
Logical Methods in Computer Science
Vol. 11(1:5)2015, pp. 1–50
www.lmcs-online.org

Submitted Apr. 17, 2013
Published Mar. 6, 2015

PROGRAM LOGICS FOR HOMOGENEOUS GENERATIVE RUN-TIME

META-PROGRAMMING

MARTIN BERGER a AND LAURENCE TRATT b

a Department of Informatics, University of Sussex, Falmer, Brighton BN1 9QJ, United Kingdom
e-mail address: M.F.Berger@sussex.ac.uk

b Software Development Team, Department of Informatics, King’s College London, Strand, London
WC2R 2LS, United Kingdom
e-mail address: laurie@tratt.net

Abstract. This paper provides the first program logic for homogeneous generative run-
time meta-programming—using a variant of MiniML�

e by Davies and Pfenning as its under-
lying meta-programming language. We show the applicability of our approach by reasoning
about example meta-programs from the literature. We also demonstrate that our logics
are relatively complete in the sense of Cook, enable the inductive derivation of characteris-
tic formulae, and exactly capture the observational properties induced by the operational
semantics.

Dedicated to the memory of Kohei Honda.

1. Introduction

Meta-programming (MP) is the generation or manipulation of programs, or parts of pro-
grams, by other programs, i.e. in an algorithmic way. Many programming languages, going
back at least as far as Lisp, have explicit MP features. These can be classified in various
ways such as: generative (program creation), intensional (program analysis), compile-time
(happening while programs are compiled), run-time (taking place as part of program exe-
cution), heterogeneous (where the system generating or analysing the program is different
from the system being generated or analysed), homogeneous (where the systems involved
are the same), and lexical (working on simple strings) or syntactical (working on abstract
syntax trees). Compilers use MP to compile programs; web system languages such as PHP
use MP to produce web pages containing Javascript; Javascript (in common with some
other languages) performs MP by dynamically generating strings and then executing them
using its eval function. In short, MP is a mainstream activity.

2012 ACM CCS: [Software and its engineering]: Software organization and properties—Software
functional properties—Formal methods—Software verification; Software notations and tools—General pro-
gramming languages—Language features; [Theory of computation]: Semantics and reasoning—Program
semantics—Axiomatic semantics; Logic.

Key words and phrases: Program Logic, Specification, Verification, Meta-Programming, Types, Obser-
vational Completeness, Descriptive Completeness, Relative Completeness, Characteristic Formula.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:5)2015

c© M. Berger and L. Tratt
CC© Creative Commons

1

http://creativecommons.org/about/licenses

One of the most important types of MP is homogeneous generative meta-programming.
The first language to support this was Lisp with its S-expression based macros; Scheme’s
macros improve upon Lisp’s by being fully hygienic, but are conceptually similar. Perhaps
unfortunately, the power of Lisp-based macros was long seen to rest largely on Lisp’s min-
imalistic syntax and subsequent work on HGMP struggled to transfer Lisp’s power to lan-
guages with modern, large syntaxes. MetaML [31] was the first syntactically rich language
capable of homogeneous generative meta-programming in a manner convenient enough to ri-
val Lisp’s, albeit it could only generate code at run-time rather than at compile-time. Since
then, MetaOCaml has taken MetaML’s [32] ideas further; while Template Haskell [30] and
Converge [33] have developed compile-time generative meta-programming. These languages
have clearly shown that a wide variety of modern programming languages can house homo-
geneous generative meta-programming, and that this allows powerful, safe programming of
a type previously impractical or impossible.

This paper develops program logics for generative MP. An important question is which
flavour? From this paper’s perspective, the most obvious division is whether generative
MP occurs solely at run-time (à la MetaML) or also at compile-time (à la Lisp). Since
the latter case includes the former, a reasonable first step is to tackle run-time generative
MP. In other words, this paper develops logics for languages in the MetaML vein, and we
hope it provides a basis for extending that work to languages that can support compile-time
generative MP. So that we are clear about what precisely form of MP we are tackling, we use
the term homogeneous generative run-time meta-programming (HGRTMP). We appreciate
that HGRTMP is not a snappy acronym, but, in the process of developing this work, we
have found that MP’s many flavours are too easily confused with one another.

Meta-programming & verification. There are currently no logics for MP capable lan-
guages, HGRTMP or otherwise. We believe that the following reasons might be partly
responsible:

− Reasoning about MP languages is a strict superset of reasoning about non-MP languages.
Developing logics for non-MP programming languages is a hard problem on its own, and
satisfactory solutions for reasoning about programs with higher-order functions, state,
pointers, continuations, or concurrency have only recently been discovered [3, 28, 38].

− MP correctness can sometimes be side-stepped by ignoring the MP itself and looking
only at its output. Compilation is an example where the MP machinery is more complex
than the program’s output. However, verifying only the output of MP is limiting, because
knowledge gathered from the program’s input, and during the MP process, is lost.

− Static typing of generative MP still lacks a satisfactory solution. Consequently, most gen-
erative MP languages are at least partly dynamically typed (including MetaOCaml which
checks for certain forms of code extrusion at run-time); Template Haskell on the other
hand intertwines code generation with type-checking in complicated ways. Logics for such
languages are not well understood in the absence of other MP features; moreover, many
MP languages have additional features such as capturing substitution, pattern matching
of code, and splicing of types, which are largely unexplored theoretically. Heterogeneous
MP adds the complication of multi-language verification.

Contributions. The present paper is an extended version of [6] with proofs, simplifications,
and other improvements. It is the first to investigate the use of program logics for the

2

specification and verification of HGRTMP1. The aim of the paper is to explore the axiomatic
foundations of HGRTMP. The specific technical contributions of this paper are as follows:

− We provide the first program logic for an HGRTMP language—Pcfdp, a variant of
Davies and Pfenning’s MiniML�

e [14], itself an extension of Pcf [16]. The logic is for
total correctness and smoothly generalises previous work on axiomatic semantics for the
ML family of languages [3, 4, 18, 20, 21, 38]. A key feature of our logic is that Pcfdp
programs in the Pcf fragment (i.e. those that do not perform HGRTMP) can be reasoned
about in the simpler Pcf logic [18, 20]. Reasoning about HGRTMP therefore imposes
no additional burden over reasoning about non-MP programs.

− We show that our logic is relatively complete in the sense of Cook [12].
− We demonstrate that the axiomatic semantics induced by our logic coincides precisely

with the contextual semantics given by the reduction rules of Pcfdp.
− We present an additional inference system for characteristic formulae which enables, for

each program M , the inductive derivation of a pair A,B of formulae which describe
completely M ’s behaviour (descriptive completeness [19]).

As the first work in this area, we do not pretend to tackle all the intricacies involved in a
modern programming language. Instead, we work on a simplified language which allows us
to focus on the fundamental issues.

2. Pcfdp

This section introduces Pcfdp
2, the MP language that is the basis of our study. Pcfdp

is a variant of call-by-value Pcf [16], extended with the HGRTMP features of Davies
and Pfenning’s Mini-ML�

e [14, Section 3]. Mini-ML�
e was the first typed MP language to

provide facilities for executing generated code. Typing the execution of generated code
is a difficult problem. Mini-ML�

e achieves type-safety with two substantial restrictions on
meta-programming:

− Only code without free variables can be run (i.e. generated code which is not closed
cannot be run).

− Variables free in code cannot be λ-abstracted or be recursion variables.

Mini-ML�
e was one of the first MP languages with a Curry-Howard correspondence, although

the present paper does not investigate the connection between our program logic and the
Curry-Howard correspondence. Pcfdp is essentially Mini-ML�

e , but with a slightly different
form of recursion that can be given a moderately simpler logical characterisation.

Pcfdp is an ideal vehicle for our investigation for two reasons. First, Pcfdp is designed
to be a simple language, yet it has all the key features of HGRTMP; Pcfdp’s operational
semantics is substantially simpler than that of MetaML [31] and its descendants, for example.
Second, Pcfdp is built atop Pcf, a well-understood idealised programming language with
existing program logics [18, 20]. This allows us to compare reasoning in the Pcf-fragment
with reasoning in full Pcfdp.

1Since the original publication [6], Charlton has developed a logic for a simple, first-order HGRTMP
language with a Javascript-like eval feature [9].

2The name is our tip of the hat to Davies and Pfenning’s work.

3

2.1. Language basics. Pcf is a traditional λ-calculus and we assume readers are familiar
with such languages. Pcfdp extends Pcf with two new constructs, 〈M〉 and let 〈x〉 =
M in N , as well as a new type 〈α〉.

Quasi-quotes 〈M〉 were invented in the context of logic [35, 36], and introduced to
programming languages in Lisp [2]. A quasi-quote 〈M〉 represents the code of M , and
allows code fragments to be expressed using concrete syntax. If M has type α, then 〈M〉
is typed 〈α〉. For example, 〈1 + 7〉 is the code of the program 1 + 7, and 〈1 + 7〉 has
type 〈Int〉. 〈M〉 is a value for all M and hence 〈1 + 7〉 does not reduce to 〈8〉. Note that
Pcfdp’s quasi-quotes are subtly different from the abstract syntax trees (ASTs) used in
some languages (e.g. Template Haskell and Converge). In such languages, quasi-quotes are
a ‘front end’ for ASTs, but ASTs can be manually instantiated to represent any program.
In Pcfdp, in contrast, quasi-quotes are the only term constructors for meta-programs. This
makes our formalism more tractable but prevents some seemingly reasonable meta-programs
from being expressed (e.g. those that generate an if with an arbitrary number of else if

clauses).
The unquote construct let 〈x〉 = M inN extracts code from a quasi-quote. It evaluates

M to code 〈M ′〉, extracts M ′ from the quasi-quote, names it x and makes M ′ available in N
without reducing M ′. The fact that M ′ is not evaluated after extraction from a quasi-quote
is the essence of generative MP as it enables the construction of code other than values
under λ-abstractions.

Pcfdp’s unquote unifies MetaML’s separate notions of splicing (inserting quasi-quoted
code into another quasi-quoted fragment) and executing quasi-quotes. The following exam-
ple shows it being used for splicing:

let 〈x〉 = (λz.z)〈1 + 7〉 in 〈λn.xn〉

This first reduces the application to 〈1 + 7〉, then extracts the code from 〈1 + 7〉, names it
x and makes it available unevaluated to the code 〈λn.xn〉:

let 〈x〉 = (λz.z)〈1 + 7〉 in 〈λn.xn〉 → let 〈x〉 = 〈1 + 7〉 in 〈λn.xn〉

→ 〈λn.xn〉[1 + 7/x]

= 〈λn.(1 + 7)n〉

The program let 〈x〉 = 〈N〉 in x is an example of unquote executing a program, since N
will be extracted from the quasi-quote and bound to x, which is then run.

2.2. Syntax and types. We now formalise Pcfdp’s syntax and semantics, assuming a set
of variables, ranged over by x, y, g, u,m, ... (for more details see [14, 16]).

α ::= Unit || Bool || Int || α → β || 〈α〉

V ::= c || x || λxα.M || µgα→β .λxα.M || 〈M〉

M ::= V || op(M̃) || MN || if M then N else N ′ || let 〈x〉 = M in N

Here, α ranges over types, V over values, and M over programs. Constants c range over
the integers 0, 1, 2,−1, ..., booleans t, f, and () of type Unit, op ranges over the usual first-
order operators like addition, multiplication, equality, conjunction, negation, comparison,
etc., with the restriction that equality is not defined on expressions of function type or of
type 〈α〉. The abbreviation M̃ means a (possibly empty) tuple (M1, ...,Mn). The recursion
operator is µg.λx.M . The free variables fv(M) of M are defined as usual with two new

4

(x, α) ∈ Γ ∪∆
Γ;∆ ⊢ x : α

Γ, x : α;∆ ⊢ M : β
Γ;∆ ⊢ λxα.M : α → β

Γ;∆ ⊢ M : α → β Γ;∆ ⊢ N : α
Γ;∆ ⊢ MN : β

Γ, f : (α → β);∆ ⊢ λxα.M : α → β

Γ;∆ ⊢ µfα→β.λxα.M : α → β
Γ;∆ ⊢ M : Bool Γ;∆ ⊢ N : α Γ;∆ ⊢ N ′ : α

Γ;∆ ⊢ if M then N else N ′ : α

Γ;∆ ⊢ M : Int Γ;∆ ⊢ N : Int
Γ;∆ ⊢ M +N : Int

ǫ;∆ ⊢ M : α
Γ;∆ ⊢ 〈M〉 : 〈α〉

Γ;∆ ⊢ M : 〈α〉 Γ;∆, x : α ⊢ N : β
Γ;∆ ⊢ let 〈x〉 = M in N : β

Figure 1: Key typing rules for Pcfdp.

clauses: fv(〈M〉)
def
= fv(M) and fv(let 〈x〉 = M in N)

def
= fv(M) ∪ (fv(N) \ {x}). We

write λ().M for λxUnit.M and let x = M in N for (λx.N)M , assuming that x /∈ fv(M) in
both cases. We assume Barendregt’s variable condition, and tacitly rename bound variables
where necessary.

The reduction relation → is unchanged from Pcf for the Pcf-fragment of Pcfdp, and
adapted to Pcfdp as follows. First we define reduction contexts, by extending those for Pcf
with a construct for unquoting.

E [·] ::= [.] || E [·]M || V E [·] || op(Ṽ E [·]M̃) || if E [·] then M else N

|| let 〈x〉 = E [·] in M

Now → is defined on closed programs by the clauses given next:

− (λx.M)V → M [V/x].
− (µg.λx.M)V → M [µg.λx.M/g][V/x].
− if t then M else N → M .
− let 〈x〉 = 〈M〉 in N → N [M/x].
− M → N implies E [M] → E [N].

We write →→ for →∗. M ⇓ V means that M →→ V for some value V . We write M ⇓ if
M ⇓ V for some appropriate V , and M ⇑ if not M ⇓.

A typing environment (Γ,∆, ...) is a finite map x1 : α1, ..., xk : αk from variables to types.
The domain dom(Γ) of Γ is the set {x1, ..., xn}, assuming that Γ is x1 : α1, ..., xn : αn. We
write ǫ for the empty environment. The typing judgement is written Γ;∆ ⊢ M : α where we
assume that dom(Γ) ∩ dom(∆) = ∅. We write ⊢ M : α for ǫ; ǫ ⊢ M : α. We say a program
M is closed if ⊢ M : α. We call ∆ a modal context in Γ;∆ ⊢ M : α. We say a variable x
is modal or modally typed in Γ;∆ ⊢ M : α if x ∈ dom(∆). Modal variables represent code
inside other code, and code to be run. The key type-checking rules are given in Figure 1.
Typing for constants and first-order operations is standard.

Noteworthy features of the typing system are that modal variables cannot be λ- or µ-
abstracted, that all free variables in quasi-quotes must be modal, and that modal variables
can only be generated by unquotes. [14] gives detailed explanations of this typing system
and its relationship to modal logics.

Contextual congruence. By .Γ;∆;α (often abbreviated to just .) we denote the usual
typed contextual precongruence: if Γ;∆ ⊢ Mi : α for i = 1, 2 then: M1 .Γ;∆;α M2 iff for all

5

closing context C[·] such that ⊢ C[Mi] : Unit (i = 1, 2) we have

C[M1] ⇓ implies C[M2] ⇓ .

We write ≃ for . ∩ .−1 and call ≃ contextual congruence. Other forms of congruence are
possible, but we will use ≃ in the rest of this paper. Our choice means that code can only be
observed contextually, i.e. by running it in a context. Hence for example 〈M〉 and 〈λx.Mx〉
are contextually indistinguishable if x /∈ fv(M), as are 〈1 + 2〉 and 〈3〉. This facilitates a
smooth integration of the logics for Pcfdp with the logics for Pcf.3

2.3. Basic lemmas. We now present a collection of simple facts that we use later.

Proposition 2.1.

0(1) If M is closed and M ≃ V then M ⇓ W for some value W with V ≃ W .
0(2) If N is closed and 〈M〉 ≃ N then N ⇓ 〈M ′〉 and M ≃ M ′ for some M ′.
0(3) M [µg.M/g] ≃ µg.M .
0(4) Let M1 and M2 be closed. If Γ;∆ ⊢ Mi : α for i = 1, 2 then M1 ⇑ and M2 ⇑ implies

M1 ≃ M2

0(5) If M . N then L[M/x] . L[N/x].
0(6) →→ ⊆ ≃ ⊆ ..
0(7) If M →→ N and L . N then also L . M .
0(8) M . N if and only if 〈M〉 . 〈N〉.
0(9) If MN . M ′N for all N then M . M ′.

0(10) If M [N/x] ⇓ but N ⇑ then for all closed N ′: M [N ′/x] ⇓.
0(11) If M [N/x] ⇓ and N . N ′ (with N ′ closed) then also M [N ′/x] ⇓.

0(12) If for all n we have Wn . V , then also µg.λx.M . V where W0
def
= Ω and Wn+1

def
=

λx.M [Wn/g], cf. [27].

Proof. All are straightforward yet laborious when carried out in detail, and can be tackled
with standard techniques of operational semantics [16, 27]. As just one example, take
(0(12)): if for all n we have Wn . V , but at the same time µg.λx.M 6. V , we could find
a closing context C[·] such that C[µg.λx.M] ⇓ but C[V] ⇑. But C[µg.λx.M] ⇓ means that
the computation towards a value is of finite length, hence only a finite number of recursive
calls were made, so some n must exist, such that C[Wn] ⇓. This in turn means C[V] ⇓ by
our assumptions, contradicting C[V] ⇑.

2.4. Some example programs. Lifting is an important construct in generative MP, tak-
ing a run-time value and converting it into its quasi-quoted equivalent. For example 〈3〉 is
the lifting of 3, and 〈λxα.x〉 is the lifting of the identity function of type α.

We call a type α basic if it does not contain the function space constructor, i.e. if it has
no sub-expressions of the form β → β′. In Pcfdp, lifting takes an arbitrary value V of basic
type α, and converts it to code 〈V 〉 of type 〈α〉. Note that we cannot simply write λx.〈x〉

3Some MP languages are more discriminating, allowing, e.g. printing of code, which can distinguish α-
equivalent programs. It is unclear how to design logics for such languages. A detailed discussion of program
equalities in meta-programming languages can be found in [23].

6

because modal variables (i.e. variables free in code) cannot be λ-abstracted. For α = Int

the function is defined as follows:

liftInt
def
= µg.λnInt.if n ≤ 0 then 〈0〉 else let 〈x〉 = g(n − 1) in 〈x+ 1〉.

Note that liftInt works properly only on non-negative integers. Note also that liftInt 3 evalu-
ates to 〈0 + 1 + 1 + 1〉, not 〈3〉. In more expressive meta-programming languages such as
Converge the corresponding program would evaluate to 〈3〉, which is more efficient, although
〈0 + 1 + 1 + 1〉 and 〈3〉 are observationally indistinguishable in Pcfdp.

Lifting is easily extended to Unit and Bool, but not to function types, because of Pcfdp’s
inability to abstract modal variables. For basic types 〈α〉 we can define lifting as follows.

lift〈α〉
def
= λx〈α〉.let 〈a〉 = x in 〈〈a〉〉

We reason about liftInt in Section 4.
Another example is the function eval, a function of type 〈α〉 → α for running code [14].

This function is essentially a wrapper around unquoting:

eval
def
= λx〈α〉.let 〈y〉 = x in y.

Clearly, eval 〈17 + 3〉 converges to 20.
The last example in this section is the well-known power generative MP program which

creates a function that raises a number to a given power [31]. Although somewhat contrived,
this function shows how generative MP can be used for efficiency purposes: rather than
using run-time recursion on every call, HGRTMP turns this into a fixed expression. In
essence, if a program contains many applications (λna.an) 3, it makes sense to specialise
such applications to λa.a× a× a. A simple encoding of power in Pcfdp is the following:

power
def
= µp.λn.if n ≤ 0 then 〈λx.1〉 else let 〈q〉 = p(n− 1) in 〈λx.x× (q x)〉

This function has type ⊢ power : Int → 〈Int → Int〉. This type says that power takes an
integer and returns code. That code, when run, is a function from integers to integers.
power can can be used as follows:

power 2 →→ 〈λa.a× ((λb.b × ((λc.1)b))a)〉

3. A logic for total correctness

Our logic is a Hoare logic with pre- and post-conditions in the tradition of logics for ML-like
languages [3, 4, 20, 21]. In this section we define its syntax and semantics.

3.1. Syntax and types. Expressions, ranged over by e, e′, ... and formulae A,B, ... of the
logic are given by the grammar below, using the types and variables of Pcf:

e ::= c || x || op(ẽ)

A ::= e = e′ || ¬A || A ∧B || ∀xα.A || u • e = m{A} || u = 〈m〉{A}

Our logical language is an extension of first-order logic with equality (and axioms for arith-
metic e.g. Peano arithmetic or some set theory). Other quantifiers, logical constants like
T,F and propositional connectives like ⊃ (implication) are defined by de Morgan duality.
Quantifiers range over values of appropriate type. Constants c and operations op are those
of Section 2.2.

7

Our logic extends that of Pcf [18, 19, 20] with a new code evaluation predicate
u = 〈m〉{A}. It says that u, which must be of type 〈α〉, denotes (up to contextual con-
gruence) a quasi-quoted program 〈M〉, such that whenever M is unquoted and executed, it
converges to a value; if that value is denoted bym then A makes a true statement about that
value. We recall from [18, 19, 20] that u•e = m{A} says that (assuming u is of the function
type) u denotes a function, which, when fed with the value denoted by e, terminates and
yields another value. If we name this latter value m, A holds. The variable m is an anchor
in both u • e = m{A} and u = 〈m〉{A}, bound within scope A. The free variables of e and
A, written fv(e) and fv(A), respectively, are defined by the following clauses:

− fv(c)
def
= ∅.

− fv(x)
def
= {x}.

− fv(op(ẽ))
def
=

⋃

i fv(ei).

− fv(e = e′)
def
= fv(e) ∪ fv(e′).

− fv(¬A)
def
= fv(A).

− fv(A ∧B)
def
= fv(A) ∪ fv(B).

− fv(∀xα.A)
def
= fv(A) \ {x}.

− fv(u • e = m{A})
def
= (fv(A) \ {m}) ∪ {u} ∪ fv(e).

− fv(u = 〈m〉{A})
def
= (fv(A) \ {m}) ∪ {u}.

In the presentation below we often use the following abbreviations and conventions:

− A-x means that x /∈ fv(A).
− x ⇓ means ∃yα.x = y, assuming that x has type α, y is fresh and not modally typed.

This abbreviation is interesting primarily when x is modally typed.
− x • e ⇓ for x • e = m{T}.
− m = 〈·〉 is a shorthand for m = 〈x〉{T} where x is fresh.
− m = 〈e〉 is short for m = 〈x〉{x = e} where x is fresh, e.g. m = 〈x〉 is short for

m = 〈y〉{x = y}. Note that e.g. x is free in m = 〈x〉, unlike in m = 〈x〉{A}.
− m • e = e′ abbreviates m • e = x{x = e′} where x is fresh.
− We often omit typing annotations in expressions and formulae.

We have the usual capture avoiding substitutions of expressions for variables in expressions
e[e′/x] and formulae A[e/x]. They are defined by the following straightforward clauses.

− y[e/x]
def
=

{

y x 6= y

e x = y
.

− c[e/x]
def
= c.

− op(ẽ)[e′/x]
def
= op(ẽ[e′/x]).

− (e1 = e2)[e/x]
def
= (e1[e/x]) = (e2[e/x]).

− (¬A)[e/x]
def
= ¬(A[e/x]).

− (A ∧B)[e/x]
def
= (A[e/x]) ∧ (B[e/x]).

− (∀y.A)[e/x]
def
= ∀y.(A[e/x]) assuming x 6= y and y /∈ fv(e).

− (u • e = m{A})[e′/x]
def
= u[e′/x] • e[e′/x] = m{A[e′/x]} assuming m 6= y and m /∈ fv(e′).

− (u = 〈m〉{A})[e/x]
def
= u[e/x] = 〈m〉{A[e/x]}, assuming m 6= x and m /∈ fv(e).

8

(x, α) ∈ Γ ∪∆
Γ;∆ ⊢ x : α

Γ;∆ ⊢ u : α → β Γ;∆ ⊢ e : α Γ,m : β;∆ ⊢ A
Γ;∆ ⊢ u • e = m{A}

Γ;∆ ⊢ e : α Γ;∆ ⊢ e′ : α
Γ;∆ ⊢ e = e′

Γ;∆ ⊢ A Γ;∆ ⊢ B
Γ;∆ ⊢ A ∧B

Γ, x : α;∆ ⊢ A
Γ;∆ ⊢ ∀xα.A

Γ;∆ ⊢ u : 〈α〉 Γ;∆,m : α ⊢ A
Γ;∆ ⊢ u = 〈m〉{A}

Γ;∆ ⊢ A
Γ;∆ ⊢ ¬A

Γ;∆ ⊢ A m /∈ dom(Γ) ∪ dom(∆) Γ;∆ ⊢ M : α Γ,m : α;∆ ⊢ B
Γ;∆;α ⊢ {A} M :m {B}

Figure 2: Typing rules for expressions, formulae and judgements. Rules for constants and
first-order operations omitted.

In the last two cases we assume that if x = u then e′ must be a variable.
The judgements for total correctness are of the form

{A} M :m {B}.

The variablem is the anchor of the judgement, is a bound variable with scope B, and cannot
be modal. The judgement is to be understood as follows: if A holds, then M terminates to
a value (more precisely, the closure of M with arbitrary values meeting the precondition4),
and if we denote that value by m, then B holds. In other words, our judgements are entirely
conventional for total correctness program logics. If a variable x occurs freely in A or in B,
but not in M , then x is an auxiliary variable of the judgement {A} M :m {B}.

Typing expressions, formulae and judgements. Program logics are typed (although
for simple programming languages, types can be implicit), and ours is no exception. We
use the following typing judgements.

− For expressions, the typing judgement is Γ;∆ ⊢ e : α.
− For formulae, the typing judgement is Γ;∆ ⊢ A.
− For judgements, the typing judgement is Γ;∆;α ⊢ {A} M :m {B}.

The typing rules for all three judgements are given in Figure 2. Several points are worth
noting.

− The anchor in u = 〈m〉{A} is modal, while it is not modal in u • e = m{A} and in
judgements.

− Normal quantification ∀x.A quantifies only non-modal variables x.

From now on, we assume all occurring programs, expressions, formulae and judgements to
be well-typed.

Examples of assertions & judgements. We continue with a few simple examples to
help explain the use of our logic.

4In the remainder, we will sometimes be informal and say that a program M reduces or terminates, even
when M may not be closed. What we mean is that the closure of M in the ambient model reduces or
terminates.

9

− The assertion m = 〈3〉, which is short for m = 〈x〉{x = 3} says that m denotes code
which, when executed, will evaluate to 3. It can be used to make the following assertion
on the program 〈1 + 2〉:

{T} 〈1 + 2〉 :m {m = 〈3〉}.

− Let Ωα be a non-terminating program of type α (we usually drop the type subscript).
When we quasi-quote Ω, the judgement {T} 〈Ω〉 :m {T} says (qua precondition) that 〈Ω〉
is a terminating program. Indeed, that is the strongest statement we can make about
〈Ω〉 in a logic for total correctness, cf. Section 5.

− The assertion ∀xInt.m•x = y{y = 〈x〉} says that m denotes a terminating function which
receives an integer and returns code which evaluates to that integer. Later, we use this
assertion when reasoning about liftInt which has the following specification:

{T} liftInt :u {∀n.n ≥ 0 ⊃ u • n = m{m = 〈n〉}}

− The formula

Au
def
= ∀nInt ≥ 0.∃f Int→Int.(u • n = 〈f〉 ∧ ∀xInt.f • x = xn)

says that u denotes a function which receives an integer n as argument, to return code
which when evaluated and fed another integer x, computes the power xn, provided n ≥ 0.
We can then show that

{T} power :u {Au}

and
{Au} u 7 :r {r = 〈f〉{∀x.f • x = x7}}.

− The formula ∀x〈α〉yα.(x = 〈y〉 ⊃ u•x = y) can be used to specify the evaluation function
from Section 2:

{T} eval :u {∀x〈α〉yα.(x = 〈y〉 ⊃ u • x = y)}.

3.2. Models and the satisfaction relation. This subsection formally presents the seman-
tics of our logic. We begin with the notion of model. Our models are conventional, with
the key difference from the models of Pcf-logics [20] being that modal variables denote
possibly non-terminating programs.

Let Γ,∆ be two contexts with disjoint domains (the idea is that ∆ is modal while Γ is
not). A model of type Γ;∆ is a pair (ξ, σ) such that:

− ξ is a map from dom(Γ) to closed values such that ⊢ ξ(x) : Γ(x);
− σ is a map from dom(∆) to closed programs ⊢ σ(x) : ∆(x).

We use the following conventions in our subsequent presentation:

− We write (ξ, σ)Γ;∆ to indicate that (ξ, σ) is a model of type Γ;∆.
− We write ξ · x : V for ξ ∪ {(x, V)} assuming that x /∈ dom(ξ).
− Likewise for σ · x : M .
− Let η = (ξ, σ) be a model of type Γ;∆.

− We write dom(η) for dom(Γ) ∪ dom(∆).
− We write η(x) = V to indicate that x ∈ dom(η), and (x, V) ∈ (ξ ∪ σ).

We can now present the semantics of expressions. Let Γ;∆ ⊢ e : α and assume that (ξ, σ)
is a Γ;∆-model, we define [[e]](ξ,σ) by the following inductive clauses:

− [[c]](ξ,σ)
def
= c,

− [[op(ẽ)]](ξ,σ)
def
= op([[ẽ]](ξ,σ)),

10

− [[x]](ξ,σ)
def
= (ξ ∪ σ)(x).

The satisfaction relation for formulae has the following shape. Let Γ;∆ ⊢ A and assume
that (ξ, σ) is a Γ;∆-model.

− (ξ, σ) |= e = e′ iff [[e]](ξ,σ) ≃ [[e′]](ξ,σ).
− (ξ, σ) |= ¬A iff (ξ, σ) 6|= A.
− (ξ, σ) |= A ∧B iff (ξ, σ) |= A and (ξ, σ) |= B.
− (ξ, σ) |= ∀xα.A iff for all closed values V of type α: (ξ · x : V, σ) |= A.
− (ξ, σ) |= u • e = x{A} iff ([[u]](ξ,σ)[[e]](ξ,σ)) ⇓ V and (ξ · x : V, σ) |= A.
− (ξ, σ) |= u = 〈m〉{A} iff [[u]](ξ,σ) ⇓ 〈M〉, M ⇓ V and (ξ, σ ·m : V) |= A.

The concept of upwards-closedness is important in the context of completeness and defined
as follows. Let A be a formula typeable under Γ, u : α;∆ ⊢ A. We say A is upwards closed
at u if whenever V . W then also

(ξ · u : V, σ) |= A implies (ξ · u : W,σ) |= A

for all suitable ξ and σ.
For defining the semantics of judgements, we need to explain what it means to apply

a model η
def
= (ξ, σ) to a program M , written Mη. We also refer to Mη as the closure of

M with η. That is defined as usual, using the following inductive clauses, where we assume
that free variables are not caught when a model is moved under a binder:

− xη
def
= η(x).

− (MN)η
def
= (Mη)(Nη).

− cη
def
= c.

− (λx.M)η
def
= λx.(Mη).

− (µg.λx.M)η
def
= µg.λx.(Mη).

− 〈M〉η
def
= 〈Mη〉.

− (op(M̃))η
def
= op(M̃η).

− (if M then N else N ′)η
def
= if Mη then Nη else N ′η.

− (let 〈x〉 = M in N)η
def
= let 〈x〉 = Mη in Nη.

We record the following simple fact for subsequent use.

Observation 3.1. Let R be one of .,∼=, then: M R N if and only iff for all appropriately
typed models η: Mη R Nη.

The satisfaction relation |= {A} M :m {B} is given next. Let Γ;∆;α ⊢ {A} M :m {B}.
Then |= {A} M :m {B} holds if and only if for all models (ξ, σ)Γ;∆:

(ξ, σ) |= A implies ∃V.(M(ξ, σ) ⇓ V and (ξ ·m : V, σ) |= B)).

This is the standard notion for total correctness, adapted to the present logic.

A note on models. The reader might wonder why our notion of model uses values (which
always terminate) as denotations for non-modal variables, but general programs (which may
not terminate) for modal variables. The answer is a combination of two factors:

− Our logic is part of a tradition of constructing Hoare logics, where models provide de-
notations for the free variables of the program that a judgement is about. Moreover,
the type of the denotation should be the same as the type of the corresponding free

11

variable. This simple model-building heuristic has proven to be robust for a wide variety
of programming languages [5], and we decided to build our logic for Pcfdp in the same
way.

− Although our logic is for total correctness, we can still make assertions about non-
terminating programs, and programs that contain non-terminating sub-programs, for
example:
− {F} Ω :u {A}.
− {T} λx.Ω :u {T}.
− {T} 〈Ω〉 :u {T}.
Since judgements like {T} λx.Ω :u {T} are already derivable in the logic for total cor-
rectness for Pcf, the question arises as to how models used in logics for Pcf need only
values as denotations? The answer is that there is a substantial difference between quasi-
quotes and λ-abstractions in how the (non-terminating) sub-programs they harbour are
accessed. The only way Ω can be executed in λx.Ω is by application. This does not
involve creating a new free variable bound to Ω (which would need a denotation in a
corresponding model).

In contrast, when unquoting a Pcfdp quasi-quote, e.g.

let 〈x〉 = 〈Ω〉 in M,

then x is free (as well as modal) in M , and will be bound to Ω, but without attempting
to evaluate Ω. This is quite different from evaluating e.g. let x = λx.Ω in M , as we can
see when comparing the evaluation of both terms side-by-side.

let 〈x〉 = Ω in M → M [Ω/x]

let x = λ().Ω in M → M [λ().Ω/x]

Models must accommodate this behaviour, and allowing modal variables to denote non-
value programs does just this.

3.3. Axioms and rules. We have now ready to present the rules and axioms of our logic.

Axioms. The axioms come in two forms: those that are germane to Pcfdp’s meta-
programming extensions, and those that are not. All axioms for the Pcf logics of [18, 19, 20]
remain valid, and are listed in Appendix A for completeness. Here we present only the ax-
ioms for the logical constructs not already available in the logics for Pcf, i.e. for the code
evaluation predicate x = 〈m〉{A}.

Tacitly, we assume typability of all axioms. That means not only that all axioms must
be typable, but conversely also that whenever an axiom is typable, it is a valid axiom. The
axioms are given in Figure 3. The presentation uses the following abbreviations:

Extq(xy) stands for ∀a.(x = 〈z〉{z = a} ≡ y = 〈z〉{z = a}).

Axiom (q1) says that if the quasi-quote denoted by x makes A true (assuming the program
in that quasi-quote is denoted by y), and in the same way makes B true, then it also makes
A ∧B true, and vice versa. Axiom (q2) says that if the quasi-quote denoted by x contains
a program, denoted by y, and makes ¬A true, then it cannot be the case that under the
same conditions A holds. The reverse implication is false, because ¬x = 〈m〉{A} is also
true when x denotes a quasi-quote whose contained program is diverging. But in this case,
x = 〈m〉{¬A} is still false due to lacking termination. Next is (q3): x = 〈m〉{A} says in
particular that x denotes a quasi-quote containing a terminating program, so ¬x = 〈m〉{B}

12

(q1) x = 〈m〉{A} ∧ x = 〈m〉{B} ≡ x = 〈m〉{A ∧B}
(q2) x = 〈m〉{¬A} ⊃ ¬x = 〈m〉{A}
(q3) x = 〈m〉{A} ∧ ¬x = 〈m〉{B} ≡ x = 〈m〉{A ∧ ¬B}
(q4) x = 〈m〉{A ∧B} ≡ A ∧ x = 〈m〉{B} m /∈ fv(A)
(q5) x = 〈m〉{∀aα.A} ≡ ∀aα.x = 〈m〉{A} a 6= x,m
(q6) (A ⊃ B) ∧ x = 〈m〉{A} ⊃ x = 〈m〉{B}
(term) x ⇓ x non modal
(termq) x = 〈m〉{A} ≡ x = 〈m〉{A ∧m ⇓}
(div) ¬∀m〈α〉.m = 〈·〉
(extq) x = y ≡ Extq(xy) x, y of type 〈α〉

both non-modal
(qα) x = 〈m〉{A} ≡ x = 〈n〉{x = 〈m〉{A ∧m = n}}

n 6= x, n ∈ fv(A) implies n = m

Figure 3: Key total correctness axioms for Pcfdp. The remaining axioms are as for Pcf.
Except where noted otherwise, free variables can be modal or non-modal.

can only be true because B is false. Axioms (q4, q5) let us move formulae and quantifiers
in and out of code-evaluation formulae, as long as free variables do not become bound in
the process nor bound variables become free. Axiom (q6) allows us to weaken the assertion
inside the code evaluation predicate. The reverse implication is trivially false. The axiom
(term) formalises that denotations of non-modal variables always terminate. The axiom
(termq) enables us explicitly to express as a logical formula the fact that x = 〈m〉{A}
guarantees that the code denoted by x terminates. The axiom (qα) may appear confusing
on first sight, but it states something simple: namely that we can easily nest code evaluation
predicates. The equality m = n relates the two anchors. The axiom (div) simply states that
not every quasi-quote holds code that terminates when executed. The code-extensionality
axiom (extq) formalises what it means for two quasi-quotes to be equal: they must contain
observationally indistinguishable code. The corresponding axiom (ext) for functions can be
found in Appendix A together with other axioms for the Pcf-part of the language. Note
that it is vital for x and y to be non-modal. The direction Extq(xy) ⊃ x = y is unsound
otherwise, because Extq(xy) cannot distinguish between e.g. appropriately typed Ω and 〈Ω〉.

Rules. The rules of inference can be found in Figures 4 and 5. We write ⊢ {A} M :m {B}
to indicate that {A} M :m {B} is derivable using these rules. Structural rules like Hoare’s
rule of consequence, are standard (see e.g. [18, 19, 20]) and used without further comment.
All rules are typed. The typing of rules follows the corresponding typing of the programs
occurring in the judgements, but with additions to account for auxiliary variables. Rather
than detailing the typing for all rules, we exhibit an example. The typing rule for the
unquote-construct is this:

Γ;∆ ⊢ M : 〈α〉 Γ;∆, x : α ⊢ N : β

Γ;∆ ⊢ let 〈x〉 = M in N : β

13

{A[x/m] ∧ x ⇓} x :m {A}
Var

{A[c/m]} c :m {A}
Const

{A-g} M :u {B}
{A} µg.M :u {B[u/g]}

Rec

{A-x ∧B} M :m {C}
{A} λxα.M :u {∀x.(B ⊃ u • x = m{C})}

Abs
{A} M :m {B} {B} N :n {C[m+ n/u]}

{A} M +N :u {C}
Add

{A} M :m {B} {B[bi/m]} Ni :u {C} b1 = t b2 = f i = 1, 2
{A} if M then N1 else N2 :u {C}

If

{A} M :m {B} {B} N :n {m • n = u{C}}
{A} MN :u {C}

App
{A} M :m {B}

{T} 〈M〉 :u {A ⊃ u = 〈m〉{B}}
Quote

{A} M :m {E-x ∧ (B-x ⊃ m = 〈x〉{C-m})}
{E ∧ (B ⊃ C) ∧ (m = 〈·〉 ⊃ m = 〈x〉)} N :u {D-xm}

{A} let 〈x〉 = M in N :u {D}
Unquote+

Figure 4: Pcfdp inference rules for total correctness.

The corresponding typing for [Unquote+] is rather similar:

Γ;∆; 〈α〉 ⊢ {A} M :m {E-x ∧ (B-x ⊃ m = 〈x〉{C-m})}
Γ,m : 〈α〉;∆, x : α;β ⊢ {E ∧ (B ⊃ C) ∧ (m = 〈·〉 ⊃ m = 〈x〉)} N :u {D-xm}

Γ;∆;β ⊢ {A} let 〈x〉 = M in N :u {D}

All rules in Figure 5 and most rules in Figure 4 are standard and unchanged from [18, 19, 20]
with three significant exceptions, explained next.

[Var] adds x ⇓, i.e. ∃a.x = a in the precondition. By construction of our models, x ⇓
is trivially true if x is non-modal. If x is modal, the situation is different because x may
denote a non-terminating program. In this case x ⇓ constrains x so that it really denotes a
value, as is required in a logic for total correctness.

[Quote] says that 〈M〉 always terminates (because the conclusion’s precondition is
simply T). Moreover, if u denotes the result of evaluating 〈M〉, i.e. 〈M〉 itself, then, assuming
A holds (i.e., given the premise, ifM terminates), u contains a terminating program, denoted
m, making B true. Clearly, in a logic for total correctness, ifM is not a terminating program,
A will be equivalent to F, in which case, [Quote] does not make a non-trivial assertion about
〈M〉 beyond stating that it terminates.

[Unquote+] is similar to the usual rule for let x = M in N which is easily derivable
using [Abs, App]:

{A} M :x {B} {B} N :u {C}

{A} let x = M in N :u {C}
Let

The rule for let 〈x〉 = M inN is more difficult because a quasi-quote always terminates, but
the code it contains may not. Moreover, even if M evaluates to a quasi-quote containing a
divergent program, the overall expression may still terminate, becauseN uses the destructed
quasi-quote in a way that cannot detect divergence. An example is as follows:

let 〈x〉 = 〈Ω〉 in λy.x.

14

{A′} M :m {B′} A ⊃ (A′ ∧ (B′ ⊃ B))
{A} M :m {B}

Conseq-Kl
{A ∧B} V :m {C}
{A} V :m {B ⊃ C}

∧-⊃

{F ∧A} M :m {B}
{F} M :m {A ∧B}

∧-F
{A} M :m {B ⊃ C}
{A ∧B} M :m {C}

⊃-∧
{A} M :m {B} {A′} M :m {B}

{A ∨A′} M :m {B}
∨-Pre

{A} M :m {B} {A} M :m {B′}
{A} M :m {B ∧B′}

∧-Post
{A} M :m {B-i} i auxiliary

{∃i.A} M :m {B}
Aux∃

{A-i} M :m {B} i auxiliary
{A} M :m {∀i.B}

Aux∀

{A} M :m {B}
{A ∧ C} M :m {B ∧ C}

Invar

Figure 5: Structural rules for total correctness.

Our rule [Unquote+] deals with this complication in the following way. Assume

{A} M :m {B ⊃ m = 〈x〉{C}}

holds. If M evaluates to a quasi-quote containing a divergent program, B would be equiv-
alent to F. This is because in a logic for total correctness, m = 〈x〉{C} means that the
quasi-quote denoted by m must contain a converging program. Hence the only way that

B ⊃ m = 〈x〉{C}

can be true if it doesn’t is if B is equivalent to F. In this case B ⊃ m = 〈x〉{C} as a whole
is equivalent to T, i.e. conveys no information Hence, since x does not occur freely in E,
the denotation of x is not constrained by the left premise, hence the termination behaviour
of N cannot depend on x. In other words N uses whatever x denotes in a way that makes
the termination or otherwise of N independent of x. The additional formula E enables us
easily to carry information from the conclusion of the assertion for M to the premise of the
assertion about N .

Finally, the requirement
m = 〈·〉 ⊃ m = 〈x〉

in the precondition of the assertion for N makes the following fact available for reasoning
about N : whenever M evaluates to a quasi-quote 〈M ′〉, then M ′ is bound to x. This fact
is not used in the reasoning about example programs in this paper. However, it appears
to be vital for proving completeness, see Proposition 5.5 in Section 5.5 In reasoning about
programs we typically use the following simpler rule.

{A} M :m {E-x ∧ (B-x ⊃ m = 〈x〉{C-m})} {E ∧ (B ⊃ C)} N :u {D-xm}

{A} let 〈x〉 = M in N :u {D}
Unquote

In many derivations, E is simply T and omitted. Clearly, [Unquote] is easily derivable
from [Unquote+].

The rule [Conseq-Kl] is slightly more elaborate than Hoare’s original rule of conse-
quence, present already in [17], and repeated below for comparison:

5The previous, short version of this paper [5] used only [Unquote], not [Unquote+]. It is unclear if
Prop. 5.5 can be established with [Unquote] alone.

15

A ⊃ A′ {A′} M :m {B′} B′ ⊃ B

{A} M :m {B}
Conseq

[Conseq] is usually sufficient in practise. But for proving relative completeness in Section
5, [Conseq-Kl], going back at least as far Kleymann [25], is more convenient. Using
[Conseq-Kl], Hoare’s [Conseq] is easily derivable.

We note that the rules for programs in the Pcf-fragment of Pcfdp are the same as those
in the logic for Pcf [20], apart from a slightly different presentation. The only apparent
difference is in the respective rules for variables (with Pcfdp on the left, Pcf on the right):

{A[x/m] ∧ x ⇓} x :m {A} {A[x/m]} x :m {A}

However, this is misleading for two reasons:

− For non-modal variables x, by axiom (term), x ⇓ always holds, so A[x/m] can be inferred
trivially from A[x/m] ∧ x ⇓ and vice versa.

− We could have split the Pcfdp rule for variables into two as follows:

x non-modal

{T} x :m {x = m}
Var

x modal

{x ⇓} x :m {x = m}
Varm

Indeed that is what we will do later in Section 5. The reason for using a combined rule
in this Section is economy of presentation.

The ability to reason about the Pcf-fragment in our logic for Pcfdp is significant for two
reasons. First, on the theoretical side, it shows that adding MP features is a modular
extension of our base language and base logic, raising the intriguing question if modularity
can be retained in situations where the base language has rich effects like state or exceptions,
or where the MP features are more extensive (e.g. compile-time meta-programming), or
allow MP on open code (that is, code with free variables). Secondly, on the pragmatic side,
it makes life easier, because the specification and verification of programs and program parts
that do not use MP features do not have to pay a price in terms of additional complexity
vis-a-vis the logic for Pcf.

3.4. Soundness. We now establish that the axioms and rules introduced in the previous
subsection are sound.

Theorem 3.2.

(1) All axioms are sound.
(2) All rules are sound.

Proofs for axioms and rules not relating to Pcfdp’s meta-programming extensions are
straightforward extensions of the corresponding proofs for Pcf-logics like [4, 20, 22, 38]
and mostly omitted. Before embarking on proofs, we collect facts that will be useful later.

Proposition 3.3.

(1) Assume the formula A is typable under Γ, x : α;∆ and Γ;∆, x : α. Let (ξ · x : V, σ) be
a model of type Γ, x : α;∆ and (ξ, σ · x : V) be a model of type Γ;∆, x : α. Then

(ξ · x : V, σ) |= A iff (ξ, σ · x : V) |= A.

(2) Let Γi;∆i ⊢ e : α, Γi;∆i ⊢ A, and assume that ηi is a Γi;∆i-model for i = 1, 2. Then:
− η1(x) ≃ η2(x) for all x ∈ fv(e) implies [[e]]η1 ≃ [[e]]η2 .
− η1(x) ≃ η2(x) for all x ∈ fv(A) implies η1 |= A iff η2 |= A.

16

(3) Let Γ;∆ ⊢ e : α, Γ, x : α;∆ ⊢ e′ : β, Γ, x : α;∆ ⊢ A and η
def
= (ξ, σ) be an appropriately

typed model such that [[e]]η ⇓.
− [[e′[e/x]]]η ≃ [[e′]](ξ·x:[[e]]η,σ).
− η |= A[e/x] iff ∀V.(V ≃ [[e]]ξ,σ ⊃ (ξ · x : V, σ) |= A).
− η |= A[e/x] iff η |= ∃x.(A ∧ x = e).

(4) Let Γ;∆, x : α ⊢ M : β, assume N is a closed program of type α. Given a Γ;∆-model

η
def
= (ξ, σ) it holds that

Mη[N/x] = M(ξ, σ · x : N).

Proof. The content of this proposition is straightforward, hence proofs are omitted.

Proof [of Theorem 3.2.1]. The proof of axioms (q1) - (q5) for quasi-quotes are essentially
just trivial instances of first-order logical laws and omitted, except that we explicitly prove
(q3) as a representative example.

To establish (q3), let η
def
= (ξ, σ) be an appropriately typed model. Then we reason as

follows:
1 η |= x = 〈y〉{A} ∧ ¬x = 〈y〉{B}

2 ∃M,V.η(x) = M,M ⇓ V, (ξ, σ · y : V) |= A 1

3 η(x) = M,M ⇓ V 2

4 (ξ, σ · y : V) 6|= B 1, 3

5 (ξ, σ · y : V) |= A ∧ ¬B 2, 4

The reverse implication is similar.
The axiom (term) is immediate from the definition of models.

Regarding (termq), let η
def
= (ξ, σ) be an appropriately typed model.

1 η |= x = 〈m〉{A}

2 ∃M,V.η(x) = M,M ⇓ V, (ξ, σ ·m : V) |= A 1

3 ∃M,V.η(x) = M,M ⇓ V, (ξ · y : V, σ ·m : V) |= m = y

4 ∃M,V.η(x) = M,M ⇓ V, (ξ, σ ·m : V) |= ∃y.m = y 3

5 ∃M,V.η(x) = M,M ⇓ V, (ξ, σ ·m : V) |= m ⇓ 4

6 ∃M,V.η(x) = M,M ⇓ V, (ξ, σ ·m : V) |= A ∧m ⇓ 2, 5

7 (ξ, σ) |= x = 〈m〉{A ∧m ⇓} 6

The reverse implication is immediate.
The soundness of (div) is immediate from the construction of the model and the sat-

isfaction relation: (div) states that not every quasi-quote contains a terminating program,
e.g. 〈Ω〉.

17

Finally, for (extq), let η
def
= (ξ, σ) be an appropriately typed model, where x, y ∈ dom(η).

We assume that x, y are of type 〈α〉.

1 η |= x = y

2 η′
def
= (ξ · a : V, σ) V arbitrary value

3 η′ |= x = 〈m〉{m = a} Assumption

4 ∃M,W.[[x]]η′ = 〈M〉,M ⇓ W,η′′ |= m = a,

where η′′
def
= (ξ · a : V, σ ·m : W)

3

5 W = [[m]]η′′ ∼= [[a]]η′′ = V 2, 4

6 [[x]]η ≃ [[y]]η 1

7 [[x]]η′ ≃ [[y]]η′ 6, Prop. 3.3.2

8 ∃M ′,W ′.[[y]]η′ = 〈M ′〉,M ′ ⇓ W ′, η′′′ |= m = a,

where η′′′
def
= (ξ · a : V, σ ·m : W ′)

4, 7, Prop. 2.1

9 η′ |= y = 〈m〉{m = a} 8

For the reverse implication we assume that x and y are both of type 〈α〉, and that η = (ξ, σ).

η |= Extq(xy)

which means there are two cases for any chosen value V of appropriate type, where η′ =
(ξ · a : V, σ).

− [[x]]η′ ⇓ 〈M〉,M ⇓ W,W ≃ V , and also [[y]]η′ ⇓ 〈M ′〉,M ′ ⇓ W ′,W ′ ≃ V . By Proposition
2.1.0(6) this implies

[[x]]η′ ≃ 〈M〉,M ≃ W,W ≃ V

and
[[y]]η′ ≃ 〈M ′〉,M ′ ≃ W ′,W ′ ≃ V.

Hence W ≃ W ′. As ≃ is a congruence, the above in turn implies [[x]]η′ ≃ [[y]]η′ , whence

η |= x = y

using the fact that a is different from x, y and Proposition 3.3.2.
− [[x]]η′ ⇑ and [[y]]η′ ⇑. In this case [[x]]η′ ≃ [[y]]η′ by Proposition 2.1.0(4). Hence again

η |= x = y

as in the previous case.

Proof [of Theorem 3.2.2]. We proceed by induction on the derivation of the inference. All
rules but [Var, Quote, Unquote+] are essentially unchanged from [20] so we concentrate
on these three.

For [Var] we have two subcases, depending on whether the variable under assertion is
modal or not. The latter case is trivial, so we deal only with the former (which is also easy).
In this case the rule is typed as follows:

Γ;∆, x : α;α ⊢ {A[x/m] ∧ x ⇓} x :m {A}

18

Let η
def
= (ξ, σ · x : M) be a Γ;∆, x : α-model such that

η |= A[x/m] ∧ x ⇓ . (3.1)

Then in particular
η |= ∃aα.x = a.

By the semantics of quantification, we know that some value V must exist with (ξ · a :
V, σ · x : M) |= x = a. Thus by definition of the interpretation of equality,

M ≃ V.

Hence, since xη = M immediately
xη ⇓ V

which means the program under assertion terminates. From (3.1) we also get that

η |= A[x/m]

and since [[x]]η ⇓ V , we can apply Proposition 3.3.3 and obtain.

(ξ ·m : V, σ · x : M) |= A.

This concludes our discussion of [Var].
The case of [Quote] is straightforward and based on Proposition 3.3.1. The rule is

typed as follows.
Γ;∆;α ⊢ {A} M :m {B}

Γ;∆; 〈α〉 ⊢ {T} 〈M〉 :u {A ⊃ u = 〈m〉{B}}

Let η = (ξ, σ) be a Γ;∆-model and define η′
def
= (ξ · u : 〈Mη〉, σ). Since 〈M〉η = 〈Mη〉 is

already a value, we need only show that η′ |= A ⊃ u = 〈m〉{B}. To this end, let η′ |= A.
Then we reason as follows (in this derivation and others, (IH) is used as an abbreviation of
‘induction hypothesis’):

1 η′ |= A

2 η |= A 1, u /∈ fv(A), Prop. 3.3.2

3 Mη ⇓ V and (ξ ·m : V, σ) |= B (IH), 2

4 (ξ, σ ·m : V) |= B 3, Prop. 3.3.1

5 Mη ≃ V 3, Prop. 2.1.0(6)

6 (ξ, σ ·m : Mη) |= B 4, 5, Prop. 3.3.2

7 (ξ · u : 〈Mη〉, σ ·m : Mη) |= B 6, u /∈ fv(B), Prop. 3.3.2

This concludes the case of [Quote].

Finally, we establish the soundness of [Unquote+]. Choose a Γ;∆-model η
def
= (ξ, σ)

such that η |= A. By the (IH) we know that

Mη ⇓ 〈M ′〉 (ξ ·m : 〈M ′〉, σ)
︸ ︷︷ ︸

η′

|= E ∧ (B ⊃ m = 〈x〉{C}) (3.2)

Now we have two cases:

− η′ |= E, η′ |= B and η′ |= m = 〈x〉{C}.
− η′ |= E but η′ 6|= B.

19

We start with the former:

1 η′ |= E and η′ |= B and η′ |= m = 〈x〉{C}

2 [[m]]η′ = 〈M ′〉,M ′ ⇓ V and (ξ ·m : 〈M ′〉, σ · x : V) |= C 1

3 η′′
def
= (ξ ·m : 〈M ′〉, σ · x : V)

4 η′′ |= E ∧B 1, Prop. 3.3.2

5 η′′ |= E ∧B ∧ C 2, 4

6 η′′ |= E ∧ (B ⊃ C) 5

7 η′′′
def
= (ξ ·m : 〈M ′〉, σ · x : M ′)

8 M ′ ≃ V 2, Prop. 2.1.0(6)

9 η′′′ |= E ∧ (B ⊃ C) 6, 8, Prop. 3.3.2

10 η′′′ |= m = 〈·〉 ∧m = 〈x〉 2, 8, Prop. 3.3.2

11 η′′′ |= m = 〈·〉 ⊃ m = 〈x〉 10

12 Nη′′′ ⇓ W and (ξ ·m : 〈M ′〉 · u : W,σ · x : M ′) |= D 11, (IH)

Now we can consider the reductions of (let 〈x〉 = M in N)η:

(let 〈x〉 = M in N)η = let 〈x〉 = Mη in Nη
→→ let 〈x〉 = 〈M ′〉 in Nη by (3.2)
→ Nη[M ′/x]
= Nη′′′ Prop. 3.3.4
⇓ W by 10

By Line 10 and Proposition 3.3.2 we know that (ξ · u : W,σ) |= D since m,x /∈ fv(D).
Now we consider the second case η′ 6|= B. In this simpler case we reason as follows:

1 η′ |= E and η′ 6|= B

2 η′′
def
= (ξ ·m : 〈M ′〉, σ · x : M ′)

3 η′′ |= E and η′′ 6|= B 1, Prop. 3.3.2

4 η′′ |= E ∧ (B ⊃ C) 3

5 η′′ |= m = 〈·〉 ⊃ m = 〈x〉 by construction

6 η′′ |= E ∧ (B ⊃ C) ∧ (m = 〈·〉 ⊃ m = 〈x〉) 4, 5

7 Nη′′ ⇓ W and (ξ ·m : 〈M ′〉 · u : W,σ · x : M ′) |= D 6, (IH)

20

As in the previous case we now consider the reductions of (let 〈x〉 = M in N)η:

(let 〈x〉 = M in N)η = let 〈x〉 = Mη in Nη
→→ let 〈x〉 = 〈M ′〉 in Nη by (3.2)
→ Nη[M ′/x]
= Nη′′ Prop. 3.3.4
⇓ W by 7

By Line 7 and Proposition 3.3.2 we know that (ξ · u : W,σ) |= D since m,x /∈ fv(D). This
concludes the reasoning for [Unquote+].

We now verify the structural rule [∧-⊃] to demonstrate that the soundness of the
structural rules (which have already been shown sound in the context of Pcf [20]) is not
affected by our extension of Pcf with facilities for meta-programming. The proofs for the
other structural rules are similarly straightforward.

Let η = (ξ, σ) be an appropriately typed model. Then we reason as follows:

1 η |= A

2 V η ⇓ V η V value

3 η′
def
= (ξ ·m : V η, σ)

4 η′ |= B Assumption

5 η |= B 4, m /∈ fv(B), Prop. 3.3.2

6 η |= A ∧B 1, 5

7 V η ⇓ V η, η′ |= C V value, 6, (IH)

8 V η ⇓ V η, η′ |= B ⊃ C 4, 7

9 η |= {A} V :m {B ⊃ C} 1, 8

Note that as with Pcf, the condition that the program be a value in [∧-⊃] cannot be
dropped in a logic for total correctness, because

{T ∧ F} Ω :m {C}

{T} Ω :m {F ⊃ C}

is unsound.
Finally, we prove sound [Rec], the rule for recursion in a total correctness setting. It’s

compellingly simple form was first given in [19]. Here we need to show that the addition of
MP facilities does not void soundness. This is straightforward.

Let η = (ξ, σ) be an appropriately typed model with g /∈ dom(η), and η′
def
= (ξ · g :

µg.Mη, σ).
1 η |= A Assumption

2 η′ |= A 1, g /∈ fv(A), Prop. 3.3.2

3 Mη′ ⇓ V,

η′′

︷ ︸︸ ︷

(ξ · g : µg.Mη, u : V σ) |= B 2, (IH)

4 V ∼= Mη′ ∼= µg.Mη 3, Prop. 2.1.0(3)

21

5 η′′ |= g = u 3, 4

6 η′′ |= B ∧ g = u 5

7 (ξ · u : V, σ) |= ∃g.(B ∧ g = u) 6

8 (ξ · u : V, σ) |= B[u/g] 7, Prop. 3.3.3

9 (ξ · u : µg.Mη, σ) |= B[u/g] 8, Prop. 3.3.2

10 (ξ · u : µg.Mη, σ) |= B 3, g /∈ fv(B), Prop. 3.3.2

11 µg.Mη ⇓ µg.Mη, (ξ · u : µg.Mη, σ) |= B 10

This last proof is unchanged from the soundness proof for [Rec] in Pcf, although ‘under
the hood’ some used propositions need additional work to do with the generalised language
and notion of model. This is also true for all other rules and axioms that involve only Pcf
syntax.

4. Reasoning examples

We now put our logic to use by reasoning about some of the programs introduced in Section
2. The derivations use the abbreviations of Section 3 and and often omit steps that are
trivial, or irrelevant from the perspective of meta-programming.

Example 4.1. We begin with the simple program {T} 〈1+2〉 :m {m = 〈3〉}. The derivation
is straightforward.

1 {T} 1 + 2 :a {a = 3}

2 {T} 〈1 + 2〉 :m {T ⊃ m = 〈a〉{a = 3}} Quote, 1

3 {T} 〈1 + 2〉 :m {m = 〈3〉} Conseq, 2

Example 4.2. This example deals with the code of a non-terminating program. We derive
{T} 〈Ω〉 :m {T}. This is the strongest total correctness assertion about 〈Ω〉. In the proof,
we assume that {F} Ω :a {T} is derivable, which is easy to show.

1 {F} Ω :a {T}

2 {T} 〈Ω〉 :m {F ⊃ m = 〈a〉{T}} Quote, 1

3 {T} 〈Ω〉 :m {T} Conseq, 2

Example 4.3. The third example destructs a quasi-quote and then injects the resulting
program into another quasi-quote.

{T} let 〈x〉 = 〈1 + 2〉 in 〈x+ 3〉 :m {m = 〈6〉}

We derive the assertion in small steps to demonstrate how to apply our logical rules.

22

1 {T} 〈1 + 2〉 :m {m = 〈3〉} Ex. 1

2 {(a = 3)[x/a] ∧ x ⇓} x :a {a = 3} Var

3 {x = 3 ∧ x ⇓} x :a {a = 3} Conseq, 2

4 {T} 3 :b {b = 3} Const, Conseq

5 {a = 3 ∧ x ⇓} 3 :b {a = 3 ∧ b = 3} Invar, 4

6 {a = 3} 3 :b {(c = 6)[a+ b/c]} Conseq, 5

7 {x = 3 ∧ x ⇓} x+ 3 :c {c = 6} Add, 3, 6

8 {T} 〈x+ 3〉 :u {(x = 3 ∧ x ⇓) ⊃ u = 〈c〉{c = 6}} Quote, 7

9 {x = 3 ∧ x ⇓} 〈x+ 3〉 :u {u = 〈c〉{c = 6}} ⊃-∧, 8

10 {T} 〈1 + 2〉 :m {T ⊃ m = 〈x〉{x = 3 ∧ x ⇓}} Conseq, 1

11 {T ⊃ (x = 3 ∧ x ⇓)} 〈x+ 3〉 :u {u = 〈6〉} Conseq, 9

12 {T} let 〈x〉 = 〈1 + 2〉 in 〈x+ 3〉 :u {u = 〈6〉} Unquote, 10, 11

In Line 10, we use the (termq) axiom among others.

Example 4.4. We now show that when a quasi-quote containing a non-terminating sub-
program is destructed, but the resulting sub-program is not used, the overall program still
terminates. This reflects the operational semantics in Section 2.

{T} let 〈x〉 = 〈Ω〉 in 〈1 + 2〉 :m {m = 〈3〉}

The derivation follows:

1 {T} 〈Ω〉 :m {T} Ex. 2

2 {T} 〈Ω〉 :m {F ⊃ m = 〈a〉{T}} Conseq, 1

3 {T} 〈1 + 2〉 :m {m = 〈3〉} Ex. 1

4 {F ⊃ T} 〈1 + 2〉 :m {m = 〈3〉} Conseq, 3

5 {T} let 〈x〉 = 〈Ω〉 in 〈1 + 2〉 :m {m = 〈3〉} Unquote, 2, 4

Example 4.5. This example extracts a non-terminating program from a quasi-quote, and
injects it into a new quasi-quote. Our total-correctness logic cannot say anything non-trivial
about the resulting quasi-quote (cf. Example 2):

{T} let 〈x〉 = 〈Ω〉 in 〈x〉 :u {T}

The derivation is straightforward.

1 {T} 〈Ω〉 :m {T} Ex. 2

2 {T} 〈Ω〉 :m {F ⊃ m = 〈x〉{T}} 1, Conseq

23

3 {F[x/a] ∧ x ⇓} x :a {F} Var

4 {F} x :a {T} Conseq, 3

5 {T} 〈x〉 :u {F ⊃ u = 〈a〉{T}} Quote, 4

6 {F ⊃ T} 〈x〉 :u {T} Conseq, 5

7 {T} let 〈x〉 = 〈Ω〉 in 〈x〉 :u {T} Unquote, 2, 6

The examples below make use of the following convenient forms of the recursion rule and
[Unquote].

{A-gn ∧ ∀0 ≤ i < n.B[i/n][g/u]} λx.M :u {B-g}

{A} µg.λx.M :u {∀n ≥ 0.B}
Rec’

It is easily derived from [Rec] using [Aux∀].

Example 4.6. We now reason about liftInt from Section 2. In the proof we assume that i, n

range over non-negative integers. Let Au
n

def
= u • n = m{m = 〈n〉}. We now establish the

following assertion from Section 3: {T} liftInt :u {∀n.Au
n}. We set C

def
= i ≤ n ∧ ∀j < n.Ag

j ,

D
def
= i > 0 ∧ ∀r.(0 ≤ r < n ⊃ g • r = m{m = 〈r〉}) and P

def
= let 〈x〉 = g(i− 1) in 〈x+ 1〉.

1 {C} i ≤ 0 :b {C ∧ (b = t ≡ i ≤ 0)}

2 {T} 〈0〉 :m {m = 〈0〉} Like Ex. 1

3 {i = 0} 〈0〉 :m {m = 〈i〉} Invar, Conseq, 2

4 {(C ∧ b = t ≡ i ≤ 0)[t/b]} 〈0〉 :m {m = 〈i〉} Conseq, 3

5 {x = i− 1} 〈x+ 1〉 :m {m = 〈i〉} Like Ex. 3

6 {T ⊃ x = i− 1} 〈x+ 1〉 :m {m = 〈i〉} Conseq, 5

7 {(C ∧ b = t ≡ i ≤ 0)[f/b]} g :s {D} Var

8 {D} i− 1 :r {g • r = t{t = 〈i− 1〉}}

9 {(C ∧ b = t ≡ i ≤ 0)[f/b]} g(i− 1) :t {t = 〈i− 1〉} App, 7, 8

10 {(C ∧ b = t ≡ i ≤ 0)[f/b]} P :m {m = 〈i〉} Unquote, Conseq, 6, 9

11 {C} if i ≤ 0 then 〈0〉 else P :m {m = 〈i〉} If, 4, 10

12 {T} λi.if i ≤ 0 then 〈0〉 else P :u {∀i.(C ⊃ Au
i)} Abs, 11

13 {∀j < n.Ag
j} λi.if i ≤ 0 then 〈0〉 else P :u {∀i ≤ n.Au

i } Conseq ⊃-∧, 12

14 {T} liftInt :u {∀n.∀i ≤ n.Au
n} Rec’, 13

15 {T} liftInt :u {∀n.Au
n} Conseq, 14

Example 4.7. We close this section by reasoning about the staged power function from

Section 2. Assuming that i, j, k, n range over non-negative integers, we define Bu
n

def
= u•n =

24

m{m = 〈y〉{∀j.y•j = jn}}. In the derivation, we provide less detail than in previous proofs
for readability.

1 C
def
= n ≤ k ∧ ∀i < k.Bp

i D
def
= C ∧ (b = t ∧ n ≤ 0)

2 P
def
= let 〈q〉 = p(n− 1) in 〈λx.x× (q x)〉

3 {C} n ≤ 0 :b {D}

4 {D[t/b]} 〈λx.1〉 :m {m = 〈y〉{∀j.y • j = jn}} Like prev. examples

5 {D[f/b]} p(n− 1) :r {T ⊃ r = 〈q〉{∀j.q • j = jn−1}} Like Ex. 6

6 {T ⊃ ∀j.q • j = jn−1} 〈λx.x× (q x)〉 :m {m = 〈y〉{∀j.y • j = jn}} Like Ex. 6

7 {D[f/b]} P :m {m = 〈y〉{∀j.y • j = jn}} Unquote, 5, 6

8 {C} if n ≤ 0 then 〈λx.1〉 else P :m {m = 〈y〉{∀j.y • j = jn}} If, 7

9 {T} λn.if n ≤ 0 then 〈λx.1〉 else P :u {∀n ≤ k.((∀i < k.Bp
i) ⊃ Bu

n)} Abs, 8

10 {∀i < k.Bp
i } λn.if n ≤ 0 then 〈λx.1〉 else P :u {∀n ≤ k.Bu

n} Conseq, 9

11 {T} power :u {∀k.∀n ≤ k.Bu
n} Rec’, 10

12 {T} power :u {∀n.Bu
n} Conseq, 11

5. Completeness

This section poses, and then answers in the affirmative, three important meta-logical ques-
tions about the logic introduced in previous sections:

− Is the logic relatively complete in the sense of Cook [12]?
− Is the logic observationally complete [19]?
− Does the logic have characteristic formulae [1]?

The first question can be seen as a reversal of soundness: does

|= {A} M :m {B} imply ⊢ {A} M :m {B}

for all appropriate A,B? Relative completeness means that in the presence of an oracle
for the ambient theory of arithmetic, e.g. Peano arithmetic or ZFC set-theory (used with
[Conseq]), the logic can syntactically derive all semantically true assertions, and reasoning
about programs does not need to concern itself with models. Another way of saying this is
that in relatively complete program logics, the expressive power of the ambient theory of
arithmetic is the only source of incompleteness.6

The second question investigates if the program logic makes the same distinctions as
the observational congruence. In other words, is the following characterisation true?

M ≃ N exactly when for all A,B: {A} M :m {B} iff {A} N :m {B}

Observational completeness means that the operational semantics (given by the contextual
congruence) and the axiomatic semantics given by logic cohere with each other. We believe

6This does not violate Clarke’s result [11] because our logic has higher-order features (evaluation formulae
and code evaluation predicates). See [22] for a more extensive discussion.

25

that observational completeness is a key property of program logics because it guarantees
that any operationally relevant program property can be expressed.

If a logic is observationally complete, we may ask the third question above about char-
acteristic formulae: given a program M , can we find, by induction on the syntax of M , a
pair of formulae A,B such that

− |= {A} M :m {B}
− for all programs N : M . N iff |= {A} N :m {B}?

Such formulae are called characteristic. If characteristic formulae always exist, the semantics
of each program can be expressed succinctly in the logic, using just a pair of formulae, and
we call the logic descriptively complete [19]. The reason we use the contextual precongruence
. from Section 2 in the definition of characteristic formulae above, and not the congruence
≃, is that our logic is for total correctness, and cannot express program divergence. More
precisely, the following holds:

|= {A} M :m {B}
M . N

}

implies |= {A} N :m {B}.

In other words, if {A} M :m {B} holds and we make some parts of M more defined (e.g. by
replacing a divergent with a convergent subterm), obtaining N , then {A} N :m {B} holds,
too. Let’s look at an example:

|= {T} λx.Ω :m {T}.

If we replace Ω with 17, we obtain λx.17, and clearly λx.Ω . λx.17. But also:

|= {T} λx.17 :m {T}.

This indicates that in logics for total correctness, pairs A,B talk about upwards-closed sets
of programs. Upwards-closed sets with a least member (up to ≃) are especially nice, and
for each such set, its least element can be seen as representing the set.

Proof strategy. We prove the three completeness theorems promised at the beginning of
this section following ideas developed in [5, 19, 21, 38], but adapted to the present logic.
The proofs are broken down into the following steps where we:

(1) make precise the relevant notion of characteristic formula.
(2) present an inference system for characteristic formulae.
(3) prove that the inference system computes characteristic formulae.
(4) show that the characteristic formulae are derivable using the rules and axioms of Section

3.
(5) use characteristic formulae to prove observational completeness.
(6) employ characteristic formulae to prove relative completeness.

5.1. Formalising characteristic formulae. We now precisely define we mean by charac-
teristic formulae. Our definition is split into three parts, one guaranteeing the soundness of
characteristic formulae, one to do with termination, and one that is about divergence-related
aspects of program behaviour.

Definition 5.1. A pair (A,B) is a total characteristic assertion pair, or TCAP, of M at u,
if the following conditions hold (in each clause we assume well-typedness).

− (soundness) |= {A} M :u {B}.

26

x non-modal
{T} x :m {x = m}

Vart x modal
{x ⇓} x :m {x = m}

Vart

m {T} c :m {c = m}
Constt

{A} M :m {B}
{T} λxα.M :u {∀x.(A ⊃ u • x = m{B}}

Abst

{Ai} M :mi
{Bi} i = 1, ..., n

{
∧

i
Ai} op(M̃) :u {∃m̃.(u = op(m̃) ∧

∧

i
Bi)}

Opt

{A1} M :m {B1} {A2} N :n {B2}
{A1 ∧A2 ∧ ∀mn.((B1 ∧B2) ⊃ m • n = z{T})}

MN :u
{∃mn.m • n = z{B1 ∧B2 ∧ z = u}}

Appt

{A} M :m {B} {Ai} N :u {Bi} b1 = t b2 = f

{A ∧
∧

i
(B[bi/m] ⊃ Ai)} if M then N1 else N2 :u {

∨

i
(B[bi/m] ∧Bi)}

Ift

{T} λx.M :m {A}
{T} µg.λx.M :m {A[m/g]}

Rect
{A} M :m {B}

{T} 〈M〉 :u {A ⊃ u = 〈m〉{B}}
Quotet

{A1} M :m {B1} {A2} N :u {B2}
{A1 ∧ ((∀x�.A2) ∨ ∀m.(B1 ⊃ m = 〈x〉{A2}))}

let 〈x〉 = M in N :u
{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧B1 ∧B2)}

Unquotet

Figure 6: Inference system for TCAPs.

− (MTC, minimal terminating condition) For all appropriately typed models η, Mη ⇓ if
and only if η |= A.

− (closure) If η |= {E} N :u {B} and E ⊃ A, then η |= E implies Mη . Nη.

A TCAP ofM denotes a set of programs whose minimum element (up to≃) isM , and in that
sense characterises that behaviour uniquely up to .. As mentioned above, characterisation
up to≃ is not possible in a logic for total correctness. Logics of partial correctness suffer from
a dual problem because they cannot express convergence. To achieve logical characterisation
up to ≃ in a single pair of formulae, we need both total and partial correctness, ideally
combined into a logic of general correctness, see e.g. [5].

An inference system for TCAPs. The definition of TCAPs is semantic. We now present
an algorithm that enables us to derive TCAPs for each Pcfdp-program by induction on the
typing derivation. The rules are given in Figure 6 and follow ideas from [5, 19, 21, 38].
Rulenames are derived from those in Figure 4 but with a superscript (e.g. [Vart] instead of
[Var]). The assertion language is that of Section 3 with one extension: quantification over
modal variables. That means the assertions are now generated by the following extended
grammar:

27

A ::= ... || ∀x�α.A

We call ∀x�α.A modal universal quantification, where the bound variable x ranges over
arbitrary programs, not just values. For ∀x�α.A to be well-formed, x must be modal and
of type α in A, and modal quantification is typed as follows:

Γ;∆, x : α ⊢ A

Γ;∆ ⊢ ∀x�α.A

The semantics of modal quantification is given by the following:

(ξ, σ) |= ∀x�α.A iff for all closed programs M of type α : (ξ, σ · x : M) |= A.

Since the addition of modal quantification does not change our notions of model and satis-
faction relation, all proofs in Section 3 stay valid.

The existential modal quantifier ∃x�α.A is given by de Morgan duality. We often drop
type annotations in modal quantifiers, e.g. writing ∀x�.A. Axiomatising modal quantifica-
tion uses the standard axioms for first-order quantifiers with the following addition:

(divm) ¬∀x�.x ⇓

This axiom states that not all modal variables denote terminating programs, which is im-
mediately true from the model.

We write ⊢tcap {A} M :u {B} to indicate that the assertion {A} M :u {B} is derivable
using the rules of Figure 6 only (i.e. without application of rules from Figures 4 and 5). As
before, we assume that assertions, programs and rules are well-typed, and newly introduced
variables are always fresh.

Before presenting proofs, we make a small observation: the pre- and postcondition pairs
in Figure 6 constrain exactly the free variables of a program, together with the anchor:

Observation 5.2. Let ⊢tcap {A} M :m {B} then fv(A) = fv(M) and fv(B) = fv(M)∪ {m}.

Informal explanation of the rules. Except for [Unquotet] and [Vart
m], all rules in

Figure 6 are either unchanged from the corresponding rules in Figure 4 or have already
been used in some of [5, 19, 21, 38]. We now give an informal explanation of the rules not
already in Figure 4.

[Vart] says that the TCAP of a non-modal variable x at m is (T, x = m). The precon-
dition is T because non-modal variables always denote values and thus always terminate.
The postcondition x = m says that whenever a program M satisfies {T} M :m {x = m},
then M must be contextually equal to x in the ambient model.

[Vart
m] for modal variables x has a more elaborate precondition than [Vart], because

modal variables can denote non-terminating programs. The formula x ⇓ is true exactly
when the denotation of x is terminating. The postcondition is the same as in the case of
[Vart].

[Constt] says that the TCAP for constants c at m is (T, c = m). As with non-modal
variables, the precondition is T because constants are values. The postcondition c = m says
that whenever a program M satisfies {T} M :m {c = m}, then M must be contextually
equal to c. For example, under the typing x : Int; ǫ, the program if x then 5 else 5 has
this property, and indeed 5 ≃ if x then 5 else 5 when x is non-modal.

28

[Opt] computes all TCAPs for operands in the premise. As an operation (e.g. addition)
terminates exactly when all operands terminate, the precondition of the rule’s conclusion is
simply the conjunction of all preconditions for operands. The postcondition of the rule con-
clusion states that the result of the computation is the operation applied to some operands,
and each operand is constrained by the postconditions of the rule premises. Depending
on the operations used, additional constraints might be needed in the precondition: for
example division M/N requires N to evaluate to a non-zero value.

[Appt] works as follows. In a call-by-value language an application MN terminates if:
the evaluations of both M and N terminate to V and W , respectively; and, in addition,
the application V W itself terminates. The first two requirements are stated by putting
A1 ∧A2 into the precondition of the conclusion on the rule. Here Ai is obtained recursively
by computing the TCAPs of M and N , so e.g. A1 holds exactly when M terminates. The
additional assumption

∀mn.((B1 ∧B2) ⊃ m • n = z{T})

says that no matter what M and N evaluate to, the program terminates as long as m
is as constrained by Bi, n is constrained by B2, and the application m • n terminates.
The postcondition of the conclusion says that the program MN evaluates to the result of
applying M to N .

[Ift] makes the following assertion. A conditional terminates exactly when the condition
terminates and the branch chosen by the conditional does, too. This is formalised by:

A ∧
∧

i
(B[bi/m] ⊃ Ai)

As exactly one of B[t/m] and B[f/m] is true and exactly one is false, one implication is
vacuously true, and the other requires the corresponding Ai to hold, giving the correct
termination condition. For the same reason exactly one of

B[bi/m] ∧Bi

must be false, and one must hold exactly when the corresponding Bi holds. Since these two
formulae are connected by an outer disjunction, the postcondition of the rule’s conclusion
give exactly the behaviour of the program.

[Unquotet] This rule is the main intellectual novelty of the present section. Clearly,
let 〈x〉 = M in N terminates exactly when:

− M evaluates to some 〈M ′〉, and
− N [M ′/x] terminates.

The former is reflected in the precondition of the conclusion of the rule by adding A1, which
controls the termination of M . The second condition is more complicated, because it is
possible that M evaluates to e.g. 〈Ω〉, and yet N [Ω/x] terminates, for example in

let 〈x〉 = 〈Ω〉 in 〈x〉

This case is covered by the clause ∀x�.A2. We see here the reason for using modal quantifi-
cation. If the quantifier were to range over values only, programs such as

let 〈x〉 = 〈Ω〉 in x, (5.1)

which do not terminate, would cause trouble without modal quantification, because only
when x is bound to a non-terminating term would N diverge. The TCAP for x at u
is (x ⇓, x = u), making ∀x.x ⇓, unlike ∀x�.x ⇓, trivially true, leading to the erroneous
precondition T for (5.1).

29

One may also ask, why not use a simpler precondition like

A1 ∧ ∀m.(B1 ⊃ m = 〈x〉{A2}) (5.2)

in the conclusion of [Unquotet]? The answer is that this would also be too weak for
completeness. To see why, consider the program:

let 〈x〉 = 〈Ω〉 in 8.

The TCAPs of 〈Ω〉 is {T} 〈Ω〉 :m {T}, cf. Example 16, and using the rule [Constt], we see
that {T} 8 :u {u = 8} is the TCAP of 8. That means (5.2) gives us a precondition

{T ∧ ∀m.m = 〈x〉{T}} let 〈x〉 = 〈Ω〉 in 8 :u {...}

which is equivalent to:

{F} let 〈x〉 = 〈Ω〉 in 8 :u {...} (5.3)

since ∀m.m = 〈x〉{T} is equivalent to F. Now (5.3) is clearly sound, but the precondition
too weak to capture the full meaning of the program let 〈x〉 = 〈Ω〉 in 8.

Next we look at the postcondition. It says that the result of evaluating let 〈x〉 =
M in N is, among other things, as described by B2, which is the postcondition of N at
u. However, by Observation 5.2, B2 contains x as free variable. We hide it with a modal
existential quantifier. But x cannot be arbitrary, as it is the result of unquoting what
M evaluates to. Note that the postcondition B1 speaks about M named m. So x is the
unquoting of m. We cannot assert m = 〈x〉{...}, because that would stipulate that M
evaluates to a term that, when unquoted, terminates, which cannot be guaranteed (e.g. if
M is 〈Ω〉). To deal with this issue, we explicitly require that x is the unquoting of m,
provided m denotes a terminating meta-program:

m = 〈·〉 ⊃ m = 〈x〉 (5.4)

which means, if M converges to a quasi-quote 〈M ′〉 and M ′ converges, say to V , then x
describes this value V . Finally, we hide m by an existential quantifier, and constrain m
by B1. Note that the conditional constraining of x in (5.4) does not hold if M diverges,
or converges to e.g. 〈Ω〉. In the former case, the precondition must be (equivalent to) F,
because the whole program diverges. In the latter case, a logic for total correctness cannot
make an interesting assertion about the use of x in N .

Theorem 5.3.

(1) (descriptive completeness for total correctness) Assume Γ;∆ ⊢ M : α. Then ⊢tcap

{A} M :u {B} implies (A,B) is a TCAP of M at u.
(2) (observational completeness) M ≃ N if and only if, for each A and B, we have |=

{A} M :u {B} iff |= {A} N :u {B}.
(3) (relative completeness) Let B be upward-closed at u. Then |= {A} M :u {B} implies

⊢ {A} M :u {B}.

Before giving a proof of Theorem 5.3 establish some helpful facts.

Proposition 5.4.

(1) If (A,B) is a TCAP of M at u and if |= {A} N :u {B}, then M . N .
(2) (A,B) is a TCAP of M at u iff (soundness), (MTC) and the following condition hold:

(closure-2): if (ξ, σ) |= A and for closed V we have (ξ ·u : V, σ) |= B then M(ξ, σ) . V .

Proof. We begin with (1). Assume that η = (ξ, σ) |= {A} N :u {B}. There are two cases.

30

− η |= A. In this case Mη ⇓ V by soundness, and (ξ ·u : V, σ) |= B. Now Mη . Nη follows
by (closure).

− η 6|= A. In this case, by (MTC) we have Mη ⇑ and hence trivially Mη . Nη.

Now the result follows from Observation 3.1.
For (2) we begin with the (if) direction. Assume η |= {E} N :u {B} where E ⊃ A and

η |= E. Hence Nη ⇓ V with (ξ · u : V, σ) |= B by soundness. From E ⊃ A we get η |= A,
but then by (closure-2) it must be the case that Mη . V which in turn implies Mη . Nη
since V ≃ Nη by Proposition 2.1.0(6).

For the reverse direction, suppose (A,B) is a TCAP for M at u. We must show that
(closure-2) holds. So let η = (ξ, σ) |= A and (ξ · u : V, σ) |= B, with V being closed and
appropriately typed. Define:

E
def
= A ∧ ∃u.B

Then clearly:

− η |= E,
− E ⊃ A,
− η |= {E} V :u {B}.

Hence by (closure) Mη . V η = V

Proposition 5.4.1 shows that TCAPs of a program M really represent a set of behaviours
whose minimal element is M .

Proof [of Theorem 5.3.1]. The proof we are about to embark on is somewhat lengthy, and
benefits from having the following convenient proposition available.

Proposition 5.5. If ⊢tcap {A} M :u {B} then also ⊢ {A} M :u {B}.

Proof. We proceed by induction on the derivation of ⊢tcap {A} M :u {B}. The cases [Abst,
Quotet] follow immediate from the (IH), since these rules are identical in the rule systems
of Figures 4 and 6.

Vart: We proceed as follows.

1 {x = m[x/m] ∧ x ⇓} x :m {x = m} Var

2 {x ⇓} x :m {x = m} Conseq, 1

3 {T} x :m {x = m} (term), Conseq, 2

Vart
m: This case is exactly like the previous, except that the last line is omitted.

Constt: Similar to [Vart].

31

Opt: We treat the special case of addition.

1 {Ai} Mi :mi
{Bi} (IH)

2 {A1 ∧A2} M1 :m1
{B1 ∧A2} Invar, 1

3 {B1 ∧A2} M2 :m2
{B1 ∧B2} Invar, 1

4 {B1 ∧A2} M2 :m2
{m1 +m2 = m1 +m2 ∧B1 ∧B2} Conseq, 3

5 {B1 ∧A2} M2 :m2
{(u = m1 +m2)[m1 +m2/u] ∧B1 ∧B2} 4

6 {A1 ∧A2} M1 +M2 :u {u = m1 +m2 ∧B1 ∧B2} Add, 2, 5

7 {A1 ∧A2} M1 +M2 :u {∃m1m2.(u = m1 +m2 ∧B1 ∧B2)} Conseq, 6

Appt: The proof for this rule is the sole place in this paper where the (qα) axiom is used.
It is an open question as to whether this axiom is strictly needed, but we have not yet
managed without it.

1 {A1} M :m {B1} (IH)

2 C
def
= ∀mn.((B1 ∧B2) ⊃ m • n = u{T})

3 {A1 ∧A2 ∧ C} M :m {A2 ∧B1 ∧ C} Invar, 1

4 {A2} N :n {B2} (IH)

5 {A2 ∧B1 ∧ C} N :n {B1 ∧B2 ∧ C} Invar, 4

6 {A2 ∧B1 ∧ C} N :n {B1 ∧B2 ∧m • n = u{T}} 5

7 {A2 ∧B1 ∧ C} N :n {m • n = u{B1 ∧B2}} (q4), 6

8 {A2 ∧B1 ∧ C} N :n {m • n = u{m • n = z{B1 ∧B2 ∧ u = z}}} (qα), 7

9 {A1 ∧A2 ∧ C} MN :u {m • n = z{B1 ∧B2 ∧ u = z}} App, 3, 8

10 {A1 ∧A2 ∧ C} MN :u {∃mn.(m • n = z{B1 ∧B2 ∧ u = z)}} 9

32

Ift: In the derivation of this rule we make unusually heavy tacit use of the [Conseq] rule.

1 {A} M :m {B} (IH)

2 C
def
=

∧

i
(B[bi/m] ⊃ Ai)

3 {A ∧ C} M :m {B ∧C} Invar, 1

4 B[t/m] ≡ T B[f/m] ≡ F Wlog.

5 {Ai} Ni :u {Bi} (IH)

6 {B[bi/m] ∧ C} Ni :u {Bi} 5

7 {B[bi/m] ∧ C[bi/m]} Ni :u {Bi} m /∈ fv(C), 6

8 {B[bi/m] ∧B[bi/m] ∧ C[bi/m]} Ni :u {B[bi/m] ∧Bi} Invar, 7

9 {B[bi/m] ∧ C[bi/m]} Ni :u {B[bi/m] ∧Bi} 8

10 {(B ∧ C)[bi/m]} Ni :u {B[bi/m] ∧Bi} 9

11 D
def
=

∨

i
(B[bi/m] ∧Bi)

12 {(B ∧ C)[bi/m]} Ni :u {D} 10

13 {A ∧ C} if M then N1 else N2 :u {D} 3, 12

Unquotet: This is the last step in our proof. The derivation uses [Unquote+], the only
use of that rule in the paper. It is unclear if the simpler version of [Unquote+] presented
in Section 3 is strong enough to carry out this part of the proof.

1 {A1} M :m {B1} (IH)

2 C
def
= (∀x�.A2) ∨ ∀m.(B1 ⊃ m = 〈x〉{A2}

3 {A1 ∧ C} M :m {B1 ∧C} Invar, 1

4 {A1 ∧ C} M :m {B1 ∧ ((∀x�.A2) ∨m = 〈x〉{A2})} 3

5 {A1 ∧ C} M :m {B1 ∧ ((¬∀x�.A2) ⊃ m = 〈x〉{A2})} 4

6 D
def
= m = 〈·〉 ⊃ m = 〈x〉

7 {A2} N :u {B2} (IH)

8 {A2 ∧D ∧B1} N :u {D ∧B1 ∧B2} Invar, 7

9 ((¬∀x�.A2) ⊃ A2) ⊃ A2 see below

10 {B1 ∧ ((¬∀x�.A2) ⊃ A2) ∧D} N :u {D ∧B1 ∧B2} Conseq, 8, 9

11 {A1 ∧ C} let 〈x〉 = M in N :u {D ∧B1 ∧B2} Unquote+, 5, 10

12 {A1 ∧ C} let 〈x〉 = M in N :u {∃mx�.(D ∧B1 ∧B2)} Conseq, 11

33

It remains to justify Line 9. Rewriting

((¬∀x�.A2) ⊃ A2) ⊃ A2

in the equivalent form
((∀x�.A2) ∨A2) ⊃ A2

lets us see immediately that Line 9 is true.

Proposition 5.5 together with the soundness of the rules in Figure 4 immediately implies
the soundness of the TCAP rules. We record this fact:

Corollary 5.6. The TCAP rules in Figure 6 are sound.

Now we establish the first part of the theorem by induction on the derivation of ⊢tcap

{A} M :u {B}, using (closure-2) from Proposition 5.4.2 instead of (closure) for simplicity.
We focus on the interesting cases [Vart

m, Rect, Quotet, Unquotet], leaving the remaining
ones to Appendix B.

We start the proof of Theorem 5.3.1 with [Vart
m]. For soundness, assume that η

def
=

(ξ, σ ·x : M) |= x ⇓. By definition of x ⇓ we can find a value V of appropriate type such that
(ξ, y : V, σ · x : M) |= x = y where y is some fresh variable. Thus M ≃ V , hence xη ⇓ W
for some value W with W ≃ V (Proposition 2.1.0(1)) and clearly (ξ ·m : W,σ) |= x = m.
(MTC) follows by the assumption in the precondition that x ⇓. For (closure-2), we choose

a model η
def
= (ξ, σ · x : M) with η |= x ⇓ and (ξ · m : V, σ · x : M) |= m = x. As above,

η |= x ⇓ means that M ⇓ W for some appropriate closed value W . Hence V ≃ M ⇓ W
which means in particular M . V hence xη . V as required.

Next is [Quotet]. Let η
def
= (ξ · u : 〈N〉, σ). Soundness has already been proven in

Theorem 3.2.1, and (MTC) is trivial. So suppose η |= A ⊃ u = 〈m〉{B}. There are two
cases.

− η 6|= A. By (IH) we know that A is an MTC for M , hence it must be the case that Mη ⇑,
thus trivially Mη . N . Since . is a congruence by definition, we know that 〈Mη〉 . 〈N〉.
Now 〈M〉η = 〈Mη〉 hence 〈M〉η . 〈N〉 as required.

− η |= A and η |= u = 〈m〉{B}. Now we reason as given next.

1 η |= A Assumption

2 (ξ, σ) |= A Prop. 3.3.2, u /∈ fv(A), 1

3 η |= u = 〈m〉{B} Assumption

4 N ⇓ V and (ξ · u : 〈N〉, σ ·m : V) |= B 3

5 ξ, σ ·m : V |= B Prop. 3.3.2, u /∈ fv(B), 4

6 M(ξ, σ) . V by (IH), (closure-2), 2, 5

7 〈M〉(ξ, σ) = 〈M(ξ, σ)〉 . 〈V 〉 . is a congruence, 6

8 〈M〉(ξ, σ) . 〈N〉 Lem. 2.1.0(7), 4, 7

Next we deal with [Unquotet], the most complicated case. We begin with soundness.
Let A be the formula

A1 ∧ (∀x�.A2) ∨ ∀m.(B1 ⊃ m = 〈x〉{A2})
34

Assume that (ξ, σ) |= A.

1 (ξ, σ) |= A Assumption

2 (ξ, σ) |= A1

3 M(ξ, σ) ⇓ 〈M ′〉 and (ξ ·m : 〈M ′〉, σ) |= B1 (IH), 2

Now we have two cases, here is the first.

4 (ξ, σ) |= ∀x�.A2 First case

5 For all appropriate programs U : (ξ, σ · x : U) |= A2 4

6 (ξ, σ · x : M ′) |= A2 Specialisation of 5

7 N(ξ, σ · x : M ′) ⇓ V and (ξ · u : V, σ · x : M ′) |= B2 (IH), 6

We now consider reductions where we set η
def
= (ξ, σ).

(let 〈x〉 = M in N)η = let 〈x〉 = Mη in Nη
→→ let 〈x〉 = 〈M ′〉 in Nη by 3
→→ Nη[M ′/x]
= N(ξ, σ · x : M ′) Prop. 3.3.4
⇓ V by 7

Using this fact, we continue to reason as follows. Define

η′′
def
= (ξ · u : V ·m : 〈M ′〉, σ · x : M ′)

We need to show that

η′′ |= (m = 〈·〉 ⊃ m = 〈x〉) ∧B1 ∧B2. (5.5)

Since by (3) we have (ξ · m : 〈M ′〉, σ) |= B1 and x, u /∈ fv(B1) by Observation 5.2, we can
apply Proposition 3.3.3 to get η′′ |= B1. By similar reasoning we get η′′ |= B2 from (8).
Hence η′′ |= B1 ∧ B2. That leaves the implication. Assume η′′ |= m = 〈·〉. By definition
that means there is a value W such that M ′ ⇓ W and

(ξ · u : V ·m : 〈M ′〉, σ · x : W) |= m = 〈x〉

By Proposition 2.1.0(6) then M ′ ≃ W , hence we can apply Proposition 3.3.2, giving us the
required (5.5), which in turn implies

(ξ · u : V, σ) |= ∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧B1 ∧B2)

which finishes the soundness proof for this case.

35

We now consider the second case.

4 (ξ, σ) |= ∀m.(B1 ⊃ m = 〈x〉{A2}) Second case

5 For all appropriate programs L.(ξ ·m : L, σ) |= B1 ⊃ m = 〈x〉{A2} 4

6 (ξ ·m : 〈M ′〉, σ) |= B1 ⊃ m = 〈x〉{A2} Specialisation of 5

7 (ξ ·m : 〈M ′〉, σ) |= m = 〈x〉{A2} 3, 6

8 M ′ ⇓ W and (ξ ·m : 〈M ′〉, σ · x : W) |= A2 (IH), 7

9 (ξ, σ · x : W) |= A2 Obs. 5.2, m /∈ fv(A2), Prop. 3.3.2, 8

10 N(ξ, σ · x : W) ⇓ V and (ξ · u : V, σ · x : W) |= B2 (IH), 9

Now we consider reductions where we set η
def
= (ξ, σ).

(let 〈x〉 = M in N)η = let 〈x〉 = Mη in Nη
→→ let 〈x〉 = 〈M ′〉 in Nη by 3
→→ Nη[M ′/x]
= N(ξ, σ · x : M ′) Prop. 3.3.4
⇓ V by 10

The rest of this case is essentially identical to the corresponding reasoning for the first case,
and omitted.

Now we establish (MTC). Choose a model (ξ, σ) and assume that

(let 〈x〉 = M in N)(ξ, σ) ⇓ .

We will show that (ξ, σ) |= A. The reverse implication is part of soundness. Notice that
this assumption implies the existence of a reduction sequence as follows.

(let 〈x〉 = M in N)(ξ, σ) = let 〈x〉 = M(ξ, σ) in N(ξ, σ)

→→ let 〈x〉 = 〈M ′〉 in N(ξ, σ) (5.6)

→ N(ξ, σ)[M ′/x]

= N(ξ, σ · x : M ′) (5.7)

⇓ V (5.8)

by (5.6) we know that
M(ξ, σ) ⇓ 〈M ′〉

Since by (IH) A1 is an MTC for M , we know that

(ξ, σ) |= A1 and hence (ξ ·m : 〈M ′〉, σ) |= B1 (5.9)

We have two cases. First assume that M ′ ⇑. By (5.8) and Lemma 2.1.0(10) we know that
the following holds.

For all appropriately typed and closed programs L : N(ξ, σ · x : L) ⇓ .

By (IH) A2 is an MTC for N at u, so we can reason as follows.

1 for all L.(ξ, σ · x : L) |= A2

2 (ξ, σ) |= ∀x�.A2 1

3 (ξ, σ) |= A1 ∧ ((∀x�.A2) ∧ ∀m.(B1 ⊃ m = 〈x〉{A1})) 2, (5.9)

36

The second case is that M ′ ⇓. We proceed as follows.

1 (ξ ·m : L, σ) |= B1 Fresh assumption, L = 〈L′〉 arbitrary value

2 (ξ, σ) |= A1 5.9

3 M(ξ, σ) . 〈L′〉 By (IH) (closure-2) holds for A1, B1, 1, 2

4 M(ξ, σ) ⇓ 〈M ′〉 5.6

5 〈M ′〉 . 〈L′〉 Lem. 2.1.0(11), 3, 4

6 M ′ . L Lem. 2.1.0(8), 5

7 N(ξ, σ · x : M ′) ⇓ 5.8

8 N(ξ, σ · x : L′) ⇓ Lem. 2.1.0(11), 6, 7

9 (ξ, σ · x : L′) |= A2 By (IH) A2 is (MTC) for N , 8

10 (ξ ·m : L, σ · x : L′) |= A2 m /∈ fv(A2), Prop. 3.3.3, 9

11 (ξ ·m : L, σ) |= m = 〈x〉{A2} 10

12 (ξ ·m : L, σ) |= B1 ⊃ m = 〈x〉{A2} 1, 11

13 (ξ, σ) |= ∀m.(B1 ⊃ m = 〈x〉{A2}) L was arbitrary, 12

14 (ξ, σ) |= A1 ∧ ((∀x�.A2) ∧ ∀m.(B1 ⊃ m = 〈x〉{A1})) 2, 13

This establishes (MTC).

We conclude this case by proving (closure-2). Let η
def
= (ξ, σ) be an appropriately typed

model such that:

− η |= A1 ∧ ((∀x�.A2) ∨ ∀m.(B1 ⊃ m = 〈x〉{A2})).
− (ξ · u : V, σ) |= ∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧B1 ∧B2).

This means in particular that there are Mm and Mx such that

(ξ · u : V ·m : 〈Mm〉, σ · x : Mx) |= (m = 〈·〉 ⊃ m = 〈x〉) ∧B1 ∧B2. (5.10)

We first note that since

(ξ · u : V ·m : 〈Mm〉, σ · x : Mx) |= (m = 〈·〉 ⊃ m = 〈x〉)

it must be the case that:
Mm ⇓ implies Mm ≃ Mx.

This is an immediate consequence of the definition of the satisfaction relation for m = 〈·〉
and m = 〈x〉. At the same time, trivially:

Mm ⇑ implies Mm . Mx.

Taking those two facts together, we see that the following holds.

Mm . Mx. (5.11)

37

Since u, x /∈ fv(B1), we can use (5.10) and Proposition 3.3.2 to conclude that

η |= A1 (ξ ·m : 〈Mm〉, σ) |= B1 (5.12)

which, in turn, enables us to use the (IH), so by (closure-2) we know that

Mη . 〈Mm〉. (5.13)

In a similar way we establish that

(ξ · u : V, σ · x : Mx) |= B2 (5.14)

Now we have to distinguish the following two cases.

− η |= ∀x�.A2.
− η |= ∀m.(B1 ⊃ m = 〈x〉{A2}).

In the first case clearly

η′
def
= (ξ, σ · x : Mx) |= A2

which together with (5.14) means we can use the (IH) on ⊢tcap {A2} N :u {B2}, where
(closure-2) means that

Nη′ . V. (5.15)

This together with (5.13) means

(let 〈x〉 = M in N)η = let 〈x〉 = Mη in Nη
. let 〈x〉 = 〈Mm〉 in Nη by (5.13)
→ Nη[Mm/x]
. Nη[Mx/x] by (5.11)
= Nη′ Prop. 3.3.4
. V by 5.15

Since → ⊆ ≃ ⊆ . (Theorem 2.1.0(6)), and . is transitive, we can thus conclude to:

(let 〈x〉 = M in N)η . V

as required.
Now we consider the second case η |= ∀m.(B1 ⊃ m = 〈x〉{A2}).

1 η |= ∀m.(B1 ⊃ m = 〈x〉{A2})

2 (ξ ·m : 〈Mm〉, σ) |= B1 ⊃ m = 〈x〉{A2} 1

3 (ξ ·m : 〈Mm〉, σ) |= m = 〈x〉{A2} (5.12), 2

4 〈Mm〉 ⇓ W, (ξ ·m : 〈Mm〉, σ · x : W) |= A2 3

5 η′
def
= (ξ, σ · x : W) |= A2 Prop. 3.3.2, m /∈ fv(A2), 4

The rest of this case is handled exactly like the previous case, concluding the proof of
(closure-2).

38

5.2. Proofs of Theorems 5.3.2 and 5.3.3. We conclude this section by proving obser-
vational and relative completeness.

Proof [of Theorem 5.3.2]. Assume that M ≃ N . Now let η
def
= (ξ, σ), η |= A, Mη ⇓ V and

(ξ · u : V, σ) |= B. Since M ≃ N we know that Mη ≃ Nη by Observation 3.1, Nη ⇓ W
and V ≃ W . Hence we can apply Proposition 3.3.2 to obtain (ξ · u : W,σ) |= B as required.
The remaining case, η 6|= A, is immediate.

For the reverse direction, let ⊢tcap {A} M :u {B}. Then (A,B) is a TCAP of M at u,
hence by soundness of TCAPs and Theorem 5.3.1 we know that |= {A} M :u {B}. Then by
assumption also |= {A} N :u {B}. Since (A,B) is a TCAP for M at u we apply Proposition
5.4.1 to obtain M . N . Similarly we derive N . M , which together implies M ≃ N . This
establishes observational completeness.

Proof [of Theorem 5.3.3]. Relative completeness is equally easy to justify. We start from
the following assumption.

|= {A} M :u {B}

Using the rules in Figure 6, we obtain a TCAP (A′, B′) for M at u such that

⊢tcap {A′} M :u {B′}

holds. With these assumptions, the proof of Theorem 5.3.3 has the following form:

|= {A} M :u {B} ⊢tcap {A′} M :u {B′}

A ⊃ (A′ ∧ (B′ ⊃ B))
(*)

⊢tcap {A′} M :u {B′}

⊢ {A′} M :u {B′}
Prop. 5.5

⊢ {A} M :u {B}
Conseq-Kl

It remains to establish step (*). For this purpose, let η
def
= (ξ · u : W,σ) be a model and

assume η |= A.
We first establish that η |= A′. Since u /∈ fv(A), we know from Proposition 3.3.2 that

with η′
def
= (ξ, σ) also η′ |= A. This fact together with the assumption |= {A} M :u {B}

means that Mη′ ⇓ V for some closed value V . As (A′, B′) is a TCAP for M at u, (MTC)
holds so it must also be the case that η′ |= A′. Applying u /∈ fv(A) with Proposition 3.3.2
again we now obtain η |= A′ as required. This shows that A ⊃ A′.

To prove that (A ∧ B′) ⊃ B, assume η |= A ∧ B′. From η |= B′ and Proposition 5.4.2
we obtain Mη′ . W . We showed above that Mη′ ⇓ V , so in fact Mη′ ≃ V by Proposition
2.1.0(6), hence clearly

V . W.

From η |= A, Mη′ ⇓ V (see above) and the assumption that |= {A} M :u {B} we obtain

(ξ · u : V, σ) |= B.

Now we use the upwards-closure of B to conclude that:

η = (ξ · u : W,σ) |= B.

6. Examples of characteristic formulae

In this section we look at some example inferences for TCAPs. To make the derivations
more readable, we will make simplifications such as writing T for T ∧ T. Note that these
simplifications are not admissible using the inference system of Figure 6 only.

39

Example 6.1. We begin with a simple program 2 + 3.

1 {T} 2 :a {a = 2} Constt

2 {T} 3 :b {b = 3} Constt

3 {T ∧ T} 2 + 3 :c {∃ab.(c = a+ b ∧ a = 2 ∧ b = 3)} Plust, 1, 2

Clearly the conclusion in Line (3) is logically equivalent to

{T} 2 + 3 :c {c = 5}

as expected.

Example 6.2. We continue with a variant of Example 8, using a non-modal variable x.
This example is preparation, of sorts, for more involved examples.

1 {T} x :a {a = x} Vart

2 {T} 1 :b {b = 1} Constt

3 {T ∧ T} x+ 1 :c {∃ab.(c = a+ b ∧ a = x ∧ b = 1)} Plust, 1, 2

As expected, the conclusion in Line (3) is logically equivalent to

{T} x+ 1 :c {c = x+ 1}

Example 6.3. We use the previous example to derive the TCAP for a abstraction λx.x+1.

1 {T} x+ 1 :c {c = x+ 1} Ex. 9

2 {T} λx.x+ 1 :u {∀x.(T ⊃ u • x = x+ 1)} Abst, 1

As before, the derived TCAP is easily seen to be logically equivalent to

{T} λx.x+ 1 :u {∀x.u • x = x+ 1}

Example 6.4. This example shows how the rule for application works.

1 {T} λx.x+ 1 :m {∀x.m • x = x+ 1} Ex. 10

2 {T} 2 :n {n = 2} Constt

3 {T ∧ T ∧ ∀mn.((∀x.m • x = x+ 1 ∧ n = 2) ⊃ m • n ⇓)}
(λx.x+ 1)2 :u

{∃mn.(m • n = z{∀x.m • x = x+ 1 ∧ n = 2 ∧ z = u})}

Appt, 1, 2

It is easy to see that

T ∧ T ∧ ∀mn.((∀x.m • x = x+ 1 ∧ n = 2) ⊃ m • n ⇓)

40

simplifies to T via ∀mn.(m • n ⇓ ⊃ m • n ⇓). The postcondition can be simplified to u = 3
as follows:

1 ∃mn.(m • n = z{∀x.m • x = x+ 1 ∧ n = 2 ∧ z = u})

2 ∃mn.(∀x.m • x = x+ 1 ∧ n = 2 ∧m • n = z{z = u}) 1

3 ∃mn.(m • 2 = 3 ∧m • 2 = z{z = u}) 2

4 ∃mn.(m • 2 = z{z = 3} ∧m • 2 = z{z = u}) Unwinding of shorthand, 3

5 ∃mn.(m • 2 = z{z = 3 ∧ z = u}) Axiom (e1) from Fig. 7, 4

6 ∃mn.(m • 2 = z{u = 3}) 5

7 ∃mn.(u = 3 ∧m • 2 = z{T}) Axiom (e4) from Fig. 7, 6

8 u = 3 7

Example 6.5. The TCAP in the previous example turned out to be logically equivalent to
a very simple assertion, albeit only after simplification starting with rather large formulae.
This simplification was possible because both parts of the application were concrete terms.
In an application like gx this is not the case as we show now, even when neither g nor x are
modal.

1 {T} g :a {a = g} Vart

2 {T} x :b {b = x} Vart

3 {T ∧ T ∧ ∀ab.((a = g ∧ b = x) ⊃ a • b ⇓)}
gx :m

{∃ab.(a • b = z{a = g ∧ b = x ∧ z = m})}

Appt, 1, 2

4 {g • x ⇓} gx :m {g • x = m} 3

Here the (simplified) TCAP explicitly assumes that the application converges, and states
that the result of the program is simply the result of the application.

Example 6.6. We use the previous example to derive the TCAP for ω. Our preceding
discussion indicated that {T} ω :u {T} is the strongest assertion we can make about a
program such as ω in a logic for total correctness. This is borne out by the derivation to
follow.

1 {g • x ⇓} gx :m {g • x = m} Ex. 11

2 {T} λx.gx :u {∀x.(g • x ⇓ ⊃ u • x = m{g • x = m})} Abst, 1

3 {T} ω :u {∀x.(u • x ⇓ ⊃ u • x = m{u • x = m})} Rect, 2

4 {T} ω :u {∀x.(u • x ⇓ ⊃ u • x = u • x)} 3

5 {T} ω :u {T} 4

Example 6.7. We build on Example 13 to derive the TCAP for Ω. As Ω diverges, the
precondition of the TCAP must be falsity.

41

1 {T} ω :m {T} Ex. 12

2 {T} () :n {n = ()} Constt

3 {∀m.m • () ⇓} Ω :u {∃m.m • () = u} Appt, 3

Clearly ∀m.m • () ⇓ is false, because not every function is terminating. This is intuitively
obvious, and follows formally from the axiom (div) in Figure 7. Consequently, the TCAP
for Ω is logically equivalent to

{F} Ω :u {T}

as expected.

Example 6.8. We will now look at examples involving MP.

1 {T} 3 :m {m = 3} Constt

2 {T} 〈3〉 :u {T ⊃ u = 〈m〉{m = 3}} Quotet, 1

3 {T} 〈3〉 :u {u = 〈3〉} 2

The result is not surprising because [Quotet] is unchanged from Figure 4.

Example 6.9. Next we tackle an example that uses [Unquotet]. Clearly the program
let 〈x〉 = 〈3〉 in x evaluates to 3. Note that x is modal.

1 {T} 〈3〉 :m {m = 〈3〉} Ex. 14

2 {x ⇓} x :n {n = x} Vart
m

3 {T ∧ ((∀x�.x ⇓) ∨ ∀m.(m = 〈3〉 ⊃ m = 〈x〉{x ⇓}))}
let 〈x〉 = 〈3〉 in x :n

{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧m = 〈3〉 ∧ n = x)}

Unquotet, 1, 2

4 {T}
let 〈x〉 = 〈3〉 in x :n

{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧m = 〈3〉 ∧ n = x)}

3

5 {T} let 〈x〉 = 〈3〉 in x :n {n = 3} 4

We now explain the last two simplification steps. First (∀x�.x ⇓) must be equivalent to
F because not all denotations of the modal variable x terminate. This is formalised by
Axiom (divm) from Section 5. The formula ∀m.(m = 〈3〉 ⊃ m = 〈x〉{x ⇓} is equivalent
to T because m = 〈3〉 is a shorthand for m = 〈x〉{x = 3}, and clearly x = 3 implies
x ⇓. This justifies Line 4. Regarding the last line, clearly m = 〈3〉 implies m = 〈·〉, so
∃mx�.(m = 〈x〉 ∧m = 〈3〉 ∧ n = x) holds. Using Axioms (q1) and (q4) allows us to obtain
∃mx�.(x = 3 ∧ n = x), which in turn simplifies to n = 3 as required.

Example 6.10. We now derive a simple result from Example 14 that is used later.

1 {F} Ω :x {T} Ex. 13

2 {T} 〈Ω〉 :m {F ⊃ m = 〈x〉{T}} Quotet, 1

3 {T} 〈Ω〉 :m {T} 2

42

Example 6.11. We continue with an example where quasi-quotes divergent code gets
unquoted, and then re-quoted without further use.

1 {T} 〈Ω〉 :m {T} Ex. 16

2 {x ⇓} x :b {x = b} Vart
m

3 {T} 〈x〉 :u {x ⇓ ⊃ u = 〈b〉{x = b}} Quotet, 2

4 {T ∧ ((∀x�.T) ∨ ∀m.(T ⊃ m = 〈x〉{T}))}
let 〈x〉 = 〈Ω〉 in 〈x〉 :u

{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧ T ∧ (x ⇓⊃ u = 〈b〉{x = b}))}

Unquotet, 1, 3

5 {T}
let 〈x〉 = 〈Ω〉 in 〈x〉 :u

{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧ T ∧ (x ⇓⊃ u = 〈b〉{x = b}))}

4

6 {T} let 〈x〉 = 〈Ω〉 in 〈x〉 :u {T} 5

Line 6 follows because clearly ∀x�.T is equivalent to T. Finally, the simplification in Line
6 is immediate, because everything implies T.

Example 6.12. We continue by determining the TCAP for let 〈x〉 = 〈Ω〉 in x, which is
a divergent program, which we expect to be equivalent to

{F} let 〈x〉 = 〈Ω〉 in x :u {T}.

We infer the TCAP as follows:

1 {T} 〈Ω〉 :x {T} Ex. 16

2 {x ⇓} x :u {u = x} Vart
m

3 {T ∧ ((∀x�.x ⇓) ∨ ∀m.(T ⊃ m = 〈x〉{x ⇓}))}
let 〈x〉 = 〈Ω〉 in x :u

{∃mx�.((m = 〈·〉 ⊃ m = 〈x〉) ∧ T ∧ u = x)}

Unquotet, 1, 2

4 {F} let 〈x〉 = 〈Ω〉 in x :u {T} 3

We now explain the simplifications leading to Line 4. By the axiom (divm) which says
that not all modal variables denote a terminating program, we know that ∀x�.x ⇓ is false.
Likewise ∀m.(T ⊃ m = 〈x〉{x ⇓}) is equivalent to ∀m.m = 〈x〉{x ⇓} which claims that
any quasi-quote must contain a terminating program, which is false by the axiom (div) in
Figure 3. Consequently, the precondition in Line 3 is equivalent to F. Simplification of the
postcondition to T is immediate.

7. Conclusion

We have proposed a program logic for an HGRTMP language, and established key metalogi-
cal properties like completeness and the correspondence between axiomatic and operational
semantics. We are not aware of previous work on program logics for meta-programming. So
far, only typing systems for statically enforcing program properties have been investigated;
the two most expressive are Ωmega [29] and Concoqtion [15]. Both use indexed typed to
achieve expressivity. Ωmega is a call-by-value variant of Haskell with generalised algebraic

43

datatypes (GADTs) and an extensible kind system. In Ωmega, GADTs can express eas-
ily datatypes representing object-programs, whose meta-level types encode the object-level
types of the programs represented. Tagless interpreters can directly be expressed and typed
for these object programs. Ωmega is expressive enough to encode the MetaML typing sys-
tem together with a MetaML interpreter in a type-safe manner. Concoqtion is an extension
of MetaOCaml and uses the term language of the theorem prover Coq to define index types,
specify index operations, represent the properties of indexes and construct proofs. Basing
indices on Coq terms opens all mathematical insight available as Coq libraries to use in typ-
ing meta-programs. Types in both languages are not as expressive with respect to properties
of meta-programs themselves as our logics, which capture exactly the observable properties.
Nevertheless, program logic and type-theory are not mutually exclusive; on the contrary,
reconciling both in the context of meta-programming is an important open problem.

Pcfdp lacks the ability, vital for realistic meta-programming, to manipulate open code,
i.e. code with free variables. The λ◦-calculus [13] is a small language for HGRTMP where
code with free variables can be manipulated. As with Pcfdp (without recursion), there
is a Curry-Howard correspondence: λ◦ is a proof calculus for a temporal logic. Due to
its simplicity, λ◦ is an ideal object of study to see how the logic presented here can be
generalised to open code. The simplicity of λ◦ has a price: the calculus cannot be directly
extended with a construct expressing the evaluation of generated code. A more ambitious
target that allows the manipulation of terms with free variables, but also the evaluation of
generated code, is Taha’s and Nielsen’s system of environment classifiers [32], which also
forms the basis of MetaOCaml, the most widely studied meta-programming language in
the MetaML tradition. Moreover, [34] presents a Curry-Howard correspondence between a
typing system closely related to that of [32] and a modal logic. We believe that a logical
account of meta-programming with open code is a key challenge in bringing program logics
to realistic meta-programming languages.

A different challenge is to add state to Pcfdp and extend the corresponding logics.
We expect the logical treatment of state given in [4, 38] to extend smoothly to a meta-
programming setting. The main question is what typing system to use to type stateful
meta-programming. The system used in MetaOCaml, based on [32], is unsound in the
presence of state due to a form of scope extrusion. Recent versions of MetaOCaml add a
dynamic check to detect this behaviour. As an alternative to dynamic typing, the Java-like
meta-programming language Mint [37] simply prohibits the sharing of state between differ-
ent meta-programming stages, resulting in a statically sound typing system. Yet another
approach is given in [24] where a two-level HGRTMP language is introduced with delimited
control operators and a restriction of side effects during code generation to the scope of
generated binders. That guarantees well-typedness. We believe that these approaches can
all be made to coexist with modern logics for higher-order state [4, 38].

Relatedly, [14] presents a unstaging translation from Pcfdp to Pcf. The key idea
is that a quasi-quote 〈M〉 is turned into a thunk λ().M ′ where M ′ is the translation of
M . Consequently the type 〈α〉 is translated to Unit → α′ where α′ is the translation to
α. What are the properties of this translation? Is it fully abstract? The translation can
be extended to translating Pcfdp assertions and proofs into the logic for Pcf. Would this
latter translation be logically fully abstract in the sense of [26]? If unstaging is fully abstract,
then it should be possible to recover the logic presented here from the logic for Pcf and
the translation.

44

Reasoning about HGRTMP using unstaging translations looks promising. In [10] a
complex HGRTMP language that allows the manipulation of open code and the capture of
free variables is unstaged. However, logical reasoning about meta-programs in the target
language of an unstaging translation incurs a cost: it leads to larger formulae and proofs
in comparison with reasoning about the meta-programs directly using the source language.
Moreover, this cost is paid in every reasoning process. In contrast, the cost of developing
a logic for the meta-programming language is paid only once. An additional question is
whether unstaging translations are fully abstract for more complicated HGRTMP languages.

A technical issue we left open is to do with the size of characteristic formulae. The
inference system in Section 5 may lead to an exponential blow up of TCAPs vis-a-vis the
programs they are derived from. We believe that it is possible to give an alternative inference
system for TCAPs such that the size of the TCAP is linear, i.e. O(n), in the size of the
program. In [7, 19] this is achieved for logics of partial correctness for Pcf-like languages,
and in [8] for a simple imperative language.

Finally we have a question about modal quantification: ’normal’ reasoning about Pcfdp-
programs using the rules and axioms of Section 3 appears to be possible entirely without
modal quantification. Can we abolish modal quantification altogether? If not, why is the
lack of modal quantification no issue in practise?

Acknowledgements. We thank Dana Xu for careful comments on the short version of this
article, Arthur Charguéraud for discussions about characteristic formulae and completeness,
and Jacques Carette, Billiejoe Charlton, Rowan Davies, Oleg Kiselyov, Chung-chieh Shan,
and Walid Taha for answering questions about meta-programming. We also thank the
anonymous reviewers for their insightful comments.

References

[1] L. Aceto and A. Ingólfsdóttir. Characteristic formulae: From automata to logic. BRICS Report Series
RS-07-2, BRICS, Department of Computer Science, University of Aarhus, 2007.

[2] A. Bawden. Quasiquotation in LISP. In Proc. Workshop on Partial Evaluation and Semantics-Based
Program Manipulation, pages 88 – 99, 1999.

[3] M. Berger. Program Logics for Sequential Higher-Order Control. In Proc. FSEN, pages 194–211, 2009.
[4] M. Berger, K. Honda, and N. Yoshida. A Logical Analysis of Aliasing in Imperative Higher-Order

Functions. Journal of Functional Programming, 17(4-5):473–546, 2007.
[5] M. Berger, K. Honda, and N. Yoshida. Completeness and Logical Full Abstraction in Modal Logics for

Typed Mobile Processes. In Proc. ICALP, pages 99–111, 2008.
[6] M. Berger and L. Tratt. Program Logics for Homogeneous Meta-Programming. In Proc. LPAR, pages

64–81, 2010.
[7] A. Charguéraud. Program verification through characteristic formulae. In Proc. ICFP, pages 321–332,

2010.
[8] A. Charguéraud. Characteristic formulae for the verification of imperative programs. In Proc. ICFP,

pages 418–430, 2011.
[9] N. Charlton. Reasoning about string-based runtime code generation. Unpublished, October 2011.

[10] W. Choi, B. Aktemur, K. Yi, and M. Tatsuta. Static Analysis of Multi-staged Programs via Unstaging
Translation. In Proc. POPL, pages 81–92, 2011.

[11] E. M. Clarke, Jr. Programming Language Constructs for Which It Is Impossible To Obtain Good Hoare
Axiom Systems. J. ACM, 26(1):129–147, Jan. 1979.

[12] S. A. Cook. Soundness and completeness of an axiom system for program verification. SIAM J. Comput.,
7(1):70–90, 1978.

[13] R. Davies. A temporal-logic approach to binding-time analysis. In Proc. LICS, pages 184–195, 1996.
[14] R. Davies and F. Pfenning. A modal analysis of staged computation. J. ACM, 48(3):555–604, 2001.

45

[15] S. Fogarty, E. Pašalić, J. Siek, and W. Taha. Concoqtion: Indexed Types Now! In Proc. PEPM, pages
112–121, 2007.

[16] C. A. Gunter. Semantics of Programming Languages. MIT Press, 1995.
[17] T. Hoare. An Axiomatic Basis of Computer Crogramming. CACM, 12, 1969.
[18] K. Honda. From Process Logic to Program Logic. In ICFP’04, pages 163–174. ACM Press, 2004.
[19] K. Honda, M. Berger, and N. Yoshida. Descriptive and Relative Completeness of Logics for Higher-Order

Functions. In Proc. ICALP, pages 360–371, 2006.
[20] K. Honda and N. Yoshida. A compositional logic for polymorphic higher-order functions. In Proc. PPDP,

pages 191–202, 2004.
[21] K. Honda, N. Yoshida, and M. Berger. An Observationally Complete Program Logic for Imperative

Higher-Order Functions. In Proc. LICS, pages 270–279, 2005.
[22] K. Honda, N. Yoshida, and M. Berger. An Observationally Complete Program Logic for Imperative

Higher-Order Functions. Technical Report DTR13-2, Imperial College, Department of Computing, 2013.
[23] J. Inoue and W. Taha. Reasoning about multi-stage programs. In Proc. ESOP, pages 357–376, 2012.
[24] Y. Kameyama, O. Kiselyov, and C.-C. Shan. Shifting the Stage: Staging with Delimited Control. In

Proc. PEPM, pages 111–120, 2009.
[25] T. Kleymann. Hoare Logic and Auxiliary Variables. Technical Report ECS-LFCS-98-399, LFCS, Univ. of

Edinburgh, October 1998.
[26] J. Longley and G. Plotkin. Logical Full Abstraction and PCF. In Tbilisi Symposium on Logic, Language

and Information, CSLI, 1998.
[27] A. M. Pitts. Operationally-based theories of program equivalence. In Semantics and Logics of Compu-

tation, pages 241–298. Cambridge University Press, 1997.
[28] J. C. Reynolds. Separation logic: a logic for shared mutable data structures. In Proc. LICS’02, pages

55–74, 2002.
[29] T. Sheard and N. Linger. Programming in Ωmega. In Proc. Central European Functional Programming

School, pages 158–227, 2007.
[30] T. Sheard and S. Peyton Jones. Template meta-programming for Haskell. In Proc. Haskell workshop,

pages 1–16, 2002.
[31] W. Taha. Multi-Stage Programming: Its Theory and Applications. PhD thesis, Oregon Graduate Insti-

tute of Science and Technology, 1993.
[32] W. Taha and M. F. Nielsen. Environment classifiers. In Proc. POPL, pages 26–37, 2003.
[33] L. Tratt. Compile-time meta-programming in a dynamically typed OO language. In Proc. DLS, pages

49–64, Oct. 2005.
[34] T. Tsukada and A. Igarashi. A Logical Foundation for Environment Classifiers. Logical Methods in

Computer Science, 6(4:8):1–43, 2010.
[35] W. van Orman Quine. From a Logical Point of View. Harvard Univ. Press, 2003.
[36] W. van Orman Quine. Mathematical Logic (Revised Edition). Harvard Univ. Press, 2003.
[37] E. Westbrook, M. Ricken, J. Inoue, Y. Yao, T. Abdelatif, and W. Taha. Mint: Java multi-stage pro-

gramming using weak separability. In Proc. PLDI, pages 400–411, 2010.
[38] N. Yoshida, K. Honda, and M. Berger. Logical reasoning for higher-order functions with local state.

Logical Methods in Computer Science, 4(2), 2008.

Appendix A. Axioms for Pcf that are also valid for Pcfdp

Section 3 presented the axioms of our logic that involve meta-programming features. Other
axioms are listed in Figure 7. The axioms are standard, and explanation, as well as sound-
ness proofs can be found in [4, 22, 38]. Moreover, soundness proofs for the axioms given
in Figure 7 are straightforward adaptations of the proofs for the axioms in Figure 3. The
presentation uses the following abbreviations:

Ext(xy) stands for ∀az.(x • z = w{w = a} ≡ y • z = w{w = a}).

Note that it is vital for x and y to be non-modal. The direction Ext(xy) ⊃ x = y is unsound
otherwise, because Ext(xy) cannot distinguish between e.g. appropriately typed Ω and λx.Ω.

46

(e1) x • y = z{A} ∧ x • y = z{B} ≡ x • y = z{A ∧B}
(e2) x • y = z{¬A} ⊃ ¬x • y = z{A}
(e3) x • y = z{A} ∧ ¬x • y = z{B} ≡ x • y = z{A ∧ ¬B}
(e4) x • y = z{A ∧B} ≡ A ∧ x • y = z{B} z /∈ fv(A)
(e5) x • y = z{∀aα.A} ≡ ∀aα.x • y = z{A} a 6= x, y, z
(e6) (A ⊃ B) ∧ x • y = z{A} ⊃ x • y = z{B} z /∈ fv(A,B)
(div) ¬∀xα.m • x ⇓
(ext) x = y ≡ Ext(xy) x, y of function type

both non-modal
(eα) x • y = z{A} ≡ x • y = a{x • y = z{A ∧ a = z}}

a /∈ {x, y}, a ∈ fv(A) implies a = z

Figure 7: Pcfdp axioms not involving meta-programming constructs. Except were noted
otherwise, all free variables can be modal or non-modal.

Appendix B. Omitted proofs for Section 5 (Completeness)

It remains to establish Theorem 5.3.2 for the rules [Vart, Constt, Abst, Appt, Opt, Ift,
Rect]. All proofs here are variants of the proofs in the unpublished long version of [19].

Vart: The MTC is trivially true. For (closure-2), assume that (ξ · x : V, σ) |= T and
(ξ · x : V,m : W,σ) |= x = m. Then immediately V ≃ W , hence V . W as required.

Constt: Similar to [Vart] and omitted.
Abst: Since abstractions are values, (MTC) is trivially true. For (closure-2), assume that

(ξ, σ) is a model and (ξ · u : V, σ) |= ∀x.(A ⊃ u • x = m{B}).

1 (ξ · u : V, σ) |= ∀x.(A ⊃ u • x = m{B}) Assumption

2 (ξ · u : V · x : W,σ) |= A ⊃ u • x = m{B} W arbitrary, 1

3 (ξ · u : V · x : W,σ) |= A Assumption

4 (ξ · u : V · x : W,σ) |= u • x = m{B} 2, 3

5 VW ⇓ U (ξ · u : V · x : W ·m : U, σ) |= B 4

6 η
def
= (ξ · x : W ·m : U, σ) |= B u /∈ fv(B), Prop. 3.3.2, 5

7 (ξ · x : W,σ) |= A u /∈ fv(A), Prop. 3.3.2, 3

8 Mη . U (IH), (closure-2), 6, 7

9 VW ≃ U Prop. 2.1.0(6), 5

10 Mη . VW 8, 9

11 η′
def
= (ξ ·m : U, σ)

12 (λx.Mη′)W → Mη′[W/x] = Mη Prop. 3.3.4

47

13 (λx.Mη′)W . Mη Prop. 2.1.0(6), 12

14 (λx.Mη′)W = (λx.M)η′W . Mη . U . VW 9, 10, 13

15 for all W (λx.M)η′W . VW W arbitrary, 14

16 (λx.M)η′ . V Lem. 2.10(8), 15

Appt: We begin with (MTC). Let η be an appropriately typed model such that

(MN)η ⇓ V

Then in particular Mη ⇓ W , Nη ⇓ U and WU ⇓ C. By (IH) the first two mean that

η |= A1 η |= A2

Opt: We treat the special case of addition. The MTC follows directly from the (IH), noting
that (M + N)η ⇓ holds exactly when Mη ⇓ and Nη ⇓. For (closure-2) we reason as
follows.

1 η
def
= (ξ, σ) |= A1 ∧A2 Assumption

2 (ξ · u : V, σ) |= ∃m1m2.(u = m1 +m2 ∧B1 ∧B2) Assumption

3 (ξ · u : V ·m1 : W1 ·m2 : W2, σ) |= u = m1 +m2 ∧B1 ∧B2 2

4 (ξ ·mi : Wi, σ) |= Bi i = 1, 2, u,m3−i /∈ fv(Bi), Prop. 3.3.2, 3

5 Miη . Wi (IH), 1, 4

6 (Mi +M2)η . W1 +W2 5

7 W1 +W2 ≃ V 3

8 (Mi +M2)η . V 6, 7

Ift: For (MTC), with η
def
= (ξ, σ), b1 = t, b2 = f, assume wlog that:

(if M then N1 else N2)η →→ if t then N1 else N2 (B.1)

→ N1

⇓ W1 (B.2)

Now we reason as follows.

1 Mη ⇓ t (B.1)

2 η |= A (ξ ·m : t, σ) |= B (IH), (MTC), 1

3 η |= B[t/m] Prop. 3.3.4, 2

4 Nη ⇓ W1 (B.2)

5 η |= A1 (ξ ·m : t, σ) |= B1 (IH), (MTC), 4

6 η |= B[t/m] ⊃ A1 3, 5

7 η |= B[f/m] Assumption towards a contradiction

48

8 η |= A (ξ ·m : f, σ) |= B 2, 7

9 Mη . f (IH), (closure-2), 8

10 η 6|= B[f/m] 19 contradicts 1

11 η |= B[f/m] ⊃ A2 10

12 η |= A ∧
∧

i(B[bi/m] ⊃ Ai) 6, 11

The reverse direction follows from soundness.
For (closure-2) the following derivation gets us towards the result.

1 η
def
= (ξ, σ) |= A ∧

∧

i
(B[bi/m] ⊃ Ai) Assumption

2 η′
def
= (ξ · V, σ) |= B[t/m] ∧B1 Assumption wlog

3 η |= B[t/m] u /∈ fv(B), Prop. 3.3.2, 2

4 η |= A1 1, 3

5 N1η . V (IH), closure-2, 2, 4

6 η |= A 1

7 Mη ⇓ (MTC), 6

8 (ξ ·m : t, σ) |= B 3

9 Mη . t (IH), closure-2, 6, 8

10 Mη ⇓ t 7, 9

We use these facts to derive:

(if M then N1 else N2)η →→ if t then N1η else N2η (10)
→ N1η
. V (5)

Using Proposition 2.1.0(6), this implies the required

(if M then N1 else N2)η . V.

Rect: In this case too, (MTC) is trivial. For (closure-2) let η
def
= (ξ, σ) and assume that

(ξ ·m : V, σ) |= A[m/g]

which, by Proposition 3.3.4 is equivalent to

(ξ ·m : V · g : V, σ) |= A.

We now show by nested induction on n that for all n ≥ 0 it is the case that

Wnη . V

where the Wn are defined as follows (cf. Proposition 2.1.0(12)).

W0
def
= Ω Wn+1

def
= λx.M [Wn/g].

49

The base case n = 0 is trivial. For the inductive step of the inner induction, let Wnη . V .

Wn1
= (λx.M [Wn/g])η

= λx.M [Wnη/g]

. λx.M [V/g] (B.3)

= λx.M(ξ · g : V, σ)

. V (B.4)

Here (B.3) follows from the inner (IH) together with [·/g]’s being monotonic w.r.t. to .
(Lemma 2.1.0(5)). On the other hand, (B.4) is directly by the outer (IH) and (closure-2).

Hence we have Wnη . V for all n. Since µg.λx.Mη 6. V , then Wn 6. for some n.
Using Proposition 2.1.0(12) we conclude that µg.λx.Mη . V .

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

50

	1. Introduction
	2. Pcf sub dp
	2.1. Language basics
	2.2. Syntax and types
	2.3. Basic lemmas
	2.4. Some example programs

	3. A logic for total correctness
	3.1. Syntax and types
	3.2. Models and the satisfaction relation
	3.3. Axioms and rules
	3.4. Soundness

	4. Reasoning examples
	5. Completeness
	5.1. Formalising characteristic formulae
	5.2. Proofs of Theorems 5.3.2 and 5.3.3

	6. Examples of characteristic formulae
	7. Conclusion
	References
	Appendix A. Axioms for Pcf that are also valid for Pcf sub dp
	Appendix B. Omitted proofs for Section 5 (Completeness)

