
Logical Methods in Computer Science
Vol. 11(1:3)2015, pp. 1–40
www.lmcs-online.org

Submitted May 4, 2011
Published Mar. 6, 2015

MONADS NEED NOT BE ENDOFUNCTORS ∗

THORSTEN ALTENKIRCH a, JAMES CHAPMAN b, AND TARMO UUSTALU c

a School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Notting-
ham NG8 1BB, United Kingdom
e-mail address: txa@cs.nott.ac.uk

b,c Institute of Cybernetics, Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn, Es-
tonia
e-mail address: {james,tarmo}@cs.ioc.ee

Abstract. We introduce a generalization of monads, called relative monads, allowing
for underlying functors between different categories. Examples include finite-dimensional
vector spaces, untyped and typed λ-calculus syntax and indexed containers. We show that
the Kleisli and Eilenberg-Moore constructions carry over to relative monads and are related
to relative adjunctions. Under reasonable assumptions, relative monads are monoids in
the functor category concerned and extend to monads, giving rise to a coreflection between
relative monads and monads. Arrows are also an instance of relative monads.

1. Introduction

Monads are the most successful programming pattern arising in functional programming.
Apart from their use to model a generic notion of effect they also serve as a convenient
interface to generalized notions of substitution. Research in the area on the border between
category theory and functional programming focusses on unveiling new programming and
reasoning constructions similar to monads, such as comonads [36], arrows [20] and idioms
(closed functors) [25]. Indeed, especially when working in an expressive and total language
with dependent types, such as Agda [27], we can exploit monads as a way to structure not
only our programs but also their verification.

The present paper is concerned with a generalization of monads which arises naturally
in dependently typed programming, namely monad-like entities that are not endofunctors.

2012 ACM CCS: [Software and its engineering]: Software notations and tools—General programming
languages—Language features—Data types and structures; [Theory of computation]: Semantics and
reasoning—Program semantics—Categorical semantics.

Key words and phrases: monads, adjunctions, monoids, skew-monoidal categories, Hughes’s arrows.
∗ This article is a revised and expanded version of the FoSSaCS 2010 conference paper [5].
a T. Altenkirch was supported by the Engineering and Physical Sciences Research Council (EPSRC) grant

no. EP/G034109/1.
b,c J. Chapman and T. Uustalu were supported by the ERDF funded Estonian CoE project EXCS, the
Estonian Ministry of Education and Research target-financed themes no. 0322709s06 and 0140007s12, and
the Estonian Science Foundation grants no. 6940, 9219 and 9475.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:3)2015

c© T. Altenkirch, J. Chapman, and T. Uustalu
CC© Creative Commons

http://creativecommons.org/about/licenses

2 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

Consider the following example, which arose when implementing notions related to quantum
programming, namely finite-dimensional vector spaces [37, 7]. (See also Piponi [29] for this
and other interesting uses of vector spaces in functional programming.)

Example 1.1. In quantum computing, we consider complex vector spaces, but for the
present development any semiring (R, 0,+, 1,×) is sufficient. Finite-dimensional vector
spaces (more precisely, right modules) with a given basis can be given by:

Vec ∈ |Fin| → |Set|
Vecm=df Jf m→ R
η ∈ Πm∈|Fin|Jf m→ Vecm
ηm (i ∈ m) =df λj ∈ m. if i = j then 1 else 0
(−)∗ ∈ Πm,n∈|Fin|(Jf m → Vecn) → (Vecm → Vecn)
A∗ x=df λj ∈ n.

∑

i∈mAi j × x i

Here Fin is the category of finite cardinals (the skeletal version of finite sets). The objects
are natural numbers m ∈ N and the maps between m and n are functions between m and
n where m =df {0, 1, . . . ,m − 1}. By Jf ∈ Fin → Set we mean the natural embedding
Jf m=df m. The finite summation

∑

is just the finite iteration of + over 0. Indeed ηm is
just the unit m ×m-matrix (alternatively, a function assigning to every dimension i ∈ m
the corresponding basis vector) and A∗ x corresponds to the product of the matrix A with
the vector x, where both matrices and vectors are described as functions.

By the types of its data, the structure (Vec, η, (−)∗) looks suspiciously like a monad,
except that Fin is not Set and in the types for η and (−)∗ we have used the embedding
Jf to repair the mismatch. It is easy to verify that the structure also satisfies the standard
monad laws, modulo the same discrepancy.

The category of finite-dimensional vector spaces with a given basis (coordinate spaces)
arises as a kind of Kleisli category. Its objects are m ∈ N, understood as finite sets of
dimensions and its morphisms are functions Jf m → Vecn, i.e., matrices (describing linear
transformations).

The structure cannot generally be pushed to a monad on Set. (−)∗ requires that we can
sum over a set. Summation over general index sets is not available, if R is just a semiring.
Also, in a constructive setting, η requires that the set has a decidable equality, which is not
the case for general sets.

Since we only require a semiring, the restrictions of the multiset and powerset functors to
Fin are instances of this construction by using (N, 0,+, 1,×) and (B,⊥,∨,⊤,∧) respectively.

We shall view Vec as a relative monad on the embedding Jf ∈ Fin → Set. Other
examples of relative monads include untyped and simply typed λ-terms, the notions of
indexed functors and indexed containers as developed in [26], and arrows.

Overview of the paper. In Section 2 we develop the notion of relative monads on a
functor J ∈ J → C, showing that they arise from relative adjunctions, and generalize the
Kleisli and Eilenberg-Moore constructions to relative monads.

Since monads on C correspond to monoids in the endofunctor category [C,C], a natural
question is whether a relative monad on J gives rise to a monoid in the category [J,C]. If
J is small and C is cocomplete (e.g., Set), the left Kan extension along J exists and

MONADS NEED NOT BE ENDOFUNCTORS 3

gives rise to a left skew-monoidal structure where the unit is J and the tensor is given by
F ·JG=df LanJ F ·G.1 Relative monads give rise to skew-monoids in this setting (Section 3).

Going further, we identify conditions on the functor J ∈ J → C, under which the skew-
monoidal structure induced by LanJ is properly monoidal. Under these well-behavedness
conditions, relative monads on J are proper monoids in [J,C]. Moreover, relative monads
extend to monads via LanJ and we get a coreflection between the categories of relative
monads on the functor J and monads on the category C (Section 4). In the example
of vector spaces, LanJ Vec is the monad whose Kleisli category is that of vector spaces
over general sets of dimensions where a vector over an infinite set of dimensions may only
have finitely many non-zero coordinates. However, it is worthwhile not to ignore the non-
endofunctor case, because frequently this is the structure we actually want to use. E.g., in
quantum computing we are interested in dagger compact closed categories [2] which model
finite-dimensional vector spaces.

Finally, we show that arrows are relative monads (Section 5) on the Yoneda embedding.
This leads to the, maybe surprising, outcome that while arrows generalize ordinary monads,
they are actually a special case of relative monads.

What is new? This paper completes the conference paper [5] with proofs, but also adds
new material. Throughout the technical part of the paper (spanning Sections 2—5), we
systematically speak of not just relative monads but also relative monad morphisms, i.e.,
relative monads as a category, so that restriction of monads and extension of relative monads
become functors. In Sections 4, 5 we also accordingly treat monoid morphisms and arrow
morphisms. Discussing examples in Sections 2.1 and 2.2, we go into more depth than in the
conference paper (in particular, we look at the EM-algebras of several examples of relative
monads), but we also consider some additional examples. In the new Sections 2.4 and 4.4,
we analyze the relationship of the Kleisli and Eilenberg-Moore constructions of a monad
and its restriction and a relative monad and its extension. In the Section 3.4, we present
an alternative definition of EM-algebras that is available as soon as LanJ exists.

Related work. The untyped λ-calculus syntax as has been identified as a monoid in
[Fin,Set] by Fiore et al. [14]. Heunen and Jacobs [18] have shown that arrows on C

are actually monoids in the category [Cop × C,Set] of endoprofunctors; Jacobs et al. have
proved the Freyd construction of [30] is, in a good sense, the Kleisli construction for arrows.
Spivey [31] has studied a generalization of monads, which differs from ours, but is similar in
spirit and related (see Conclusion). Berger et al. [10, 16] have introduced a generalization
of finitary monads, called monads with arities. Monads with arities constitute a special
case of relative monads on well-behaved functors.

Monoidal-like categories where the unital and associativity laws are not isomorphisms
have been considered by multiple authors. Skew-monoidal categories were introduced by
Szlachányi [33] and caught then the interest of by Lack, Street, Buckley and Garner [22,
23, 12]. The axioms of skew-monoidality were also part of the axioms of the categories of
contexts of Blute et al. [11].

1In the conference version we spoke of a ‘lax monoidal’ category, but then Szlachányi [33] discovered the
same structure and termed it ‘left skew-monoidal’.

4 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

Notation. We will be using a mixture of categorical and type-theoretic notation. In particu-
lar we will be using λ-calculus notation for defining functions (maps in Set or subcategories).
Customarily for both category theory and type theory, we often hide some arguments of
patterns and function applications (normally subscripted arguments, e.g., an object a nat-
ural transformation is applied to). We write for unique values that are easily inferable,
e.g., the function on the empty domain.

We write |C| for the set of objects of C and C (X,Y) for the homsets. Given categories
C,D we write the functor category as [C,D], we will also write C → D for the set of
functors, i.e. the objects of the functor category [C,D]. We write id, ◦ for the identities
and composition of maps and I, · for the identities and composition of functors.

2. Relative monads and relative adjunctions

We start by defining relative monads. Then we give some examples and show how the
theory of ordinary monads carries over to the relative case.

2.1. Relative monads. Rather than being defined for a category C like a monad, a relative
monad is defined for a functor J between two categories J and C.

Definition 2.1. A (Manes-style [24]) relative monad on a functor J ∈ J → C is given by

• an object mapping T ∈ |J| → |C|,
• for any X ∈ |J|, a map ηX ∈ C (J X, T X) (the unit),
• for any X,Y ∈ |J| and k ∈ C (J X, T Y), a map k∗ ∈ C (T X, T Y) (the Kleisli extension)

satisfying the conditions

• for any X,Y ∈ |J|, k ∈ C (J X, T Y), k = k∗ ◦ η (the right unital law),
• for any X ∈ |J|, η∗X = idTX ∈ C (T X, T X) (the left unital law),
• for anyX,Y,Z ∈ |J|, k ∈ C (J X, T Y), ℓ ∈ C (J Y, T Z), (ℓ∗◦k)∗ = ℓ∗◦k∗ (the associativity
law).

The data and laws of a relative monad are exactly as those of a monad, except that C
has become J in some places and, to ensure type-compatibility, some occurrences of J have
been inserted. Indeed, in the laws it is only the types that have changed.

The laws imply that T is functorial: T ∈ J → C. Indeed, for X,Y ∈ |J|, f ∈ J (X,Y),
we can define a map T f ∈ C (TX, TY) by T f =df (η ◦ Jf)

∗ and this satisfies the functor
laws. Also, η and (−)∗ are natural.

A definition of relative monads based on a multiplication µ rather than a Kleisli exten-
sion (−)∗ is not immediately available: the simple functor composition T ·T is not well-typed.
In the next section, we will show that a suitable notion of functor composition is available
under a condition.

Definition 2.2. A relative monad morphism between two relative monads (T, η, (−)∗) and

(T ′, η′, (−)∗
′
) for a particular J is given by

• for any X ∈ |J| a map σX ∈ C (T X, T ′X)

satisfying the conditions

• for any X ∈ |J|, σX ◦ ηX = η′X (the unit preservation law),

• for any X,Y ∈ |J|, k ∈ C (J X, T Y), σY ◦ k∗ = (σY ◦ k)∗
′
◦ σX (the multiplication

preservation law).

MONADS NEED NOT BE ENDOFUNCTORS 5

The two conditions entail that σ is natural.
It is easy to see that relative monads on a particular J and morphisms between them

form a category, which we denote by RMon(J). The identities and composition of this
category are inherited from the functor category [J,C].

Clearly, monads on C and monad morphisms between them are a special case of relative
monads and their morphisms via J=df C, J =df IC.

For general J, C and J , we always have that T X =df J X is a relative monad with
ηX =df idJX and k∗=df k. In fact, a whole class of examples of relative monads on J is given
by restricting monads on C (the relative monad J arising from restricting the monad IC).

Proposition 2.3. Given a functor J ∈ J → C.

(1) A monad (T, η, (−)∗) on C restricts to a relative monad (T ♭, η♭, (−)(∗
♭)) on J defined

by T ♭X =df T (J X), η♭X =df ηJ X , k(∗
♭) =df k

∗.
(2) A monad morphism σ between two monads T , T ′ on C restricts to a relative monad

morphism σ♭ between the relative monads T ♭, T ′♭ on J defined by σ♭X =df σJ X .

(3) (−)♭ is a functor from Mon(C) to RMon(J).

The three relative monad laws and two relative monad morphism laws follow immedi-
ately from the corresponding laws of monads and monad morphisms.

Later we will show that, under some reasonable conditions on J , it is also possible to
extend relative monads to monads by a functor (−)♯ : RMon(J) → Mon(C). This functor
is right adjoint to (−)♭; the adjunction is a coreflection.

As a first truly non-trivial example, we saw the relative monad of finite-dimensional
vector spaces in the introduction. Here are some further examples.

Example 2.4. The syntax of untyped (but well-scoped) λ-calculus is a relative monad on
Jf ∈ Fin → Set, as is the finite-dimensional vector spaces relative monad, i.e., we have
J=df Fin, C=df Set, J =df Jf . We view Fin as the category of nameless untyped contexts.
The set of untyped λ-terms LamΓ over a context Γ satisfies the isomorphism

LamΓ ∼= Jf Γ + LamΓ× LamΓ + Lam (1 + Γ)

The summands correspond to variables from the context (seen as terms), applications, and
abstractions (their bodies are terms over an extended context). The functor Lam ∈ Fin →
Set is defined as the carrier of the initial algebra of the functor F ∈ [Fin,Set] → [Fin,Set]
defined by

F GΓ =df Jf Γ +GΓ×GΓ +G (1 + Γ)

Lam is a relative monad. The unit η ∈ Jf Γ → LamΓ is given by variables-as-terms and
the Kleisli extension takes a finite substitution rule k ∈ Jf Γ → Lam∆ to the corresponding
substitution function k∗ ∈ LamΓ → Lam∆.

We also introduce the relative monads Lamβ and Lamβη over Jf by quotienting over β-
equality (resp. βη-equality). We observe that the monad operations preserve the equalities,
since β- and βη-equality are stable under substitution.

This example was described as a relative monad (under the name Kleisli structure) by
Altenkirch and Reus [8]. Fiore et al. [14] described it as a monoid in a monoidal structure
on [Fin,Set]. Their account of this example is an instance of our general description of
relative monads as monoids from Section 4.

Example 2.5. Typed λ-terms form a relative monad in a similar fashion. Let Ty be the
set of types (over some base types), which we see as a discrete category. We take J to

6 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

be Fin ↓ Ty, which is the category whose objects are pairs (Γ, ρ) where Γ ∈ |Fin| and
ρ ∈ Γ → Ty (typed contexts) and maps from (Γ, ρ) to (Γ′, ρ′) are maps f ∈ Fin (Γ,Γ′) such
that ρ = ρ′ ◦ f (typed context maps).

We further take C to be the functor category [Ty,Set] and let Jt ∈ Fin ↓ Ty → [Ty,Set]
be the natural embedding defined by Jt (Γ, ρ) σ =df {x ∈ Γ | ρ x = σ}.

Now, for (Γ, ρ) ∈ |Fin ↓ Ty| and σ ∈ Ty, the set of typed λ-terms TyLam (Γ, ρ)σ has to
satisfy the isomorphism

TyLam (Γ, ρ)σ ∼= Jt (Γ, ρ)σ

+ Στ∈TyTyLam (Γ, ρ) (τ ⇒ σ)× TyLam (Γ, ρ) τ

+ if σ is of the form τ ⇒ τ ′ then TyLam (1 + Γ,

[

inl ∗ 7→ τ
inrx 7→ ρ x

]

) τ ′

Assuming Id-types the last summand can be more concisely written as:

+ Στ,τ ′∈Ty,p∈Idσ (τ⇒τ ′)TyLam (1 + Γ,

[

inl ∗ 7→ τ
inrx 7→ ρ x

]

) τ ′

The functor TyLam ∈ Fin ↓ Ty → [Ty,Set] is given by an initial algebra. It is a monad
on Jt, with the unit and Kleisli extension given by variables-as-terms and substitution, like
in the case of Lam. Fiore et al. [13] studied TyLam as a monoid in [Fin ↓ Ty, [Ty,Set]]. As in
Example 2.4 we can quotient by β- or βη-equality and as before we denote the corresponding
relative monads as TyLamβ and TyLamβη.

Note that choosing J to be [Ty,Fin] rather than Fin ↓ Ty would have given contexts
possibly supported by infinitely many types: in every type there are finitely many variables,
but the total number of variables can be infinite.

Example 2.6. Morris and Altenkirch [26] investigated a generalization of the notion of con-
tainers [1] to a dependently typed setting and used it to show that strictly positive families
can be reduced to W-types. Relative monads played a central role in this development.

Let U ∈ |Set| together with a family El ∈ U → |Set| which we view as a type theoretic
universe. As an example consider the universe of small sets which reflects all type theoretic
constructions but U itself. E.g., there is π ∈ ΠA ∈ U. (ElA → U) → U such that El (π AB)
is isomorphic to Πa ∈ ElA.El (B a). And similarly for the other type formers.

Such a universe induces a category U with |U| =df U and U (A,B) =df ElA → ElB.
The functor JU ∈ U → Set is given by JUA=df ElA on objects and the identity on maps.2

We assume that U is locally cartesian closed, which corresponds to the assumption that U
reflects Π, Σ and equality types.

While ordinary containers represent endofunctors on U, indexed containers represent
functors from the category of families FamA to U for A ∈ U. FamA has as objects
families ElA → U and as morphisms between F,G ∈ ElA → U families of functions Πa ∈
ElA.El (F a) → El (Ga). Indeed, FamA is equivalent to the slice category U/A. For A ∈ U,
we define the set of indexed functors by IFA=df FamA→ U and indeed IF gives rise to a
relative monad on JU: The unit ηA ∈ JUA → IFA is defined by ηA x =df λf. f x and the
Kleisli extension k∗ ∈ IFA→ IFB of k ∈ JUA→ IFB is defined by k∗Gf =df G (λx.k x f).
The definitions clearly resemble the continuation monad apart from the size issue.

The main result of [26] was that strictly positive families (SPF) can be interpreted
as indexed functors via indexed containers (IC). Just as IF, both SPF and IC are relative

2In [1] we actually used Set and Set1 instead of U and Set, and El is usually implicit in type theory.

MONADS NEED NOT BE ENDOFUNCTORS 7

monads on JU and the interpretations preserve this structure, i.e., are relative monad maps.
The relative monads model the fact that all these notions are closed under substitution and
that this is preserved by the constructions done in the paper.

Example 2.7. Sam Staton suggested to us this example of a “relative monad” that nat-
urally arises at a different level—a relative pseudo-monad, in fact. Let J =df Cat (the
category of small categories), C=df CAT (the category of locally small categories) and let
J ∈ Cat → CAT be the inclusion.

Define T ∈ Cat → CAT by T X =df [X
op,Set], i.e., T sends a given small category to

the corresponding presheaf category, which is locally small.
We can define ηX ∈ X → [Xop,Set] to be YX (the Yoneda embedding for X). And, for

K ∈ X → [Yop,Set], we can set K∗ ∈ [Xop,Set] → [Yop,Set] to be LanYX
K.

Note that the laws do not hold on the nose now, but only up to coherent isomorphism.

Example 2.8. We already know that, for any monad T on C, T ♭ = T · J ∈ J → C is a
relative monad on J . Interesting special cases of this basic observation arise already when
T is the identity functor on C. E.g., we can take C =df Set, J =df Set, J X =df X × S,
T ♭X =df J X for some fixed S ∈ |Set|. Or we can take C=df Set, J=df Set

op, JX =df R
X

for some fixed R ∈ |Set|. As we will see below, these constructions behave in some aspects
like the state and continuations monads.

2.2. Relative adjunctions. As ordinary monads are intimately related to adjunctions,
relative monads are related to a corresponding generalization of adjunctions. Similarly to
the situation with relative monads, not every definition format of adjunctions is available
for relative adjunctions, if we make no assumptions about J : definitions involving a counit
are not possible. The following is one of the possible definitions.

Definition 2.9. A relative adjunction between J ∈ J → C and D is given by two functors
L ∈ J → D and R ∈ D → C and a natural isomorphism φX,Y ∈ C (J X,R Y) ∼= D (LX,Y).

As expected, ordinary adjunctions are a special case of relative adjunctions with J=dfC,
J =df I. Just like any adjunction defines a monad, relative adjunctions define relative
monads.

Theorem 2.10. Any relative adjunction (L,R, φ) between a functor J ∈ J → C and cate-
gory D gives rise to a relative monad (T, η, (−)∗) via T X =df R (LX), ηX =df φ

−1 (idLX)
and k∗ =df R (φk).

D

R ��
J

L

33

J //

T

��
C

Proof. We have to check the relative monad laws. The right unital law holds since k =
φ−1 (φk) = φ−1 (φk ◦ idLX) = R (φk) ◦ φ−1idLX = k∗ ◦ ηX by φ−1 being a left inverse of φ
and φ−1 being natural.

The left unital law is verified by (ηX)∗ = R (φ (φ−1 idLX)) = R idLX = idR (LX) = idT X

by φ−1 being a right inverse of φ .
For the associative law we calculate (ℓ∗ ◦ k)∗ = R (φ (R(φ ℓ) ◦ k)) = R (φ ℓ ◦ φk) =

R(φ ℓ) ◦R(φk) = ℓ∗ ◦ k∗ by φ being natural.

8 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

If a relative monad T on J is related to a relative adjunction (L,R, φ) between J and
some category D in the above way, we call the relative adjunction a splitting of the relative
monad via D.

2.3. Kleisli and Eilenberg-Moore constructions. We know that a monad splits into an
adjunction in two canonical ways: the Kleisli and Eilenberg-Moore constructions. Moreover,
the splittings form a category where the Kleisli and EM splittings are the initial and terminal
objects. We shall now establish that the same holds in the relative situation.

The Kleisli category Kl(T) of a relative monad T has as objects the objects of J and as
maps between objects X and Y of J the maps between objects J X, T Y of C: |Kl(T)|=df |J|

and Kl(T) (X,Y) =df C (J X, T Y). The identity and composition (we denote them by idT ,
◦T) are defined by idTX =df ηX and ℓ ◦T k =df ℓ

∗ ◦ k.
The Kleisli relative adjunction between J and Kl(T) is defined by LX =df X, Lf =df

η ◦ Jf (note that L is identity-on-objects), RX =df T X, Rk=df k
∗ and φ is identity. This

relative adjunction is a splitting. Indeed, we have R (LX) = T X, R (Lf) = (η◦J f)∗ = T f ,
ηX = idTX = φ−1 (idTX) = φ−1 (idTLX) and k∗ = Rk = R (φk).

The Eilenberg-Moore (EM) category EM(T) is given by EM-algebras and EM-algebra
maps of the relative monad T . Since the usual definition of an EM-algebra refers to µ,
which is not immediately available, we generalize a version based on (−)∗. For ordinary
monads this is equivalent to the standard definition.

Definition 2.11. An EM-algebra of a relative monad T on J ∈ J → C is given by an object
X ∈ |C| (the carrier) and, for any Z ∈ |J| and f ∈ C (J Z,X), a map χf ∈ C (T Z,X) (the
structure), satisfying the conditions

• for any Z ∈ |J|, f ∈ C (J Z,X), f = χf ◦ η,
• for any Z,W ∈ |J|, k ∈ C (J Z, T W), f ∈ C (J W,X), χ (χf ◦ k) = χf ◦ k∗.

These conditions ensure, among other things, that χ is natural.
An EM-algebra map from (X,χ) to (Y, υ) is a map h ∈ C (X,Y) satisfying

• for any Z ∈ |J|, f ∈ C (J Z,X), h ◦ χf = υ (h ◦ f).

The identity and composition maps of EM(T) are inherited from C.
The Eilenberg-Moore relative adjunction between J and EM(T) is defined by LX =df

(T X, λk. k∗), Lf=dfT f , R (X,χ)=dfX, Rh=dfh, φX,(Y,υ) f=df υ f and φ−1
X,(Y,υ) h=dfh◦ηX .

This is also a splitting.

Theorem 2.12. The splittings of a relative monad T on J ∈ J → C form a category. An
object is given by a category D and an adjunction (L,R, φ) splitting T via D. A splitting
morphism between (D, L,R, φ) and (D′, L′, R′, φ′) is a functor V ∈ D → D′ such that V ·L =
L′, R = R′ · V , and V (φX,Y k) = φ′X,V Y k. The Kleisli construction is the initial and the
Eilenberg-Moore construction the terminal splitting.

Proof. To show that the Kleisli splitting is initial we show that the following is a unique mor-
phism from the Kleisli splitting (Kl(T), LT , RT , φT) to a given other splitting (D, L,R, φ).
We define:

V ∈ Kl(T) → D

V X = LX
V k = φX,LY k

The functoriality of V is verified by V η = φ η = id, V (ℓ∗ ◦ k) = φ (R (φ ℓ) ◦ k) = φ ℓ ◦ φk.

MONADS NEED NOT BE ENDOFUNCTORS 9

The splitting morphism conditions are verified by V (LT X) = LX, V (LT f) = φ (η ◦
J f) = φ (φ−1 id ◦ J f) = φ (φ−1 (Lf)) = Lf , RT X = T X = R (LX) = R (V X), RT k =
k∗ = R (φk) = R (V k), V (φT k) = φk.

Uniqueness is established as follows. Any morphism V ′ between the two splittings must
satisfy V ′X = V ′ (LT X) = LX = V X, V ′ k = V ′ ((φT)X,Y k) = V ′ φX,V Y k = φX,LY k =
V k.

For finality of the EM splitting we prove that the following is a unique morphism
between a given splitting (D, L,R, φ) and the EM splitting (EM(T), LT , RT , φT). We set

V ∈ D → EM(T)
V X =df (RX,λk.R (φk))
V f =df Rf

That V X is an EM-algebra is seen by checking that R(φk) ◦ η = k∗ ◦ η = k, R (φ (R (φ ℓ) ◦
k)) = (ℓ∗ ◦k)∗ = ℓ∗ ◦k∗ = R (φ ℓ)◦k∗ using that (D, L,R, φ) is a splitting. The functoriality
of V follows immediately from the functoriality of R.

The conditions of a splitting morphisms are verified by V (LX) = (R (LX), λk.R (φk)) =
(T X, λk. k∗) = LT X, V (Lf) = R (Lf) = T f = LT f , RX = RT (RX,λk. R (φk)) =
RT (V X), Rf = RT (V f), V (φk) = R (φk) = k⋆ = φT k.

For uniqueness we observe that any splitting V ′ must satisfy V ′X = (V ′
0 X,V

′
1 X) =

(V ′
0 X,λk. φ

T k) = (RT (V ′X), λk. V ′ (φk)) = (RX,λk.R (φk)) = V X.

The Kleisli and Eilenberg-Moore categories of our examples correspond to well known
concepts.

Example 2.13. The Kleisli category of Vec has as objects the objects of Fin understood as
finite sets of dimensions. The maps are maps Jf m→ Vecn, i.e., m×n-matrices (describing
linear transformations). The identities are the unit m × m-matrices, the composition is
multiplication of matrices. It is the category of finite-dimensional coordinate spaces and
linear transformations.

Example 2.14. The Kleisli category Kl(Lam) of the relative monad for untyped λ-terms
(Example 2.4) has as objects the objects of Fin understood as untyped contexts. The maps
are maps Jf m→ Lamn, i.e., substitution rules (assignments of terms over n to the variables
in m). The identities are the trivial substitution rules. The composition is composition of
substitution rules.

Example 2.15. The Kleisli category Kl(TyLam) of the relative monad for typed λ-terms
(Example 2.5) has a very similar structure. Its objects are typed contexts, i.e., objects of
Fin ↓ Ty, and its morphisms are type-preserving substitution rules. Indeed, the Kleisli
category of TyLamβη is equivalent to the free cartesian closed category on the set of base
types (if we also include finite products into the type language and amend the term language
accordingly).

Example 2.16. The Kleisli categories of the two relative monads considered in Example 2.8
are isomorphic to those of the ordinary state and continuation monads.

For JX =df X × S, TX =df X × S, T is a relative monad on J and the maps of its
Kleisli category are maps X × S → Y × S. But the ordinary state monad T ′ given by
T ′X =df (X ×S)S has maps X → (Y ×S)S as the maps of its Kleisli category. Clearly, the
two categories are isomorphic.

10 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

We also get such an isomorphism for the Kleisli categories of the relative monad T given
by TX =df R

X on J given by JX =df R
X and the ordinary continuations monad T ′ given

by T ′X =df R
RX

.

Example 2.17. A vector space (right module) over a semiring (R, 0,+, 1,×) is given by

a commutative monoid (M,~0,⊕) and an operation · ∈ M × R → M . It is isomorphic to
a relative EM-algebra for the relative monad Vec over the semiring R. The carrier of the
algebra is defined to be M and the structure map m ∈ Πn∈|Fin|(Jf n → M) → (Jf n →
R) → M is given by lifting the operation · straightforwardly to an operation on vectors:
mn f g=df

⊕

i∈n f i · g i. Going the other way, given an algebra with carrierM and structure

mapm, ~0=dfm0 , a⊕a′=dfm2 (λi. if i = 0 then a else a′)(λi. 1) and a·r=dfm1 (λi. a) (λi. r).

Example 2.18. The objects of EM(Lamβ) correspond to λ-models, e.g., as given in defi-
nition 11.3 in [19, p. 112]. An EM-algebra is given by a set D and for any n ∈ |Fin| = N a
function

δ ∈ (Jf n→ D) → (Lamβ n→ D)

subject to the two conditions stated in definition 2.11. This gives rise to a λ-model with
carrier D, the applicative structure can be obtained from δ and δ also gives rise to the
evaluation function simply by JtKρ = δ ρ t. The conditions for a λ-model follow from the
conditions of the EM-algebra. The evaluation function in [19] is not scoped, but it can be
seen that the explicit indexing corresponds to the variable condition (e). On the other hand
we can obtain an EM-algebra from a λ-model in the sense of [19]. We can also show that

objects of EM(Lamβη) correspond to extensional λ-models.

Example 2.19. In a similar way, the objects of EM(TyLamβ) correspond to type frames
as given in [17, p. 53]. The carrier of an EM-algebra corresponds to the interpretation of
types given by a preframe Atype, while the structure corresponds to the interpretation of
terms Aterm. The objects of EM(TyLamβη) correspond to extensional type frames.

Example 2.20. An algebra of the first of the two relative monads T of Example 2.8 is a
pair (X,χ ∈

∫

Z((Z × S → X) → (Z × S → X)). As
∫

Z((Z × S → X) → (Z × S → X)) ∼=

(
∫ Z

(Z × S → X)× Z × S) → X ∼= (
∫ Z

(Z → XS)× (Z × S)) → X ∼= XS × S → X, this is

the same as to give a pair (X,x ∈ XS × S → X).
The algebras of the state monad T ′X =df (X × S)S are pairs (X,x ∈ (X × S)S → X).

We can see that the two EM categories are not equivalent.

2.4. Kleisli and Eilenberg-Moore constructions and restriction. What is the rela-
tionship between the Kleisli and Eilenberg-Moore constructions of some given monad T on
C and the relative monad T ♭ on J?

There is a functor D ∈ Kl(T ♭) → Kl(T) defined as follows:

• for any X ∈ |J|, DX =df J X,
• for any X,Y ∈ |J|, k ∈ C(J X, T (J Y)), Dk =df k

No assumptions are needed to prove that D preserves the identities and composition of
Kl(T ♭).

Let L,R be the Kleisli adjunction of T , which is given by LX=dfX,L f=dfη◦f,RX=df

T X,R k =df k
∗.

MONADS NEED NOT BE ENDOFUNCTORS 11

The relative Kleisli adjunction of T ♭ is given by L′X =df X,L
′ f =df η

♭ ◦ J f = η ◦

J f,R′X =df T
♭X = T (J X), R′ k =df k

(∗♭) = k∗.
We have D · L′ = L · J and R′ = R ·D. Moreover, the category Kl(T) together with

the functors L · J and R gives a splitting of T ♭: we have R · (L · J) = T · J and L · J is
relative left adjoint to R.

In general we can define no functor in the opposite direction Kl(T) → Kl(T ♭), for the
simple reason that this would require some canonical functor C → J and we have none
given.

There is also a functor E ∈ EM(T) → EM(T ♭) defined by

• for any (X,x) ∈ |EM(T)|, i.e., X ∈ |C|, x ∈ C(TX,X) meeting the EM-algebra condi-
tions, E(X,x)=df (X,χ) where for Z ∈ |J|, f ∈ C(JZ,X), χZ f=dfx◦T f ∈ C(T (JZ),X);

E(X,x) is a relative EM-algebra of T ♭ under no assumptions;
• for any h ∈ EM(T)((X,x), (Y, y)), i.e., h ∈ C(X,Y) meeting the EM-algebra morphism
conditions, E h=df h;
E h satisfies the relative EM-algebra conditions.

It is trivial that E preserves the identities and composition of EM(T).
Let F , U be the EM adjunction of T , which is given by F X =df (T X,µX), F f = T f ,

U (X,x) =df X, U h=df h.

The relative EM adjunction of T ♭ is given by F ′X=df (T (J X), (−)∗), F ′ f =df T (J f),
U ′ (X,χ) =df X, U ′ h=df h.

We have F ′ = E · (F · J) and U ′ ·E = U . Furthermore, the category EM(T) together

with the functors F · J and U gives a splitting for T ♭: we have U · (F · J) = T · J and F · J
is relative left adjoint to U .

In general, we cannot construct a functor EM(T ♭) → EM(T).
This situation is illustrated on the following diagram.

Kl(T) ..

R

��

EM(T)
E

U

��

Kl(T ♭)

D
66

R′

**❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
EM(T ♭)

U ′

yyrrr
rr
rr
rr
rr
r

J
J

//
L′

dd❏❏❏❏❏❏❏❏❏❏❏

F ′

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
C

L

WW

F

KK

3. Relative monads as skew-monoids in a skew-monoidal category

A monad on C is the same as a monoid in the endofunctor category [C,C]. This category has
a monoidal structure given by the identity functor I and composition of functors ·, which
are strictly unital and associative. A monad can be specified by an object T ∈ |[C,C]| and
maps η ∈ [C,C] (I, T) and µ ∈ [C,C] (T · T, T) satisfying the laws of a monoid in the strict
monoidal category ([C,C], I, ·).

Can we similarly define a relative monad on J ∈ J → C as a monoid in the functor
category [J,C]? This requires a monoidal structure on [J,C], ideally similar to that on
[C,C]. The functor J is a good candidate for the unit, but the tensor is problematic, as
functors J → C cannot be composed by simple functor composition. We shall use a left Kan

12 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

extension to overcome the difficulty and obtain a skew-monoidal structure where relative
monads are skew-monoids.

3.1. Left Kan extensions. Left Kan extensions are one of the two canonical constructions
for extending functors. The left Kan extension along J ∈ J → C extends functors J → D

to functors C → D.
D

J

F 55

J // C

LanJ Fii

It is defined as the left adjoint (if it exists) of the restriction functor − · J ∈ [C,D] → [J,D].
i.e., it is given by a functor LanJ ∈ [J,D] → [C,D] and a natural isomorphism

[J,D] (F,G · J) ∼= [C,D] (LanJ F,G)

While it is possible to work directly with this definition of left Kan extension, we use
an alternative definition, based on the coend formula

LanJ F X ∼=

∫ Y ∈|J|

C (J Y,X) • F Y

Accordingly, we take a left Kan extension of a functor F ∈ J → D along J ∈ J → C to be
given by

• an object function LanJ F ∈ |C| → |D|,
• for any X ∈ |C|, a natural transformation
ιF,X ∈ [Jop,Set] (C (J −,X),D (F −,LanJ F X)),

• for any X ∈ |C|, Y ∈ |D| and θ ∈ [Jop,Set] (C (J −,X),D (F −, Y)), a map [θ] ∈
D (LanJ F X, Y).

satisfying the conditions [θ] ◦ ι g = θ g, [ι] = id and f ◦ [θ] = [λg.f ◦ θ g].
Left Kan extensions LanJ F X are functorial in both arguments F and X, i.e., LanJ ∈

[J,D] → [C,D]. For any F ∈ |[J,D]|, X,Y ∈ |C|, f ∈ C (X,Y),

LanJ F f ∈ D (LanJ F X,LanJ F Y)
LanJ F f =df [λg. ι (f ◦ g)]

And for any F,G ∈ |[J,D]|, τ ∈ [J,D] (F,G), X ∈ |C|, we have

(LanJ τ)X ∈ D (LanJ F X,LanJ GX)
(LanJ τ)X =df [λg. ι g ◦ τ]

In general LanJ ∈ [J,D] → [C,D] exists, if J is small and D is cocomplete.

3.2. [J,C] is skew-monoidal. If LanJ ∈ [J,C] → [C,C] exists, we can turn any functor
F ∈ |[J,C]| into one in |[C,C]|. Hence we can define a composition-like operation

(·J) ∈ |[J,C]| × |[J,C]| → |[J,C]|
F ·J G=df LanJ F · G

MONADS NEED NOT BE ENDOFUNCTORS 13

This is our candidate for the tensor on [J,C]. We also need the unital and associative laws.
We define several families of maps indexed by X ∈ |C|:

λX ∈ C (LanJ J X,X)
λX =df [λg. g]
(αF,G)X ∈ C (LanJ (F ·G)X,F (LanJ GX))
(αF,G)X =df [λg. F (ι g)]
(αF,G)X ∈ C (LanJ (LanJ F ·G)X,LanJ F (LanJ GX))
(αF,G)X =df (αLanJF,G)X = [λg. [λg′. ι (ι g ◦ g′)]]

All these families are natural in X, hence maps in |[C,C]|.
From these we further define our candidate unital and associative laws.

ρF ∈ [J,C] (F,F ·J J)
ρF =df ι id
λF ∈ [J,C] (J ·J F,F)
λF =df λ · F
αF,G,H ∈ [J,C] ((F ·J G) ·J H,F ·J (G ·J H))
αF,G,H =df αF,G ·H

It turns out that the data so defined provide a structure that is almost monoidal, but
not quite. It is skew-monoidal in the sense of Szlachányi [33]: while λ, ρ, α are generally
not isomorphisms, they meet appropriate coherence conditions, namely the conditions (a)–
(e) below. Importantly, in contrast to the properly monoidal case, all five conditions are
necessary: the conditions (a), (c), (d) do not follow from (b) and (e).

In the next section we will identify conditions on J that enable us to construct the
inverses, making the skew-monoidal structure properly monoidal.

Theorem 3.1. If LanJ ∈ [J,C] → [C,C] exists, then ([J,C], J, ·J , λ, ρ, α) is a skew-monoidal
category, i.e., ·J is functorial, λ, ρ, α are natural and the following diagrams commute:

(a) J ·J J
λJ

��✾
✾✾

✾✾

J

ρJ
BB✆✆✆✆✆

J

(b) (F ·J J) ·J G
αF,J,G// F ·J (J ·J G)

F ·JλG��
F ·J G

ρF ·JG

OO

F ·J G

(c) (J ·J F) ·J G

λF ·JG %%❏❏
❏❏

❏❏
❏

αJ,F,G // J ·J (F ·J G)

λ
F ·JG

yyttt
tt
tt

F ·J G

(d) (F ·J G) ·J J
αF,G,J // F ·J (G ·J J)

F ·J G
ρ
F ·JG

ee❏❏❏❏❏❏❏
F ·JρG

99ttttttt

(e) (F ·J (G ·J H)) ·J K
α
F,G·JH,K // F ·J ((G ·J H) ·J K)

F ·JαG,H,K��
((F ·J G) ·J H) ·J K

αF,G,H ·JK

OO

α
F ·JG,H,K// (F ·J G) ·J (H ·J K)

α
F,G,H·JK// F ·J (G ·J (H ·J K))

Proof. The required properties follow from the definitions of the functorial actions of LanJ
in both of its arguments, λ, ρ, α, and the laws of LanJ by easy calculations.

14 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

We prove generalizations of properties (b), (c), and (e):

(b’) LanJ(F ·J J)
αF,J // F ·J LanJJ

LanJF λ��
LanJF

LanJρF

OO

LanJF

(c’) LanJ(J ·J F)

LanJλF %%❑❑
❑❑

❑❑
❑

αJ,F // J ·J LanJF

λ·LanJFzz✉✉✉
✉✉
✉✉
✉

LanJF

(e’) LanJ(F ·J (G ·J H))
α
F,G·JH // F ·J (LanJ(G ·J H))

F ·JαG,H��
LanJ((F ·J G) ·J H)

LanJαF,G,H

OO

α
F ·JG,H // (F ·J G) ·J LanJH

αF,G,LanJH// F ·J (G ·J LanJH)

(b), (c) and (e) follow from (b’), (c’) and (e’) as simple instances.
We skip the proofs of functoriality of ·J and naturality of λ, ρ and α. The calculations

for the other five laws are as follows:
(a)

(λJ)X ◦ (ρJ)X = [λg. g] ◦ ι id

= idJ X

(b’)

LanJ F λX ◦ (αF,J)X ◦ (LanJ ρF)X

= LanJ F λX ◦ (αF,G)X ◦ [λg. ι g ◦ ι id]

= LanJ F λX ◦ [λg. (αF,J)X ◦ ι g ◦ ι id]

= LanJ F λX ◦ [λg. [λg. [λg′. ι (ι g ◦ g′)]] ◦ ι g ◦ ι id]

= LanJ F λX ◦ [λg. [λg′. ι (ι g ◦ g′)] ◦ ι id]

= LanJ F λX ◦ [λg. ι (ι g)]

= [λg.LanJ F λX ◦ ι (ι g)]

= [λg. [λg. ι([λg′. g′] ◦ g)] ◦ ι (ι g)]

= [λg. ι ([λg′. g′] ◦ ι g)]

= [λg. ι g]

= idLanJ F X

(c’)

λLanJ F X ◦ (αJ,F)X = λLanJ F X ◦ [λg. [λg′. ι (ι g ◦ g′)]]

= [λg. λLanJ F X ◦ [λg′. ι (ι g ◦ g′)]]

= [λg. [λg′. λLanJ F X ◦ ι (ι g ◦ g′)]]

= [λg. [λg′. [λg′′. g′′] ◦ ι (ι g ◦ g′)]]

= [λg. [λg′. ι g ◦ g′]]

= [λg. ι g ◦ [λg′. g′]]

= (LanJ λF)X

MONADS NEED NOT BE ENDOFUNCTORS 15

(d)

(αF,G,J)X ◦ (ρLanJ F ·G)X = [λg. [λg′. ι (ι g ◦ g′)]] ◦ ι id

= [λg′. ι (ι id ◦ g′)]

= [λg′. ι ((ρG)X ◦ g′)]

= (LanJ F ρG)X

(e’)

LanJ F (αG,H)X ◦ (αF,LanJ G·H)X ◦ (LanJ αF,G,H)X

= LanJ F (αG,H)X ◦ (αF,LanJ G·H)X ◦ [λg. ι g ◦ [λg′. [λg′′. ι (ι g′ ◦ g′′)]]]

= LanJ F (αG,H)X ◦ [λg. (αF,LanJ G·H)X ◦ ι g ◦ [λg′. [λg′′. ι (ι g′ ◦ g′′)]]]

= LanJ F (αG,H)X ◦ [λg. [λg. [λg′. ι (ι g ◦ g′)]] ◦ ι g ◦ [λg′. [λg′′. ι (ι g′ ◦ g′′)]]]

= LanJ F (αG,H)X ◦ [λg. [λg′. ι (ι g ◦ g′)] ◦ [λg′. [λg′′. ι (ι g′ ◦ g′′)]]]

= LanJ F (αG,H)X ◦ [λg. [λg′. [λg′′. [λg′. ι (ι g ◦ g′)] ◦ ι (ι g′ ◦ g′′)]]]

= LanJ F (αG,H)X ◦ [λg. [λg′. [λg′′. ι (ι g ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′.LanJ F (αG,H)X ◦ ι (ι g ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′. [λg. ι ((αG,H)X ◦ g)] ◦ ι (ι g ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′. ι ((αG,H)X ◦ ι g ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′. ι ([λg. [λg′. ι (ι g ◦ g′)]] ◦ ι g ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′. ι ([λg′. ι (ι g ◦ g′)] ◦ ι g′ ◦ g′′)]]]

= [λg. [λg′. [λg′′. ι (ι (ι g ◦ g′) ◦ g′′)]]]

= [λg. [λg′. [λg. [λg′′. ι (ι g ◦ g′′)]] ◦ ι (ι g ◦ g′)]]

= [λg. [λg′. (αF,G)LanJ HX ◦ ι (ι g ◦ g′)]]

= (αF,G)LanJ H X ◦ [λg. [λg′. ι (ι g ◦ g′)]]

= (αF,G)LanJ H X ◦ (αLanJ F ·G,H)X

Example 3.2. The functor category [J,C] is skew-monoidal, but not monoidal, for J=dfSet,
C=df Set, J X =df X × S.

In this case, we have LanJ F X ∼=
∫ Y

((Y × S → X)×F Y) ∼=
∫ Y

((Y → XS)×F Y) ∼=
F (XS).

Accordingly, (ρF)X ∈ F X → LanJ F (J X) is given by (ρX)F =df F coevalX ∈ F X →
F ((X × S)S), λX ∈ LanJ J X → X is given by λX =df evalX ∈ XS × S → X. It is clear
that ρ and λ are not isomorphisms in this case.

The map (αF,G)X ∈ LanJ (F · G)X → F (LanJ GX) however is given by the identity
on F (G (XS)) and is therefore trivially an isomorphism.

Example 3.3. For J=df Set, C=df Set, J X =df X +E, the functor category [J,C] is also
skew-monoidal. But in this case, even the associativity law α fails to be an isomorphism.

We have LanJ F X ∼=
∫ Y

((Y + E → X)× F Y) ∼=
∫ Y

((Y → X)× (E → X) × F Y) ∼=
F X ×XE .

Accordingly, ρ, λ, α are the canonical natural transformations with components (ρF)X ∈
F X → F (X + E) × (X + E)E , λX ∈ (X + E) × XE → X, (αF,G)X ∈ F (GX) ×XE →

F (GX ×XE). None of these has an inverse.

16 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

3.3. Relative monads are the same as skew-monoids in [J,C]. With a skew-monoidal
structure present on the functor category [J,C], we should expect that relative monads on
J are the same thing as skew-monoids in this structure, generalizing the case of ordinary
monads on C and the strict monoidal structure on the endofunctor category [C,C]. This is
indeed the case.

Theorem 3.4. Assume that LanJ ∈ [J,C] → [C,C] exists.

(1) Given a relative monad (T, η, (−)∗) on J , define, for any X ∈ |J|, a map µX ∈
C (LanJ T (T X), T X) by µX =df [(−)∗]. This is well-defined, since (−)∗ is natural:
(−)∗ ∈ [Jop,Set] (C (J −, T X),C (T −, T X)).

Then (T, η, µ) is a skew-monoid in the skew-monoidal category ([J,C], J, ·J , λ, ρ, α):
we have that T ∈ |[J,C]|, η ∈ [J,C] (J, T) and µ ∈ [J,C] (T ·J T, T), and the following
diagrams commute in [J,C]:

T ·J J
T ·Jη // T ·J T

µ

��

T

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

PP
PP

ρT

OO

T

J ·J T
λT //

η·JT

��

T

✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱

✱
✱
✱
✱
✱
✱
✱
✱
✱
✱
✱

T ·J T
µ // T

T ·J (T ·J T)
T ·Jµ// T ·J T

µ

��

(T ·J T) ·J T

αT,T,T 66♥♥♥♥♥♥♥

µ·JT ��
T ·J T

µ // T

(2) Given a skew-monoid (T, η, µ) in ([J,C], J, ·J , λ, ρ, α), define, for any X,Y ∈ |J|, a
function (−)∗ ∈ C (J X, T Y) → C (T X, T Y) by k∗ =df µY ◦ ι k. Then (T, η, (−)∗) is a
relative monad on J .

(3) The above correspondence is bijective.

Proof.

(1) The required properties follow from the definitions of µ and the functorial action of
LanJ and from T being a relative monad by the laws of LanJ alone.

For naturality of µ, we easily verify that, for any f ∈ J (X,Y),

T f ◦ µX = T f ◦ [λg. g∗]

= [λg. T f ◦ g∗]

= { by naturality of (−)∗ }

[λg. (T f ◦ g)∗]

= [λg. [λg. g∗] ◦ ι (T f ◦ g)]

= [λg. g∗] ◦ [λg. ι (T f ◦ g)]

= µY ◦ LanJ T (T f)

The right unital law of T as a monoid is verified by

µX ◦ (LanJ η)T X = [λg. g∗] ◦ [λg. ι g ◦ η]

= [λg. [λg. g∗] ◦ ι g ◦ η]

= [λg. g∗ ◦ η]

= { by right unital law of T as a relative monad }

[λg. g]

= λT,X

MONADS NEED NOT BE ENDOFUNCTORS 17

The left unital law of T as a monoid is checked by

µX ◦ LanJ T ηX ◦ (ρT)X = [λg. g∗] ◦ [λg. ι (ηX ◦ g)] ◦ (ρT)X

= [λg. [λg. g∗] ◦ ι (ηX ◦ g)] ◦ (ρT)X

= [λg. (ηX ◦ g)∗] ◦ (ρT)X

= [λg. (ηX ◦ g)∗] ◦ ι idJ X

= (ηX ◦ idJ X)∗

= { by left unital law of T as a relative monad }

idT X

The associativity of T as a monoid is verified by

µX ◦ LanJ T µX ◦ (αT,T,T)X = [λg. g∗] ◦ [λg. ι (µX ◦ g)] ◦ (αT,T,T)X

= [λg. [λg. g∗] ◦ ι (µX ◦ g)] ◦ (αT,T,T)X

= [λg. (µX ◦ g)∗] ◦ (αT,T,T)X

= [λg. (µX ◦ g)∗] ◦ [λg. [λg′. ι (ι g ◦ g′)]]

= [λg. [λg. (µX ◦ g)∗] ◦ [λg′. ι (ι g ◦ g′)]]

= [λg. [λg′. [λg. (µX ◦ g)∗] ◦ ι (ι g ◦ g′)]]

= [λg. [λg′. (µX ◦ ι g ◦ g′)∗]]

= [λg. [λg′. ([λg. g∗] ◦ ι g ◦ g′)∗]]

= [λg. [λg′. (g∗ ◦ g′)∗]]

= { by associative law of T as a relative monad }

[λg. [λg′. g∗ ◦ g′∗]]

= [λg. g∗ ◦ [λg′. g′∗]]

= [λg. g∗ ◦ µ]

= [λg. [λg. g∗] ◦ ι g ◦ µ]

= [λg. g∗] ◦ [λg. ι g ◦ µ]

= µX ◦ (LanJ µ)T X

(2) The claim follows from the definitions of (−)∗ and the functorial action of LanJ and
from T being a skew-monoid by the laws of LanJ .

(3) The claim follows from the definitions of µ and (−)∗ from each other and the laws of
LanJ .

The bijective correspondence between relative monads on J and skew-monoids in [J,C]
extends to an isomorphism of categories.

Theorem 3.5. Assume that LanJ ∈ [J,C] → [C,C] exists.

(1) A morphism σ between relative monads (T, η, (−)∗) and (T ′, η′, (−)∗
′
) is a morphism

between the corresponding skew-monoids (T, η, µ) and (T, η′, µ′): we have that σ ∈

18 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

[J,C](T, T ′) and the following diagrams commute in [J,C]:

T

σ

��

J

η
77♥♥♥♥♥♥♥♥♥

η′ ''❖❖
❖❖❖

❖❖❖
❖

T ′

T ·J T
µ //

σ·Jσ

��

T

σ

��
T ′ ·J T ′ µ′

// T ′

(2) A morphism σ between skew-monoids (T, η, µ) and (T ′, η′, µ′) is also a morphism be-

tween the corresponding relative monads (T, η, (−)∗) and (T, η′, (−)∗
′
).

(3) The above correspondence is an isomorphism of the categories of relative monads on J
and skew-monoids in the skew-monoidal category ([J,C], J, ·J , λ, ρ, α).

Proof.

(1) We have already observed that σ is natural. The unit preservation law for σ as a skew-
monoid morphism is the same as the unit preservation law of σ as a relative monad
morphism.

The multiplication preservation law of σ as a skew-monoid morphism follows from
the definitions of µ, µ′ from (−)∗, (−)∗

′
and Kleisli extension preservation of σ as a

relative monad morphism by the laws of LanJ :

µ′X ◦ (LanJ σ)T ′ X ◦ LanJ T σX

= µ′X ◦ (LanJ σ)T ′ X ◦ [λg. ι (σX ◦ g)]

= µ′X ◦ [λg. (LanJ σ)T ′ X ◦ ι (σX ◦ g)]

= µ′X ◦ [λg. [λg. ι g ◦ σ] ◦ ι (σX ◦ g)]

= µ′X ◦ [λg. ι (σX ◦ g) ◦ σ]

= [λg. µ′X ◦ ι (σX ◦ g) ◦ σ]

= [λg. [λg. g∗
′

] ◦ ι (σX ◦ g) ◦ σ]

= [λg. (σX ◦ g)∗
′

◦ σ]

= { by Kl. ext. pres. law of σ as rel. mon. morphism }

[λg. σX ◦ g∗]

= σX ◦ [λg. g∗]

= σX ◦ µX

(2) The claim follows from the definitions of (−)∗, (−)∗
′
from µ, µ′, the unit and multipli-

cation preservation of σ as a skew-monoid morphism and the laws of LanJ .
(3) The claim follows from the mutual definitions of µ, µ′ from (−)∗, (−)∗

′
by the laws of

LanJ .

We have seen that, in the presence of LanJ , relative monads can be defined equivalently
in the Kleisli extension and multiplication based formats. Restriction (−)♭ is defined for

multiplication as follows. Given a monad (T, η, µ), with µ ∈ [C,C](T · T, T), we set µ♭ =df

LanJ (T · J) · T · J
αT,J ·T ·J

// T · LanJ J · T · J
T ·λ·T ·J// T · T · J

µ·J // T · J

MONADS NEED NOT BE ENDOFUNCTORS 19

3.4. An equivalent version of EM-algebras. Just as the availability of LanJ ∈ [J,C] →
[C,C] allows us to define relative monads based on µ rather than (−)∗, it also facilitates a
more traditional-style definition of EM-algebras.

Definition 3.6. If LanJ ∈ [J,C] → [C,C] exists, an EM-algebraalt of a relative monad T
on J is given by an object X ∈ |C| and a map x ∈ C (LanJ T X,X), making the following
diagrams commute in C:

LanJ J X
λX //

(LanJ η)X

��

X

✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲
✲

LanJ T X
x // X

LanJ T (LanJ T X)
LanJ T x// LanJ T X

x

��

LanJ (LanJ T · T)X

(αT,T)X 44✐✐✐✐✐✐✐✐✐✐✐✐

(LanJ µ)X ��
LanJ T X

x // X

An EM-algebrasalt map between (X,x), (Y, y) is a map h ∈ C (X,Y), making the following
diagram commute in C:

LanJ T X
LanJ T h //

x

��

LanJ T Y

x

��
X

h // Y

EM-algebra alt and EM-algebraalt maps of T form a category EMalt(T) that inherits
its identities and composition from C.

Theorem 3.7. Assume that LanJ ∈ [J,C] → [C,C] exists. Consider a relative monad T
on J .

(1) An EM-algebra (X,χ) gives rise to an EM-algebraalt (X, [χ]).
(2) An EM-algebraalt (X,x) gives rise to an EM-algebra (X,λg. x ◦ ι g).
(3) This correspondence is a bijection.
(4) An EM-algebra map h between (X,χ), (Y, ψ) is also an EM-algebraalt map between

(X, [χ]), (Y, [ψ]).
(5) An EM-algebraalt map h between (X,x), (Y, y) is also an EM-algebra map between

(X,λg. x ◦ ι g), (Y, λg. y ◦ ι g).
(6) The categories EM(T) and EMalt(T) are isomorphic.

Proof. We only prove (1) and (4).

(1) The two EMalt-algebra laws of (X, [χ]) are obtained from the definitions of λ, µ and the
laws of LanJ with the help of the corresponding EM-algebra laws of (X,χ) as follows:

[χ] ◦ (LanJ η)X = [χ] ◦ [λg. ι g ◦ η]

= [λg. [χ] ◦ ι g ◦ η]

= [λg. χ g ◦ η]

= { by 1st EM-algebra law }

[λg. g]

= λX

20 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

[χ] ◦ (LanJ µ)X = [χ] ◦ [λg. ι g ◦ µ]

= [λg. [χ] ◦ ι g ◦ µ]

= [λg. χ g ◦ µ]

= [λg. χ g ◦ [λg′. g′∗]]

= [λg. [λg′. χ g ◦ g′∗]]

= { by 2nd EM-algebra law }

[λg. [λg′. χ (χ g ◦ g′)]]

= [λg. [λg′. [χ] ◦ ι (χ g ◦ g′)]]

= [λg. [χ] ◦ [λg′. ι (χ g ◦ g′)]]

= [χ] ◦ [λg. [λg′. ι (χ g ◦ g′)]]

= [χ] ◦ [λg. [λg′. ι ([χ] ◦ ι g ◦ g′)]]

= [χ] ◦ [λg. [λg′. [λg. ι ([χ] ◦ g)] ◦ ι (ι g ◦ g′)]]

= [χ] ◦ [λg. [λg′.LanJ T [χ] ◦ ι (ι g ◦ g′)]]

= [χ] ◦ [λg.LanJ T [χ] ◦ [λg′. ι (ι g ◦ g′)]]

= [χ] ◦ LanJ T [χ] ◦ [λg. [λg′. ι (ι g ◦ g′)]]

= [χ] ◦ LanJ T [χ] ◦ (αT,T)X

(4) The EMalt-algebra map law of h is obtained from the laws of LanJ with the help of the
EM-algebra map law of of h as follows:

h ◦ [χ] = [λg. h ◦ χ g]

= { by EM-algebra morphism law }

[λg. υ (h ◦ g)]

= [λg. [υ] ◦ ι (h ◦ g)]

= [υ] ◦ [λg. ι (h ◦ g)]

= [υ] ◦ LanJ T h

4. Well-behaved relative monads

It is somewhat unsatisfactory to obtain that [J,C] is just skew-monoidal, rather than prop-
erly monoidal. This begs the question: would some conditions on J ensure a properly
monoidal structure? The answer is yes. Mild conditions turn the skew-monoidal structure
of [J,C] into properly monoidal. What is more, the same conditions also allow relative
monads on J to extend to monads on C.

4.1. Well-behavedness conditions. We define three well-behavedness conditions on J .
They are additional to the existence of LanJ ∈ [J,C] → [C,C] and require the constituent
maps of three canonical families, which are actually natural, to be isomorphisms.

Definition 4.1. J ∈ J → C is well-behaved, if not only does LanJ ∈ [J,C] → [C,C] exist,
but also the following three conditions hold:

MONADS NEED NOT BE ENDOFUNCTORS 21

(1) J is fully faithful, i.e., for any X,Y ∈ |J|, there is an inverse to the map

JX,Y ∈ J (X,Y) → C (J X, J Y)
JX,Y f =df J f

(2) J is dense, i.e., for any X,Y ∈ |C|, there is an inverse to the map

KX,Y ∈ C (X,Y) → [Jop,Set] (C (J −,X),C (J −, Y))
KX,Y f =df λg. f ◦ g

This is the same as to say that the associated nerve functor K ∈ C → [Jop,Set], defined
by KX =df C (J −,X), is fully faithful.

(3) For any F ∈ J → C, X ∈ |J|, Y ∈ |C|, there is an inverse to the map

LF
X,Y ∈ LanJ (C (J X,F−))Y → C (J X,LanJ F Y)

LF
X,Y =df [λg. λg

′. ι g ◦ g′]

This condition says that the nerve functor K preserves left Kan extensions of functors
F ∈ J → C along J .

The functors Jf ∈ Fin → Set and JU ∈ U → Set we have considered in our examples 1.1,
2.4 resp. 2.6 turn out to be well-behaved. This is a consequence of a general construction.

Let U ∈ |Set| and El ∈ U → |Set| be a type-theoretic universe (as in Example 2.6). As
we already explained above, U and El define a category U by |U| =df U and U (A,B) =df

ElA → ElB and a functor JU ∈ U → Set by JUA =df ElA on objects and JU f =df f
on maps. In order for JU to be well-behaved, it suffices that the universe has dependent
products, i.e., that we have

one ∈ U

σ ∈ ΠA ∈ U. (ElA→ U) → U

such that

El one = 1

El (σ AB) = Σa ∈ ElA.El (B a)

To prove this, we exploit the fact that (small) coends in Set can be constructed explicitly.
Given any small category J and functors J, F ∈ J → Set, for any X ∈ |Set|, we have

LanJ F X =

∫ Z∈|J|

Set (J Z,X) • F Z

∼= (ΣZ ∈ |J|. (J Z → X)× F Z)/∼X

where ∼X is the least equivalence relation containing (Z, g ◦J h, x) ∼X (W, g, F hx) for any
g ∈ J W → X,x ∈ F Z, h ∈ J (Z,W). We can derive a specialized definition of L in this
case:

LF
X,Y ∈ LanJ (J X → F −)Y → (J X → LanJ F Y)

LF
X,Y (Z, g, k) =df λx. (Z, g, k x)

We omit the verification that the equivalence is preserved in the definition of LF
X,Y .

We can now show that inverses to J , K, L exist and hence JU is well-behaved.

Theorem 4.2. For any type-theoretic universe closed under dependent products, the functor
J =df JU ∈ U → Set is well-behaved:

22 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

(1) For any A,B ∈ |U|, JA,B has an inverse

JA,B
−1 ∈ (ElA→ ElB) → (ElA→ ElB)

(2) For any X,Y ∈ |Set|, KX,Y has an inverse

KX,Y
−1 ∈ (

∫

C∈|U|
(ElC → X) → (ElC → Y)) → (X → Y)

(3) For any F ∈ U → Set, A ∈ |U|, Y ∈ |Set|, LF
A,Y has an inverse

LF
A,Y

−1
∈ (ElA→ LanJ F Y) → LanJ (ElA→ F −)Y

Proof.

(1) This is obvious, since JA,B f = J f = f .

(2) Given τ ∈
∫

C∈|U|(ElC → X) → (ElC → Y), we can construct K−1
X,Y τ ∈ X → Y as

KX,Y
−1 τ =df λx. τ (λz. x) ∗

where ∗ is the unique element of El one = 1. We verify that this is indeed the inverse:

KX,Y
−1 (KX,Y f) = KX,Y

−1 (λg. f ◦ g)

= λx. (f ◦ (λz. x)) ∗

= λx. f ((λz. x) ∗)

= λx. f x

= f

KX,Y (K−1
X,Y τ) = KX,Y (λx′. τ (λz. x′) ∗)

= λg. (λx′. τ (λz. x′) ∗) ◦ g

= λg. λx. (λx′. τ (λz. x′) ∗) (g x)

= λg. λx. τ (λz. g x) ∗

= λg. λx. τ (g ◦ (λz. x)) ∗

= { by naturality of τ }

λg. λx. (τ g ◦ (λz. x)) ∗

= λg. λx. τ g ((λz. x) ∗)

= λg. λx. τ g x

= τ

(3) Given f ∈ ElA→ LanJ F Y = ElA→ ΣC : U. (ElC → Y)×F C, we define LF
A,Y

−1
f ∈

LanJ (ElA→ F −)Y = ΣC : U. (ElC → Y)× (ElA→ F Y) by

LF
A,Y

−1
f =df (σ Af0, λ(a, c). f10 a c, λa. F (λc. (a, c)) (f11 a))

where f0 ∈ ElA → U, f10 ∈ Πa ∈ ElA.El (f0 a) → Y and f11 ∈ Πa ∈ ElA.F (f0 a) are
defined by f0 =df π0 ◦ f , f10 =df π0 ◦ π1 ◦ f , f11 =df π1 ◦ π1 ◦ f .

We omit the verification that the equivalence relations are preserved. We show that

LF
A,Y

−1
is indeed the inverse of LF

A,Y . To prove that it is a left inverse:

MONADS NEED NOT BE ENDOFUNCTORS 23

LF
A,Y

−1
(LF

A,Y (C, g, k)) = LF
A,Y

−1
(λa. (C, g, k a))

= (σ A (λa.C), λ(a, c). g c, λa. F (λc. (a, c)) (k a))

= {(∗)}

(C, g, k)

To establish (*), we use π1 ∈ El (σ A (λa.C)) → ElC, noting that

(λ(a, c).f c) = f ◦ π1

and

(ElA→ F π1) (λa. F (λc. (a, c)) (k a))

= λa. (F π1 ◦ F (λc. (a, c))) (k a)

= λa. F id (k a)

= λa. k a

= k

For the other direction:

LF
A,Y (LF

A,Y
−1
f) = LF

A,Y (σ Af0, λ(a, c). f10 a c, λa. F (λc. (a, c)) (f11 a))

= λa. (σ Af0, λ(a, c). f10 a c, F (λc. (a, c)) (f11 a))

= {(∗)}

λa. (f0 a, f10 a, f11 a)

= f

To justify (*), we exploit, for any a ∈ ElA, the function λc. (a, c) ∈ El (f0 a) →
El (σ Af0).

Corollary 4.3. The functor Jf ∈ Fin → Set is well-behaved.

Proof. Choose U=df N and Eln=df n. Clearly this universe contains 1 and is closed under
Σ.

From the well-behavedness of Jf , it follows that [Fin,Set] is monoidal and Lam is a
monoid. These facts were proved by Fiore et al. [14].

Our theorem is not general enough to show that Jt ∈ Fin ↓ Ty → [Ty,Set] from
Example 2.5 is well-behaved, but it ought to be possible to generalize the construction
beyond the case of C = Set.

4.2. [J,C] is monoidal. Our well-behavedness conditions suffice to ensure that the unital
and associativity laws of the skew-monoidal structure on [J,C] are isomorphisms. Specifi-
cally, the existence of inverses of J,K,L ensures that ρ, λ, α (and consequently also λ, α)
have inverses too.

Theorem 4.4. If J ∈ J → C is well-behaved, then the category ([J,C], J, ·J , λ, ρ, α) is
monoidal.

Proof. To show that this category is monoidal, it suffices to show that ρ, λ, α have inverses.

24 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

(1) We define, for any F ∈ J → C, X ∈ |J|,

(ρ−1
F)X ∈ C (LanJ F (J X), F X)

(ρ−1
F)X =df [λg. F (J−1 g)]

We get

(ρ−1
F)X ◦ (ρF)X = [λg. F (J−1 g)] ◦ ιF,J X idJ X

= F (J−1 idJ X)

= F (J−1 (J idX))

= F idX

= idF X

and

(ρF)X ◦ (ρ−1
F)X = ιF,J X idJ X ◦ [λg. F (J−1 g)]

= [λg. ιF,J X idJ X ◦ F (J−1 g)]

= { by naturality of ιF,J X }

[λg. ιF,J X (J (J−1 g))]

= [ιF,J X]

= idLanJ F (J X)

by the definitions of ρF , ρ
−1
F , the laws of LanJ and J−1 being inverse to J .

(2) We define, for any F ∈ J → C, X ∈ |J|,

λ̄−1
X ∈ C (X,LanJ J X)

λ̄−1
X =df K

−1 ιJ,X

This gives

λ̄−1
X ◦ λX = K−1 ιJ,F X ◦ [λg. g]

= [λg.K−1 ιJ,X ◦ g]

= [K (K−1 ιJ,X)]

= [ιJ,X]

= idLanJ J X

and

λX ◦ λ̄−1
X = [λg. g] ◦K−1 ιJ,X

= { by naturality of K−1 }

K−1 (λg. [λg. g] ◦ ιJ,X g)

= K−1 (λg. g)

= K−1 (K idX)

= idX

by the definitions of λ, λ̄−1, K, the laws of LanJ and K−1 being inverse to K.
(3) We define, for any F,G ∈ J → C, X ∈ |J|,

(ᾱ−1
F,G)X ∈ C (LanJ F (LanJ GX),LanJ (LanJ F ·G)X)

(ᾱ−1
F,G)X =df [λg. [λg. λg

′. ι g ◦ ι g′] (L−1 g)]

MONADS NEED NOT BE ENDOFUNCTORS 25

We first observe that

(αF,G)X = [λg. [λg′. ι (ι g ◦ g′)]]

= [λg. [λg′. ι ((λg′. ι g ◦ g′) g′)]]

= [λg. [λg′. ι (([λg. λg′. ι g ◦ g′] ◦ ι g) g′)]]

= [λg. [λg′. ι ([λg. λg′. ι g ◦ g′] (ι g g′)]]

= [λg. [λg′. ι (L (ι g g′)]]

by the definitions of αF,G, L and the laws of LanJ . This observation, together with the

definitions of ᾱ−1
F,G, the laws of LanJ and L−1 being inverse to L, allows us to verify

(ᾱ−1
F,G)X ◦ (αF,G)X = (ᾱ−1

F,G)X ◦ [λg. [λg′. ι (L (ι g g′)]]

= [λg. (ᾱ−1
F,G)X ◦ [λg′. ι (L (ι g g′)]]

= [λg. [λg′. (ᾱ−1
F,G)X ◦ ι (L (ι g g′)]]

= [λg. [λg′. [λg. [λg. λg′. ι g ◦ ι g′] (L−1 g)] ◦ ι (L (ι g g′)]]

= [λg. [λg′. [λg. λg′. ι g ◦ ι g′] (L−1 (L (ι g g′)))]]

= [λg. [λg′. [λg. λg′. ι g ◦ ι g′] (ι g g′)]]

= [λg. [λg′. ([λg. λg′. ι g ◦ ι g′] ◦ ι g)g′]]

= [λg. [λg′. (λg′. ι g ◦ ι g′)g′]]

= [λg. [λg′. ι g ◦ ι g′]]

= [λg. ι g ◦ [λg′. ι g′]]

= [λg. ι g]

= idLanJ (LanJ F ·G)X

and

(αF,G)X ◦ (ᾱ−1
F,G)X = (αF,G)X ◦ [λg. [λg. λg′. ι g ◦ ι g′] (L−1 g)]

= [λg. (αF,G)X ◦ [λg. λg′. ι g ◦ ι g′] (L−1 g)]

= { by definition of Y (Yoneda embedding) }

[Y (αF,G)X ◦ [λg. λg′. ι g ◦ ι g′] ◦ L−1]

= [[λg.Y (αF,G)X ◦ (λg′. ι g ◦ ι g′)] ◦ L−1]

= { by definition of Y }

[[λg. λg′. (αF,G)X ◦ ι g ◦ ι g′] ◦ L−1]

= [[λg. λg′. [λg. [λg′. ι (L (ι g g′)]] ◦ ι g ◦ ι g′] ◦ L−1]

= [[λg. λg′. [λg′. ι (L (ι g g′)] ◦ ι g′] ◦ L−1]

= [[λg. λg′. ι (L (ι g g′)] ◦ L−1]

= [[λg. ι ◦ L ◦ ι g] ◦ L−1]

= [ι ◦ L ◦ [ι] ◦ L−1]

= [ι ◦ L ◦ L−1]

= [ι]

= idLanJ F (LanJ GX)

26 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

As an immediate corollary, we get that, in the well-behaved case, relative monads are proper
monoids in a properly monoidal structure.

Corollary 4.5. If J ∈ J → C is well-behaved, then the category RMon(J) of rela-
tive monads on J is isomorphic to the category of monoids in the monoidal category
([J,C], J, ·J , λ, ρ, α).

4.3. Relative monads extend to monads. As a pleasant bonus, the well-behavedness
conditions also ensure that a relative monad extends to a monad. Crucial here is that, if J
is well-behaved, then λ and α are isomorphisms.

Theorem 4.6. Assume that J ∈ J → C is well-behaved.
A monoid (T, η, µ) in [J,C] (equivalently, a relative monad on J) extends to a monoid
(T ♯, η♯, µ♯) in [C,C] (equivalently, a monad on C), defined by

T ♯ =df LanJ T

η♯ =df I
λ̄−1

// LanJ J
LanJ η// LanJ T

µ♯ =df LanJ T · LanJ T
ᾱ−1
T,T // LanJ (LanJ T · T)

LanJ µ// LanJ T

Proof. We verify the three monad laws of T ♯ by the following diagrams using the respective
relative monad laws of T , the fact that ᾱ−1 is natural, and one the conditions (b’), (c’) and
(e’) in each case.

LanJ T
LanJ T ·λ̄−1

//

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

■■
■■

T ♯·η♯

**
LanJ T · LanJ η

LanJ T ·LanJ η
//

ᾱ−1
T,J

��

LanJ T · LanJ T

ᾱ−1
T,T

��

µ♯

{{

LanJ (LanJ T · J)
LanJ (LanJ T ·η)// LanJ (LanJ T · T)

LanJ µ

��

LanJ T

LanJ ρT

OO

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱❱❱

❱❱❱❱
❱❱

LanJ T

MONADS NEED NOT BE ENDOFUNCTORS 27

LanJ T

λ̄−1·LanJ T

�� ❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
❚

η♯·T ♯

!!

LanJ T · LanJ T

LanJ η·LanJ T

��

ᾱ−1
J,T

// LanJ (LanJ J · T)
LanJ λT

//

LanJ (η·LanJ T)

��

LanJ T

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

❁❁
❁❁

LanJ T · LanJ T
ᾱ−1
T,T //

µ♯

44LanJ (LanJ T · T)
LanJ µ // LanJ T

LanJ T · LanJ T · LanJ T
LanJ T ·ᾱ−1

T,T

//

ᾱ−1
T,T

·LanJ T

��

T ♯·µ♯

++

µ♯·T ♯

""

LanJ T · LanJ (LanJ T · T)
LanJ T ·LanJ µ

//

ᾱ−1
T,LanJ T ·T

��

LanJ T · LanJ T

ᾱ−1
T,T

��

µ♯

��

LanJ (LanJ T · LanJ T · T)
LanJ (LanJ T ·µ)

// LanJ (LanJ T · T)

LanJ µ

��

LanJ (LanJ T · T) · LanJ T

ᾱ−1
LanJ T ·T,T//

LanJ µ·LanJ T

��

LanJ (LanJ (LanJ T · T) · T)

LanJ αT,T,T

55❥❥❥❥❥❥❥❥❥❥❥❥❥❥❥

LanJ (LanJ µ·T)

��
LanJ T · LanJ T

ᾱ
−1
T,T //

µ♯

33LanJ (LanJ T · T)
LanJ µ // LanJ T

Similarly, relative monad morphisms extend to monad morphisms.

Theorem 4.7. Assume that J ∈ J → C is well-behaved.

(1) A morphism σ between relative monads T and T ′ on J extends to a morphism σ♯ between
monads T ♯ and T ′♯ on C via σ♯ =df LanJ σ.

(2) (−)♯ is functorial.

28 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

Proof.

(1) The monad morphism laws of σ♯ are verified by the following diagrams from the relative
monad morphism laws of σ and naturality of ᾱ−1.

LanJ T

LanJ σ

��

σ♯

��

I
λ̄−1

//

η♯ //

η′♯ //

LanJ J

LanJ η
66❧❧❧❧❧❧❧❧❧❧❧❧❧

LanJ η′ ((❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘

LanJ T
′

LanJ T · LanJ T
ᾱ−1
T,T //

LanJ σ·LanJ σ

��

σ♯·σ♯

��

µ♯

**
LanJ (LanJ T · T)

LanJ µ //

LanJ (LanJ σ·σ)

��

LanJ T

LanJ σ

��

σ♯

��
LanJ T

′ · LanJ T
′

ᾱ−1
T ′,T ′

//

µ′♯

44LanJ (LanJ T
′ · T ′)

LanJ µ′
// LanJ T

′

(2) Functoriality of (−)♯ is immediate from functoriality of LanJ ∈ [J,C] → [C,C], as
RMon(J) and Mon(C) inherit their identities and composition from the corresponding
functor categories [J,C] and [C,C].

We have learned that, in the well-behaved case, not only do monads restrict to relative
monads (by (−)♭), but relative monads extend to monads (by (−)♯). This relationship

turns out to be an adjunction: (−)♯ is left adjoint to (−)♭. Furthermore, the adjunction is
a coreflection, i.e., the unit is an isomorphism.

Theorem 4.8. Assume that J ∈ J → C is well-behaved. Then (−)♯ and (−)♭ form an
adjunction between RMon(J) and Mon(C). Moreover, this adjunction is a coreflection.

Proof. LanJ ∈ [J,C] → [C,C] is left adjoint to (−) · J ∈ [C,C] → [J,C] with ρT ∈ T →
LanJ T · J (which is an isomorphism) as the unit on T and

LanJ (T · J)
αT,J // T · LanJ J

T ·λ // T

as the counit.
Since the identities and composition of RMon(J) and Mon(C) are those of the functor

categories [J,C] and [C,C], we only need to verify the unit and counit are a relative monad
morphism and a monad morphism, respectively.

MONADS NEED NOT BE ENDOFUNCTORS 29

The relative monad morphism laws of ρT for a relative monad T are verified by the
following diagrams from naturality of ρ and the properties (a), (b), (d) from Theorem 3.1.

T

ρT

��

J

η

33❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤❤ ρJ

��

λ̄−1·J

$$❏❏
❏❏

❏❏
❏❏

❏❏

η♯·J

//
(η♯)♭ 11

LanJ J · J
LanJ η·J

''❖❖
❖❖

❖❖
❖❖

❖❖
❖

LanJ T · J

LanJ T · T
µ //

LanJ T ·ρT

��LanJ ρT ·ρT

""

ρLanJ T ·T

((◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
◗◗◗

◗◗◗
T

ρT

��

LanJ T · LanJ T · J

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯

LanJ ρT ·LanJ T ·J

��
LanJ (LanJ T · J) · LanJ T · J

αT,J ·LanJ T ·J

//

(µ♯)♭

44LanJ T · LanJ J · LanJ T · J
LanJ T ·λ·LanJ T ·J

// LanJ T · LanJ T · J

ᾱ−1
T,T

·J

//

µ♯·J

22LanJ (LanJ T · T) · J

LanJ µ·J

// LanJ T · J

The monad morphism laws of (T · λ) ◦ αT,J for a monad T are verified from naturality

of η resp. µ, naturality of λ and α, and from two elementary properties of α, namely that
αI,H = LanJ H and αF ·G,H = (LanJ F · αG,H) ◦ αF,G·H .

LanJ J

LanJ η♭
**

LanJ (η·J)

//

αI,J

yysss
ss
ss
ss
s

LanJ (T · J)

αT,J

��
LanJ J

η·LanJ J //

λ
{{①①
①①
①①
①①
①

T · LanJ J

T ·λ
��

I

λ̄−1 55

(η♭)♯

$$

η
// T

30 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

LanJ (T · J) · LanJ (T · J)

(µ♭)♯

((ᾱ−1
T ·J,T ·J

//

αT,J ·LanJ (T ·J)
��

LanJ (T ·J)·αT,J

))❚❚❚
❚❚❚

❚❚❚
❚❚❚

❚❚❚
LanJ (LanJ (T · J) · T · J)

LanJ µ♭

**

LanJ (αT,J ·T ·J)

//

αLanJ (T ·J)·T,J

��

LanJ (T · LanJ · T · J)
LanJ (T ·λ·T ·J)

// LanJ (T · T · J)
LanJ (µ·J)

// LanJ (T · J)

αT,J

��

T · LanJ J · LanJ (T · J)

T ·λ·LanJ (T ·J)

��

LanJ (T · J) · T · LanJ J

αT,J ·T ·LanJ J

��
T · LanJ (T · J)

T ·αT,J

��

T · LanJ J · T · LanJ J

T ·λ·T ·LanJ Jtt❥❥❥❥
❥❥❥

❥❥❥
❥❥❥

❥❥❥

T · T · LanJ J

T ·T ·λ

��

µ·LanJ J // T · LanJ J

T ·λ

��
T · T

µ // T

We see that, once the extension of relative monads to monads is definable (which takes
that J is well-behaved), it has very good properties and this happens because the adjunction
LanJ ⊣ − · J between [J,C] and [C,C]—the defining adjunction of LanJ— then lifts from
functors to (relative) monads.

Unlike the unit, the counit of this adjunction is generally not an isomorphism, so the
adjunction is not a reflection. For example, for C =df Set, J =df Fin, J =df Jf , the T -
component of the counit is an isomorphism if and only if the monad T is finitary. This is
important for us: the categories of monads on C and relative monads on J are generally
not equivalent.

Example 4.9. For the powerset monad P on Set, we have that P X is the powerset of a
set X, P♭X =df P (Jf X) is the powerset of a finite set X, and P♭#X =df LanJf P

#X is
the finitary powerset (the set of finite subsets) of a (possibly infinite) set X. The difference
between P and P♭# arises because P is not finitary.

Example 4.10. For the relative monad Vec on Jf , Vec
#X is the space of vectors over a

possibly infinite coordinate system X that may only have finitely many non-zero compo-
nents.

Example 4.11. For the relative monad Lam on Jf , we have that LamX is the set of λ-terms
over a finite, nameless context X and Lam#X is given by the set of λ-terms over a possibly
infinite, name-carrying context X. The functor Lam# is the carrier of the initial algebra of
the functor F ∈ [Set,Set] → [Set,Set] defined by F GX =df X +GX ×GX +G (1 +X).

For the relative monad Lam∞ the picture is different. Lam∞X is the set of non-

wellfounded λ-terms over a finite, nameless context, but Lam∞#X is the set of non-
wellfounded λ-terms using a finite number of variables from a possibly infinite, name-
carrying context. This differs from the non-finitary carrier of the final coalgebra of F ,
capturing general non-wellfounded λ-terms that may use infinitely many variables.

The special case where the T -component of the counit of (−)# ⊣ (−)♭ is an isomorphism

(i.e., (T ♭)♯ ∼= T) corresponds to the notion of monad with arities of Berger et al. [10]. A

MONADS NEED NOT BE ENDOFUNCTORS 31

monad on a category C with a dense subcategory J (included in C via J ∈ J → C) is a
monad with arities if (T ♭)♯ ∼= T and if the nerve functor K corresponding to J preserves

LanJ T
♭ (see [16]). We can see that Berger et al. work under our well-formedness conditions,

except that the third condition is only required of T ♭. In this situation, the associativity
law α of the skew-monoidal category [J,C] need not be an isomorphism, but the component
αT ♭,T ♭,T ♭ is.

4.4. Kleisli and Eilenberg-Moore constructions and extension. We now explore
the relationship between the Kleisli and Eilenberg-Moore constructions of a given relative
monad T on J and the monad T ♯ on C.

We assume that LanJ exists, that J is dense and satisfies the 3rd well-behavedness
condition (so that λ and α have inverses—only then is T ♯ defined) and optionally also that

J is fully-faithful (so that ρ has also an inverse and (T ♯)♭ ∼= T).
There is a functor D ∈ Kl(T) → Kl(T ♯) defined by

• for any X ∈ |J|, DX =df J X,

• for any X,Y ∈ |J|, k ∈ C(J X, T Y), Dk =df J X
k // T Y

(ρT)Y // LanJ T (J Y) .

To prove that D preserves the identities and composition of Kl(T), the laws of the monoidal
structure on [J,C] must be invoked.

Let L,R be the Kleisli relative adjunction of T , which is given by LX =df X, Lf =df

η ◦ J f , RX =df T X, Rk =df k
∗.

The Kleisli adjunction of T ♯ is given by L′X =df X, L′f =df η
♯ ◦ f =df LanJ η ◦ λ̄

−1 ◦ f ,

R′X =df T
♯X = LanJ T X, R′ k =df k

(∗♯) = µ♯ ◦ T ♯ k = LanJ µ ◦ ᾱ−1
T,T ◦ LanJ T k

We have D · L = L′ · J and R = R′ · D. As soon as J ∈ J → C is fully faithful (so
that ρ also has an inverse), D (whose action on objects is J) is fully faithful too. Moreover,
under the same condition, T splits through Kl(T ♯) via L′ · J and R′: we have R′ · (L′ · J) =
LanJ T · J ∼= T and L′ · J is relative left adjoint to R′.

No functor is generally definable in the opposite direction Kl(T ♯) → Kl(T).
There is a functor E ∈ EM(T ♯) → EM(T), given by

• for any (X,x) ∈ EM(T ♯), i.e., X ∈ |C|, x ∈ C(LanJTX,X), subject to EM-algebra
conditions, E (X,x) =df (X,χ) where, for Z ∈ |J|, g ∈ C(J Z,X), χZ g =df x ◦ ι g ∈
C(T Z,X); E (X,x) is a relative EM-algebra for T .

• for any h ∈ EM(T ♯)((X,x), (Y, y)), which is a map in C(X,Y) satisfying the EM-algebra
map conditions, E h=df h, satisfying the relative EM-algebra map conditions.

There is also a functor E−1 ∈ EM(T) → EM(T ♯) in the opposite direction, given by

• for any (X,χ) ∈ EM(T), i.e., X ∈ |C|, for any Z ∈ |J|, χ ∈ C(J Z,X) → C(T Z,X),
subject to the relative EM-algebra conditions, E−1 (X,χ) =df (X,x) where x = [χ] ∈
C(LanJ T X,X); E−1 (X,χ) is an EM-algebra for T ♯;

• for any h ∈ EM(T)((X,x), (Y, y)), which is a map in C(X,Y) satisfying the relative
EM-algebra map conditions, E−1 h=df h, which satisfies the EM-algebra map conditions.

That the identities and composition are preserved is trivial for both E and E−1.
E and E−1 are each other’s inverses, i.e., the EM-algebras of T ♯ and T are the same

thing: E−1 (E x) = [λg. x ◦ ι g] = x ◦ [ι] = x and E (E−1 χ) = λg. [χ] ◦ ι g = λg. χ g = χ.

32 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

We arrive at the following picture:

Kl(T ♯) ..

R′

��

EM(T ♯)
E

iso

U ′

��

Kl(T)

D

f-f

77

R

**❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯❯❯

❯❯❯
❯ EM(T)

U
xxrrr

rr
rr
rr
rr

J
J

//
L

ee❏❏❏❏❏❏❏❏❏❏❏

F

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
C

L′

XX

F ′

KK

5. Arrows as a special case of relative monads

We now turn to a whole class of examples, Hughes’ arrows [20]. As we shall see, arrows are
relative monads on the Yoneda embedding. Arrows are commonly perceived as a general-
ization of monads. With relative monads, this relationship is turned upside down!3

The rigorous definition of arrows by Heunen and Jacobs [18] is as follows.4

Definition 5.1. A (Set-valued) arrow on a category J is given by

• a function R ∈ |J| × |J| → |Set|,
• for any X,Y ∈ |J|, a function pure ∈ J (X,Y) → R (X,Y),
• for any X,Y,Z ∈ |J|, a function ≪ ∈ R (Y,Z)×R (X,Y) → R (X,Z),

satisfying the conditions

• pure (g ◦ f) = pure g ◦ pure f ,
• s≪ pure id = s,
• pure id≪ r = r,
• t≪ (s≪ r) = (t≪ s)≪ r.

It follows from the conditions that R is functorial (contravariantly in the first argument),
i.e., R ∈ Jop × J → Set, which is the same as to say that R is an endoprofunctor on J, and
pure and ≪ are natural/dinatural.

A monad (T, η, (−)∗) on J defines an arrow (R, pure,≪) on J byR (X,Y)=dfKl(T) (X,Y),
pure f =df Lf and ℓ≪ k=df ℓ ◦

T k where L is the left adjoint in the Kleisli adjunction and
◦T is the Kleisli composition.

We show now that an arrow on J is the same thing as a relative monad on the Yoneda
embedding Y ∈ J → [Jop,Set] defined by YX Y =df J (Y,X).

By definition, a relative monad on Y is given by

• a function T ∈ |J| → |[Jop,Set]|,
• for any X ∈ |J|, a map ηX ∈ [Jop,Set] (YX,T X),
• for any X,Y ∈ |J|, a map function (−)∗ ∈ [Jop,Set] (YX,T Y) → [Jop,Set] (T X, T Y)

satisfying three coherence conditions.

3Since we compare arrows to monads, not strong monads, by arrows we mean arrows without strength
in this paper. This said, our results scale also to strong arrows, but this remains outside the scope of this
paper. We have proved this elsewhere [34]. Heunen and Jacobs considered strong arrows; their analysis of
strength was elaborated by Asada [9].

4In agreement with the previous footnote, this definition does not require J to be symmetric monoidal
and an arrow to come with a first operation (strength).

MONADS NEED NOT BE ENDOFUNCTORS 33

Theorem 5.2.

(1) An arrow (R, pure,≪) on J gives rise to a relative monad (T, η, (−)∗) on Y defined by
T X Y =df R (Y,X), T f r =df r≪ pure f , η f =df pure f , k

∗ r =df k id≪ r.
(2) A relative monad (T, η, (−)∗) on Y gives rise to an arrow (R, pure,≪) on J defined

by R (X,Y) =df T Y X, pure f =df η f , s ≪ r =df (λf. T f s)∗r. (The last item is
well-defined, as λf. T f s is natural.)

(3) The above is a bijective correspondence.

Proof.

(1) We have to verify functoriality of T and naturality of η, (−)∗ in their contravariant
arguments and the three relative monad laws. The proofs are as follows.

Proofs of contravariant functoriality of T :

T id r = r≪ pure id

= { by 2nd arrow law }

r

T (g ◦ f) r = r≪ pure (g ◦ f)

= { by 1st arrow law }

r≪ (pure g≪ pure f)

= { by 4th arrow law }

(r≪ pure g)≪ pure f

= T f (r≪ pure g)

= T f (T g r)

= (T f ◦ T g) r

Proofs of contravariant naturality of η and (−)∗:

η (g ◦ f) = pure (g ◦ f)

= { by 1st arrow law }

pure g≪ pure f

= T f (η g)

k∗ (T f r) = k id≪ (r≪ pure f)

= { by 4th arrow law }

(k id≪ r)≪ pure f

= k∗ r≪ puref

= T f (k∗ r)

34 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

Proofs of relative monad laws:

(k∗ ◦ η) f = k∗(η f)

= k id≪ η f

= k id≪ pure f

= T f (k id)

= { by contravar. naturality of k }

k (id ◦ f)

= k f

η∗ r = pure∗ r

= pure id≪ r

= { by 3rd arrow law }

r

(ℓ∗ ◦ k)∗ r = (ℓ∗ ◦ k) id≪ r

= (ℓ∗ (k id))≪ r

= (ℓ id≪ k id)≪ r

= { by 4th arrow law }

ℓ id≪ (k id≪ r)

= ℓ∗ (k id≪ r)

= ℓ∗ (k∗ r)

= (ℓ∗ ◦ k∗) r

(2) To see that the definition of ≪ is wellformed, we must check that λf. T f s is natural
in the contravariant argument, which it is.

We can verify all four arrow laws.

pure g≪ pure f = η g≪ η f

= (λf ′. T f ′ (η g))∗(η f)

{ by contravar. naturality of η }

= (λf ′. η (g ◦ f ′))∗(η f)

= ((λf ′. η (g ◦ f ′))∗ ◦ η) f

= { by 1st relative monad law }

(λf ′. η (g ◦ f ′)) f

= η (g ◦ f)

= pure (g ◦ f)

MONADS NEED NOT BE ENDOFUNCTORS 35

r≪ pure id = (λf. T f r)∗(η id)

= ((λf. T f r)∗ ◦ η) id

= { by 1st relative monad law }

T id r

= { by contravar. functoriality of T }

r

pure id≪ r = (λf. T f (η id))∗ r

= { by contravar. naturality of η }

(λf. η (id ◦ f))∗ r

= η∗ r

= { by 2nd relative monad law }

r

(t≪ s)≪ r = (λf. T f t)∗ s)≪ r

= (λf. T f ((λf. T f t)∗ s))∗ r

= { by contravar. naturality of (−)∗ }

(λf. (λf. T f t)∗ (T f s))∗ r

= (λf. (λf. T f t)∗ ((λf. T f s) f))∗ r

= ((λf. T f t)∗ ◦ (λf. T f s))∗ r

= { by 3rd relative monad law }

= ((λf. T f t)∗ ◦ (λf. T f s)∗) r

= (λf. T f t)∗((λf. T f s)∗ r)

= t≪ (λf. T f s)∗ r

= t≪ (s≪ r)

The conditions for the bijection (3) just follow from the respective relative monad and
arrow laws except in the case of k∗r where we must use also invoke the naturality of
k.

The bijection extends to an isomorphism of the categories of arrows on J and relative monads
on Y.

Definition 5.3. A arrow morphism between arrows (R, pure, ≪) and (R′, pure′,≪′) is
given by

• a function τX,Y ∈ R (X,Y) → R′ (X,Y)

satisfying the conditions

• τ (pure f) = pure′ f ,
• τ (f ≪ g) = τ f ≪

′ τ g.

Theorem 5.4.

(1) An arrow morphism τ between arrows (R, pure,≪) and (R′, pure′,≪′) on J gives rise
to a relative monad morphism σX ∈ [Jop,Set] (TX, T ′X) defined as σX,Y =df τY,X where
T X Y =df R (Y,X) and T ′X Y =df R

′ (Y,X).

36 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

(2) A relative monad morphism σ between relative monads (T, η, (−)∗) and (T ′, η′, (−)∗
′
)

gives rise to an arrow morphism τ whose components τX,Y ∈ R (X,Y) → R′ (X,Y) are
defined as τX,Y =df σY,X where R (X,Y) =df T Y X and R′ (X,Y) =df T

′ Y X.
(3) The categories of relative monads on Y and arrows on J are isomorphic.

Proof.

(1) We need to check the relative monad morphism conditions:

σ (η f) = τ (pure f)

= { by pure pres. law of τ }

pure′f

= η′ f

σ (k∗ f) = τ (k id≪ f)

= { by compos. pres. law of τ }

τ (k id)≪′ τ f

= (σ ◦ k)∗
′

(σ f)

(2) We check the arrow morphism conditions:

τ (pure f) = σ (η f)

= { by unit pres. law of σ }

η′ f

= pure′ f

τ (f ≪ g) = σ ((λh. T h f)∗ g)

= { by Kl. ext. pres. law of σ }

(σ ◦ (λh. T h f))∗
′

(σ g)

= { by naturality of σ }

(λh. T ′ h (σf))∗
′

(σ g)

= τ f ≪
′ τ g

(3) That the correspondence is an isomorphism is trivial.

It is easy to verify that the Freyd category of an arrow is the Kleisli category of the
corresponding relative monad. Jacobs et al. [21] have previously proved that “Freyd is
Kleisli for arrows” taking “Kleisli for arrows” to mean a construction that is Kleisli-like
under a 2-categorical view of the Kleisli construction for monads. We can take it to mean
“Kleisli for arrows as relative monads”.

Similarly to Jf and JU considered above, the functor Y is well-behaved. The result of
Heunen and Jacobs [18] about arrows being monoids follows as an instance of a generality
about relative monads.

Theorem 5.5. The Yoneda embedding Y ∈ J → [Jop,Set] is well-behaved:

(1) for any X,Y ∈ |J|, JX,Y has an inverse

JX,Y
−1 ∈ [Jop,Set] (YX,Y Y) → J (X,Y)

MONADS NEED NOT BE ENDOFUNCTORS 37

(2) for any G,H ∈ |[Jop,Set]|, KG,H has an inverse

KG,H
−1 ∈ [Jop,Set] ([Jop,Set] (Y−, G), [Jop,Set] (Y−,H)) → [Jop,Set] (G,H)

(3) for any F ∈ J → [Jop,Set], X ∈ |J|, H ∈ |[Jop,Set]|, LF
X,H has an inverse

LF
X,H

−1
∈ [Jop,Set] (YX,LanY F H) → LanY ([Jop,Set] (YX,F −))H

To prove the 3rd item, we use that coends in presheaf categories are constructed point-
wise. We have LanY F H Z ∼= LanY (F ′ Z)H where F ′ Z X = F X Z.

Proof.

(1) Recall that JX,Y f =df Y f = λg. f ◦ g. By the Yoneda lemma JX,Y is an isomorphism
and the inverse of JX,Y is

JX,Y
−1 τ =df τ id

(2) The inverse of KG,H is definable by

KG,H
−1α=df λa. α (λf.Gf a) id

Proof:

KG,H
−1 (KG,H τ) = KG,H

−1 (λθ. τ ◦ θ)

= λa. (τ ◦ λf.Gf a) id

= λa. τ ((λf.Gf a) id)

= λa. τ (G id a)

= λa. τ a

= τ

KG,H (KG,H
−1 α) = KG,H (λa. α (λf.Gf a) id)

= λθ. (λa. α (λf.Gf a) id) ◦ θ

= λθ. λg. (λa. α (λf.Gf a) id) (θ g)

= λθ. λg. α (λf.Gf (θ g)) id

= { by naturality of θ }

λθ. λg. α (λf. θ (g ◦ f)) id

= λθ. λg. α (θ ◦ (λf. g ◦ f)) id

= λθ. λg. α (θ ◦Y g) id

= { by naturality of α }

λθ. λg. (α θ ◦Y g) id

= λθ. λg. α θ (Y g id)

= λθ. λg. α θ (g ◦ id)

= λθ. λg. α θ g

= α

In fact, it is immediate to conclude from the Yoneda lemma (applying it twice)
that the sets [Jop,Set] (G,H) and [Jop,Set] ([Jop,Set] (Y−, G), [Jop,Set] (Y−,H)) are
isomorphic, but we must also check that this isomorphism is KG,H .

38 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

(3) That the sets LanY ([Jop,Set] (YX,F −))H and [Jop,Set] (YX,LanY F H) are iso-
morphic follows from the Yoneda lemma combined with the fact that coends in presheaf
categories are constructed pointwise. Again it is important to verify that the isomor-
phism is LF

X,H .

Corollary 5.6. If J is small, then, as Y is well-behaved, the category [J, [Jop,Set]] is
monoidal. An arrow on J is a monoid in this category.

Heunen and Jacobs [18] considered the special case of arrows and showed an arrow to
be a monoid in [Jop×J,Set] (the category of endoprofunctors on J) as a monoidal category,
which is, of course, an equivalent statement.

6. Conclusions and further work

We have introduced a generalization of monads, relative monads, which is motivated by
examples and subsumes arrows, a well-known generalization of monads. Indeed, when
moving to a more precise type discipline, the illusion that everything takes place in only
one ambient category (say, Set) can no longer be maintained and as a consequence we have
to revisit the categorically inspired concepts of functional programming. We believe that
our examples demonstrate that monad-like entities which are not endofunctors are natural;
fortunately, they are precisely monoids in the functor category. We also suggest that our
presentation of relative monads given in Sect. 2.1 is accessible for functional programmers,
indeed it does not differ substantially from ordinary monads.

We will elsewhere comment on the relation of our relative monads to the recent gener-
alization of monads by Spivey [31] that was also motivated by programming examples: he
fixes a functor K ∈ C → J (notice the direction) to then look for monad-like structures
with an underlying functor J → C. With Paul Levy we have checked that a fair amount of
monad theory transfers to his generalized monads, but they are not monoids in [J,C] unless
K has a left adjoint, in which case they are equivalent to relative monads. Sam Staton has
considered an enriched variant of relative monads [32].

It seems clear that many of the concepts known from ordinary monads carry over
to the relative setting. We hope that this generalization of the monadic approach leads
to new programming structures supporting a greater reusability of concepts and programs.
Indeed, relative monads have already been used by Ahrens to model syntax with a reduction
relation [3, 4]. Orchard [28] has generalized monads to relative monads in Haskell using
constraint kinds and associated types. Gabbay and Nanevski [15] needed relative comonads
in their work on contextual modal type theory.

We have formalized a large part of the development of the present paper in the depen-
dently typed programming language Agda [6].

Skew-monoidal categories are interesting in their own right. We have recently [35]
proved a coherence theorem for them—identified a sufficient condition for a unique “formal”
map between two given “formal” objects. Lack and Street [23] proved a different one, which
is a necessary and sufficient condition for equality of two given maps.

Acknowledgements. We are grateful to Paul Levy and Thomas Streicher for valuable
comments and hints, and to the anonymous referees of both this paper and the conference
version on which it is based.

MONADS NEED NOT BE ENDOFUNCTORS 39

References

[1] M. Abbott, T. Altenkirch, and N. Ghani. Containers—constructing strictly positive types. Theor. Com-
put. Sci., 342(1):3–27, 2005.

[2] S. Abramsky and B. Coecke. A categorical semantics of quantum protocols. In Proc. of 19th Ann. IEEE
Symp. on Logic in Computer Science, LICS 2004 (Turku, July 2004), pp. 415–425. IEEE CS Press,
2004.

[3] B. Ahrens. Initiality for typed syntax and semantics. In L. Ong and R. de Queiroz, eds., Proc. of 19th
Wksh. on Logic, Language, Information and Computation, WoLLIC 2012 (Buenos Aires, Sept. 2012),
vol. 7456 of Lect. Notes in Comput. Sci., pp. 127–141. Springer, 2012.

[4] B. Ahrens. Modules over relative monads for syntax and semantics. Log. Methods in Comput. Sci.,
8(2:1), 2012.

[5] T. Altenkirch, J. Chapman, and T. Uustalu. Monads need not be endofunctors. In L. Ong, ed., Proc.
of 13th Int. Conf. on Foundations of Software Science and Computational Structures, FoSSaCS 2010
(Paphos, March 2010), vol. 6014 of Lect. Notes in Comput. Sci., pp. 297–311. Springer, 2010.

[6] T. Altenkirch, J. Chapman, and T. Uustalu. Relative monads formalized. J. of Formalized Reasoning,
7(1):1–43, 2014.

[7] T. Altenkirch and A. Green. The quantum IO monad. In S. Gay and I. Mackie, eds., Semantic Techniques
in Quantum Computation, pp. 173–205. Cambridge University Press, 2009.

[8] T. Altenkirch and B. Reus. Monadic presentations of lambda terms using generalized inductive types. In
J. Flum and M. Rodŕıguez-Artalejo, eds., Proc. of 13th Int. Wksh. on Computer Science Logic, CSL ’99
(Madrid, Sept. 1999), vol. 683 of Lect. Notes in Comput. Sci., pp. 453–468. Springer, 1999.

[9] K. Asada. Arrows are strong monads. In Proc. of 3rd ACM SIGPLAN Wksh. on Mathematical Structured
Functional Programming, MSFP ’10 (Baltimore, MD, Sept. 2010), pp. 33–41. ACM Press, 2010.

[10] C. Berger, P.-A. Melliès, and M. Weber. Monads with arities and their associated theories. J. of Pure
and Appl. Alg., 216(8–9):2029–2048, 2012.

[11] R. F. Blute, R. J. B. Cockett, and R. A. G. Seely. Categories for computation in context and unified
logic. J. of Pure and Appl. Alg., 116(1–3):49–98, 1997.

[12] M. Buckley, R. Garner, S. Lack, and R. Street. The Catalan simplicial set. Math. Proc. of Cambridge
Philos. Soc., to appear.

[13] M. Fiore. Semantic analysis of normalisation by evaluation for typed lambda calculus. In Proc. of 4th
ACM SIGPLAN Conf. on Principles and Practice of Declarative Programming, PPDP 2002 (Pittsburgh,
PA, Oct. 2002), pp. 26–37. ACM Press, 2002.

[14] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In Proc. of 14th Ann. IEEE
Symp. on Logic in Computer Science, LICS ’99 (Trento, July 1999), pp. 193–202. IEEE CS Press, 1999.

[15] M. J. Gabbay and A. Nanevski. Denotation of contextual modal type theory (CMTT): Syntax and
meta-programming. J. of Appl. Log., 11(1):1–29, 2013.

[16] C. Grellois. Algebraic theories, monads, and arities. Master’s thesis, Université Paris 6, 2011.
[17] C. A. Gunter. Semantics of Programming Languages. MIT Press, 1992.
[18] C. Heunen and B. Jacobs. Arrows, like monads, are monoids. In S. Brookes and M. Mislove, eds., Proc.

of 22nd Ann. Conf. on Mathematical Foundations of Programming Semantics, MFPS XXII (Genova,
May 2006), vol. 158 of Electron. Notes in Theor. Comput. Sci., pp. 219–236. Elsevier, 2006.

[19] J. R. Hindley and J. P. Seldin. Introduction to Combinators and Lambda-Calculus, vol. 1 of London
Mathematical Society Student Texts. Cambridge University Press, 1986.

[20] J. Hughes. Generalising monads to arrows. Sci. of Comput. Program., 37(1–3):67–111, 2000.
[21] B. Jacobs, C. Heunen, and I. Hasuo. Categorical semantics for arrows. J. of Funct. Program., 19(3–

4):403–438, 2009.
[22] S. Lack and R. Street. Skew monoidales, skew warpings and quantum categories. Theory and Appl. of

Categ., 26:385–402, 2012.
[23] S. Lack and R. Street. Triangulations, orientals, and skew monoidal categories. Adv. in Math, 258:351–

396, 2012.
[24] E. G. Manes. Algebraic Theories, vol. 26 of Graduate Texts in Mathematics. Springer, 1976.
[25] C. McBride and R. Paterson. Applicative programming with effects. J. of Funct. Program., 18(1):1–13,

2008.
[26] P. Morris and T. Altenkirch. Indexed containers. In Proc. of 24th Ann. IEEE Symp. on Logic in Com-

puter Science, LICS 2009 (Los Angeles, CA, Aug. 2009), pp. 277–285. IEEE CS Press, 2009.

40 T. ALTENKIRCH, J. CHAPMAN, AND T. UUSTALU

[27] U. Norell. Dependently typed programming in Agda. In P. Koopman, R. Plasmeijer, and D. Swierstra,
eds., Revised Lectures from 6th Int. School on Advanced Functional Programming, AFP 2008 (Heijen,
May 2008), vol. 5832 of Lect. Notes in Comput. Sci., pp. 230–266. Springer, 2009.

[28] D. Orchard and A. Mycroft. Categorical programming for data types with restricted parametricity.
Manuscript, 2012.

[29] D. Piponi. Commutative monads, diagrams and knots. In Proc. of 14th Int. Conf. on Functional Pro-
gramming, ICFP ’09, pp. 231–232. ACM Press, 2009.

[30] J. Power and E. Robinson. Premonoidal categories and notions of computation. Math. Struct. in Comput.
Sci., 7(5):453–468, 1997.

[31] J. M. Spivey. Algebras for combinatorial search. J. of Funct. Program., 19(3–4):469–487, 2009.
[32] S. Staton. Enriched clones, monoids, and relative monads. Unpublished note, 2012.
[33] K. Szlachányi. Skew-monoidal categories and bialgebroids. Adv. in Math., 231(3–4):1694–1730, 2012.
[34] T. Uustalu. Strong relative monads. In B. Jacobs, M. Niqui, J. Rutten, and A. Silva, eds., Short

Contributions of 10th Int. Wksh. on Coalgebraic Methods in Computer Science, CMCS ’10 (Paphos,
March 2010), Technical Report SEN-1004, pp. 23–24. CWI, 2011.

[35] T. Uustalu. Coherence for skew-monoidal categories. In N. Krishnaswamy and P. Levy, eds., Proc. of
5th Wksh. on Mathematically Structured Functional Programming, MSFP 2014 (Grenoble, Apr. 2014),
vol. 153 of Electron. Proc. in Theor. Comput. Sci., pp. 68–77. Open Publ. Assoc., 2014.

[36] T. Uustalu and V. Vene. Comonadic notions of computation. In J. Adamék and C. Kupke, eds., Proc.
of 9th Int. Wksh. on Coalgebraic Methods in Computer Science, CMCS 2008 (Budapest, Apr. 2008),
vol. 203(5) of Electron. Notes in Theor. Comput. Sci., pp. 263–284. Elsevier, 2008.

[37] J. K. Vizzotto, T. Altenkirch, and A. Sabry. Structuring quantum effects: Superoperators as arrows.
Math. Struct. in Comput. Sci., 16(3):453–468, 2006.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. Relative monads and relative adjunctions
	2.1. Relative monads
	2.2. Relative adjunctions
	2.3. Kleisli and Eilenberg-Moore constructions
	2.4. Kleisli and Eilenberg-Moore constructions and restriction

	3. Relative monads as skew-monoids in a skew-monoidal category
	3.1. Left Kan extensions
	3.2. [J, C] is skew-monoidal
	3.3. Relative monads are the same as skew-monoids in [J, C]
	3.4. An equivalent version of EM-algebras

	4. Well-behaved relative monads
	4.1. Well-behavedness conditions
	4.2. [J,C] is monoidal
	4.3. Relative monads extend to monads
	4.4. Kleisli and Eilenberg-Moore constructions and extension

	5. Arrows as a special case of relative monads
	6. Conclusions and further work
	References

