

Y

k

g

h
(3.55)

The universal property of the pullback of g along h states that the span f, k induces a
map 〈f, k〉, which we call the cartesian gap map of Diagram 3.55:

X ×Y B

B

X

Y

g

h

A

f

k

〈f, k〉

¦
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Definition 3.56 (Internal pullback hom). Let A B
f

and X Y
g

be morphisms in E
such that A,B are both exponentiable. Then, the internal pullback hom of f and g is the

cartesian gap map JB,XK JA,XK×JA,Y K JB, Y K⟪f, g⟫
of the following square:

JB,XK

JB, Y K

JB, gK

JA,XK

JA, Y K

Jf,XK

JA, gK

Jf, Y K
¦

Definition 3.57 (External orthogonality). A map A B
f

is left orthogonal to X Y
g

,
written f ⊥ g, when there exists a unique lift for each square of the following kind:

A

B

f

X

Y

x

g

y

∃!

¦

Definition 3.58 (Internal orthogonality). A map A B
f

is internally left orthogonal to
X Y

g
, written f 
 g, if we have (Z × f) ⊥ g for every Z : E. ¦

Lemma 3.59 [ABFJ20, Definition 3.2.5]. Fix A B
f

and X Y
g

with A,B exponen-
tiable; then f 
 g iff the internal pullback hom ⟪f, g⟫ is an isomorphism.

Definition 3.60 [Awo18b, Definition 18]. Fix A B
f

and X Y
g

with A,B exponen-
tiable; a left lifting structure for f against g (written f t g) is a section j of the internal
pullback hom ⟪f, g⟫:

JB,XK

JA,XK×JA,Y K JB, Y K

⟪f, g⟫j

¦

Example 3.61 (Intensional identity types). In order to formulate the elimination of inten-
sional identity types in a natural model, Awodey [Awo18a] uses a left lifting structure. More
generally, most “pattern-matching” style elimination rules in type theory can be formulated
as a left lifting structure [GKNB20]. ¦

Lemma 3.62 [Awo18b, Lemma 19]. Given maps A B
f

and X Y
g

, a left lifting
structure j : f t g is equivalent to a choice of lifts jZ(y, x) natural in Z for any diagram of
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the following kind:

Z ×A

Z ×B

Z × f

X

Y

x

g

y

jZ
(y
, x

)

Remark 3.63. A left lifting structure j : f t g exhibits f as internally left orthogonal to g
when j is simultaneously a retraction. ¦

Because both left lifting structures and orthogonality conditions may be expressed in
the language of finite limits as above, it is justified to freely extend a representable map
category T by either f 
 g or j : f t g. In many cases, however, an orthogonality condition
or lifting structure will need to be expressed in the free cocompletion Pr(T) because it may
involve colimits that don’t exist in T; when defining a representable map category by a
sequence of clauses, it is not a priori clear that this move is legitimate.

We will therefore characterize a useful class of orthogonality and lifting conditions on
Pr( C) which may be unravelled into a suitable condition on a lex category C, expressible
using the language of finite limits.

Lemma 3.64. Let I be a small category such that limits of I-diagrams exist in C; let

I CΦ• be a diagram such that for each i : I, the object Φi is exponentiable. We will write

Φ̂∞ for the colimit of Φ• taken in Pr( C), i.e. Φ̂∞ = colimI(y CΦ•). Now let Φ̂∞ y CB
f

:
Pr( C) with B exponentiable, and let X Y

g
be an arbitrary map in C. Then, there exists

a left lifting structure j : f t y Cg in T iff there exists a section of the cartesian gap map for
the canonical Diagram 3.65 in C below:

JB,XK

JB, Y K

limIJΦ•, XK

limIJΦ•, Y K (3.65)

Moreover, the left lifting structure j exhibits f as internally left orthogonal to y Cg iff
the cartesian gap map of Diagram 3.65 is an isomorphism.

Before proving Lemma 3.64, we first clarify the construction of Diagram 3.65. For each
i : I, we have the following composite map:

y CΦi Φ̂∞

y CB

ini

fy
C f
i

(3.66)
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Therefore, letting Z range over X,Y , we may construct a map into limIJΦ•, ZK from a
cone defined as follows:

JB,ZK limIJΦ•, ZK

JΦi, ZK

[i.Jfi, ZK]

πiJf
i , ZK

(3.67)

The force of Lemma 3.64 is therefore to assert that the existence of a left lifting structure
j : f t y Cg in Pr( C) is equivalent to the existence of a section to the cartesian gap map of
Diagram 3.68 below:

JB,XK

JB, Y K

JB, gK

limIJΦ•, XK

limIJΦ•, Y K

[i.Jfi, XK]

limIJΦ•, gK

[i.Jfi, Y K]
(3.68)

Proof of Lemma 3.64. The condition of the internal pullback hom ⟪f, y Cg⟫ may be por-
trayed as follows:

y CJB,XK

y CJB, Y K

JΦ̂∞, y CXK

JΦ̂∞, y CY K

P

⟪f, y
C g⟫s

(3.69)

But for each Z : C, the presheaf JΦ̂∞, y CZK is canonically represented by the object
limIJΦ•, ZK : C, using the universality of colimits in Pr( C) and the fact that the Yoneda
embedding commutes with limits and exponentials. Therefore, Diagram 3.70 below faithfully
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translates the existence of the dotted map in Diagram 3.69 into the language of C:

JB,XK

JB, Y K

limIJΦ•, XK

limIJΦ•, Y K

P

⟪f, y
C g⟫

s

(3.70)

But the above is exactly the existence of a section to the cartesian gap map for Dia-
gram 3.68. It is likewise easy to see that one section is a retraction iff the other is.

We will have need of an orthogonality-like notion in which lifts may not exist, but when
they do, they are unique. It is most appropriate to call this condition separation, by analogy
with coverages and Grothendieck topologies.

Definition 3.71. Let A B
f

and X Y
g

be maps in a category C; then we say that g
is separated with respect to f when, for every object Z : C, there is at most one lift for any
square of the following shape:

Z ×A

Z ×B

Z × f

X

Y

g

¦

3.4. Using Artin gluing to prove canonicity. In this section, we give a gentle introduc-
tion to the use of Artin gluing for proving ordinary canonicity results in order to set the
stage for our more sophisticated application. Let C be the free cartesian closed category
generated by a base type ans : C and two constants 1C ans

yes, no
. We wish to prove the

following closed canonicity theorem:

Proposition 3.72 (Closed canonicity). Let 1C ansa be a morphism in C; then either
a = yes or a = no.

This can be proved by means of logical predicates / the Tait’s method of computabil-
ity [Tai67]. Peter Freyd observed that the structural aspects of Tait’s method can be
captured by the well-known categorical construct of Artin gluing. We define a new category
P that will serve as a domain of interpretation for a logical predicates model of C. An
object of P is defined to be a pair (C, C̃) with C : C and C̃ ⊆ C[1C, C], and a morphism

(C, C̃) (D, D̃) is given by a morphism C D
f

: C that preserves the predicates in the
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sense that the following commutative diagram exists:

C̃

C[1C, C]

⊆

D̃

C[1C, D]

⊆

C[1C, f ]

The diagram above states the traditional condition for extending a logical predicate to
open terms: for any closed c ∈ C̃, the evaluation f(c) is in D̃.

We have a fibration P C
p

sending (C, C̃) to C; moreover, we can show that P is
cartesian closed and the fibration p preserves the cartesian closed structure. The latter
amounts to constructing products and exponentials in P whose C-parts are the correspond-
ing products and exponentials from the syntactic category, which is always built into logical
predicates arguments.

In functorial semantics, a logical predicates model of C is the same as a functor C P
that preserves the cartesian closed structure for which the composite with the fibration
P C

p
is the identity, i.e. a section of p. Because C is the free cartesian closed category

generated by {ans, yes, no}, such a functor is uniquely determined by a choice of an object
JansK : P such that pJansK = ans, and a choice of constants JyesK, JnoK configured as follows:

1P

1C

JansK

ans

JyesK

yes

1P

1C

JansK

ans

JnoK

no

P

C

We then choose JansK to be the pair (ans, {yes, no} ⊆ C[1C, ans]). Then the elements
JyesK, JnoK can be defined to be yes, no respectively. The canonicity theorem follows.

Proof of Proposition 3.72. Let 1C ansa be a morphism of C; by means of the cartesian

closed section C P
J−K

of P C
p

, there exists a morphism 1P JansKJaK
such that pJaK =

a. Unfolding the definition of morphisms in P and the definition of JansK, this is the same
as saying that a ∈ {yes, no}.

In this paper, we prove a much more sophisticated canonicity theorem and therefore
must change the construction in a few important ways.

(1) We replace the proof-irrelevant logical predicate interpretation (based on subsets) with
a proof-relevant interpretation (based on families).

(2) Rather than considering closed terms (i.e. elements of the hom sets C[1C, C]), we
consider terms relative to purely cubical contexts Ψ = [i : I, . . .], i.e. elements of any hom
sets C[Ψ, C]. We require our families (proof-relevant predicates) to carry a contravariant
functorial action for cubical substitutions Ψ′ Ψ.

The modifications described above are actually parameters to a much more general construc-
tion called Artin gluing. When C is a category and C EF is a functor, the Artin gluing
of C along F is defined be the comma category G ≡ {E} ↓ F . It is instructive to view the
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gluing as a restriction of the codomain fibration in the case that E has finite limits:

G

C

p

[∆1, E]

E

∂1

F

Artin gluing theorems express the relationship between various properties of C and F
and E to corresponding properties on G. For instance, if F is a binary product preserving
functor between cartesian closed categories, then G is cartesian closed and G C

p
preserves

the cartesian closed structure. Similar results hold for topoi, which we make use of in this
paper.

4. Functorial semantics of XTT

In Section 2.4 we defined XTT as a signature in Uemura’s logical framework. Following
Uemura [Uem19], for the purposes of our canonicity proof we systematically elaborate this
signature to a series of structures on an arbitrary representable map category T [Uem19,
Theorem 5.17]. T is a model of XTT precisely when it admits all of these structures. We
write � : T for the terminal object of T.

Specification 4.1 (Judgmental structure). The basic judgmental structure of XTT is
specified below.

(1) A representable map T̃ Tτ which encodes the collection of typed elements lying over
typed terms; the representability of τ allows the (abstract) context to be extended by
an element x : A of a type A.

(2) A representable map I �, implementing the interval and its context extension.
(3) A representable map � F> , implementing the face formula judgment and its context

extension. > is the “true” face formula. As a map out of the terminal object, > is
automatically monomorphic: this means that two proofs of the same face formula are
identical. ¦

Specification 4.2 (The interval). We require only minimal structure on the interval, the

two endpoints � I0, 1
. ¦

Specification 4.3 (Dimension equality). We require that there is a code I2 F(=)
for the

diagonal map I I× Iδ in the following sense:

I

I2

δ

�

F

>

(=)
¦

We must be careful when specifying disjunction of face formulas; the “true” disjunction
of >[φ] and >[ψ] ought to be a pushout, but we don’t expect to have pushouts in T, and
moreover, we do not wish to require the ability to “split” on a disjunction in all the syntactic
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sorts of our type theory. Instead, we make T̃ Tτ think that this pushout exists, in a
certain sense.

We begin by formulating the “true” disjunction in the free cocompletion Pr(T). First,
we have a characteristic map that decodes a face condition φ : yTF to a proposition JφK : Ω.

yT�

yTF

yT>

1

Ω

∼=

tr

J−K
(4.4)

As a first cut toward disjunction, we may define the non-representable subobject ∨∗|Ftr

of true disjunctions of face conditions:

∨∗|Ftr

yTF2

∨∗tr

Ω2
J−K2

tr

Ω
∨

Sub(Pr(T))

Pr(T)

∨|F

(4.5)

We will then define the disjunction of face conditions to be a representable approximation
of ∨∗|Ftr that is respected by certain judgments of XTT.

Specification 4.6 (Disjunction). We require a face condition formation map F2 F∨ : T
satisfying some conditions which we will describe forthwith. We then require an “intro-

duction” rule ∨∗|Ftr yT∨∗>in∨ in the slice Pr(T)/yTF2 . The “elimination” rules for the

disjunction are then expressed as a pair of internal orthogonality conditions in Pr(T)/yTF2 :

(1) We require in∨ 
 yTF2∗yT> in Pr(T)/yTF2 , ensuring that the truth of a face condition
may be established by eliminating a disjunction.

(2) We must have in∨ 
 yTF2∗yTτ in Pr(T)/yTF2 , ensuring that a “matching family” for a
term on two disjuncts shall be a term under a disjunction. ¦

Specification 4.7 (Falsehood). By Specification 4.3, we have a map � F⊥ def
== (=) ◦ 〈0, 1〉

.
We may therefore test the truth of this “false” equation:

⊥∗>

�

>

F
⊥

Sub(T)

T (4.8)

There is a universal comparison map ∅ yT⊥∗>in⊥ in Pr(T) given by the universal
property of the initial object; to support the “elimination rule” of the inconsistent face
condition, then, we require orthogonalities in⊥ 
 yT> and in⊥ 
 yTτ in Pr(T). ¦
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Remark 4.9. The orthogonality conditions from Specification 4.6 may be restated in the

language of T/F2 . Let Span be the walking span, and let Span T/F2
Φ• be the following

diagram in T/F2 :

>×>π∗1> π∗2>
The following canonical squares must be cartesian:

J∨∗>, (F2)∗�K

J∨∗>, (F2)∗FK

limSpanJΦ•, (F2)∗�K

limSpanJΦ•, (F2)∗�K

J∨∗>, (F2)∗T̃K

J∨∗>, (F2)∗TK

limSpanJΦ•, (F2)∗T̃K

limSpanJΦ•, (F2)∗TK ¦

Remark 4.10. The orthogonality condition of Specification 4.7 may be restated in the
language of T as the requirement that the following canonical squares are cartesian:

J⊥∗>, �K

J⊥∗>,FK

�

�

J⊥∗>, T̃K

J⊥∗>,TK

�

� ¦

The following notation will often be used in the internal language of T.

Notation 4.11 (Restriction to a partial element). Let φ : F be a face condition, A : T a type,
and a : >[φ]⇒ τ[A] a partial element; we write τ[A | φ→ a] for the collection of elements
of A which restrict to a on φ, i.e. the elements a′ : τ[A] where λ .a′ = a : >[φ]⇒ A. ¦

Notation 4.12 (The boundary of a dimension). We will write ∂(r) : F for the boundary of

a dimension r : I, defined as the disjunction ∂(r)
def
== (r = 0) ∨ (r = 1). ¦

The boundary of a dimension will be used in specifying the closure under path types.

Specification 4.13 (Closure under connectives). We will require that typing judgment

T̃ Tτ is closed under dependent sum, dependent product, and dependent path types.
We first express the generic map underlying each connective, and then force it to be repre-
sentable.

[∆1,T]cart [∆1,T]cart
•Σ [∆1,T]cart [∆1,T]cart

•Π [∆1,T]cart [∆1,T]cart
•P

Let Y X
f

, i.e. f an object of [∆1,T]cart ; we first define the bases XQ of the functorial
action fQ where Q ∈ {Π,Σ,P}:

XΣ = [A : X;B : f [A]⇒ X]

XΠ = [A : X;B : f [A]⇒ X]

XP = [A : I⇒ X; a : (i : I, : ∂(i))⇒ f [A(i)]]

Then, we define the rest of the action in the internal language of E/(XQ):

fΣ[A;B] = [a : f [A]; b : f [B(a)]]

fΠ[A;B] = (a : f [A])⇒ f [B(a)]

fP[A; a] = {p : (i : I)⇒ f [A(i)] | λi.λ .p(i) = a}
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The closure of the type theory under these connectives is then accomplished by requiring
in [∆1,T]cart algebras τΣ τ, τΠ τ, and τP τ. ¦

Remark 4.14. Unfolding Specification 4.13 into the language of T, this means that we
have the following cartesian squares:

T̃Σ

TΣ

τΣ

T̃

T

pair

τ

sg

T̃Π

TΠ

τΠ

T̃

T

lam

τ

pi

T̃P

TP

τP

T̃

T

abs

τ

path
¦

We will add a type of booleans; as usual in type theory, the boolean type is not the
coproduct of the point with itself, but a weak version thereof. The simplest way to specify
a weak coproduct is by means of a left lifting structure (Definition 3.60) internal to the free
cocompletion Pr(T) of T.

Specification 4.15 (Booleans). To specify the type of booleans, we then require a type
� Tbool together with the following objects in Pr(T):

(1) A morphism 2Pr(T) yT(bool∗τ)
ibool : Pr(T), where 2Pr(T) is the coproduct 1Pr( C) +

1Pr( C) in the presheaf category.

(2) A left lifting structure for ibool with respect to yTT̃ Tτ , i.e. indbool : ibool t yTτ. ¦

Remark 4.16. We may unravel Specification 4.15 into the language of T using Lemma 3.64.

First, the morphism ibool corresponds to exactly two introduction forms � bool∗τ
tt,ff

in T;
the left lifting structure indbool amounts to a choice of section for the cartesian gap map of
the following canonical square:

Jbool∗τ, T̃K

Jbool∗τ,TK

T̃× T̃

T×T (4.17)

Translated into the type theoretic internal language of T, this corresponds to a dependent
eliminator of the following form:

indbool : (C : τ[bool]⇒ T, c0 : τ[C(tt)], c1 : τ[C(ff)], b : τ[bool]) −→ τ[C(b)]

C, c0, c1, b | b = tt ` indbool(C, c0, c1, b) = c0

C, c0, c1, b | b = ff ` indbool(C, c0, c1, b) = c1 ¦

4.1. Universe à la Tarski. In this section, we will specify the closure of T under a universe
à la Tarski of Bishop sets. First, we must define what it means semantically to be a Bishop
set, in the style of Coquand [Coq17]; following previous work, we refer to this condition as
boundary separation [SAG19].
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Definition 4.18. A family X Y
f

: T is said to be boundary separated when I∗f is
separated with respect to the boundary inclusion [i : I ` ∂(i)] [i : I ` �] in the slice T/I,
in the sense of Definition 3.71. Unfolding, this means that for any map Z Ir , any square
of the following shape in T has at most one lift:

[Z ` ∂(r)]

[Z ` �]

X

Y

f

(4.19)

The concept of boundary separation can be expressed in the language of T as follows:

i : I;x : X; a, b : f [x] | (λα.a) =(∂(i)⇒f [x]) (λα.b) ` a =f [x] b ¦

Specification 4.20 (Universe à la Tarski). To specify a universe à la Tarski, we require a

type � Tset together with a decoding map set∗τ T
[−]set . We will write set for the fiber

set∗τ : T. Pulling back T̃ Tτ along the decoding map, we have a new representable map
sẽt setel :

sẽt

set

el

T̃

T

τ

[−]set

(4.21)

We then require that the family sẽt setel be boundary separated. ¦

Specification 4.22 (Codes for connectives). The closure of set under various connectives
of type theory is accomplished as follows:

setΣ

TΣ

[−]Σset

set

T

ŝg

[−]set

sg

setΠ

TΠ

[−]Πset

set

T

p̂i

[−]set

pi

setP

TP

[−]Pset

set

T

p̂ath

[−]set

path

� set

T

b̂ool

[−]setbool

¦

Specification 4.23 (Type-case). The type-case construct of XTT’s closed universe is
implemented by a left lifting structure. First, we define the following coproduct in the free
cocompletion Pr(T):

Fset
def
== yTsetΣ + yTsetΠ + yTsetP + yT�
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The codes for each type constructor can be arranged into an algebra Fset yTsetαset :

Fset yTset
[yT ŝg | yTp̂i | yTp̂ath | yTb̂ool]

We then require a left lifting structure caseset : αset t yTτ, which provides solutions to
lifting problems of the following shape:

yTX × Fset

yT(X × set)

yTX × αset

yTT̃

yTT

c

yTτ

C

ca
se
X
se
t
(C
, c

)

¦

Remark 4.24. In the language of T, the lifting structure from Specification 4.23 amounts
to a section of the cartesian gap map for the following canonical square:

Jset, T̃K

Jset,TK

q
setΣ, T̃

y
×

q
setΠ, T̃

y
×

q
setP, T̃

y
× T̃

q
setΣ,T

y
×

q
setΠ,T

y
×

q
setP,T

y
×T ¦

The types encoded by XTT’s closed universe must be “fibrant” in the sense that they
support transport along paths and composition of paths. We will express these as two
separate left lifting structures, with suitable compatibility laws.

Specification 4.25. Coercion will be specified as a left lifting structure in the slice T/I.
First, observe that we have a diagonal map [r : I ` �] [r : I ` I][r : I ` r]

: T/I. We then
require a left lifting structure coe : [r : I ` r] t [r : I ` el] in T/I. ¦

Specification 4.26. Composition is specified by a left lifting structure in the slice T/I2 : the
first dimension [r, s : I ` r] plays the same role as the generic dimension in Specification 4.25,
and the second dimension [r, s : I ` s] generates the boundary cofibration [r, s : I ` ∂(s)]
along which we are extending a partial line.

Consider the map [r, s : I ` {i : I | >[i = r ∨ ∂(s)]}] [r, s : I ` I]ι : T/I2 ; we then re-
quire a left lifting structure comp : ι t [r, s : I ` el] in T/I2 . ¦

Remark 4.27. Unfolding Specifications 4.25 and 4.26 into the language of T, we have the
following constants:

r : I Â : I⇒ set a : el[Â(r)]

coer •
Â

a : (i : I)⇒ el[Â(i) | i = r → a]

r, s : I Â : I⇒ set a : (i : I, α : >[i = r ∨ ∂(s)])⇒ el[Â(i)]

com〈s〉r •
Â

a : (i : I)⇒ el[Â(i) | i = r ∨ ∂(s)→ a(i)]

Homogeneous composition is the special case of composition where the type code is
constant:

hcom〈s〉r •
Â

a
def
== com〈s〉r •

λ .Â
a ¦
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Specification 4.28 (Regularity). We will require the following regularity laws:

coer r
′

λ .Â
a = a

hcom〈s〉r r′
Â

(λ .a) = a ¦

Lemma 4.29. As a consequence of boundary separation, the following compatibility law
between homogeneous and heterogeneous equality holds:

com〈s〉r r′
Â

a = coer r
′

Â

(
hcom〈s〉r r′

Âr

(
λi, α.coei r

Â
a(i, α)

))
Specification 4.30 (Coercion at connectives). In order to satisfy the canonicity property,
our theory must further constrain the behavior of the coercion operation at each type.

π1

(
coer r

′

λi.ŝg(Âi,B̂i)
p
)

= coer r
′

Â
π1(p)

π2

(
coer r

′

λi.ŝg(Âi,B̂i)
p
)

= coer r
′

λi.B̂i(coer i
Â

π1(p))
π2(p)(

coer r
′

λi.p̂i(Âi,B̂i)
p
)
(a) = coer r

′

λi.B̂i(coer
′ i
Â

a)
p
(
coer

′ r
Â

a
)

(
coer r

′

λi.p̂ath(Âi,ai)
p
)
(s) = com〈s〉r r′

Âs
(λ .p(s)) ¦

Lemma 4.31 (Composition at connectives). The behavior of the homogeneous composition
operations at each connective is completely determined by Specifications 4.28 and 4.30. In
particular, we have:

π1

(
hcom〈s〉r r′

ŝg(Â,B̂)
p
)

= hcom〈s〉r r′
Â

(λi, α.π1(p(i, α)))

π2

(
hcom〈s〉r r′

ŝg(Â,B̂)
p
)

= com〈s〉r r′
λi.B̂(hcom〈s〉r i

Â
(λi,α.π1(p(i,α))))

(λi, α.π2(p(i, α)))(
hcom〈s〉r r′

p̂i(Â,B̂)
p
)
(a) = hcom〈s〉r r′

B̂(a)
(λi, α.p(i, α, a))(

hcom〈s〉r r′
p̂ath(Â,a)

p
)
(s′) = hcom〈s〉r r′

Âs′
(λi, α.p(i, α, s′))

hcom〈s〉r r′
b̂ool

p = p(r, ∗)

Proof. By boundary separation, pivoting on s : I.

4.2. Summary. We have expressed the necessary and sufficient conditions on a repre-
sentable map category to be an algebra for the XTT language. From now on, we will take
T to be the smallest representable map category satisfying the present specification, hence
T is the syntactic category of XTT. The existence of such a representable map category
follows from Proposition 5.16 of [Uem19]. A model of XTT in a representable map category

C is then precisely a functor T DFC
MC .

5. Cubical computability structures

In this section we develop the building blocks of the canonicity proof for XTT. While
eventually these shall be applied to the initial model, we work with an arbitrary model

T DFC
MC .
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Definition 5.1. The category of Cartesian cubes is the free category with finite products
generated by a bi-pointed object, i.e. the Lawvere category of the theory of bi-pointed
objects [Awo15]. We will write Set for the category Pr( ) of Cartesian cubical sets. ¦

A finite product preserving functor C• is determined by an interval object (i.e. a
bi-pointed object) in C, which we construct in Construction 5.2 below.

Construction 5.2 (An interval object in C). Because the Yoneda embedding reflects
limits, the terminal discrete fibration �C : DFC is represented by the terminal object of
C, which we may write [�C]. We have required that the terminal map (I �) C : DFC is
a representable family; therefore, the discrete fibration IC : DFC is represented by some

object [IC] : C. Since the Yoneda embedding is fully faithful, the constants
(
� I0, 1 )

C are

represented by two maps [�C] [IC]
[0], [1]

: C. ¦

From Construction 5.2 we obtain a suitable functor C• , which can also be seen to
be fully faithful; in other words, the category of cubes is the full subcategory of C spanned

by cubical objects. By change of base, we obtain a reindexing functor Pr( C) Set
∗
•

which has both left and right adjoints by Kan extension. Composing with the equivalence
DFC ' Pr( C), we define a functor F to glue along below:

DFC Pr( C) Set
' ∗

•

F

(5.3)

Thus the functor DFC Pr( )
F

is in fact an algebraic morphism of logoi, and therefore
a good candidate for type theoretic gluing [SA20].

Construction 5.4 (A cubical nerve). By composing the change of base DFC Set
F

with the Yoneda embedding, we obtain a nerve functor from the category of contexts of
MC into cubical sets:

C DFC

Set

y C

FN

¦

In 2015, Awodey suggested the idea of gluing along a cubical nerve like Construction 5.4
to develop the metatheory of cubical type theory; to many researchers, it seemed as though
Huber’s operational proof of canonicity for cubical type theory [Hub18] could be recon-
structed in a mathematical way. Since then, Awodey and Fiore have used this cubical gluing
technique to study a version of intensional type theory with an interval in unpublished joint
work; in 2019, the present authors applied cubical gluing to prove canonicity for an earlier
version of XTT [SAG19].

Lemma 5.5. The cubical nerve is flat.

Proof. By Diaconescu’s theorem [Bor10], it suffices to show that DFC Set
LanyC N

is an
algebraic morphism of logoi; but this Kan extension is just F ' ∗

•, which has both left
and right adjoints.
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The classical gluing construction. We may obtain a category of glued contexts as the comma
category Set ↓ N , whose objects are “cubically computable contexts” and whose mor-
phisms are natural transformations of cubical sets that are tracked by substitutions from the
model MC. Intuitively, a glued context is a pair of a syntactic context with a (proof-relevant)
Kripke predicate indexed in dimension variable contexts. By analogy with [Tai67], we regard
the image of these predicates as the computable closing substitutions of contexts. Because
glued substitutions are commuting squares, they automatically send computable elements
to computable elements; the top map of such a square sends computability witnesses to
computability witnesses.

By defining a model of XTT in this category (i.e. collections of glued types and elements
closed under the rules), we obtain a categorical version of a logical relations model of XTT.
Our categorical perspective immediately offers some advantages over “free-style” logical
relations for dependent type theory—much of the indexing can be moved behind categorical
abstractions, and certain results become automatic, such as computable substitutions being
closed under composition. By choosing certain predicates appropriately, we can moreover
ensure that the computable elements of boolean types are precisely tt and ff, etc.

This is the perspective pursued in previous work on gluing for strict type theory [SAG19,
KHS19, CHS19, GKNB20]; in recent joint work, the first two authors of this paper have
argued that it is considerably simpler to first glue over DFC rather than C, and then restrict
further to C by pulling back along C DFC

y C [SA20].

Following [SA20], we prefer to first glue along DFC Set
F

rather than C Set
N

,
because the comma category G = Set ↓ F has more regular properties than GK = Set ↓
N , being a Grothendieck logos [AGV72]. The resulting two-step gluing process amounts to
enlarging the collection of computability structures to ones that lie over arbitrary discrete
fibrations X : DFC, in addition to the familiar ones that lie directly over contexts Γ : C.
Computability structures lying over a context Γ : C will be referred to as “compact”; the
fundamental example of a computability structure which is not compact is the computability
structure of computable types, lying over the non-representable discrete fibration TC : DFC.

The general computability structures are connected to a model of type theory (which
must take place in discrete fibrations over compact computability structures) via a nerve–
realization adjunction. The nerve functor G DFGK

is fully faithful and even locally
cartesian closed, and may therefore be used to transform general computability families into
constituents of a model of type theory over GK which are otherwise vastly more difficult to
compute.

5.1. General and compact computability structures. The picture painted at the end
of the previous section is depicted in Diagram 5.6 below:

GK

C

j∗K

G

DFC

K

j∗

y C

[∆1,Set ]

Set

∂1

F

N

(5.6)
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We call G the category of (general) computability structures, whereas the full subcate-
gory GK is the category of compact computability families. Here the fibration j∗ projects
a discrete fibration from a general computability structure, and the restriction j∗K projects
a context from a compact computability structure. The “compact” terminology is justified
by Theorem 5.7 below.

Theorem 5.7 [SA20, Theorem 4.8]. The subcategory inclusion GK GK is dense in the
sense that every object X : G is canonically the colimit of the following diagram of compact
objects:

K ↓ {X} GK G
πK K (5.8)

We reproduce a variant of the proof given by Sterling and Angiuli [SA20].

Proof. Using the universality of colimits in a Grothendieck logos and the fact that F is
cocontinuous, we will show that X is the colimit of a particular canonical diagram in G
which is final for Diagram 5.8. First, we use the dual Yoneda lemma (that C is dense in
DFC) to observe that j∗X is the colimit of the following diagram:

y C ↓ {j∗X} C DFC

πC y C
(5.9)

Each leg y CCi j∗X
αi of the colimiting cone for Diagram 5.9 induces a cartesian lift

at X in the gluing fibration:

α∗iX

y CCi

X

j∗X

α†iX

αi
(5.10)

We will see that the resulting cocone
{
α∗iX X

α†iX
}

in G is universal for X. Because
colimits in the comma category may be computed pointwise, we may reason as follows. Carte-
sian lifts in the gluing fibration are computed as pullbacks in Set ; because colimits in the

presheaf logos Set are universal, it suffices to check that the cone
{

F y CCi F j∗X
F αi }

is

universal in Set . But DFC Set
F

is cocontinuous, so it is enough that
{

y CCi j∗X
αi

}
is universal. Finally, the universality of Cartesian lifts ensures that the collection {α∗iX} is
final for Diagram 5.8.

Definition 5.11. An object X : G is compact when it lies in the essential image of K;
equivalently, when j∗(X) : DFC is representable. ¦

We may impose the structure of a representable map category on G, based on general-
izing the notion of compactness from objects to families.
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Definition 5.12. A family Y X
p

: G is called compact when every change of base to a
compact object KΓ is compact in the sense of the following diagram:

KYx

KZ

Y

X

p

x
¦

Then, we say that the representable families in G are exactly the compact ones. It
is simple to verify that this class of maps satisfies the axioms of a representable map
category: they are clearly closed under change of base, and since G is locally cartesian
closed, pushforwards along representable maps always exist.

Lemma 5.13. The gluing fibrations G DFC
j∗

and GK C
j∗K have both left and right

adjoints, and are therefore both continuous and cocontinuous; moreover, both adjoints are
sections.

G

DFC

j∗j! j∗aa

GK

C

j∗KjK
! jK

∗aa

GK

G

K

C

DFC

jK
!

y C

j!

GK

G

jK
∗

K

j∗

∼= ∼=

Proof. From the perspective of the left and right adjoints as sections of the fibration, it is
particularly simple to explain their behavior: the left adjoint takes a discrete fibration X to
the initial object of the fiber category j∗[X], and the right adjoint takes X to the terminal
object of the fiber category j∗[X]. Considering that j∗[X] is just the slice Set /F X, we
may compute the families as follows:

j!X =
(
∅Set F X

!F X )
j∗X =

(
F X F X

idF X )
In fact, this characterization already describes the left and right adjoints to j∗K, consid-

ering that the fibers j∗K[C] = Set /N C are equivalent to j∗[y CC] = Set /F y CC.

Lemma 5.14. The gluing fibration G DFC
j∗

is a representable map functor.

Proof. j∗ is a logical morphism, preserving in particular finite limits and all pushforwards.
Therefore, it remains to check that it takes representable maps to representable maps. We
fix a compact family Y X

p
to check that the map j∗Y X

p
is representable. In this

case, it will be simplest to use the Grothendieck-style characterization of representable maps
in DFC in terms of change of base to a representable object. Fixing C : C and a generalized
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element y CC j∗Xx , we must check that the fiber product j∗Y ×j∗X y CC is representable:

j∗Y ×j∗X y CC

y CC

j∗Y

j∗X

j∗p

x
(5.15)

By transposing along the adjunction j! a j∗, we have a map j!y CC Xx̃ : G; noting
that j!y CC ∼= KjK

! C, we therefore have the following cartesian square in G using the
compactness of p:

KYx̃

KjK
! C

Y

X

p

x̃
(5.16)

The image of Diagram 5.16 under G DFC
j∗

has the same cospan as Diagram 5.15; but
j∗ preserves pullbacks and KYx̃ must lie over a representable object, so we are finished.

Lemma 5.17. The gluing fibration G DFC
j∗

reflects representable maps.

Proof. Fixing a family Y X
p

: G such that j∗Y X
p

is representable, we must check
that p is a compact family; in other words, fixing KΓ Xx , we must check that the fiber
product Y ×X KΓ below is compact:

Y ×X KΓ

KΓ

Y

X

p

x
(5.18)

It suffices to check that j∗Y ×X KΓ is representable; because j∗p is representable,
Diagram 5.18 lies over the square below:

y Cj
∗Yj∗x

y Cj
∗
KΓ

j∗Y

j∗X

j∗p

j∗x
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5.2. Nerve and realization. A computability model of XTT is given by a representable

map functor T DFGK

MGK ; in particular, we must construct a natural model in DFGK

which is closed under all the connectives of XTT and its universe of Bishop sets. These
objects are, however, particularly difficult to construct from the perspective of discrete
fibrations or presheaves; in previous work, it has accordingly been necessary to construct
the constitutents of the computability model at the level of sets [SAG19, Coq19, KHS19],
manually quantifying over computable contexts and computable substitutions.

In recent work, Sterling and Angiuli have shown that it is simpler to construct these
objects internally to the logos G of general computability structures, and then transfer them

in a single motion to DFGK
. This is accomplished by means of a nerve functor G DFGK

NK

which, by virtue of the density of GK GK (Theorem 5.7), is not only fully faithful but also
locally cartesian closed. Crucially, NK will also turn out to be a representable map functor.

Construction 5.19 (Nerve). Let X : G be a general computability structure; we may
define a discrete fibration NKX : DFGK

whose fiber at a compact computability structure

Γ : GK is the hom set G[KΓ, X]. This assignment extends to a functor G DFGK

NK , which
may be viewed either as a restriction of the Yoneda embedding of G, or a left Kan extension
of the Yoneda embedding of GK:

G DFG

DFGK

y G

N
K

K∗

GK DFGK

G

K

y GK

N K

⇓

¦

Lemma 5.20 (Realization). The nerve functor has a left adjoint DFGK
G

|−|K , the realiza-
tion of a discrete fibration on compact computability structures; consequently, NK preserves
small limits.

Proof. The realization functor is obtained by left Kan extension:

GK

DFGK

G
K

y GK

|−
| K

⇓

The realization of a specific discrete fibration may be computed as a coend, using the
general formula for pointwise Kan extensions. Letting F : DFGK

, we calculate:

|F |K ∼=
(
Lany GK

K
)
(F )

∼=
∫ Γ: GKDFGK

[y GK
Γ, F ] · KΓ

∼=
∫ Γ: GKFΓ · KΓ

Writing Gop
K SetF• for the presheaf corresponding to the discrete fibration F , we may

package the computation of F ’s realization in terms of the tensor calculus of functors:

|F |K ∼= F• ⊗GK
K (5.21)
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From Lemma 5.22 below, we can see that the nerve exhibits a true “Yoneda embedding”
of general computability structures into discrete fibrations.

Lemma 5.22. The nerve functor G DFGK

NK is fully faithful.

Proof. This is equivalent to the density of the inclusion K.

Lemma 5.23 (Equivalent subcategories). The nerve–realization adjunction |−|K a NK

restricts to an equivalence (of categories) between the subcategories of generating objects
(compact computability structures and representable presheaves respectively).

Proof. We first check that the nerve of any compact computability structure X ∼= KΓ is
a representable discrete fibration. It suffices to compute in terms of the corresponding
presheaves, NKKΓ• ∼= G[K•,KΓ] ∼= GK[•,Γ] ∼= y GK

Γ ∼= (y GK
Γ)•. Therefore, we have NKKΓ ∼=

y GK
Γ. Next, we check that the realization of any representable discrete fibration F ∼= y GK

Γ
is compact; by the above, we have |y GK

Γ|K ∼= |NKKΓ|K; because the nerve is fully faithful
(Lemma 5.22), the counit to the adjunction |−|K a NK is an isomorphism, so we further
have |y GK

Γ|K ∼= |NKKΓ|K ∼= KΓ.
We have shown that the nerve–realization adjunction restricts to a pair of functors

between subcategories. It is easy to see that this is in fact an equivalence, since we have
shown that |NKKΓ|K ∼= KΓ and NK|y GK

Γ|K ∼= NKKΓ ∼= y GK
Γ.

To establish the behavior of the nerve on pushforwards, it will be useful to choose a
good dense subcategory of each slice (DFGK

)/F .

Remark 5.24. First we recall that in presheaves, each slice Pr( GK)/F• may be reconstructed

equivalently as the category of presheaves Pr
(∫
F•
)

= Pr(F ) on the total category of F ;
therefore, by the Yoneda lemma, each slice (DFGK

)/F is densely generated by the functor
F (DFGK

)/F which sends every element x ∈ FΓ to the corresponding map y GK
Γ Fx .

Furthermore, by Lemma 5.23 each generating object y GK
Γ F may be written equiv-

alently as NKKΓ F . If F = NKX, we may observe that the slice (DFGK
)/F is in fact

densely generated by the comma category K ↓ {X} under the functor which sends each
KΓ Xx to NKx : (DFGK

)/F , a direct consequence of the fully faithfulness of the nerve
(Lemma 5.22). ¦

Lemma 5.25 [SA20, Lemma 4.2]. The nerve functor G DFGK

NK preserves all pushfor-

wards f∗ : G/X G/Y for X Y
f

: G.

Proof. Letting g : G/X , we intend to check that NK(f∗g) is the pushforward (NKf∗)NKg. By

Remark 5.24, it suffices to check the universal property at the generators NKKΓ NKY
NKx

of the slice (DFGK
)/NKY .

[NKx, (NKf)∗NKg]

∼= [NKf
∗NKx,NKg]

∼= [NKf
∗x,NKg]

∼= [f∗x, g]

∼= [x, f∗g]

∼= [NKx,NK(f∗g)]

Corollary 5.26. The nerve functor G DFGK

NK is locally cartesian closed.



Vol. 18:1 A CUBICAL LANGUAGE FOR BISHOP SETS 43:51

Lemma 5.27. The nerve functor G DFGK

NK preserves representable maps.

Proof. We fix a representable map Y X
f

: G, to check that its nerve NKY NKX
NKf :

DFGK
is representable; it will be simplest to check this condition formulated in the classical

Grothendieck-style, considering fiber products with representable objects:

NKY ×NKX y GK
Γ

y GK
Γ

NKY

NKX

NKf

x
(5.28)

First of all, we may replace y GK
Γ with the isomorphic NKKΓ; since NK is fully faithful

and left exact, the entire square lies in the image of the nerve:

NKY ×X KΓ

NKKΓ

NKY

NKX

NKf

NKpxq

Y ×X KΓ

KΓ

Y

X

f

pxq
(5.29)

Therefore, it suffices to check that the fiber product Y ×X KΓ is taken by the nerve to
a representable object; by Lemma 5.23, this follows from the compactness of Y ×X KΓ by
virtue of the representability of f .

Corollary 5.30. The nerve functor G DFGK

NK is a representable map functor.

Proof. By Corollary 5.26 and Lemma 5.27.

5.3. Universes in the gluing fibration. As a technical matter, we will require suitable
type theoretic universes in G that are sent to appropriate universes in DFC. While there are
a variety of ways to construct these by combining the existing universes of Set and DFC

(see Uemura [Uem17]), there is a considerably simpler alternative that becomes available
once we observe that G is (equivalent to) a presheaf logos.

Lemma 5.31. There is a small category D such that G ' Pr(D).

Proof. This follows from the result of Carboni and Johnstone [CJ95], itself an explication and
generalization of an exercise posed in SGA 4 [AGV72, Tome 1, Exposé iv, Exercise 9.5.10].

In particular, it suffices to observe that the gluing functor DFC Set
F

is the inverse
image part of an essential morphism between presheaf topoi and is hence continuous.

Therefore the Hofmann–Streicher lifting of Grothendieck universes [HS97] from Set

into presheaf logoi applies, yielding a cumulative hiearchy of universes G̃ G
g

in G. These

universes can be seen to lie over a corresponding universe hierarchy Ũ Uu in DFC, defined

simply by j∗G̃ G
g

. A small map is then defined to be one that arises by pullback from a
given universe.
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Definition 5.32. Given a universe Ũ Uu , we say that two codes X U
A,B

are isomorphic
when they have the same extensions, i.e. the pullbacks A∗u, B∗u are isomorphic. In other
words, the two codes are characteristic for the same family. ¦

Our chosen universes satisfy a strict realignment principle that will play an important
role in our development.

Lemma 5.33 (Realignment). Let X GA : G be a code for a small computability family
in the following configuration:

X

j∗X

G

U

A

A
(5.34)

Let j∗X UB be a code isomorphic to j∗X UA ; then, we have a code X G
AB lying

strictly over B which is isomorphic to A.

Proof. This follows from the strict gluing principle for topos-theoretic universes [Awo21,
OP16, BBC+16, Shu15a, Str14a, KL21], which is known to hold for Hofmann–Streicher
universes. In the internal language of G, there exists a distinguished subterminal object
¶ := j!1DFC

with the property that G/¶ ' DFC and under this identification, the gluing

fibration j∗ is the pullback functor G G/¶
¶∗

. In the internal language of G, we may speak
of U as j∗j

∗G ∼= ¶∗¶∗G ∼= J¶,GK. Therefore, if G satisfies the strict gluing axiom, we
may internally realign any total element A : G to agree strictly with any partial element
A : J¶,GK equipped with a partial isomorphism A(z) ∼= A under z : ¶.

6. XTT in computability structures

The essence of the canonicity argument for XTT lies in constructing a representable map

functor T G
G〈−〉

together with a natural isomorphism MC j∗ ◦ G〈−〉χ• in the sense of
Diagram 6.1 below:

T G

DFC

M
C

G〈−〉

j
∗

χ•

(6.1)

In keeping with the previous section, G〈−〉 is constructed over an arbitrary model

T DFC
MC . Eventually, we shall specialize to the initial model of XTT and use this to

derive canonicity.
Recall that the specification of T in Section 4 is derived from the signature for XTT

in Uemura’s logical framework (see Section 2.4). Therefore, to see that the canonical
natural isomorphism χ• exists, it will suffice to choose suitable isomorphisms χJ for just
the generating objects J : T, the components of the signature; in all cases, the isomorphism
χJ will be canonical (or even the identity), because we will always define G〈I J〉 to lie
essentially over (I J) C.
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6.1. Glued cubical structure.

Construction 6.2 (The interval). We must construct a computability structure G〈I〉 lying

over IC; at the level of cubical sets, we will use the “generic dimension” y [1] F IC
G〈I〉

determined essentially by the functorial action of C• . Fixing an element [m] [1]r of

y [1], we have by functoriality an element m 1
r of F IC. We likewise have appropriate

endpoints as follows:

1Set

F �C

∼=

y [1]

F IC

0, 1

G〈I〉

F 0 C,F 1 C

(6.3)

Diagram 6.3 can be seen to commute, considering the definition of • as the finite
product preserving functor corresponding to the interval-algebra in C. ¦

Lemma 6.4. The syntactic interval IC is taken by the base change DFC Set
F

to the
actual interval y [1] of Set .

Proof. This follows by computation, recalling that IC is represented in C by an interval

context [IC] ∼= [1], and using the fact that C• is fully faithful:

F IC = IC( •) ∼= C[ •, [1]] ∼= [−, [1]] = y [1]

Lemma 6.5 (Tininess of the interval). The interval object G〈I〉 is tiny in the sense that
the exponential functor J−, G〈I〉K has a further right adjoint.

Proof. G is the Artin gluing the inverse image part of a morphism of topoi; under these
circumstances, the universality of colimits ensures that it is enough for the restrictions of
G〈I〉 to both DFC and Set to be tiny (see [SA21, Lemma 32] for a more detailed argument).
These restrictions happen to be representable (Lemma 6.4), so tininess follows from the fact
that both C and have finite products.

Construction 6.6 (The face formula classifier). We recall that the gluing category G is a

logos [AGV72], and moreover, the gluing fibration G DFC
j∗

is a logical morphism and
therefore preserves the subobject classifier and its first-order logic [Joh02]. Therefore, we
may obtain a glued face formula classifier in a conceptual way.

Because ΩDFC
: DFC classifies monomorphisms, we obtain a unique cartesian classify-

ing square in DFC for the generic face formula of MC:

�C

FC

>C

1DFC

ΩDFC

∼=

trDFC

J−K
(6.7)

Therefore, we may construct a suitable glued face formula classifier by taking a cartesian
lift in the gluing fibration of the subobject classifier ΩG along J−K from Diagram 6.7,
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considering that ΩG lies over ΩDFC
:

G〈F〉

FC

ΩG

ΩDFC

J−K

J−K

G

DFC (6.8)

The generic face formula G〈>〉 is then obtained by pullback in G:

G〈�〉

G〈F〉

G〈>〉

1G

ΩG

tr G

J−K
(6.9)

Because j∗ preserves finite limits and pullback cones are unique up to unique isomor-
phism, we see that G〈>〉 lies over >C as required. ¦

We may prove a Beck-Chevalley lemma for dimension equality in DFC:

Lemma 6.10 (Beck-Chevalley). The following diagram commutes in DFC.

I2C

FC ΩDFC

(=) C

J−K

(=
)

Proof. Recalling the diagram from Specification 4.3, we observe that both maps are charac-
teristic of the same subobject, and thence equal.

Construction 6.11 (Glued dimension equality). Dimension equality is lifted from MC

to the gluing category by the universal property of the cartesian lift below, using the
Beck-Chevalley triangle of Lemma 6.10 and the fact that j∗ is a logical morphism.

G〈F〉

FC

ΩG

ΩDFC

J−K

J−K

G〈I〉2

I2C
(=

)
C

G〈=〉

(=)

G

DFC (6.12)
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We must check that the square below from Specification 4.3 is cartesian:

G〈I〉

G〈I〉2

δ

G〈�〉

G〈F〉

G〈>〉

G〈=〉
(6.13)

By the pullback lemma, it would suffice to check that the outer square below is cartesian.

G〈I〉

G〈I〉2

δ

G〈�〉

G〈F〉

G〈>〉

G〈=〉

1G

ΩG

tr G

J−K
(6.14)

Using the upstairs triangle of Diagram 6.12, it suffices to observe that the following
classification square is cartesian:

G〈I〉

G〈I〉2

δ

1G

ΩG

tr G

(=)
¦

We do not expect a Beck-Chevalley lemma for disjunction analogous to Lemma 6.10,
since φ ∨ ψ is not (and cannot be) the “true” disjunction of DFC: instead, we imposed
orthogonality conditions in Specification 4.6 to ensure that certain judgments of XTT
(typehood, typing, and formula satisfaction) treat φ ∨ ψ as if it were a disjunction.

Construction 6.15 (Glued disjunction). We may test a pair of glued face conditions for
truth of disjunction as follows:

G〈F〉2

F2
C

Ω2
G

Ω2
DFC

J−K2

J−K2

ΩG

ΩDFC

∨

∨

∨|G〈F〉

∨|FC

G

DFC (6.16)

Unfortunately, the subobject ∨∗|FC
tr

def
== {φ, ψ | >C[φ] ∨>C[ψ]} corresponding to the

downstairs map of Diagram 6.16 is not classified by FC! This is because such a subobject
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must have representable fibers, and but the real disjunction is a colimit in DFC and therefore
not representable. We need something that lies instead over the following pullback:

(∨∗>) C

F2
C

�C

FC

>C

∨C
(6.17)

Because the “ideal” disjunction ∨∗|FC
tr is more universal than the disjunction of FC, we

obtain a unique map ∨∗|FC
tr (∨∗>) C

i ; taking an opcartesian lift, we may shift ∨∗|G〈F〉tr

(the subobject corresponding to the upstairs map of Diagram 6.16) to lie over (∨∗>) C:

∨∗|G〈F〉tr

∨∗|FC
tr

i! ∨∗|G〈F〉 tr

(∨∗>) C
i

(6.18)

This lift can be seen to be a subobject of G〈F〉2 using the universal property of the
opcartesian lift:

∨∗|G〈F〉tr

∨∗|FC
tr

i! ∨∗|G〈F〉 tr

(∨∗>) C
i

G〈F〉2

F2
C

(6.19)

Consider the characteristic map of the dotted monomorphism from Diagram 6.19:

i! ∨∗|G〈F〉 tr

G〈F〉2

1G

ΩGχ
(6.20)

Because j∗ is a logical functor and ΩDFC
classifies subobjects strictly, Diagram 6.20

must lie over the following square:

(∨∗>) C

F2
C FC ΩDFC

1DFC

∨C J−K
(6.21)
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Therefore, we may use the universal property of the cartesian lift to obtain a code for
disjunction of glued face conditions:

G〈F〉

FC

ΩG

ΩDFC

J−K

J−K

G〈F〉2

F2
C

χ

∨
C

G〈∨〉

¦

Lemma 6.22 (Disjunction elimination / truth). The glued disjunction satisfies the internal
orthogonality condition with respect to G〈>〉 written in Specification 4.6.

Proof. Fixing X G〈F〉2(φ, ψ)
, we must find a unique lift for the following square, lying over

the corresponding unique lift in DFC:

(φ, ψ)∗ ∨∗|G〈F〉 tr

(φ, ψ)∗ G〈∨∗>〉

G〈�〉

G〈F〉 (6.23)

Because the lift in DFC is assumed to exist and is unique, it suffices to find a unique

lift for the image of Diagram 6.23 under G SetE• ; but G〈∨∗>〉 is an opcartesian lift of
∨∗|G〈F〉tr, so the left-hand map becomes an identity in Set .

6.2. Glued type structure. We will now show the sense in which the semantic construc-
tions of Uemura summarized above suffice to develop the type structure of XTT in the
gluing fibration.

Construction 6.24 (Universe of glued types). We will define a computability structure

G〈T〉 : G lying over TC in the gluing fibration G DFC
j∗

. Because we have assumed(
T̃ Tτ

)
C is small for Ũ Uu , we have a characteristic map:

T̃C

TC

τC

Ũ

U

u

dτCe
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We therefore obtain the base of a universe by cartesian lift:

G〈T〉

TC

G

U

dG〈τ〉e

dτCe

G

DFC

Then, the rest of the universe G
〈
T̃ Tτ

〉
is obtained by pullback:

G〈T̃〉

G〈T〉

G〈τ〉

G̃

G

g

dG〈τ〉e
¦

Lemma 6.25 (Disjunction elimination / elements). The glued disjunction satisfies the
internal orthogonality condition with respect to G〈τ〉 written in Specification 4.6.

Proof. The proof is identical to that of Lemma 6.22.

Construction 6.26 (Closure under dependent product). We must show that G〈τ〉 has a
code for dependent products lying over the corresponding algebra τΠ

C τC. First of all, we
have a potential code in G for the dependent product of G〈τ〉-families in G, defined using

functoriality and the closure of G̃ G
g

under dependent products, and the fact that j∗

preserves dependent products:

G〈τ〉Π

τΠ
C

gΠ

uΠ

dG〈τ〉eΠ

dτCeΠ

g

u

pig

piu

[∆1, G]cart

[∆1,DFC]cart

By realignment (Lemma 5.33), using the fact piU ◦ dτCeΠ and dτCe ◦ pi C are (different)
characteristic maps for the same family, we obtain a new code in G for the same family in
the following configuration:

G〈T〉Π

TΠ
C

G

U
dτCe ◦ pi C

G

DFC
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Therefore, we are in a position to define the type code using the universal property of
the cartesian lift:

G〈T〉

TC

G

U

dG〈τ〉e

dτCe

G〈T〉Π

TΠ
C

pi
C

G〈pi〉

G

DFC

We have got the downstairs map aligned properly; to complete the algebra τΠ
C τC

with a properly aligned upstairs map, we may use the universal property of the pullback
and the fact that j∗ is lex. ¦

The closure under dependent sum works identically. We will, however, illustrate the
closure under path types.

Construction 6.27 (Closure under path types). First of all, the universe G is closed under
path types because path types may be constructed (up to isomorphism) using the interval,
dependent products, and subobject comprehension (all of which are small). Therefore, we
have a cartesian map gP g : [∆1, G]cart . Using functoriality of •P and the fact that path
types are preserved by j∗, we have:

G〈τ〉P

τP
C

gP

uP

g

u

[∆1, G]cart

[∆1,DFC]cart

By Lemma 5.33, we may realign the upstairs map to lie over path C ◦ dτCe; therefore, we
obtain a code for the glued path type lying over the original code by the universal property
of the cartesian lift:

G〈T〉

TC

G

U

dG〈τ〉e

dτCe

G〈T〉P

TP
C

path
C

G〈path〉

G

DFC ¦
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Construction 6.28. We may form a computability structure over the booleans by opcarte-
sian lift, using the fact that the gluing (op)fibration preserves colimits:

2G

2DFC

G〈bool∗τ〉

(bool∗τ) C

[ G〈tt〉 | G〈ff〉]

[tt C | ff C]

G

DFC ¦

Lemma 6.29. The computability structure G〈bool∗τ〉 from Construction 6.28 is small.

Proof. By the characterization theorem, it suffices to check that it lies over a small object
(obvious), and that vertical map it induces is small in j∗[(bool∗τ) C]. To see that this is the
case, we compute this vertical map as follows:

j∗(bool∗τ) C

(bool∗τ) C

j∗�C
∼= G〈�〉

�C
!(bool∗τ) C

G〈bool∗τ〉

!G〈bool ∗τ〉

The vertical map above can be seen to be small using the fact that 2Set F (bool∗τ) C

is small.

Construction 6.30 (Booleans). By Lemma 6.29, there exists some characteristic map

G〈�〉 G
dbool∗τe

for G〈bool∗τ〉 lying over a characteristic map for the object (bool∗τ) C.
Therefore, again using the realignment lemma, we may define a suitable code for the
booleans using the universal property of the cartesian lift:

G〈T〉

TC

G

U

dG〈τ〉e

dτCe

G〈�〉

�C

bool
C

G〈bool〉

G

DFC
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To define the elimination form, we must exhibit a choice of lifts of the following form
natural in X : G, lying over the corresponding lifts that we have fixed in DFC:

X × 2G

X × G〈bool∗τ〉

idX × [ G〈tt〉 | G〈ff〉]

G〈T̃〉

G〈T〉

b

G〈τ〉

B

b̃

j∗X × 2DFC

j∗X × G〈bool∗τ〉

T̃C

TC

j∗b

τC

j∗B

j̃
∗ b

(6.31)

For each X : G, the existence of such a lift is guaranteed by the universal property of
the induced opcartesian map X × 2G X × G〈bool∗τ〉:

X × 2G

j∗X × 2DFC

X × G〈bool∗τ〉

j∗X × (bool∗τ) C

G〈T̃〉

T̃C

j̃
∗ b

b̃

b

G

DFC

To see that the choice of b̃ is natural in X, we will observe the stronger property that

it is the unique lift lying over j̃∗b. Computing the opcartesian lift explicitly, we see that
E G〈bool∗τ〉 = E2G

; moreover E• preserves colimits because F is left exact [Tay99], so in fact
E G〈bool∗τ〉 = 2Set . Therefore, the (non-unique) lifting situation of Diagram 6.31 becomes a
unique lifting situation in cubical sets. ¦

6.3. Universe of Bishop sets.

Construction 6.32 (Glued universe à la Tarski). By induction-recursion, we may define

a universe UIR : G simultaneously with a decoding function UIR G〈T〉[−]IR closed under
dependent product, dependent sum, path, and boolean.

bool : UIR [bool]IR = G〈bool〉

A : UIR B : G〈τ〉[[A]IR]⇒ UIR

pi(A,B) : UIR [pi(A,B)]IR = G〈pi〉([A]IR, [−]IR ◦B)

A : UIR B : G〈τ〉[[A]IR]⇒ UIR

sg(A,B) : UIR [sg(A,B)]IR = G〈sg〉([A]IR, [−]IR ◦B)

A : G〈I〉 ⇒ UIR a : (i : G〈I〉, : ∂(i))⇒ G〈τ〉[[A(i)]IR]

path(A, a) : UIR [path(A, a)]IR = G〈path〉([−]IR ◦A, a)

UIR lies not over the type-theoretic universe à la Tarski setC : DFC, but rather over
a genuine inductive-recursive universe in DFC. Because this j∗UIR is the least universe
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closed under the mentioned connectives, we obtain a universal map j∗UIR setC
isetC which

automatically commutes with all connectives. We may therefore shift UIR to lie over setC

by opcartesian lift against this universal map:

UIR

j∗UIR

G〈set〉

setC

(isetC )†UIR

isetC

(6.33)

A decoding map G〈set〉 G〈T〉G〈[−]set〉 is inherited using the universal property of the
opcartesian lift:

UIR

j∗UIR

G〈set〉

setC
isetC

G〈T〉

TC

[−]Cset

G〈[−
]set〉

[−]IR

(6.34)

The map [−]IR can be seen to lie strictly over the downstairs composite in Diagram 6.34
using the uniqueness of maps out of inductive-recursive universes. Moreover, the object

G〈set〉 is small, so we have a characteristic map G〈�〉 G
dG〈set〉e

.
The constructions above may be used as the basis for a universe à la Tarski G〈set〉 :

G〈T〉 lying over the type set C : TC. By Lemma 5.33, we may realign the characteristic

map G〈�〉 G
dG〈set〉e

to lie over the composite �C U
dτCe ◦ set C ; in this way, we obtain an

appropriate code for the universe à la Tarski by means of the universal property of the
cartesian lift below:

G〈T〉

TC

G

U

dG〈τ〉e

dτCe

G〈�〉

�C

set
C

G〈set〉

¦

We have not shown that the universe à la Tarski G〈set〉 is closed under the appropriate
connectives — we only know that UIR is closed under those connectives. Prior to demon-
strating this, however, we must record a few facts about the behavior of F on pushfowards.
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Lemma 6.35 [SA20, Lemma 3.5]. Let X EF be any left exact functor, and let f∗g : X/Z

be the pushforward of X Y
g

along Y Z
f

. Then we have a canonical (not usually
invertible) comparison map F (f∗g) F (f)∗F (g).

Corollary 6.36. We have a canonical comparison map commuting the generic dependent
product family past F ◦MC in the following sense:

F τΠ
C (F τC)ΠL−M

Proof. By Lemma 6.35, using the fact that F is left exact.

Construction 6.37 (Constructors for the universe à la Tarski). We will now show that
G〈set〉 is closed under the necessary connectives; we consider only the case of dependent
products, since the remaining constructors work identically.

We must construct a morphism G
〈
setΠ

〉
G〈set〉G〈p̂i〉

that lies over setΠ
C setC

p̂i C .
Unfolding this situation, we wish to construct the following dotted map in Set :

E G〈set〉Π

F setΠ
C

G〈set〉Π
E G〈set〉

F setC

E G〈p̂i〉

G〈set〉

F p̂i C

We will define this map in the language of cubical sets. Accordingly, we begin by
computing the fibers of G〈set〉 and G

〈
setΠ

〉
:

A : F setC | G〈set〉[A] = {A : UIR | F isetC
(j∗A) = A}

G : F setΠ
C | G

〈
setΠ

〉
[G] = (A : G〈set〉[LGM0])× (a : F τC[LGM0])(a : ( G〈τ〉[[A]IR])[a])⇒ G〈set〉[LGM1 a]

With these fibers in hand, we may define E G〈p̂i〉:

E G〈p̂i〉[G](A,B) = pi(A, λ[a, a]. B a a) ¦

Lemma 6.38. The foregoing construction of G
〈
sẽt setel

〉
is boundary separated.

Proof. By induction, using the fact that
(
sẽt setel

)
C is boundary separated.

Construction 6.39 (Lifting structure). The type-case lifting structure of Specification 4.23
may be constructed using the induction-recursion principle of G〈set〉, and using the corre-
sponding lifting structure for setC. ¦

Lemma 6.40 (Coercion and composition). There are coercion and compositions operation
defined on glued lines of sets G〈I〉 ⇒ G〈set〉 which have the types given in Remark 4.27,
satisfying the regularity law (Specification 4.28) as well as the connective-specific equations
of Specification 4.30.

Proof. Coercion and homogeneous composition operations are first defined using the induc-
tion principle of the inductive recursive universe of sets, taking the equations of Specifi-
cation 4.30 and Lemma 4.31 respectively as definitions; general composition is defined by
the standard reduction to coercion and homogeneous composition (Lemma 4.29) [ABC+21,
AHH17]. The case-wise definition of coercion makes crucial use of the tininess of the
computability interval G〈I〉 (Lemma 6.5).
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6.4. Summary. By means of the foregoing constructions, we have defined a functorial
interpretation G〈−〉 of XTT into a glued logos G lying over DFC for an arbitrary XTT-
model MC. In Section 7, we will reassamble this data into a gluing model MGK

equipped
with a structure map MGK

MC that can be used to prove canonicity.

7. Canonicity for XTT

In Section 5, we introduced the logos G of computability structures, along with a representable

map functor T G
G〈−〉

. These constructions contain the essence of the proof of canonicity
for XTT, but in order to complete the proof we must assemble G and G〈−〉 into a model
of T equipped with a morphism to MC. In this section, we construct this gluing model of
XTT and prove the following canonicity theorem:

Theorem 7.12 (Canonicity). Given a closed term M : bool, either M = tt or M = ff.

7.1. The canonicity model of XTT. Recall from Section 4 that a model of T is a

category with a terminal object C paired with a representable map functor T DFC
MC .

The category of computability structures G is not a category of discrete fibrations, and
therefore we cannot directly take G, G〈−〉 as the gluing model. Instead, following [SA20]
we will shift to working with discrete fibrations on compact computability structures DFGK

and use the representable map functor G DFGK

NK to uniformly transfer the computability
structures from Section 5 from G to DFGK

.

Construction 7.1 (Gluing model). The gluing model T DFGK

MGK is defined as the com-
position NK ◦ G〈−〉. Diagrammatically:

T G DFGK

MGK

G〈−〉 NK

¦

It remains to construct the morphism MGK
MC : ModT. We will begin by construct-

ing the data of this morphism, checking the Beck-Chevalley condition afterward.

Construction 7.2 (Gluing homomorphism data). We expect a morphism of models tracked

by the gluing fibration GK C
j∗K at the level of contexts; it remains to make a choice of

functors JGK
JC : DF lying over j∗K in DF Cat (natural in J : T) to exhibit the

action of the homomorphism on judgments. Fixing a judgment J : T, we construct each of
the components as follows:

JGK
NK G〈J〉 j∗ G〈J〉 JC

GK GK C C

∼= [∆1, j∗] χJ

idGK j∗K idC

DF

Cat (7.3)

Diagram 7.3 above exhibits a natural transformation, because χJ is a component of the
natural transformation j∗ ◦ G〈−〉 MC

χ• . ¦
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It remains to check that the naturality squares induced by Construction 7.2 at repre-
sentable maps satisfy the Beck-Chevalley condition. First, we record a simple characteriza-
tion of the right adjoint qf of a representable map in DFC:

Lemma 7.4 [Uem19, Corollary 3.11]. If J I
f

: DFC is a representable map, the right
adjoint qf sends an element y CC I

y
to the upstairs element x determined by the following

pullback square:

y C(C.y)

y CC

J

I

x

f

y

Lemma 7.5. If J I
f

: T is a representable map, the following naturality square satisfies
the Beck-Chevalley condition:

JGK

IGK

fGK

JC

IC

Jj∗K

fC

Ij∗K

Proof. We must show that the following square commutes up to canonical isomorphism:

IGK

JGK

qfGK

IC

JC

Ij∗K

qfC

Jj∗K
(7.6)

To begin with, we fix an element KΓ G〈J〉y
: JGK

. Inspecting the definition of
Ij∗K from Construction 7.2, we see that Ij∗K(y) = χI ◦ j∗y. Therefore, by Lemma 7.4,

qfC
(Ij∗K(y)) = qfC

(χI ◦ j∗y) is the top map of the following pullback square:

y C· · ·

y Cj
∗
KΓ

JC

IC

fC

χI ◦ j∗y
(7.7)



43:66 sc. J. Sterling, C. Angiuli, and D. Gratzer Vol. 18:1

Similarly, we may compute qfC
(Ij∗K(y)) as the top of the following composite square:

y Cj
∗
K· · ·

y Cj
∗
KΓ

j∗ G〈J〉

j∗ G〈I〉

j∗ G〈f〉

j∗y

JC

IC

χJ

fC

χI
(7.8)

To show that the top of Diagram 7.7 is isomorphic to Diagram 7.8, it suffices to check
that the outer square of Diagram 7.8 is cartesian. Both χJ and χI are isomorphisms so the
right-hand square of Diagram 7.8 is cartesian, so the result follows immediately from the
pullback pasting lemma.

Corollary 7.9. The natural transformation Mj∗K
from Construction 7.2 is a morphism of

models.

7.2. The canonicity theorem. Having constructed the gluing model and the projec-
tion onto MC, we are now in a position to prove canonicity. First, we stop considering
an arbitrary model MC and work exclusively with MI, the bi-initial model of T (Theo-

rem 3.53). Bi-initiality ensures that there is a morphism MI MGK

iGK and, because idMI

and Mj∗K
◦MiGK

are both objects of ModT[MI,MI], there is a unique invertible 2-morphism

idMI
Mj∗K

◦MiGK

ι .

In prior presentations of gluing with strict homomorphisms [SAG19, KHS19, CHS19,
GKNB20], MI was initial in the 1-categorical sense, so idMI

and Mj∗K
◦MiGK

were equal on

this nose. This in turn implied that for every map �I (bool∗τ)I
f

, there existed a map

�GK
(bool∗τ)GK

JfK
such that j∗KJfK = f . Canonicity followed more-or-less immediately by

inspection of JfK.
In this work, we have used a weaker notion of morphism and as a consequence, MI is

merely bi -initial. Accordingly, we cannot immediately conclude that f is in the image of
Mj∗K

. In fact, while it is not generally the case that f = fj∗K◦iGK
, it is possible to realign

xiGK
to an isomorphic arrow which does lie strictly over f .

Lemma 7.10 (Realignment). Given a morphism yIΓ XI
x : DFI, there exists an object

JΓK : GK and a morphism y GK
JΓK XGK

JxK
: DFGK

such that j∗KJxK = x and iGK
Γ ∼= JΓK.

Proof. First we note that iGK
x lies over j∗KiGK

x by definition. Moreover, because GK C
j∗K

is a fibration, we may construct a cartesian lift of Γ j∗KiGK
Γι . Diagrammatically, there

exists two squares:

ι∗iGK
Γ

Γ

iGK
Γ

j∗KiGK
Γ

ι†

ι

y GK
iGK

(Γ)

yIj
∗
KiGK

Γ

XGK

XI

iGK
x

j∗KiGK
x
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Observe that ι† is an isomorphism because it is cartesian over an isomorphism. Unfolding
the definition of a 2-morphism, we see that j∗K(iGK

x ◦ y GK
ι) = x. Accordingly, we may paste

together these two diagrams to obtain the following:

y GK
ι∗iGK

Γ

yIΓ

XGK

XI

iGK
x ◦ y GK

ι†

j∗K(iGK
x ◦ y GK

ι)

x

Therefore, JxK def
== iGK

x ◦ y GK
ι† is a morphism lying strictly over x. The final condition

is immediate because JΓK ∼= iGK
(Γ) by definition.

Remark 7.11. One might hope that Lemma 7.10 implies the existence of a morphism

MI MGK

Mj
which satisfies the identity Mj∗K

◦Mj = idI on the nose. Simply applying
the realignment procedure to every element of MI does not result in a morphism, how-
ever, because it is not functorial, merely pseudo-functorial. This should not be surprising:
realignment relies on a choice of cartesian lift, which is only pseudo-functorial in general. ¦

Theorem 7.12 (Canonicity). Given a closed term M : bool, either M = tt or M = ff.

Proof. By such a closed term, we mean a morphism yI1I (bool∗τ)I
M : DFI; it suf-

fices to prove that M = ttI or M = ffI. First, by Lemma 7.10 we obtain a morphism

yIJ�K (bool∗τ)GK

JMK
: DFGK

lying over M . Next, by definition we have (bool∗τ)GK
=

NK G〈bool∗τ〉 and so JMK is uniquely determined by morphism 1G G〈bool∗τ〉J̃MK
: G.

Unfolding further, any morphism 1G G〈bool∗τ〉J̃MK
must be a commuting square of the

following shape in Set :

1Set

F �C

∼=

2Set

F (bool∗τ) C

EJ̃MK

F j∗M
(7.13)

It is immediate that EJ̃MK = inl or EJ̃MK = inr; the fact that Diagram 7.13 commutes

ensures that J̃MK lies over either ttI or ffI.

8. Perspective and outlook

For decades now, the puzzle of Martin-Löf’s intensional identity type has remained at the
center of type theorists’ minds. In 1994, Streicher showed that intensional type theory was
independent of seemingly sensible principles (like function extensionality) by constructing
extremely intensional counter-models [Str94]; in 1998, Hofmann and Streicher went a step
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further and demonstrated that the same type theory was independent of the uniqueness of
identity proofs (UIP) principle by constructing a model of type theory in groupoids [HS98].

Hofmann and Streicher’s contribution showed that it was possible for identity in a
universe of sets to “mean” bijection, a precursor to the univalence principle of Voevod-
sky [Voe06, Voe10], later codified in the language of homotopy type theory (HoTT) [Uni13].
Later, it was discovered that the identity type conferred an infinite-dimensional structure
already familiar in the context of homotopy theory [AW09, vdBG11, Lum10].

Cubical type theories were invented in order to repair several semantic and syntactic
anomalies of the new homotopy type theory; homotopy type theory lacks canonicity, a prop-
erty closely related to but distinct from the existence of a computational “proofs-as-programs”
interpretation of the language. On the other hand, the standard model of homotopy type
theory in simplicial sets [KL21] must be formulated in a boolean metatheory [BC15]. The
discovery of a constructive model for univalent type theory in cubical sets [BCH14] sparked
a flurry of work on explicitly cubical type theories [CCHM17, AHH17, ABC+21] which
resolved both the matters of canonicity and computational interpretation [Hub18, AHH17].

While the benefits of cubical ideas for solving problems in infinite-dimensional type
theory are clear, we believed that it might be possible to bring the cubical perspective to
bear on the problems of traditional one-dimensional type theory, in which the intensional
identity type is augmented with enough uniqueness and extensionality principles for it to
behave like classical mathematical equality. In the context of the strongest possible such
uniqueness principle, equality reflection, it remains an open question whether it is possible to
implement a usable proof assistant; on the other hand, extending type theories with axioms
for function extensionality destroys canonicity and has significant usability problems.

Inspired by the work of Altenkirch, McBride, and Swierstra on Observational Type
Theory [AM06, AMS07], which internalized aspects of the setoid model of type theory, we
sought to internalize Coquand’s semantic universe of Bishop sets [Coq17] as a type theory
in its own right, XTT. We believe that XTT is an ideal language for dependently typed
programming, in which it is very important that coercions may be erased prior to execution
(a procedure that cannot be applied to coercions arising from the univalence principle).
Unfortunately, there are several obstacles rendering both OTT and XTT unsuitable for use
as languages for formalizing general mathematics, disadvantages not shared by homotopy
type theory or its cubical variants.

8.1. Trade-offs with universes. In mathematics, a universe is a “family of (some) fami-
lies”, an object from which every family in some class arises by pullback; we cannot have
a universe of all families for general reasons, but there are several restrictions of this näıve
idea that make sense, such as a universe of all monomorphisms (a subobject classifier), or a
universe of κ-compact families for some regular or inaccessible cardinal κ.

Universes in mathematics are important for two reasons: first, they tame subtle but
essentially bureaucratic questions of size [AGV72, Exposé I, Ch. 0], and second, they provide
a (stronger) alternative to the set-theoretical axiom of replacement that enables concepts to
be formulated in the convenient fiber-wise style familiar from dependent type theory [Str05].
Here, it is very important to ensure that the universe imposes no spurious structures on
the maps it classifies; for instance, if U is the universe of κ-compact maps, we may develop
the theory of κ-compact groups in terms of U . Then, a predicate defined over κ-compact
groups should have the same meaning as a predicate defined over U -groups.
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8.1.1. Induction-recursion and type-case. The published models of both OTT [AM06, AMS07]
and XTT (both [SAG19] and the present paper) share an infelicitous interpretation of
universes from the perspective of mathematics: universes are modeled by closed inductive-
recursive types, hence in the semantics there is a corresponding elimination principle for
the universe that proceeds by cases on whether a given code is (e.g .) a dependent product
type, a dependent sum type, the boolean type, etc. This defect appears in both the syntax
and semantics of OTT and XTT: in the former case, because OTT is not a type theory per
se but rather a syntactical model construction, and in the latter, because we have explicitly
added a type-case operator to the theory of XTT.

The reason we view the closed universe semantics as infelicitous is that it changes
the meaning of quantification over (e.g .) algebraic structures in a way that is not really

compatible with ordinary mathematical usage. The existence of a code Â for a type A in
these universes expresses not only the smallness of A, but also the fact that A is either a
dependent product, a dependent sum, an equation, or it is the booleans (etc.), and the same
for all of A’s subterms. Hence a mathematical statement quantifying over the elements of
Â does not have the right meaning when interpreted into such a model, considering these
additional assumptions on the form of A. At the very least, a universe that is suitable for use
by mathematicians should be characterized (up to equivalence) by some intrinsic property
such as smallness or compactness, rather than by the syntactical form of the classified types.

As we have discussed in Section 2.3.4, the reason for internalizing the type-case principle
in the syntax of XTT is to ensure that type constructors are internally injective, a prerequisite
for deciding type checking in the presence of boundary separation in OTT/XTT-style
theories.9 Although it is obvious in syntax that one could choose a less heavy-handed
implementation of internal injectivity than type-case, e.g . by adding constants witnessing
the internal injectivity of each individual type constructor, we did not at the time believe
that such a generalization would meaningfully enlarge the space of semantic models of XTT.

8.1.2. Syntax and semantics of internal injectivity. Subsequent to the introduction of XTT
by the present authors [SAG19], Pujet and Tabareau [PT22] have introduced a new non-
cubical reconstruction of observational type theory called TTobs that has a number of
attractive properties going beyond the ones proved in the present paper, including nor-
malization and decidability of type checking. Just as XTT, TTobs improves on OTT by
defining a true type theory that is distinguished from any particular syntactic model or
translation; TTobs deviates from XTT, however, by witnessing the internal injectivity of
type constructors directly rather than by means of a type-case primitive.

Gratzer [Gra22] has recently demonstrated a construction of open inductive-recursive
universes that are generic for a suitable class of families (e.g . relatively κ-small or relatively
κ-compact families for some a strongly inaccessible cardinal κ) and yet validate the injec-
tivity assumptions needed by XTT and TTobs. Gratzer’s construction refutes our previous
assumption that weakening type-case to a direct account of internal injectivity would not
lead to new and more useful models of XTT, and provides some vindication to the choice
of Pujet and Tabareau to treat internal injectivity directly.

Therefore we conclude in hindsight that a type theory for boundary-separated sets,
whether treated cubically or not, need not internalize a closed universe but can instead be

9Note that we are referring to injectivity with respect to propositional equality, not judgmental equality;
in any well-adapted type theory, one expects to have admissible injectivity up to judgmental equality.
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usefully equipped with explicit laws governing the internal injectivity of type constructors.
We do maintain, however, that there remains a contradiction between the intended meaning
of universes in mathematical practice and the need for injectivity in the implementation of
boundary separation in OTT/XTT/TTobs: the statement “If A → B is equal to C → D,
then A is equal to C” is arguably a junk theorem akin to 1 ∈ π or 4 ⊆ 9.

8.2. What is a proposition? A considerably more subtle obstacle for using either OTT or
XTT in the formalization of mathematics is to be found when choosing a suitable notion of
proposition or relation. In type theory, there are a priori two ways to formalize propositions:

(1) A strict proposition is a type whose elements are all judgmentally equal.
(2) A weak proposition is a type X together with a function (x, y : X)→ pathX(x, y).

In OTT/XTT, the strict and weak notions of proposition do not agree, though they could
be forced to agree by adding equality reflection. Unfortunately, when investigating the
interplay between the indispensable principles of function comprehension and effectivity of
equivalence relations, we will find that this mismatch cannot be resolved by favoring either
the strict or the weak notion.

As soon as one has chosen a notion of proposition, one may consider the corresponding
“squash type”, the reflection of types into propositions:

(1) Given a type A, the strict squash type |A|s is a strict proposition; a function |A|s → B
is a function f : A → B such that every f(x) is judgmentally equal to f(y). The
strict squash type was investigated by Awodey and Bauer [AB04], and appears in recent
versions of Coq and Agda [GCST19].

(2) Given a type A, the weak squash type |A|w is a weak proposition; a function |A|w →
B is a function f : A → B together with a function assigning to each x, y : A an
element of pathB(f(x), f(y)). The weak squash type appears in homotopy type theory
as propositional truncation [Uni13].

Dependent product and binary product preserve the property of being a (strict, weak)
proposition, and may therefore be used as universal quantification and conjunction in a
logic of propositions. Dependent sum and binary sum do not preserve this property, but
they can be squashed in order to define existential quantification and disjunction. The logic
of (strict, weak) propositions is summarized below:

∀x : A.P (x)
def
== (x : A)→ P (x)

P ⊃ Q def
== P → Q

P ∧Q def
== P ×Q

∃s/wx : A.P (x)
def
== |(x : A)× P (x)|s/w

P ∨s/w Q def
== |(x : bool)× if(x;P,Q)|s/w

(M =A N)
def
== pathA(M,N)
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8.2.1. Function comprehension. What is the meaning of “function”? There is only one
possible answer: it is an element of an exponential object. In some categories, however,
these exponentials can be reconstructed as representing objects for collections of functional
relations. This isomorphism between the collection of functions A → B and subobjects
of A × B satisfying a unique existence property is traditionally referred to as the “axiom
of unique choice”, though it is perhaps better to refer to it as function comprehension.
Function comprehension is a crucial feature of both classical and constructive mathematics,
and life becomes very difficult in categories where function comprehension fails.

A (strict, weak) functional relation from A to B is a family of (strict, weak) propositions
x : A, y : B ` R(x, y) together with a proof of the following (strict, weak) proposition:

∀x : A. ∃s/wy : B. R(x, y) ∧ ∀y′ : B. R(x, y′) ⊃ y =B y′ (functionality)

The proposition above may be rendered into the language of types as follows:

(x : A)→ |(y : B)×R(x, y)× ((y′ : B)→ R(x, y′)→ pathB(y, y′))|s/w
The function comprehension principle is immediate for weak propositions in OTT and

XTT, but fails for strict propositions.

(1) To exhibit a function A→ B from a weak functional relation, we may extract the y : B
using the universal property of the weak squash type, fulfilling the auxiliary obligation
using the weak uniqueness of y with R(x, y).

(2) In doing the same with a strict functional relation, we run into a problem: to make a
function out of an element of the strict squash type, we end up needing that y is unique
with R(x, y) up to judgmental equality, but we have only an element of pathB(y, y′) for
each y′ such that R(x, y′).

Therefore, short of adding equality reflection, we must conclude that the weak notion of
proposition is the “correct” one, and the strict one is not particularly useful for mathematics
in an environment without equality reflection. Unfortunately, we will see that another
indispensable reasoning principle in constructive and classical mathematics, the effectivity
of equivalence relations, appears to be compatible only with the strict notion in a boundary
separated environment lacking equality reflection. (In contrast, full cubical type theory sat-
isfies a vastly stronger exactness condition called descent, generalizing both the disjointness
of coproducts and the effectivity of equivalence relations.)

8.2.2. Effectivity of equivalence relations. It is possible to add quotient types to both XTT
and OTT (an extension implemented, for instance, as part of the experimental Epigram 2
proof assistant [McB10]); likewise, Nuprl has supported a version of quotient types for
decades. Unfortunately, these quotients can be made to have good properties only for
certain equivalence relations:

(1) In Nuprl, only equivalence relations valued in “strong propositions” (types having at
most one element up to the intensional untyped equivalence of Howe [How89]) have
good quotients. Equivalence relations valued in general propositions (types having at
most one element up to extensional equality) do not necessarily have good quotients, a
serious problem alluded to in the work of Nogin [Nog02].

(2) In OTT and XTT, only equivalence relations valued in strict propositions can have good
quotients.
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Writing [−] : A→ A/R for the quotient map, the quotient A/R is “good” when each type
pathA/R([x], [y]) is equivalent to R(x, y); this property, called the effectivity of R, does not

follow from the rules of quotient types alone and in fact fails in many categories (such as
categories of partial equivalence relations). The effectivity of all equivalence relations is,
however, indispensable for practical use of quotients in mathematics.

In type theory, the effectivity of equivalence relations follows from propositional ex-
tensionality, a restricted version of the univalence principle that places bi-implications
(f, g) : P ↔ Q into correspondence with proofs of equality pua(f, g) : path(P,Q); in topos
theory, this corresponds to the existence of a subobject classifier. We will see, however, that
it is not possible to extend either XTT or OTT (or any type theory satisfying boundary
separation or definitional UIP) with a univalence principle for weak propositions without
some fundamentally new ideas.

In cubical type theories, univalence is supported by means of a special connective taking
an equivalence of types and returning a path between the corresponding types [Ang19]; we
might attempt to extend XTT by a version of this connective restricted to weak propositions:

Γ ` r : I Γ, r = 0 ` P prop Γ ` Q prop
Γ, r = 0 ` f : P → Q Γ, r = 0 ` g : Q→ P

Γ ` Vr(P,Q, f, g) prop [∂(r)→ [r = 0→ P | r = 1→ Q]]

Unfortunately, we can show that a univalent universe of weak propositions Prop cannot
be boundary separated.

Lemma 8.1. Suppose that we have a boundary separated universe of propositions closed
under V-types (thence univalent); then, all equivalences between two propositions are judg-
mentally equal.

Proof. Let P,Q be two propositions classified by the univalent universe of propositions, and
let (f, g) and (f ′, g′) be two equivalences between them. Abstracting a dimension i : I, we
therefore have two V-types Vi(P,Q, f, g) and Vi(P,Q, f

′, g′); by boundary separation, we in
fact have Vi(P,Q, f, g) = Vi(P,Q, f

′, g′).
We will show that f = f ′ judgmentally by using coercion in the V-type, following the

computation rules described by Angiuli [Ang19].

λx.f(x) = λx.coe0 1
.Q f(x) regularity

= λx.coe0 1
i.Vi(P,Q,f,g)

x [Ang19, p.163]

= λx.coe0 1
i.Vi(P,Q,f ′,g′)

x boundary separation

= λx.coe0 1
.Q f ′(x) [Ang19, p.163]

= λx.f ′(x) regularity

To see that g = g′, simply repeat the procedure with the inverse equivalences.

Remark 8.2. Lemma 8.1 can likewise be replayed when glue-types à la [ABC+21] are used
instead of V-types à la [AHH17]. In either case, coercion can be used (modulo regularity)
to recover the equivalence from the line of types. ¦

The assumptions of Lemma 8.1 imply some intensional type theoretic taboos.

Corollary 8.3. Under the assumptions of Lemma 8.1, all propositions are strict proposi-
tions.
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Proof. Let P be a proposition, and let x, y be proofs of P . The constant functions λ .x and
λ .y are both equivalences P ↔ P ; by Lemma 8.1, they are judgmentally equal. Therefore,
x and y are judgmentally equal.

Corollary 8.4. Under the assumptions of Lemma 8.1, equality reflection holds.

Proof. Let A : set and let a ∈ A; then SA(a)
def
== (x ∈ A) × pathel(A)(a, x) is a weak

proposition. By Corollary 8.3, SA(a) is moreover a strict proposition. Let a′ ∈ A and p :
pathel(A)(a, a

′); therefore we have 〈a, λ .a〉 = 〈a′, p〉 : SA(a), whence a = a′ judgmentally.
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