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Abstract. We develop a polynomial translation from finite control π-calculus processes
to safe low-level Petri nets. To our knowledge, this is the first such translation. It is natural
in that there is a close correspondence between the control flows, enjoys a bisimulation
result, and is suitable for practical model checking.

1. Introduction

Many contemporary systems – be it software, hardware, or network applications – support
functionality that significantly increases their power, usability, and flexibility:

Interaction Mobile systems permeate our lives and are becoming ever more important.
Indeed, the vision of pervasive computing, where devices like mobile phones and laptops
are opportunistically engaged in interaction with a user and with each other, is quickly
becoming a reality.

Reconfiguration Systems implement a flexible interconnection structure, e.g. cores in
Networks-on-Chip temporarily shut down to save power, resilient systems continue to deliver
(reduced) functionality even if some of their modules develop faults, and ad-hoc networks
build-up and destroy connections between devices at runtime.

Resource allocation Many systems maintain multiple instances of the same resource
(e.g. network servers, or processor cores in a microchip) that are dynamically allocated to
tasks depending on the workload, power mode, and priorities of the clients.
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The common feature of such systems is the possibility to form dynamic connections
between individual modules. It is implemented using reference passing: a module can
become aware of another module by receiving a reference (e.g. in form of a network address)
to it. This reference enables subsequent communication between the modules, and can be
understood as a dynamically created connection. We will refer to this class of systems as
Reference Passing Systems (RPS).

As people are increasingly dependent on the correct functionality of Reference Passing
Systems, the costs incurred by design errors can be extremely high. However, even the
conventional concurrent systems are notoriously difficult to design correctly because of the
complexity of their synchronisation behaviour. Reference passing adds another layer of
complexity by making the interconnect structure dynamic. Hence, formal verification has
to be employed to ensure the correct behaviour of RPSs.

While the complexity of systems increases, the time-to-market is reducing. To address
this, system design has changed from a holistic to a compositional process: the system
is usually composed from pre-existing modules. This change in the design process has
to be mirrored in the verification process. Verification has to focus on the inter-modular
level rather than on individual modules. Indeed, it is reasonable nowadays to assume that
individual modules are well-tested or formally verified by their vendors. Moreover, the
inter-module communication fabric (e.g. a computer network) is usually built of standard
components and uses standard protocols, and so can be assumed to be correct. This means
bugs primarily arise in the interaction between modules, and here verification is required
to ensure correctness of the system as a whole.

When we verify the interaction between modules, we take advantage of this separation
of verification concerns. We only have to model the modules’ interfaces but can abstract
away from their internal behaviour as well as low-level communication concerns (e.g. net-
work behaviour), which we assume to be checked by the vendor. Traditionally, the interface
behaviour is verified using rely/guarantee techniques, potentially supported by theorem
provers. Due to undecidability reasons, however, theorem proving generally requires sub-
stantial manual intervention to discharge some of the proof obligations. In the interest
of a short time to market, our ambition is to lift fully automatic model checking to the
inter-modular level.

There are several formalisms suitable for modelling the interface behaviour of RPSs.
The main considerations in choosing such a formalism are its expressiveness and the tractabil-
ity of the associated verification problems. Expressive formalisms like π-calculus [20] and
Ambient Calculus [5] are Turing powerful and so undecidable in general. Fortunately, the
ability to pass references per se does not lead to undecidability. One can impose restric-
tions on the communication capabilities [1,16], control flow [6,24], or interconnection shape
[14,16] to recover decidability while retaining a reasonable modelling power.

Finite Control Processes (FCP) [6] are a fragment of π-calculus where the system is
modelled as a parallel composition of a fixed number of sequential entities (threads). The
control of each thread is represented by a finite automaton, and the number of threads
is bounded in advance. The threads communicate synchronously via channels that they
create, exchange and destroy at runtime. These capabilities are often sufficient to faithfully
model the interface behaviour of RPSs. The appeal of FCPs is in combining this modelling
power with decidability of verification [6, 17].

In this paper, we contribute to FCP verification, following an established approach. We
translate the FCP under study into a safe low-level Petri net (PN). This translation bridges
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the gap between expressiveness and verifiability: While π-calculus is suitable for modelling
RPSs but difficult to verify due to the complicated semantics, PNs are a low-level formalism
equipped with efficient analysis algorithms. With the translation, all verification techniques
and tools that are available for PNs can be applied to analyse the (translated) process.

1.1. A polynomial translation. There is a large body of literature on π-calculus to Petri
net translations (cf. Sect. 1.2 for a detailed discussion). Complexity-theoretic considerations,
however, suggest that they are all suboptimal for FCPs — either in terms of size [3, 11,16,
17] or because of a too powerful target formalism [1, 7, 12]. The following shows that a
polynomial translation of FCPs into low-level safe PNs must exist.

Since the state of an FCP can always be described by a string of length linear in the
process size, an FCP can be simulated by a Turing machine (TM) with a tape of linear
length. Moreover, a TM with bounded tape can be modelled by a safe PN of polynomial
size (in the size of the control and the tape length), see e.g. [9]. Finally, a linear translation
from safe PNs to FCPs is described in Sect. 10. That is, the three formalisms can simulate
each other with only polynomial overhead. This argument is in fact constructive, and shows
PSPACE-completeness of FCP model checking. Even more, it shows that we can use safe
PNs to verify FCPs. The problem with this translation via TMs is that the safe PN resulting
from an FCP would be large and contrived, and thus of limited use for practical verification.

These considerations motivated us to look for a direct polynomial translation of FCPs
to safe PNs, which is the main contribution of this paper. We stress that our translation is
not just a theoretical result, but is also quite practical:

• it is natural in the sense that there is a strong correspondence between the control flow
of the FCP and the resulting PN;
• the transition system of the FCP and that of its PN representation are bisimilar, which
makes the latter suitable for checking temporal properties of the former;
• the resulting PN is compact (polynomial even in the worst case);
• we propose several optimisations that significantly reduce the PN’s size in practice;
• we propose several extensions of the translation, in particular to polyadic communication,
polyadic synchronisation, and match/mismatch operators;
• experiments demonstrate that the translation is suitable for practical verification.

Technically, our translation relies on three insights: (i) the behaviour of an FCP νr.(S1 | S2)
coincides with the behaviour of (S1{n/r} | S2{n/r}) where the restricted name r has been
replaced by a fresh public name n (a set of fresh names that is linear in the size of the FCP
will be sufficient); (ii) we have to recycle fresh names, and so implement reference counters
for them; and (iii) we hold substitutions explicit and give them a compact representation
using decomposition, e.g., {a, b/x, y} into {a/x} and {b/y}.

1.2. Related work. There are two main approaches to FCP verification. The first is
to directly generate the state space of the model, as is done (on-the-fly) by the Mobility
Workbench (MWB) [26]. This approach is relatively straightforward but has a number
of disadvantages. In particular, its scalability is poor due to the complexity of the π-
calculus semantics, which restricts the use of heuristics for pruning the state space, and
due to the need for expensive operations (like equivalence checks [13]) every time a new
state is generated. Furthermore, some efficient model checking techniques like symbolic
representations of state spaces are difficult to apply.
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The alternative approach, and the one followed here, is to translate a π-calculus term
into a simpler formalism, e.g. a Petri net, that is then analysed. This method does not de-
pend on a concrete verification technique for π-calculus but can adapt any such technique
for PNs. In particular, RPSs often are highly concurrent, and so translating them into a
true concurrency formalism like PNs opens the door for partial-order reductions in verifi-
cation. This alleviates the problem of combinatorial state space explosion, that is, a small
specification often has a huge number of reachable states that is beyond the capabilities of
existing computers.

Although several translations of π-calculus to Petri nets have been proposed, none of
them provides a polynomial translation of FCPs to safe PNs. The verification kit HAL [10]
translates a model into a History Dependent Automaton — a finite automaton where states
are labelled by sets of names that represent restrictions [21,24]. For model checking, these
automata are further translated to finite automata [10]. Like in our approach, the idea is
to replace restrictions with fresh names, but the translation stores full substitutions, which
may yield an exponential blow up of the finite automaton. Our translation avoids this blow
up by compactly representing substitutions by PN markings. This, however, needs careful
substitution manipulation and reference counting.

Amadio and Meyssonnier [1] replace unused restricted names by generic free names.
Their translation instantiates substitutions, e.g. (x1〈y1〉.x2〈y2〉){a, b, a, b/x1 , y1, x2, y2} is
represented by a〈b〉.a〈b〉. This creates an exponential blow up: since the substitutions
change over time, m public names and n variables may yield mn instantiated terms. More-
over, since the number of processes to be modified by replacement is not bounded in [1],
Amadio and Meyssonnier use PNs with transfer. (Their translation handles a subset of π-
calculus incomparable with FCPs.) As this paper shows, transfer nets are an unnecessarily
powerful target formalism for FCPs — e.g. reachability is undecidable in such nets [8].

Busi and Gorrieri study non-interleaving and causal semantics for the π-calculus and
provide decidability results for model checking [3]. (That work has no bisimilarity proof,
which is provided in [11].) The translations may be exponential for FCPs, again due to the
instantiation of substitutions.

Devillers, Klaudel and Koutny [7] achieve a bisimilar translation of π-calculus into high-
level Petri nets, thus using a Turing complete target formalism where automatic analyses are
necessarily incomplete. In [12], this translation is used for unfolding-based model checking;
to avoid undecidability, the processes are restricted to be recursion-free — a class of limited
practical applicability.

Peschanski, Klaudel and Devillers [23] translate π-graphs (a graphical variant of π-
calculus) into high-level PNs. The technique works on a fragment that is equivalent to
FCPs. However, the target formalism is unnecessarily powerful, and the paper provides no
experimental evaluation.

Our earlier translation [16] identifies groups of processes that share restricted names.
In [17], we modify it to generate safe low-level PNs, and use an unfolding-based model
checker. The experiments indicate that this technique is more scalable than the ones above,
and it has the advantage of generating low-level rather than high-level PNs. However, the
PN may still be exponentially large.
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2. Basic notions

2.1. Petri nets. A Petri net (PN) is a tuple N
df
= (P, T, F,M0) such that P and T are

disjoint sets of places and transitions, F ⊆ (P × T ) ∪ (T × P ) is a flow relation, and M0 is

the initial marking of N , where a marking M : P → N
df
= {0, 1, 2, . . .} is a multiset of places

in N . We draw PNs in the standard way: places are represented as circles, transitions as
boxes, the flow relation by arcs, and a marking by tokens within circles. The size of N is

‖N‖
df

= |P |+ |T |+ |F |+ |M0|.

We denote by •z
df

= {y | (y, z) ∈ F} and z•
df

= {y | (z, y) ∈ F} the preset and postset

of z ∈ P ∪ T , respectively. A transition t is enabled at marking M , denoted by M
t
→, if

M(p) > 0 for every p ∈ •t. Such a transition can fire, leading to the marking M ′ with

M ′(p)
df

= M(p)− F (p, t) + F (t, p) for every p ∈ P.

We denote the firing relation by M
t
→ M ′ or by M → M ′ if the identity of the transition

is irrelevant. The set of reachable markings of N is denoted by Reach(N). The transition
system of N is

T (N)
df

= (Reach(N),→,M0).

A PN N is k-bounded if M(p) ≤ k for every M ∈ Reach(N) and every place p ∈ P , and
safe if it is 1-bounded. This paper focuses on safe PNs. A set of places in a PN is mutually
exclusive if at any reachable marking at most one of them contains tokens. A place p is a
complement of a set Q of mutually exclusive places if at any reachable marking p contains
a token iff none of the places in Q contains a token. If Q = {q}, the places p and q are
complements of each other.

2.2. Finite control processes. In π-calculus [19, 25], threads communicate via synchro-
nous message exchange. The key idea in the model is that messages and the channels they

are sent on have the same type: they are just names from some set Φ
df

= {a, b, x, y, i, f, r, . . .}.
This means a name that has been received as a message in one communication may serve
as a channel in a later interaction. To communicate, processes consume prefixes

π ::= a〈b〉 p a(x) p τ.

The output prefix a〈b〉 sends name b along channel a. The input prefix a(x) receives a name
that replaces x on channel a. Prefix τ stands for a silent action.

Threads, also called sequential processes, are constructed as follows. A choice process
∑

i∈I πi.Si over a finite set of indices I executes a prefix πi and then behaves like Si. The
special case of choices over an empty index set I = ∅ is denoted by 0. This process terminates
a thread. A restriction νr.S generates a name r that is different from all other names in
the system. To implement parameterised recursion, we use calls to process identifiers K⌊ã⌋.
We defer their explanation for the moment. To sum up, threads take the form

S ::= K⌊ã⌋ p
∑

i∈I πi.Si p νr.S.
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We use S to refer to the set of all threads. A finite control process (FCP) F is a parallel
composition of a fixed number of threads:

F ::= νr̃.(Sinit ,1 | . . . | Sinit ,n).

Here, νr̃ with r̃ = r1 . . . rk denotes a (perhaps empty) sequence of restrictions νr1 . . . νrk.
We use P to refer to an arbitrary process, be it a thread, an FCP, or a term obtained by
structural congruence defined below. We denote iterated parallel compositions by

∏

i∈I Pi.
Our presentation of parameterised recursion using calls K⌊ã⌋ follows [25]. Process

identifiers K are taken from some set Ψ
df

= {H,K,L, . . .} and have a defining equation

K(f̃) := S. Thread S can be understood as the implementation of K. The process has

a list of distinct formal parameters f̃ = f1, . . . , fk that are replaced by factual parameters
ã = a1, . . . , ak when a call K⌊ã⌋ is executed. Note that ã and f̃ have the same length. When
talking about an FCP specification F , we mean process F with all its defining equations.

To implement the replacement of formal parameters f̃ by ã in calls to process identifiers,
we use substitutions. A substitution is a function σ : Φ→ Φ that maps names to names. If
we make domain and codomain explicit, σ : A→ B with A,B ⊆ Φ, we require σ(a) ∈ B for

all a ∈ A and σ(x) = x for all x ∈ Φ\A. We use {ã/f̃} to denote the substitution σ : f̃ → ã

with σ(fi)
df
= ai for i ∈ {1, . . . , k}. The application of substitution σ to S is denoted by Sσ

and defined in the standard way [25].
Input prefix a(i) and restriction νr bind the names i and r, respectively. The set of

bound names in a process P is bn (P ). A name which is not bound is free, and the set
of free names in P is fn (P ). We permit α-conversion of bound names. Therefore, wlog.,
we make the following assumptions common in π-calculus theory and collectively referred
to as no clash (NC) henceforth. For every FCP specification F , we require that: (i) a
name is bound at most once, a name f is used at most once in a formal parameter list,
bound and free names are disjoint, bound names and formal parameters are disjoint, formal
parameters and free names in F are disjoint; and (ii) if σ = {ã/x̃} is applied to S then
bn (S) ∩ (ã ∪ x̃) = ∅.

Assuming (NC), the names in an FCP specification F and the corresponding defining
equations can be partitioned into the following sets: set R of names bound by restriction
operators, set I of names bound by input prefixes, set F of names used as formal parameters
in defining equations, and set P of all the other names — they are called public.

We are interested in the relation between the size of an FCP specification and the size
of its PN representation. The size of an FCP specification is defined as the size of its initial
term plus the sizes of the defining equations:

‖0‖
df

= 1 ‖
∑

i∈I πi.Si‖
df

= 3|I|−1+
∑

i∈I ‖Si‖ ‖νr.P‖
df

= 1+‖P‖ ‖K⌊ã⌋‖
df

= 1+|ã|

‖SInit ,1 | . . . | SInit ,n‖
df
= n−1+

∑

1≤i≤n ‖SInit ,i‖ ‖K(f̃) := S‖
df
= 1+|f̃ |+‖S‖.

Intuitively, we count the operations, process identifiers, and names in each element of the
specification, e.g. the factor 3 in 3|I| refers to a send or receive prefix of size two, followed
by a plus.

To define the behaviour of a process, we rely on the structural congruence relation ≡ on
process terms. It is the smallest congruence satisfying the axioms in Fig. 1, i.e. α-conversion
of bound names is allowed, | is commutative and associative with 0 as the neutral element,
and for choices associativity and commutativity are enforced by the notation

∑

i∈I πi.Si,



A POLYNOMIAL TRANSLATION OF π-CALCULUS FCPS TO SAFE PETRI NETS 7

νr.P ≡ νr′.P{r′/r} if r′ /∈ fn (P ) a(x).S ≡ a(x′).S{x′/x} if x′ /∈ fn (S)

P1 | P2 ≡ P2 | P1 (P1 | P2) | P3 ≡ P1 | (P2 | P3) P | 0 ≡ P

νr.0 ≡ 0 νr1.νr2.P ≡ νr2.νr1.P νr.(P1 | P2) ≡ P1 | νr.P2 if r /∈ fn (P1)

Figure 1: Axioms defining structural congruence ≡.

(Tau) τ.S + . . .→ S (Const) K⌊ã⌋ → S{ã/x̃} if K(x̃) := S

(React) x(y).S1 + . . . | x〈z〉.S2 + . . .→ S1{z/y} | S2

(Par)
P1 → P ′

1

P1 | P2 → P ′
1 | P2

(Res)
P → P ′

νa.P → νa.P ′
(Struct)

P1 ≡ P ′
1 → P ′

2 ≡ P2

P1 → P2

Figure 2: Axioms and rules defining reaction relation →.

ν can be eliminated when applied to 0, is commutative, and its scope can be extended to
include a concurrent process not containing free occurrences of the bound name.

The behaviour of π-calculus processes is determined by reaction relation → between
terms [19,25], see Fig 2. It has the axioms for consuming silent prefixes, identifier calls and
communications, and is defined to be closed under |, ν, and ≡. By Reach(F ) we denote the
set of all processes reachable from F . The transition system of F factorises the reachable
processes along structural congruence,

T (F )
df
= (Reach(F )/≡, →֒, F ),

where F denotes the congruence class of F wrt. ≡ and F1 →֒ F2 if F1 → F2. That is,
structurally congruent processes are collapsed into a single state, and the transition relation
is amended appropriately.

Normal form assumptions. To ease the definition of the translation and the corresponding
correctness proofs, we make assumptions about the shape of the FCP specification. These
assumptions are not restrictive, as any FCP can be translated into the required form. First,
we require that the sets of identifiers called by different threads (both directly from F and
indirectly from defining equations) are disjoint. This ensures that the threads have disjoint
descriptions of their control flows and corresponds to the notion of a safe FCP in [17].
The assumption can be achieved by replicating some defining equations. The resulting
specification F ′ is bisimilar with F and has size O(n‖F‖) = O(‖F‖2), where n is the number
of threads. We illustrate the construction on the FCP specification F = K⌊a, b⌋ |L⌊a, c⌋
(left) together with its replicated version F ′ = K1⌊a, b⌋ |L2⌊a, c⌋ (right):

K(f1, f2) := τ.L⌊f1, f2⌋ K1(f1
1 , f

1
2 ) := τ.L1⌊f1

1 , f
1
2 ⌋

L(f3, f4) := τ.K⌊f3, f4⌋ L1(f1
3 , f

1
4 ) := τ.K1⌊f1

3 , f
1
4 ⌋

K2(f2
1 , f

2
2 ) := τ.L2⌊f2

1 , f
2
2 ⌋

L2(f2
3 , f

2
4 ) := τ.K2⌊f2

3 , f
2
4 ⌋.

We can also ensure that defining equations do not call themselves, i.e. that the body of
K(f̃) := S does not contain any calls of the form K⌊ã⌋. Indeed, we can replace any such
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call with K ′⌊ã⌋, using a new defining equation K ′(f̃ ′) := K⌊f̃ ′⌋. This increases the size of

the FCP only linearly, and ensures we do not have to remap parts of f̃ to f̃ when passing
the parameters of a call, which simplifies the translation.

3. Principles of the translation

This section informally explains the polynomial translation of FCPs to safe PNs. The main
idea is to replace restricted names by fresh public ones. Indeed, F = νr̃.(S1 | . . . | Sn)
behaves like S1{ñ/r̃} | . . . | Sn{ñ/r̃}, provided the names ñ are fresh. These new names
are picked from a set N , and since for FCP specifications there is a bound on the number of
restricted names in all processes reachable from F , a finite N suffices. But how to support
name creation and deletion with a constant number of free names? The trick is to reuse
the names: n ∈ N may first represent a restricted name r1 and later a different restricted
name r2. To implement this recycling of names, we keep track of whether or not n ∈ N is
currently used in the process. This can be understood as reference counting.

The translation takes the set of names N as a parameter. Already a fairly large set
NRIF of cardinality |R| + |I| + |F| is sufficient to prove polynomiality of the translation.
The rationale is that there should be enough values to map each bound name to a unique
value. Indeed, one can provide a domain function dom : P ∪R∪I ∪F → 2P∪N that gives,
for each name x of F , an overapproximation of the set of possible values of x. The rough
overapproximation above employs

domRIF (x)
df
=







{x} if x ∈ P
NRIF if x ∈ R
P ∪NRIF if x ∈ I ∪ F .

We explain how to compute better domains by static analysis in Sect. 7.
The translation is then defined to be the composition

N(F )
df
= NSubst ⊳ H(N(S1) ‖ . . . ‖ N(Sn)).

The first net NSubst compactly represents substitutions σ : R ∪ I ∪ F → P ∪ N and
implements reference counting. It only consists of places and is detailed in Sect. 3.1. The
second net H(N(S1) ‖ . . . ‖ N(Sn)) represents the control flow of the FCP. Each net N(Si)
is a finite automaton that reflects the control flow of thread Si. Importantly, the transitions
of N(Si) are annotated with synchronisation actions and sets of commands that explicitly
handle the introduction and removal of name bindings. Parallel composition ‖ synchronises
the subnets of all threads. The operator places the nets side by side and merges pairs
of transitions with complementary synchronisation actions send(a, b) and rec(a, b). Hiding
H then removes the original transitions. After hiding, transitions in the control flow net
only carry name binding commands. The implementation operator ⊳ implements them by
adding arcs between the control flow net and NSubst . We elaborate on the construction of
the control flow in Sect. 3.2, and Sect. 3.3 illustrates the translation on an example.

3.1. Petri net representation of substitutions. A substitution σ : R∪I ∪F → P ∪N
maps the bound names and formal parameters occurring in the FCP to their values. The
compact PN representation of substitutions is a key element of the proposed translation. It
should efficiently support the following operations:
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p1 p2 . . . n1 n2 . . .
i1 ©[i1=p1] ©[i1=p2] . . . ©[i1=n1]

⊙

[i1=n2] . . .
⊙

[i1 6=n1] ©[i1 6=n2] . . .
i2 ©[i2=p1] ©[i2=p2] . . . ©[i2=n1] ©[i2=n2] . . .

⊙

[i2 6=n1]
⊙

[i2 6=n2] . . .
...

...
...

. . .
...

...
. . .

f1 ©[f1=p1] ©[f1=p2] . . .
⊙

[f1=n1] ©[f1=n2] . . .
©[f1 6=n1]

⊙

[f1 6=n2] . . .
f2 ©[f2=p1] ©[f2=p2] . . . ©[f2=n1] ©[f2=n2] . . .

⊙

[f2 6=n1]
⊙

[f2 6=n2] . . .
...

...
...

. . .
...

...
. . .

r1 restricted names are never mapped ©[r1=n1] ©[r1=n2] . . .
r2 to public ones, so no places here ©[r2=n1] ©[r2=n2] . . .
...

...
...

. . .

⊙

[r∗ 6=n1]
⊙

[r∗ 6=n2] . . .

Figure 3: Illustration of NSubst with a substitution marking that corresponds to σ :
{i1, f1} → r̃ ∪ P where σ(i1) = r1 and σ(f1) = r2 with r1 6= r2. The mark-
ing represents r1 by n2 and r2 by n1.

Initialisation of a restricted name It should be possible to find a value val ∈ N to
which no bound name or formal parameter is currently mapped, and map a given restricted
name r to val .

Remapping When name v is communicated to a thread, some input name i has to be
mapped to σ(v). Similarly, a formal parameter f has to be mapped to σ(v) during a process
call that uses v as a factual parameter. Since v can occur several times in the list of factual
parameters, one should be able to map several formal parameters to σ(v) in one step, i.e.
by one PN transition.

Unmapping When a bound name or formal parameter v is forgotten, its mapping has
to be removed. During a process call, it often happens that σ(v) is assigned to one or more
formal parameters and simultaneously v is forgotten. Therefore, it is convenient to be able
to remap and unmap v in one step.

Ideally, the three kinds of operations described above should not interfere when applied
to names in distinct threads, so that they can be performed concurrently; note that due
to (NC) the bound names and formal parameters are always different. This prevents the
introduction of arbitration, and so has a beneficial effect on the performance of some model
checking methods (e.g. those using partial order techniques).

In what follows, we describe a representation of substitutions that satisfies all the
formulated requirements. This safe PN, which is depicted in Fig. 3, only consists of places.
A place [var = val ], when marked, represents the fact that var ∈ R ∪ I ∪ F is mapped to
val ∈ P∪N . Our translation will maintain the following invariants. (i) For each var ∈ I∪F
and val ∈ N , place [var 6= val ] is complementary to [var = val ]. (ii) For each val ∈ N , the
places [r1 = val ], [r2 = val ], . . . are mutually exclusive, so that no two restricted names can
be mapped to the same value. Moreover, [r∗ 6= val ] is complementary to all these places.
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(iii) For each var ∈ R ∪ I ∪ F , the places [var = val ] are mutually exclusive (i.e. a name
can be mapped to at most one value), where val runs through dom(var).

The choice of the cardinality of N is of crucial importance. As explained above, it
should be sufficiently large to guarantee that there will always be a name that can be used
to initialise a restriction. But taking an unnecessary big value for this parameter increases
the size of the PN as well as the number of reachable states.

The operations on the substitution are implemented as follows:

Initialisation of a restricted name To find a value val ∈ N that is not referenced, and
to map a given restricted name r to val , the transition has to:

• test by read arcs that the places [i1 6= val ], [i2 6= val ], . . . and [f1 6= val ], [f2 6= val ], . . .
have tokens (i.e. no input name or formal parameter is currently mapped to val);
• consume the token from [r∗ 6= val ] (checking thus that no restricted name is currently
mapped to val);
• produce a token at [r = val ] (mapping thus r to val).

Remapping When a communication binds the value of a name v to an input name i,
the corresponding transition consumes the token from [i 6= σ(v)] (provided σ(v) ∈ N ) and
produces a token in [i = σ(v)]. In the case of identifier calls, v may occur several times in the
list of factual parameters, and so several formal parameters fk1 , . . . , fkl have to be bound
to σ(v). This can be handled by a single transition consuming the tokens from [fkj 6= σ(v)]
and producing tokens in [fkj = σ(v)] for j ∈ {1, . . . , l}. The same transition can unmap v
if necessary.

Unmapping When a bound name or formal parameter var that is mapped to val is
forgotten, the mapping should be removed. This is modelled by a transition consuming the
token from [var = val ] and, if val ∈ N , producing a token in [var 6= val ] (if var ∈ I ∪ F)
or [var ∗ 6= val ] (if var ∈ R).

3.2. Petri net representation of the control flow. We elaborate on the translation
of a thread Si into the net N(Si) that reflects the control flow. Each subterm st of Si

corresponds to a subnet of N(Si) with a unique entry place pst. This place is initially
marked if st corresponds to the thread’s initial expression. The communication prefixes are
modelled by transitions. These transitions are labelled with synchronisation actions as well
as commands to explicitly introduce and remove name bindings in the substitution net. At
this point, however, the transitions are just stubs. The synchronisation between threads is
introduced by parallel composition ‖, the synchronisation between threads and substitution
net is performed by the implementation operator ⊳.

The subnets corresponding to terms st are defined as follows (note that each thread is
a sequential process, so | does not occur in the term):

Initialisation of restricted names The subnet corresponding to νr.S maps r to some
currently unused n ∈ N , cf. Fig. 5. More precisely, for each n ∈ N we create a transition trn
consuming a token from the entry place of νr.S, producing a token in the entry place of the
subnet implementing S, and performing the initialisation of the restricted name r with the
value n as explained in Sect. 3.1. Note that the transitions trn arbitrate between the names
in N , allowing any of the currently unused names to be selected for the initialisation of r.
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If such an arbitration is undesirable,1 separate pools of values can be used for each thread,
as described in Sect. 7.

Handling 0 The subnet for 0 is comprised of the entry place only, which means an
execution of 0 terminates a thread. An alternative for implementing termination is to also
unmap all the bound names and formal parameters in whose scope this 0 resides. We note
that this unmapping is not necessary, as the used resources (in particular, the values from
N to which these variables are mapped) will not be needed.

Handling calls Consider K⌊ã⌋ with K(f̃) := S. The entry place of K⌊ã⌋ is followed by

a subnet that maps f̃ to the values of ã. All the other bound names and formal parameters
in whose scope this call resides become unmapped. Finally, the control is transferred to the
entry place of the translation of S.

To make this idea precise, let B denote the set of bound names and formal parameters
that are forgotten in the call. Let A be the set of names occurring in ã (perhaps multiple
times). The required change in the substitution can be modelled by the assignments

Xi ← a for each a ∈ A and ∅ ← a for each a ∈ B \ A.

Here, Xi is the set of formal parameters to which the value of the factual parameter a is
assigned. So the Xi are disjoint non-empty sets whose union is f̃ . An assignment X ← a
(where X can be empty) simultaneously maps all the variables in X to σ(a) and, if a ∈ B,
unmaps a. Since no two assignments reference the same name, they cannot interfere and
thus can be executed in any order or concurrently.

The subnet implementing an assignment X ← a has one entry and one exit place and
is constructed as follows. For each val ∈ dom(a) we create a transition tval which:

• consumes a token from the entry place and produces a token on the exit place;
• for each f ∈ X, consumes a token from [f 6= val ] (provided this place exists, i.e. val ∈ N )
and produces a token on [f = val ];
• if a ∈ B, consumes a token from [a = val ], and, in case val ∈ N , produces a token on
[a 6= val ] (or on [r∗ 6= val ] if a is a restricted name).

Such subnets can be combined in either sequential or parallel manner (in the latter case
additional fork and join transitions are needed).

Handling sums We assume that sums are guarded, i.e. have the form
∑

i∈I πi.Si. The
entry place of the subnet is connected to the entry places of the translations of each Si by
transitions. In case of communication actions πi 6= τ , these transitions are stubs that carry
appropriate synchronisation actions and name binding commands.

Parallel composition and hiding Given two stub transitions t′ and t′′ in different
threads representing prefixes a〈b〉 and x(y), parallel composition ‖ adds a set of transitions
implementing the communication, cf. Fig. 6. If static analysis (see Sect. 7) shows that
the prefixes are potentially synchronisable, we create for each i ∈ dom(a) ∩ dom(x) and
j ∈ dom(b) ∩ dom(y) a transition tij which:

• consumes tokens from the input places of the stubs t′ and t′′ and produces tokens on their
output places;

1E.g. due to its negative impact on some model checking techniques. Note however that symmetry
reduction mitigates this negative effect, as all the states that are reached by the arbitration are equivalent.
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• checks by read arcs that [a = i] and [x = i] are marked, i.e. the substitution maps a and
x to the same value i and thus the synchronisation is possible (if a and/or x are in P
then the corresponding arc is not needed);
• checks by a read arc that [b = j] is marked, consumes a token from [y 6= j] (if this place
exists) and produces a token on [y = j] (mapping thus y to the value of b).

If the synchronisation is possible, exactly one of these transitions is enabled (depending
on the values of a, b, and x); else none of these transitions is enabled. After all such
synchronisations are performed, the stub transitions are removed from the net by hiding H.

Figure 4: Translation of νr.p〈r〉.0 | p(x).0.

3.3. Example. Fig. 4 shows the complete
translation of the FCP νr.p〈r〉.0 | p(x).0.
The meanings of the places in NSubst are as
in Fig. 3, and the places in the control flow
are labelled by the corresponding subterms.

As the FCP has two bound names, r
and x, we take N = {n1, n2}. The ini-
tialisation of r is represented by two transi-
tions, corresponding to the values n1 and
n2. The only possible communication in
this example is between the prefixes p〈r〉
and p(x). Note that the communication is
over the public channel p, and the commu-
nicated values are from dom(r)∩ dom(x) =
{n1, n2} ∩ {p, n1, n2} = {n1, n2}. Hence
there are two transitions modelling this
communication.

4. Size of the resulting FCP

We now evaluate the contributions of various parts of the translation to the size of the final
safe PN. (Note that the asymptotic size of a safe PN is fully determined by its total number
of places, transitions and arcs, as the size of the initial marking is bounded by the number
of places.) Recall that we use NRIF as the set of names from which the values for restricted
names are picked.

The substitution NSubst This net consists of

(|I|+ |F|) |P| + (2|I|+ 2|F|+ |R|+ 1) |NRIF |

places, with no transitions or arcs, see Fig. 3, which is O(‖F‖2) in the worst case.

Mapping a name in I ∪ F A separate transition with O(1) incident arcs is created for
each value in P∪NRIF . Hence, the cost of mapping a single input name or formal parameter
is O(‖F‖) in the worst case. (The cost of initialising a restricted name is discussed later.)

Unmapping a name in I∪F∪R A separate transition with O(1) incident arcs is created
for each name in P ∪ NRIF (in case of an input name or formal parameter) or NRIF (in
case of a restricted name). Hence the cost of unmapping a single name is O(|P|+ |NRIF |) =
O(‖F‖) in the worst case.
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Stop processes A single place is created for each occurrence of 0, i.e. the total contribu-
tion is O(‖F‖) in the worst case.

Calls In the worst case all the calls have O(‖F‖) parameters in total, which have to be
mapped and unmapped. Hence the contribution is O(‖F‖2).

Restrictions In the worst case the number of restrictions is O(‖F‖), and the correspond-
ing names have to be initialised and then unmapped. For initialisation of a restricted name,
a separate transition is created for each value in NRIF , and this transition has O(|I|+ |F|)
incident arcs, see Fig. 5. Hence the contribution is O(‖F‖ |NRIF | (|I|+ |F|)) = O(‖F‖3).

Choices and communication Implementing the branching resulting from sums con-
tributes O(‖F‖) to the final total. Furthermore, τ -prefixes also contribute at most O(‖F‖).
In the worst case the numbers of sending and receiving prefixes are O(‖F‖), and almost all
pairs of send/receive actions can synchronise; thus the total number of such synchronisa-
tions is O(‖F‖2). Recall that for a pair of actions x1〈y1〉 and x2(y2), a separate transition
with O(1) incident arcs is generated for each pair of values in P ∪NRIF , see Fig. 6. Hence,
the contribution is O(‖F‖2 |P ∪ NRIF |

2) = O(‖F‖4), dominating thus the other parts of
the translation. However, the communication splitting optimisation described in Sect. 7
reduces this contribution down to O(‖F‖3).

Totaling the above contributions shows that the size of the resulting PN is O(‖F‖3).
Furthermore, converting a general FCP into a safe one can increase the size by a factor
bounded by the number of threads, i.e. quadratically in the worst case, see Sect. 2. There-
fore, the translation is polynomial for general FCPs too.

It should also be noted that the worst case size computed above is rather pessimistic:
the translation admits several practical optimisations, see Sect. 7. The experimental results
in Sect. 9 demonstrate that for realistic FCPs the sizes of the resulting PNs are moderate.

5. Definition of the translation

We now formalise the proposed translation. To do that, we add further assumptions on the
form of the FCP. Again, these assumptions are not restrictive: any FCP can be transformed
into the required form. However, the assumptions significantly simplify the correctness
proofs by reducing the number of cases that have to be considered.

5.1. Additional normal form assumptions. We augment the (NC) assumptions as

follows: in a defining equation K(f̃) := S, fn (S) = f̃ , i.e. public names are not allowed
in S. This assumption can be enforced by passing the required public names as parameters.

To avoid case distinctions for the initial process, we assume there are artificial defining
equations KInit ,i(f̃Init ,i) := SInit ,i with fn (SInit ,i) = f̃Init ,i ⊆ F , that are called by a virtual

initialisation step. Their purpose is to guarantee that the SInit ,i have the free names f̃Init ,i.
We then apply substitutions to assign the expected values to these parameters. This means
we can write the given FCP as

F = νr̃.(SInit ,1σ1 | . . . | SInit ,nσn),

where σi : f̃Init ,i → r̃ ∪ P. We additionally assume that the SInit ,i are choices or calls and
that the FCP does not contain the 0 process.
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Moreover, if we have an input x(y).S then we assume y ∈ fn (S), which can be achieved
by adding an artificial parameter to the call at the end of the process. Similarly, for a
restriction νr.S we assume r ∈ fn (S). Restrictions not satisfying this requirement can be
dropped due to structural congruence.

5.2. Construction of NSubst . To represent a substitution like {a, b/x, y}, we decompose
it into elementary substitutions {a/x} ∪ {b/y} of single names. The substitution net has
corresponding places [x=a] and [y=b] for each elementary substitution that may occur in
such a decomposition. Moreover, there is a second set of places, [x 6=n] and [r∗ 6=n], keeping
track of whether an input, a formal parameter, or a restriction is bound to n ∈ N . These
places complement the corresponding substitution places, in particular [r∗ 6=n] indicates that
no restricted name is bound to n. (Since at most one restriction can be bound to n, this
one complement place is sufficient.) NSubst has no transitions. We defer the explanation of

its initial marking for the moment. Formally, NSubst
df
= (PSubst ∪ PRef , ∅, ∅,M0) with

PSubst
df
=((I ∪ F)×{=}×P) ∪ ((I ∪ F ∪R)×{=}×N ) PRef

df
=(I ∪ F ∪ {r∗})×{6=}×N .

Substitution markings and correspondence A marking M of NSubst is called a sub-
stitution marking if it satisfies the following constraints:

(SM1) M([r∗ 6=n]) +
∑

r∈R

M([r=n]) = 1
∑

a∈P∪N

M([x=a]) ≤ 1 (SM2)

M([x=n]) +M([x 6=n]) = 1. (SM3)

(SM1) holds for every n ∈ N and states that at most one restricted name is bound to n.
Moreover, there is a token on [r∗ 6=n] iff there is no such binding. (SM2) states that every
name x ∈ I ∪F ∪R is bound to at most one a ∈ P ∪N . The reference counter has to keep
track of whether a name x ∈ I ∪ F maps to a fresh name n ∈ N , which motivates (SM3).

Consider now a substitution σ : (I ′ ∪ F ′ → P ∪ r̃) ∪ (R′ → r̃) where I ′ ⊆ I, F ′ ⊆ F ,
R′ ⊆ R, and the second component R′ → r̃ is injective. A substitution marking M of
NSubst is said to correspond to σ if the following hold:

(COR1): For all x ∈ (I ∪ F ∪R) \ dom(σ) and a ∈ N ∪ P, M([x=a]) = 0.

(COR2): For all x ∈ dom(σ) with σ(x) ∈ P, M([x=σ(x)]) = 1.

(COR3): For all x ∈ dom(σ) with σ(x) ∈ r̃, there is n ∈ N s.t. M([x=n]) = 1.

(COR4): The choice of n preserves the equality of names as required by σ: for all x, y ∈
dom(σ) with σ(x), σ(y) ∈ r̃, we have

σ(x) = σ(y) iff for all n ∈ N , M([x=n]) = M([y=n]).

Recall that we translate the specification F = νr̃.(SInit ,1σ1 | . . . | SInit ,nσn). As the initial
marking of NSubst , we fix some substitution marking that corresponds to σ1 ∪ . . . ∪ σn. As
we shall see, every choice of fresh names ñ for r̃ indeed yields bisimilar behaviour. Note
that (NC) ensures that the union of substitutions is again a function. Fig. 3 illustrates
NSubst and the concepts of substitution markings and correspondence.
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5.3. Construction of N(SInit). Petri net N(SInit) reflects the control flow of thread SInit .
To synchronise send and receive prefixes in different threads, we annotate its transitions
with labels from

L
df
= {τ, send(a, b), rec(a, b) | a, b ∈ P ∪N}.

To capture the effect that reactions have on substitutions, transitions also carry a set of
commands from

C
df
= {map(x, b), unmap(x, b), test ([x = b]) | x ∈ I ∪ F ∪R and b ∈ P ∪N}.

Figure 5: Translation of a restriction with
map(r, n) implemented.

Using these sets, a control flow net is defined to
be a tuple (P, T, F,M0, l, c), where (P, T, F,M0)
is a PN and l : T → L and c : T → P(C) are
the transition labelling functions.

As SInit is a sequential process, transitions
in N(SInit ) will always have a single input and
a single output place. This allows us to under-
stand N(SInit ) as a finite automaton, and hence
define it implicitly via a new labelled transition
system for SInit . Recall that S is the set of se-
quential processes. We augment them by lists
of names, S × (I ∪F ∪R)∗, carrying the names
that have been forgotten and should be even-
tually unmapped in NSubst . Among such aug-
mented processes, we define the labelled tran-
sition relation

−։ ⊆ (S × (I ∪ F ∪R)∗)× L× P(C)× (S × (I ∪ F ∪R)∗).

Each transition carries a label and a set of commands, and will yield a PN transition.
For restrictions νr.S, we allocate a fresh name. Since we can select any name that is

not in use, such a transition exists for every n ∈ N :

(νr.S, λ)
τ

−−−−−−։
{map(r,n)}

(S, λ). (TRANSν)

Fig. 5 depicts the transition, together with the implementation of mapping defined below.
Silent actions yield τ -labelled transitions with empty sets of commands as expected:

(τ.S + . . . , λ)
τ
−։
∅

(S, λ · λ′), (TRANS τ )

where λ′ = fn (τ.S + . . .) \ fn (S) contains the names that were free in the choice process
but have been forgotten in S. With an ordering on P ∪N , we can understand this set as a
sequence.

Communications are more subtle. Consider x〈y〉.S + . . . that sends y on channel x.
With appropriate tests, we find the names a and b to which x and y are mapped. These
names then determine the transition label. So for all a, b ∈ P ∪N , we have

(x〈y〉.S + . . . , λ)
send(a,b)

−−−−−−−−−−−−−−−։
{test([x=a]),test([y=b])}

(S, λ · λ′). (TRANS snd )
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Figure 6: Translation of communication (left), parallel composition and hiding (center),
and implementation of commands (right).

Sequence λ′ again contains the names that have been forgotten during this step. A receive
action in x(y).S + . . . is handled like a send, but introduces a new binding. For all a, b ∈
P ∪ N , we have

(x(y).S + . . . , λ)
rec(a,b)

−−−−−−−−−−−−−−։
{test([x=a]),map(y,b)}

(S, λ · λ′). (TRANS rec)

There are similar transitions for the remaining prefixes πi with i ∈ I. Fig. 6(left) illustrates
the transitions for send and receive actions.

For a call K⌊x1, . . . , xn⌋ with K(f1, . . . , fn) := S, the idea is to iteratively update the
substitution by binding the formal parameters to the factual ones. (Note that we assumed
fn (S) = {f1, . . . , fn}.) Afterwards, we unmap the names in λ, which will then include the
factual parameters. Since no equation calls itself, we do not accidentally unmap the just
mapped formal parameters. The following transitions are created for each a ∈ P ∪ N :

(K⌊x1, . . . , xm⌋, λ)
τ

−−−−−−−−−−−−−−−−։
{test([xm=a]),map(fm,a)}

(K⌊x1, . . . , xm−1⌋, λ
′), (TRANS call1)

where λ′ df
= λ if xm ∈ λ and λ′ df

= λ · xm otherwise. (This case distinction ensures that we
will unmap a factual parameter precisely once, even if it occurs multiple times in the list
of factual parameters.) When all parameters have been passed, we unmap the names in
λ 6= ε, by creating the following transitions for each a ∈ P ∪ N :

(K⌊−⌋, x · λ)
τ

−−−−−−−−։
{unmap(x,a)}

(K⌊−⌋, λ). (TRANS call2)

When λ = ε has been reached, we transfer the control to the body S of the defining equation:

(K⌊−⌋, ε)
τ
−։
∅

(S, ε). (TRANS call3)

Petri net N(SInit) is the restriction of (S×(I ∪F ∪R)∗,−։) to the augmented processes
that are reachable from (SInit , ε) via −։. The initial marking puts one token on place
(SInit , ε) and leaves the remaining places unmarked.

5.4. Operations on nets. We now describe the operations composing the nets.

Parallel composition ‖ Parallel composition of labelled nets is classical in Petri net
theory. The variant we use is inspired by [2]: N1 ‖ N2 forms the disjoint union of N1 and
N2, and then synchronises the transitions t1 in N1 that are labelled by l1(t1) = send(a, b)
(resp. rec(a, b)) with the transitions t2 in N2 that are labelled by l2(t2) = rec(a, b) (resp.
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send(a, b)). The result is a new transition (t1, t2) labelled by τ , which carries the (disjoint)
union of the commands for t1 and t2. Note that the transitions of N1 and N2 are still
available for further synchronisations with some N3. This in particular implies that ‖ is
associative and commutative.

Hiding H The hiding operator removes from a PN N all transitions t with l(t) 6= τ . Since
H(N) contains only τ -labelled transitions, we can omit the labelling function from the result.
The combination of parallel composition and hiding is illustrated in Fig. 6(center).

Implementation operation ⊳ Consider the two Petri nets N1 = NSubst = (P1, ∅, ∅,M0,1)
and N2 = H(N(SInit ,1) ‖ . . . ‖ N(SInit ,n)) = (P2, T, F2,M0,2, c) defined so far. The imple-
mentation operation

N1 ⊳ N2
df
= (P1 ∪ P2, T, F2 ∪ F,M0,1 ∪M0,2)

yields a standard Petri net without labelling. Its purpose is to implement the commands
labelling the transitions of N2 by adding arcs between the two nets. We fix a transition
t ∈ T and a command c ∈ c(t), and define the arcs that have to be added between t and
some places of N1 to implement c. We do the case analysis for the possible types of c:

test([x=b]) We add a loop to place [x=b]: ([x=b], t), (t, [x=b]) ∈ F .

map(x, p),map(x, n),map(r, n) A map command differentiates according to whether the
first component is an input name or a formal parameter x ∈ I ∪ F , or whether it is a
restricted name r ∈ R. If x is assigned a public name, map(x, p) ∈ c(t) with p ∈ P, we add
an arc producing a token in the corresponding place of the substitution net: (t, [x=p]) ∈ F .
If x is assigned some n ∈ N , map(x, n) ∈ c(t), we additionally remove the token from
the reference counter: (t, [x=n]), ([x 6=n], t) ∈ F . To represent the restricted name r ∈ R
by a name n ∈ N , we first check that no other name is currently mapped to n using the
reference counter for n. In case n is currently not in use, we introduce the binding [r=n] to
the substitution net: ([r∗ 6=n], t), (t, [r=n]) ∈ F and {([x 6=n], t), (t, [x 6=n]) | x ∈ I ∪F} ⊆ F .

unmap(x, p), unmap(x, n), unmap(r, n) An unmap removes the binding of x ∈ I ∪ F :
([x=p/n], t) ∈ F . Moreover, if n ∈ N it updates the reference counter: (t, [x 6=n]) ∈ F .
When we remove the binding of r ∈ R to n ∈ N , we update [r∗ 6=n] in the reference counter:
([r=n], t), (t, [r∗ 6=n]) ∈ F .

Fig. 5 illustrates the implementation of mapping for a restriction, map(r, n). Tests and
mapping of an input name are shown in Fig. 6(right).

6. Correctness of the translation

To prove the translation correct, we relate F and N(F ) by a suitable form of bisimulation.
The problem is that N(F ) may perform several steps to mimic one transition of F . The
reason is that changes to substitutions (as induced e.g. by νr.S) are handled by transitions in
N(F ) whereas F uses structural congruence, i.e. a substitution change does not necessarily
lead to a step in the reaction relation of F . To obtain a clean relationship between the
models, we restrict the transition system of N(F ) to so-called stable markings and race free
transition sequences between them. Intuitively, stable markings correspond to the choices
and process calls in F , and race free transition sequences mimic the reaction steps between
them. We show below that this restriction is insignificant, as any transition sequence is
equivalent to some race free one.
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Place (S, λ) of N(F ) = NSubst ⊳ H(N(SInit ,1) ‖ . . . ‖ N(SInit ,n)) is called stable if S is
a choice or a call to a process identifier with full parameter list. Marking M of N(F ) is
called stable if, in every control flow net N(SInit ,i), it marks a stable place. We denote by
ReachStbl(N(F )) the set of stable markings that are reachable in N(F ).

A transition sequence t1, . . . , tn between stable markings M,M ′ ∈ ReachStbl(N(F )) is
race free if exactly one ti is either of the form (TRANS τ ) for a silent action, of the form (t, t′)
for communication actions (TRANS snd ), (TRANS rec), or of the form (TRANS call3) for an
identifier call, cf. Sect. 5.3. Thus, a race free transition sequence corresponds to precisely one
step in the reaction relation of F , characterised by ti, while the other transitions implement
the substitution changes between M and M ′. In particular, no intermediary marking is
stable. We denote the fact that there is such a race free transition sequence by M ⇒M ′.

We now show that every transition sequence reaching a stable marking M can be
replaced by a series of race free transition sequences. This means the restriction to race free
sequences is inconsequential.

Lemma 6.1. For every transition sequence M1 →
+ M2 between M1,M2 ∈ ReachStbl (N(F )),

there is a sequence M1 ⇒
+ M ′

2 with M ′
2 ∈ ReachStbl (N(F )) and

• the control flow parts of M2 and M ′
2 coincide, and

• the substitution parts of M2 and M ′
2 correspond to a same substitution.

Moreover, the latter sequence is a rearrangement of the former one, modulo transitions
implementing map and unmap operations for restricted names using different values.

Proof. To obtain M1 ⇒
+ M ′

2, we proceed as follows. We project the sequence M1 →
+ M2

to the transitions that reflect π-calculus reactions. After each such transition, we insert the
required initialisations of restricted names by unused values (not necessarily the same as
in the original sequence). Before each call to a process identifier, we insert the necessary
unmapping operations (the ones for restricted names are amended to use the values given
during the corresponding initialisations). The result is race free. To see that the sequence
is enabled, note that initialisations of restricted names cannot be blocked because the pool
of fresh names is large enough. Moreover, unmap operations can never be blocked.

6.1. Bisimulation. Since the initial marking M0 of N(F ) is stable by the assumption on
SInit ,i from Sect. 5.1, we can define the stable transition system of N(F ) as

TStbl(N(F ))
df

= (ReachStbl (N(F )),⇒,M0).

Theorem 6.2. The transition system of F and the stable transition system of N(F ) are
bisimilar, T (F ) ∼ TStbl(N(F )), via the bisimulation B defined below.

We defer the proof for the moment. To define the bisimulation relation, we use the fact
that every process reachable from F is structurally congruent to some νr̃.(S1σ1 | . . . | Snσn).
Here, Si is a choice or an identifier call that has been derived from some process S with
K(f̃) := S. Derived means (S, ε) −։+ (Si, λi) so that no intermediary process is a call to a
process identifier. As second requirement, we have

σi : fn(Si) ∪ λi → r̃ ∪ P. (DOM)

This means the domain of σi are the free names in Si together with the names λi that
have already been forgotten. The two sets are disjoint, fn(Si) ∩ λi = ∅. The above process
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actually is in Milner’s standard form [19], but makes additional assumptions about the
shape of threads and the domain of substitutions.

We define B ⊆ Reach(F )/≡ × ReachStbl (N(F )) to contain (G,M1 ∪M2) ∈ B if there is
a process νr̃.(S1σ1 | . . . | Snσn) ≡ G as above so that the following hold:

• marking M1 of NSubst corresponds to σ1 ∪ . . . ∪ σn and
• for the control flow marking, we have M2(Si, λi) = 1 for all i ∈ {1, . . . , n}.

To relate T (F ) and the full transition system T (N(F )), consider a transition sequence
M1 →

+ M2 between stable markings M1,M2 ∈ ReachStbl(N(F )) that need not be race
free. Due to Lemma 6.1 it can be rearranged to a race free sequence M1 ⇒

+ M ′
2. With the

above bisimilarity, this race free transition sequence is mimicked by a sequence of π-calculus
transitions F →+ G with (G,M ′

2) ∈ B. With Lemma 6.1 and the definition of B, we also
have (G,M2) ∈ B. In the reverse direction, a single process transition is still mimicked by
a sequence of PN transitions (that happens to be race free). Hence, the following holds:

Theorem 6.3.The transition systems of F and N(F ) are weakly bisimilar, T (F )≈T (N(F )),
taking B defined above as a weak bisimulation.

This result allows one to check temporal properties of FCPs using their PN representations.

6.2. Bisimulation Proof. We now turn to the proof of Theorem 6.2. We have to show
that for each pair (G,M) ∈ B, every transition G →֒ G′ can be mimicked by a race free
transition sequence in N(F ), i.e. there is a stable marking M ′ with M ⇒ M ′ such that
(G′,M ′) ∈ B. Moreover and in turn, the race free transition sequences in N(F ) should be
imitated in process F . The proof is split into two parts, formulated as Lemmas 6.4 and 6.5,
for both directions respectively.

Lemma 6.4. Consider (G,M) ∈ B. For all G′ with G →֒ G′ there is a stable marking
M ′ ∈ ReachStbl (N(F )) such that M ⇒M ′ and (G′,M ′) ∈ B.

Proof. Process G is structurally congruent to νr̃.(S1σ1 | . . . | Snσn). By the base cases of
the reaction rules, transition G →֒ G′ exists iff (1) either two processes Siσi and Sjσj with
i 6= j ∈ {1, . . . , n} communicate, (2) we resolve a call to a process identifier in some Siσi,
i ∈ {1, . . . , n}, or (3) we have a τ action. Silent steps are easier than the former two and
hence omitted in the proof.

Case 1: Communication For simplicity, we assume that: the first two threads commu-
nicate using the first prefixes; after the communication, the first thread yields choice or call
S′
1; the second process creates precisely one restricted name before becoming a choice or

a call S′
2; the communication is over restricted names and a restricted name is sent. The

remaining cases are along similar lines. We thus have G ≡ νr̃.(S1σ1 | . . . | Snσn) with

S1 = x1〈y1〉.S
′
1 + . . . S2 = x2(y2).νr.S

′
2 + . . . σ1(x1) = σ2(x2) ∈ r̃ σ1(y1) ∈ r̃.

The process resulting from the communication is

G′ df
= νr̃.ar.(S

′
1σ1 | S

′
2σ

′
2 | S3σ3 | . . . | Snσn) with σ′

2
df
= σ2{σ1(y1)/y2}{ar/r}.

We argue that G′ has the desired normal form. The processes S′
1 and S′

2 are choices or
calls. Moreover, (S, ε) −։∗ (S2, λ2) implies (S, ε) −։∗ (S′

2, λ2 · λ
′
2). This means S′

1 and S′
2
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have been derived, as required. It remains to show (DOM). We do the proof for σ′
2, the

reasoning for σ1 is simpler:

dom(σ′
2) (6.1)

= dom(σ2) ∪ {y2, r} (6.2)

= λ2 ∪ fn (S2) ∪ {y2, r} (6.3)

= λ2 ∪ (fn (S2) \ fn
(

νr.S′
2

)

) ∪ (fn
(

νr.S′
2

)

\ {y2}) ∪ {y2, r} (6.4)

= λ2 ∪ (fn (S2) \ fn
(

νr.S′
2

)

) ∪ fn
(

S′
2

)

∪ {y2, r} (6.5)

= λ2 ∪ (fn (S2) \ fn
(

νr.S′
2

)

) ∪ fn
(

S′
2

)

(6.6)

= λ2 · λ
′
2 ∪ fn

(

S′
2

)

. (6.7)

Equation (6.3) is (DOM) for σ2. Equation (6.4) uses the fact that

fn (S2) = (fn (S2) \ fn
(

νr.S′
2

)

) ∪ (fn
(

νr.S′
2

)

\ {y2}).

This is due to fn (νr.S′
2) \ {y2} ⊆ fn(S2). Equation (6.5) is due to

(fn
(

νr.S′
2

)

\ {y2}) ∪ {y2, r} = fn
(

S′
2

)

∪ {y2, r}.

Equation (6.6) holds by {y2, r} ⊆ fn(S′
2). Finally, Equation (6.7) holds by definition of the

augmented transition relation −։.

We now argue that (1.a) there is M ′ ∈ ReachStbl (N(F )) so that M ⇒ M ′ and (1.b)
(G′,M ′) ∈ B.

Claim 1.a: There is M ′ ∈ ReachStbl(N(F )) with M ⇒M ′ Let M = M1 ∪M2 so that
M1 is the substitution marking and M2 is the control flow marking. Since (G,M1∪M2) ∈ B,
we have M2((S1, λ1)) = 1 = M2((S2, λ2)). Moreover, M1 corresponds to σ1∪ . . .∪σn. In the
following, we also use σ to refer to this union. Since σ1(x1), σ2(x2), σ1(y1) ∈ r̃, by (COR3)
we have fresh names n1, n2, n3 ∈ N with M1([x1=n1]) = 1 = M1([x2=n2]) = M1([y1=n3]).
Since σ1(x1) = σ2(x2), we conclude n1 = n2 by (COR4).

It remains to show that there is a fresh name available in N which we can use to
represent r. As r /∈ dom(σ), we have

|dom(σ)| < |I|+ |F|+ |R| = |N |.

With (COR1), for x /∈ dom(σ) we have M1([x=n]) = 0 for all n ∈ N . For x ∈ dom(σ),
we have at most one place [x=a] marked by (SM2). Together, these mean there is a name
n ∈ N with M1([x=n]) = 0 for all x ∈ I ∪F ∪R. Let this name be nr. As M1([x=nr]) = 0
for x ∈ I ∪ F ∪R, (SM1) and (SM3) ensure M1([x 6=nr]) = 1 for x ∈ I ∪ F ∪ {r∗}.

Before parallel composition, the original net N(SInit ,1) had the following transition
sequence leaving place (S1, λ1):

(S1, λ1)
send(n1,n3)

−−−−−−−−−−−−−−−−−−։
{test([x1=n1]),test([y1=n3])}

(S′
1, λ

′
1).

Similarly, from (S2, λ2) in N(SInit ,2) we get

(S2, λ2)
rec(n1,n3)

−−−−−−−−−−−−−−−−−−։
{test([x2=n1]),map([y2=n3],})

(νr.S′
2, λ2 · λ

′
2)

τ
−−−−−−−։
{map(r,nr)}

(S′
2, λ2 · λ

′
2).

Parallel composition joins the communicating transitions of the two nets, and we denote the
result by (t1, t2). Then hiding removes the original transitions t1 labelled by send(n1, n3)
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and t2 labelled by rec(n1, n3). Then, for (t1, t2) and for the transition tr mapping r to a
fresh name, the implementation operation adds arcs to and from NSubst .

We now show that the transition sequence (t1, t2) tr is enabled. We argued that (Si, λi)
carries a token. This means the control flow is at the right place. We have M1([x1=n1]) =
1 = M1([x2=n1]) = M1([y1=n3]). Hence, the test arcs to the substitution net are enabled.
We have y2 ∈ bn(S2). Hence, the name is not in the domain of σ2 by (DOM) and
(NC). With (COR1), M([y2=a]) = 0 holds for all names a ∈ P ∪ N . In particular,
M([y2=n3]) = 0. With (SM3), we conclude M([y2 6=n3]) = 1. This ensures map(y2, n3) is
enabled. For tr, we have M([x 6=nr]) = 1 for all x ∈ I ∪ F ∪ {r∗}. Hence, the transition is
enabled.

The resulting marking M ′ puts tokens on (S′
1, λ

′
1) and (S′

2, λ2 · λ
′
2) which are stable

places. This means M ′ is stable. The marking is reachable as M was reachable. Moreover,
transition sequence (t1, t2) · tr above is race free.

Claim 1.b: (G′,M ′) ∈ B Again M ′ = M ′
1 ∪M ′

2 where M ′
1 is the marking of NSubst and

M ′
2 is the control flow. For the control flow, we moved the single token from (S1, λ1) to

(S′
1, λ

′
1) and from (S2, λ2) to (S′

2, λ2 · λ
′
2) as required.

For NSubst , we show that we obtain a substitution marking. We already argued that
M1([y2=a]) = 0 for all a ∈ P ∪ N and hence M1([y2 6=n3]) = 1. We consume the latter
token and move it to M ′

1([y2=n3]) = 1. This means we still map y2 to at most one name as
required by (SM2). Moreover, the invariant on reference counting (SM3) is satisfied.

Name r is not in the domain of σ2. Hence, the places [r=a] are empty for all a ∈ N ∪P.
We move the token from M1([r∗ 6=nr]) = 1 to M ′

1([r=nr]) = 1. As a result, the places [r=a]
for all a ∈ N ∪ P together carry at most one token as required by (SM2). Moreover, the
places [r=nr] for all r ∈ R plus [r∗ 6=nr] carry precisely one token. This proves (SM1). We
have a substitution marking.

We have to show that M ′
1 corresponds to σ′ df

= σ1∪σ
′
2∪σ3∪ . . .∪σn. We only introduce

bindings for y2 and r. For y2 we have σ′
2(y2) = σ1(y1) ∈ r̃. Hence, it is correct that

we map M ′
1([y2=n3]) = 1 with n3 ∈ N . The reasoning is similar for r with σ′

2(r) = ar.
(COR3) holds. Marking M ′

1 only introduces tokens to the places [y2=n3] and [r=nr] with
{y2, r} ⊆ dom(σ′). For the remaining names x ∈ I ∪ F ∪ R \ {y2, r}, it coincides with
M1. Note that for x /∈ dom(σ′) we have x /∈ dom(σ). Hence, by (COR1) for M1, we get
M ′

1([x=a]) = M1([x=a]) = 0 for all a ∈ P ∪ N . This proves (COR1) for M ′
1.

It remains to show (COR4): the equality required by σ′ coincides with the choice
of fresh names. For r we have M ′

1([r=nr]) = 1 and M ′
1([x=nr]) = 0 for all other names

r 6= x ∈ I ∪F ∪R. This coincides with the requirement that σ′(r) 6= σ′(x). For y2, we only
consider x /∈ {y2, r} and get

σ′(y2) = σ′(x) iff σ(y1) = σ(x)

iff M1([y1=n]) = M1([x=n]) for all n ∈ N

iff M ′
1([y1=n]) = M ′

1([x=n]) for all n ∈ N

iff M ′
1([y2=n]) = M ′

1([x=n]) for all n ∈ N .

The first equivalence holds by σ′(y2) = σ(y1). The second equivalence is (COR4) for σ,
the third is the observation that M1 and M ′

1 coincide on all names except y2 and r. The
last equivalence is the fact that the rows for y1 and y2 coincide. This is by (SM2), in
combination with M ′

1([y1=n3]) = 1 = M ′
1([y2=n3]).
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Case 2: Identifier calls We have G ≡ νr̃.(K⌊x̃⌋σ1 | . . . | Snσn) with K(f̃) := S. We
assume S already is a choice or a call. The process resulting from the call K⌊x̃⌋σ1 is

G′ df
= νr̃.(Sσ′

1 | . . . | Snσn) with σ′
1

df
= {σ1(x̃)/f̃}.

We argue that G′ has the desired normal form. The process S is a choice or a call. It has
been derived trivially as it is the defining process. For (DOM), we have as desired

dom(σ′
1) = f̃ = fn (S) = fn (S) ∪ ∅.

We now argue that (2.a) there is M ′ ∈ ReachStbl (N(F )) so that M ⇒ M ′ and (2.b)
(G′,M ′) ∈ B.

Claim 2.a: There is M ′ ∈ ReachStbl(N(F )) with M ⇒M ′ Let M = M1 ∪M2 so that
M1 is the substitution marking and M2 is the control flow marking. Since (G,M1∪M2) ∈ B,

we know that M1 corresponds to σ
df
= σ1 ∪ . . . ∪ σn. For M2, we have M2(K⌊x̃⌋, λ) = 1.

Moreover, by (DOM), we have x̃ ∪ λ = dom(σ1). Hence, for every name xi ∈ x̃ ∪ λ we
have a name ai ∈ P ∪ N so that M1([xi=ai]) = 1 by (COR2) and (COR3). Since an
equation does not call itself and since all formal parameters are unique by (NC), we have

f̃ ∩ dom(σ) = ∅ by (DOM). This means M1([f=a]) = 0 for all f ∈ f̃ and all a ∈ N ∪ P.
With (SM3), we get M1([f 6=n]) = 1 for all f ∈ f̃ and all n ∈ N .

By definition, Petri net N(SInit ,1) has the following transition sequence:

(K⌊x̃⌋, λ)
τ

−−−−−−−−−−−−−−−−։
{test([xi=ai]),map(fi,ai)}

+
(K⌊−⌋, λ′)

τ
−−−−−−−−−։
{unmap(xi,ai)}

+
(K⌊−⌋, ε)

τ
−։
∅
(S, ε).

The first transition sequence introduces the bindings for f̃ and moves the names in x̃ to
λ. The result is (K⌊−⌋, λ′) with λ′ = λ · x̃′, where x̃′ is obtained from x̃ by removing the
duplicates. The next transition sequence unmaps all names in λ′. Finally, the token is
moved to (S, ε).

We now show that the composed sequence is enabled. For the first sequence, the tests
are enabled with M1([xi=ai]) = 1. For formal parameters, mapping map(f, p) with p ∈ P
is always enabled, and map(f, n) with n ∈ N requires M1([f 6=n]) = 1. This holds by the
above argumentation. The second transition sequence removes the tokens from [xi=ai].
Since we do not repeat names in x̃′ and since x̃ ∩ λ = ∅, all transitions are enabled. For
ai = n ∈ N , unmapping introduces a token to [xi 6=n] or to [r∗ 6=n].

The resulting marking M ′ puts a token on the stable place (S, ε), i.e. M ′ is stable. M ′

is reachable as M was reachable. Moreover, the transition sequence above is race free.

Claim 2.b: (G′,M ′) ∈ B Again we have M ′ = M ′
1 ∪M ′

2 where M ′
1 is the marking of

NSubst and M ′
2 is the control flow marking. For the control flow, we moved the single token

from (K⌊x̃⌋, λ) to (S, ε) as required.
For NSubst , we show that we obtain a substitution marking. We already argued that

M1([f=a]) = 0 for all a ∈ P ∪ N and hence M1([f 6=n]) = 1 for all n ∈ N . We introduce
a token M ′

1([fi=ai]) = 1, potentially consuming the complement marking if ai = n ∈ N .
(SM2) holds: names are bound at most once. The second transition sequence manipulates

the places for x̃′ ∪ λ. These names are disjoint from f̃ due to f̃ ∩ dom(σ1) = ∅ explained
above. We remove all tokens M1([xi=ai]) = 1 with xi ∈ x̃′ ∪ λ. The implementation of
unmap ensures we reinstall complement markings. More precisely, if xi = r ∈ R and ai = n,
we mark M ′

1([r∗ 6=n]) = 1. Since by (SM1), name r was the only restriction bound to n,
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the constraint continues to hold with [r∗ 6=n] marked. If M1([xi=n]) = 1 with xi ∈ I ∪ F ,
we get M ′

1([xi 6=n]) = 1. Hence, (SM3) continues to hold. We have a substitution marking.

We have to show that M ′
1 corresponds to σ′ df

= σ′
1 ∪ σ2 ∪ . . . ∪ σn. We focus on σ′

1 and
assume σ′

1(fi) ∈ r̃. This means σ1(xi) ∈ r̃ for the corresponding name xi ∈ x̃. Since M1

corresponds to σ, by (COR3) for M1 we have M1([xi=n]) = 1 for a name n ∈ N . By
(SM2), xi is bound to only one name. This means n has to be the name ai, n = ai, that
we chose for the transition. As a result, we have M ′

1([f=n]) = 1 with n ∈ N as required.

For σ′
1(f) ∈ P, the reasoning is similar. For the names in I ∪ F ∪ R \ (dom(σ1) ∪ f̃),

markings M1 and M ′
1 coincide. Hence, if x /∈ dom(σ′) we either have x /∈ dom(σ) or we

have x ∈ dom(σ1). In the former case, we get M ′
1([x=a]) = M1([x=a]) = 0 for all a ∈ P∪N

by (COR1) for σ. In the latter case, the name has been explicitly unmapped by the second
transition sequence. Hence, (COR1) holds for σ′.

It remains to show (COR4): the equality required by σ′ coincides with the choice of

fresh names. Consider fi, fj ∈ f̃ :

σ′(fi) = σ′(fj) iff σ(xi) = σ(xj)

iff M1([xi=n]) = M1([xj=n]) for all n ∈ N

iff M ′
1([fi=n]) = M ′

1([fj=n]) for all n ∈ N .

The first equivalence holds by σ′
1(fi) = σ1(xi) and σ′

1(fj) = σ1(xj). The second is (COR4)
for σ. The third equivalence is the fact that the rows for xi in M1 and for fi in M ′

1
coincide. This is by the fact that xi and fi mark at most one place [xi=ai] and [fi=ai] by
(SM2), and by the fact that this name ai coincides. The reasoning for σ′(f) = σ′(x) with
x ∈ dom(σ2 ∪ . . . ∪ σn) is similar.

We now turn to the reverse direction and argue that G can imitate race free transition
sequences enabled by M .

Lemma 6.5. Let (G,M) ∈ B. For all M ′ ∈ ReachStbl (N(F )) so that M ⇒ M ′ there is a
process G′ with G →֒ G′ and (G′,M ′) ∈ B.

Proof. A race free transition sequence M ⇒ M ′ corresponds to a communication among
two processes (1), to an identifier call (2), or to a silent action (3). We only consider the
first case, the remaining two are along similar lines.

Case 1: Communication We reconstruct the race free transition sequence M ⇒M ′ to
derive information about the shape ofM andM ′. Since we model a communication, we have
M(S1, λ1) = 1 in the net N(SInit ,1) with S1 = x1〈y1〉.S

′
1 + . . .. Similarly, M(S2, λ2) = 1

in N(SInit ,2) with S2 = x2(y2).νr.S
′
2 + . . .. Here, S′

1 and S′
2 are meant to be choices or

identifier calls. Thus, again the first two processes communicate and the second generates
a fresh name. The race free transition sequence M →+ M ′ in N(F ) is now (t1, t2) tr where

t1 = (S1, λ1)
send(n1,n2)

−−−−−−−−−−−−−−−−−−։
{test([x1=n1]),test([y1=n2])}

(S′
1, λ

′
1)

t2 = (S2, λ2)
rec(n1,n2)

−−−−−−−−−−−−−−−−−−։
{test([x2=n1]),map([y2=n2],})

(νr.S′
2, λ2 · λ

′
2)

tr = (νr.S′
2, λ2 · λ

′
2)

τ
−−−−−−−։
{map(r,nr)}

(S′
2, λ2 · λ

′
2).
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So we assume the communication is on a fresh channel n1 and sends a fresh name n2. The
cases where x1 or y1 are mapped to public names are similar.

For marking M , the test commands that label transition (t1, t2) allow us to conclude
the marking in Line (6.8).

M([x1=n1]) = 1 M([x2=n1]) = 1 M([y1=n2]) = 1 (6.8)

M([y2 6=n2]) = 1 M([y2=a]) = 0 ∀a ∈ P ∪ N . (6.9)

In the following Line (6.9), the implementation of mapping requires a token on [y2 6=n2]. By
(SM3), this only gives M([y2=n2]) = 0. We derive that actually all [y2=a] are unmarked
as follows. We have (G,M) ∈ B, which means M is known to correspond to a process. This
process has a substitution that does not contain y2 in its domain. This is due to (DOM)
in combination with the fact that y2 is bound. Constraint (COR1) yields M([y2=a]) = 0
for all a ∈ P ∪ N .

M([x 6=nr]) = 1 ∀x ∈ I ∪ F ∪ {r∗} M([x=nr]) = 0 ∀x ∈ I ∪ F ∪R (6.10)

M([r=n]) = 0 ∀n ∈ N . (6.11)

That tr is enabled gives the first marking in Line (6.10). With (SM1) and (SM3), we
conclude that no name maps to nr. Like for y2, we get that r does not map to any fresh
name, Line (6.11).

In the control flow, marking M ′ differs from M in that (S′
1, λ

′
1) and (S′

2, λ2 ·λ
′
2) instead

of (S1, λ1) and (S2, λ2) are marked in N(SInit ,1) and N(SInit ,2). For the substitution net,
we only give the places on which the marking has changed. The following is immediate
from the definition of implementation:

M ′([y2=n2]) = 1 M ′([y2 6=n2]) = 0 M ′([r=nr]) = 1 M ′([r∗ 6=nr]) = 0.

M ′ = M ′
1 ∪M

′
2 is stable; moreover, marking M ′

1 of NSubst is indeed a substitution marking.

We now argue that (1.a) there is G′ ∈ Reach(F )/≡ with G →֒ G′ and (1.b) (G′,M ′) ∈ B.

Claim 1.a: There is G′ ∈ Reach(F )/≡ so that G →֒ G′ We assume that G and M1∪M2

are related by B. Hence, there is a process in normal form that satisfies

G ≡ νr̃.(S1σ1 | S2σ2 | . . . | Snσn).

From marking M1 ∪M2, we now derive the following information:

S1 = x1〈y1〉.S
′
1 + . . . S2 = x2(y2).νr.S

′
2 + . . . σ1(x1) = σ2(x2) ∈ r̃ σ1(y1) ∈ r̃.

The equalities on S1 and S2 are due to the markings of the nets N(SInit ,1) and N(SInit ,2).
For the substitution, we make use of the fact that M1 corresponds to σ1∪ . . .∪σn. We have
M1([x1=n1]) = 1 = M1([x2=n1]) with n1 ∈ N . Since x1 and x2 are bound to at most one
name by (SM2), this allows us to conclude that the markings of [x1=n] and [x2=n] coincide
for all names n ∈ N . Hence, we get σ1(x1) = σ2(x2) by (COR4). By (DOM), we have
that σ1(x1) ∈ r̃ ∪ P. If σ1(x1) was in P, we had M1([x1=σ1(x1)]) = 1 by (COR2). This
is not the case, hence σ1(x1) ∈ r̃. For y1, the reasoning is similar. We already mentioned
above that {y2, r} /∈ dom(σ1 ∪ . . . ∪ σn).

The normal form process has a reaction to

G′ df
= νr̃.ar.(S

′
1σ1 | S

′
2σ

′
2 | . . . | Snσn) with σ′

2
df
= σ2{σ1(y1)/y2}{ar/r}.

Hence, G →֒ G′. Since G was reachable from F , we have G′ reachable from F . Moreover,
we already argued in the proof of Lemma 6.4 that G′ has the required normal form.
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Claim 1.b: (G′,M ′
1 ∪M ′

2) ∈ B For the threads, the reasoning is as in Lemma 6.4. We

check that M ′
1 corresponds to σ′ df

= σ1 ∪ σ′
2 ∪ . . . ∪ σn. (COR1) to (COR3) are as before.

For (COR4), we consider r 6= x ∈ dom(σ′). We have σ′(r) 6= σ′(x), which coincides with
the fact that M ′

1([r=nr]) = 1 and M ′
1([x=nr]) = 0.

Proof of Theorem 6.2. We show that B relates F and M0. The transitions can be mimicked
due to Lemmas 6.4 and 6.5. By our assumptions, we have F = νr̃.(SInit ,1σ1 | . . . | SInit ,nσn).
Here, SInit ,i are choices or calls that have been derived from artificial defining equations.

Moreover, σi : f̃Init ,i → r̃ ∪ P with dom(σi) = f̃Init ,i = fn (SInit ,i) ∪ ∅. This shows (DOM),
and concludes the proof that F is in normal form. For the initial marking M0 = M0,1∪M0,2

of N(F ), we have that M0,1 corresponds to σ1 ∪ . . .∪σn as needed. In the control flow nets
N(SInit ,i), we have the necessary tokens on (SInit ,i, ε).

7. Optimisation of the translation

In this section, we propose optimisations of the translation, which can significantly reduce
the size of the resulting safe PN and increase the efficiency of subsequent model checking.

7.1. Communication splitting. Recall the size of the PN resulting from our translation
is dominated by the number of transitions modelling communication. We now propose a
method to significantly decrease this number. It actually reduces the asymptotic worst case
size from O(‖F‖4) down to O(‖F‖3). Furthermore, its straightforward generalisation yields
a polynomial translation from polyadic π-calculus to safe PNs, see Sect. 8.

The idea is to model the communication between potentially synchronisable actions
a〈b〉 and x(y) not by a single step but by a pair of steps. The first checks that a and x are
mapped to the same value by the substitution, and the second maps y to the value of b.

Assume a〈b〉 and x(y) correspond to stub transitions t′ and t′′. To implement the
decomposition, we create a control place pmiddle ‘in the middle’ of the communication and
two sets of transitions, t1i and t2j . The transitions t

1
i , created for each i ∈ dom(a)∩ dom(x),

work as follows. Each t1i
• consumes tokens from the input places of t′ and t′′ and produces a token on pmiddle ;
• checks by read arcs that [a = i] and [x = i] are marked (i.e. the substitution maps a and
x to the same value i and thus the synchronisation is possible).

The transitions t2j , created for each j ∈ dom(b) ∩ dom(y), work as follows. Each t2j
• consumes a token from pmiddle and produces tokens on the output places of t′ and t′′;
• checks by a read arc that [b = j] is marked, consumes a token from [y 6= j] (if this place
exists) and produces a token on [y = j] (mapping thus in the substitution y to j, i.e. to
the value of b).

If the synchronisation is possible in the current state of the system (i.e. a and x have the
same value), exactly one of the transitions t1i is enabled; else none of these transitions is
enabled. Once some t1i fires, exactly one of the transitions t2j becomes enabled.
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7.2. Abstractions of names. In the substitution net described in Sect. 3.1, each bound
name and formal parameter is represented by a separate row of places. In practice, it is
often the case that some bound names and formal parameters can never be simultaneously
active, and so can share the same row of places.

We have implemented a simple sharing scheme by introducing an equivalence ∼ on
the set of bound names and formal parameters, such that if two names are equivalent
then they cannot be simultaneously active. Then the rows of the substitution table will
correspond to the equivalence classes of ∼, and for each bound name and formal parameter
we will introduce the abstraction operator abs , mapping the name to the corresponding
equivalence class of ∼. Now the operations on the substitution (initialisation of a restricted
name, remapping and unmapping) can be performed on the abstractions of names rather
than the names themselves.

A possible choice of equivalence ∼ and the related abstraction is as follows. For each
name b ∈ R ∪ I ∪ F , we denote by thread (b) the thread where b is defined (note that due
to (NC) and the assumption that threads do not share defining equations, thread (b) is
unique). Furthermore, we define

type(b)
df
=

{

0 if b ∈ R
1 otherwise (i.e. if b ∈ I ∪ F),

and depth(b) to be the number of names b′ ∈ R ∪ I ∪ F in whose scope b resides and such
that type(b) = type(b′). Then the abstraction of b can be defined as a tuple

abs(b)
df

=
(

thread (b), type(b), depth(b)
)

,

and two names are considered equivalent wrt. ∼ iff their abstractions coincide. This equiv-
alence ensures that two distinct names related by it belong to the same thread, and that
their scopes lie within either different defining equations or different branches of some choice
operator, and so the names cannot be simultaneously active. Other choices of ∼ and abs
are also possible, and we plan to explore them in our future work.

7.3. Better overapproximations for name domains. Recall that the domain of a
bound name or formal parameter is an overapproximation of the set of values from P ∪N
that it can take. While the rough overapproximation proposed in Sect. 3 is sufficient to
make the translation polynomial, its quality can be improved by static analysis, resulting
in a much smaller PN. In particular, the number of synchronisations between communica-
tion actions as well as the number of transitions implementing each communication may
be reduced significantly. Furthermore, the number of transitions implementing parameter
passing in calls and the number of places in NSubst can also decrease substantially.

We outline a simple iterative procedure to compute better overapproximations. We

start by setting dom(p)
df

= {p} for each public name p. For each restricted name r we set

dom(r)
df

= {r}, interpreting this as that the values of r are taken from the set Nr of unique
values (the procedure never looks inside Nr, and only exploits the fact that the names from
Nr are different from all the other names). The domains of these names are fixed and will
not be changed by the procedure. The domains of all other names occurring in the FCP are
initialised to ∅; they will grow monotonically during the run of the procedure, converging
to some overapproximations.
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Each iteration of the procedure identifies two actions, a〈b〉 and x(y), that satisfy the
following conditions: (i) the actions belong to different threads of the FCP; (ii) dom(a)
and dom(x) overlap; and (iii) dom(b) * dom(y). If no two such actions can be found, the
procedure stops, returning the current values of the domains. Otherwise, dom(y) is replaced
by its union with dom(b). Intuitively, the above conditions check that the two actions can
potentially synchronise, and so y can be mapped to the value of b, and so its domain has
to include that of b.

7.4. Better overapproximation for |N |. The cardinality of the set N is an important
parameter of the translation, affecting the efficiency of almost all its aspects. While the
rough overapproximation proposed in Sect. 3 (taking |N | to be the total number of bound
names and formal parameters) is sufficient to make the translation polynomial, a better one
can make the translation much more practical and amenable to model checking.

In the worst case, all names from R ∪ I ∪ F can be assigned different values from N .
To improve the overapproximation of Sect. 3, we observe that in many cases not all such
names can be simultaneously active, i.e. it is enough to overapproximate the number of
such names that can be simultaneously active. Hence we propose the following improved
overapproximation of |N |. If there are no occurrences of the restriction operator in the FCP,

|N |
df

= 0. Else, for each thread we compute the maximal number of names from R ∪ I ∪ F
that can be simultaneously active in it,

max{|fn
(

S′
)

∪ λ| | (S, ε) is a defining process and (S, ε) −։∗ (S′, λ)},

and set |N | to the sum of these numbers.
The number of names from R∪I∪F that can be simultaneously active in a thread can

be computed by separately determining this parameter for each of the defining equations
belonging to this thread, as well as the subterm of the main process corresponding to this
thread, and taking the maximum of these values. Since these π-calculus expressions are
sequential, their parse trees can only have the + operator in every node where a branching
occurs, and so the sought value is simply the maximum of the numbers of active names from
R ∪ I ∪ F in the leafs of this parse tree. Furthermore, the names whose domains contain
no restricted names can be ignored by this analysis.

7.5. Sharing subnets for unmapping names. When we call K⌊ã⌋, some names have
to be unmapped in the substitution. The subnet for unmapping a particular name can
be shared by all points where such unmapping is necessary. This reduces the size of the
resulting PN. This optimisation is especially effective when name abstractions (see above)
are used, as the sharing increases significantly in such a case.

7.6. Re-ordering parameters of calls. Consider the FCP K⌊a, b⌋ with:

K(f1, f2) :=L⌊f2, f1⌋
L(f3, f4) :=K⌊f4, f3⌋

⇒
K(f1, f2) :=L⌊f1, f2⌋
L(f4, f3) :=K⌊f4, f3⌋

With the definition on the left, when name abstractions are computed, the equivalence
relation has two classes, {f1, f3} and {f2, f4}. Hence, the substitution has to be modified
every time the calls are performed, as the call parameters keep getting flipped. If the order
of the formal parameters in one of the defining equations is changed (together with the order
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of the factual parameters in the corresponding calls), as shown on the right, the substitution
would not require any changes. This significantly reduces the size of the resulting net.

This example illustrates that the order of formal parameters in the defining equations
matters, and the translation can gain savings by changing this order. Searching for the best
order of formal parameters can be formulated as an optimisation problem, with the cost
function being the total number of changes required in the substitution for all the calls.

7.7. Dropping the restrictions in the main term of the FCP. All restrictions in
the main term of the FCP can be dropped, making the formerly restricted names public.
Note that due to (NC), this does not introduce name clashes. The transformation yields a
bisimilar π-calculus process, but the corresponding PN becomes smaller.

7.8. Separate pools of values for restricted names. Creation of names introduces ar-
bitration between the values in N (see Sect. 3.2): a name that is currently unused has to
be chosen to initialise the given restricted name. Such arbitration can adversely affect the
efficiency of some model checking methods.

It is possible to eliminate such arbitration by splitting N into several pools, one for each
thread, and initialise restricted names only from the corresponding pool, by sequentially
looking for the first unused value. This however increases the size of the resulting PN.
Moreover, if symmetry reduction is used in model checking, the problem vanishes.

7.9. Using symmetries. The translation introduces a number of symmetries in the PN:
(i) the values in N , and thus the corresponding columns of the substitution (see Fig. 3), are
interchangeable; and (ii) when enforcing the assumption that threads do not share defining
equations as explained in Sect. 2, some equations are replicated.

It is desirable to exploit these symmetries during model checking. In particular, this
would efficiently handle the arbitration that arises when a value from N has to be chosen
to initialise a restriction. If symmetries are used, all the immediate successor states of the
arbitration are equivalent, and only one of them has to be explored further.

7.10. Translation to different PN classes. Our translation produces a safe PN, as this
PN class is particularly suitable for algorithmic verification. However, if the model checking
method can cope with more powerful PN classes, the following changes can be made.

Translation to bounded PNs For each val ∈ N , we can fuse the places [var 6= val ],
where var ∈ {r∗} ∪ I ∪ F , into one place [∗ 6= val ]. We thus replace |N | · (|I| + |F| + 1)
safe places with |N | places of capacity |I| + |F| + 1. It is still possible to perform all the
necessary operations with the substitution. In particular, to find a value val ∈ N to which
no bound name or formal parameter is currently mapped, and map a given restricted name
rk to val , the PN transition performing the initialisation has to:

• consume by a weighted arc |I|+ |F|+ 1 tokens from [∗ 6= val ] (checking thus that val is
not assigned to any name) and return by a weighted arc |I|+ |F| tokens;
• produce a token at [rk = val ].

Translation to coloured PNs In this case, the symmetries present in the PN can be
used to fold it. In particular:
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• The values inN are interchangeable, and so the corresponding columns of the substitution
can be folded into one column, by giving the tokens corresponding to the elements of N
unique colours.
• Instead of enforcing the assumption that the threads do not share defining equations (see
Sect. 2), one can use coloured control tokens that are unique for each thread.

8. Extensions

We now generalise the translation to some often used extensions of π-calculus, viz. to
polyadic communication and synchronisation, and to match and mismatch operators.

Polyadic communication Polyadic communication exchanges multiple names in one
reaction. Intuitively, a sending prefix a〈x1 . . . xn〉 and a receiving prefix b(y1 . . . yn) (with
all yi being different names) can synchronise iff σ(a) = σ(b). After synchronisation each yi
gets the value of xi. Formally,

a(ỹ).S1 + . . . | a〈x̃〉.S2 + . . .→ S1{x̃/ỹ} | S2 if |x̃| = |ỹ|.

A polynomial translation of this extension generalises the communication splitting idea
described in Sect. 7. We perform the communication in stages. At the first step, one checks
that a and b are mapped to the same value by the substitution. The subsequent steps map,
one-by-one, yi to the value of xi in the substitution.

Polyadic synchronisation Dual to polyadic communication is polyadic synchronisa-
tion [4]. When sending a message, this operation synchronises on multiple channels instead
of just one. Formally,

ã(y).S1 + . . . | ã〈x〉.S2 + . . .→ S1{x/y} | S2.

Polyadic synchronisation captures, in a clean formalism, expressive features like locality. To
extend our translation to polyadic synchronisation, we check, one-by-one, that the channel
bindings of both processes match.

In the presence of polyadic synchronisation, the relationship between the FCP and
its PN translation is subtle, since false deadlocks may be introduced. For example, in
a1 · a2(y) | b1 · b2〈x〉 the evaluation may find a1 and b1 bound to the same name, σ(a1) =
σ(b1), while a2 and b2 do not match. In this case the resulting PN will get stuck in the middle
of the evaluation. This does not happen in the original π-calculus process. Nevertheless,
such false deadlocks can easily be distinguished from real ones, and so the resulting PN is
still suitable for model checking. An alternative is to use the idea of the construction in
Sect. 10, which avoids false deadlocks.

Match and mismatch operators The match and mismatch operators are a common
extension of π-calculus. Intuitively, the process [x = y].S behaves as S if σ(x) = σ(y) and
does nothing otherwise, and the process [x 6= y].S behaves as S if σ(x) 6= σ(y) and does
nothing otherwise. To handle these operators, we extend the construction of N(SInit ) with
the following transitions. For each a ∈ P ∪ N , we have

([x = y].S, λ)
τ

−−−−−−−−−−−−−−−։
{test([x=a]),test([y=a])}

(S, λ·λ′) ([x 6= y].S, λ)
τ

−−−−−−−−−−−−−−−։
{test([x=a]),test([y 6=a])}

(S, λ·λ′),

where λ′ contains the names from {x, y} \ fn (S). For the latter rule, new places [x 6=a]
complementing [x=a] may have to be introduced to NSubst . The relationship between FCP
and PN is similar to the case of polyadic synchronisation.
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9. Experimental results

To demonstrate the practicality of our translation-based approach to π-calculus verification,
we implemented the encoding of FCPs into safe PNs in the tool Fcp2Pn2, and used the
resulting nets for model checking a number of benchmark systems.2

The NESS (Newcastle E-Learning Support System) series of benchmarks models an
electronic coursework submission system [12]. The model consists of a teacher process T
composed in parallel with k students S (the system can be scaled up by increasing the
number of students) and an environment process ENV . Every student has its own local
channel for communication, hi, and all students share the channel h:

νh.νh1 . . . νhk.
(

T⌊nessc, h1, . . . , hk⌋ |
k
∏

i=1

S⌊h, hi⌋ |ENV ⌊nessc⌋
)

.

The students are supposed to submit their work for assessment to NESS . The teacher
passes the channel nessc of the system to all students, hi〈nessc〉, and then waits for the
confirmation that they have finished working on the assignment, hi(xi). After receiving
the NESS channel, hi(nsc), students non-deterministically organise themselves in pairs. To
do so, they send their local channel hi on h and at the same time listen on h to receive a
partner, h〈hi〉 . . . + h(x) . . . When they finish, exactly one student of each pair sends two
channels (the own channel hi and the channel received from the partner) to the support
system, nsc〈hi〉.nsc〈x〉, which give access to their completed joint work. These channels are
received by the ENV process. The students finally notify the teacher about the completion
of their work, hi〈fin〉. Thus, the system is modelled by:

T (nessc, h1, . . . , hk) :=

k
∏

i=1

hi〈nessc〉.hi(xi).0

S (h, hi) :=hi(nsc).(h〈hi〉.hi〈fin〉.0+ h(x).nsc〈hi〉.nsc〈x〉.hi〈fin〉.0)

ENV (nessc) :=nessc(y1). . . . .nessc(yk).0

To distinguish proper termination from deadlocks (where some processes are stuck waiting
for a communication), a new transition is added to the PN that creates a loop at the state
corresponding to successful termination. Obviously, the system successfully terminates iff
the number of students is even, i.e. they can be organised into pairs.

The DNESS model is a refined version of NESS , with deterministic pairing of students.
Thus, the number of students is always even, and these benchmarks are deadlock-free.

The CS (m,n) series of benchmarks models a client-server system with one server, n
clients, and the server spawning m sessions that handle the clients’ requests:

CLIENT (url) := νip.url〈ip〉.ip(s).s(x).CLIENT ⌊url⌋

SERVER(url , getses) := url(y).getses(s).y〈s〉.SERVER⌊url , getses⌋

SESSION (getses) := νses.getses〈ses〉.ses〈ses〉.SESSION ⌊getses⌋

νgetses
(

SERVER(url , getses) |
m
∏

i=1

SESSION (getses) |
n
∏

i=1

CLIENT (url)
)

On a client’s request, the server creates a new session using the getses channel, getses(s). A
session is modelled by a SESSION process. It sends its private channel νses along the getses

2 Available from http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/fcp2pn.

http://homepages.cs.ncl.ac.uk/victor.khomenko/tools/fcp2pn
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Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]

NESS (04) 110 110 0 137 145 0.02
NESS (05)† 137 137 0 196 246 0.09
NESS (06) 164 164 0 265 385 0.16
NESS (07)† 191 191 0 344 568 0.45

DNESS (06) 118 118 0 157 103 0.02
DNESS (08) 157 157 0 241 169 0.05
DNESS (10) 196 196 0 341 251 0.13
DNESS (12) 235 235 0 457 349 2.27
DNESS (14) 274 274 0 589 463 1.71

Process size Safe PN Dlck
Problem FCP nfFCP |N | |P | |T | [sec]

CS(2,1) 45 54 7 138 149 1.01
CS(2,2) 48 68 10 243 320 0.16
CS(3,2) 51 80 11 284 431 1.28
CS(3,3) 54 94 14 428 728 3.67
CS(4,4) 60 120 18 663 1368 11.73
CS(5,5) 66 146 22 948 2288 46.61

GSM 175 231 12 636 901 4.39
GSM ’ 174 230 0 355 503 3.09

PHONES 157 157 0 131 94 0.01

Table 1: Experimental results.

channel to the server. The server forwards the session to the client, y〈s〉, which establishes
the private session, and becomes available for further requests. A communication on the
channel ses terminates the private session. All these benchmarks are deadlock-free.

The GSM benchmark is a specification of the handover procedure in the GSM Public
Land Mobile Network. We use the well-known π-calculus model from [22], with one mobile
station, two base stations, and one mobile switching. We also studied a variant GSM ’
where a restriction in the sender process is dropped: the sender keeps sending the same
message instead of generating a new one every time. Since the content of the message is
not important, this change is inconsequential from the modelling point of view. However,
it significantly reduces the size of the PN. Indeed, the modified FCP is restriction-free, and
so N = ∅.

The PHONES benchmark is a classical example taken from [19], modelling a handover
procedure for mobile phones communicating with fixed transmitters, where the phones have
to switch their transmitters on the go.

The experimental results are given in Table 1, with the columns showing from left to
right: name of the case study († indicates deadlocks); sizes of the original FCP and its
normal form (see Sect. 2), together with the cardinality of N determined by static analysis;
number of places and transitions in the resulting safe PN; and deadlock checking time.

The experiments were conducted on a PC with an Intel Core 2 Quad Q9400 2.66 GHz
processor (a single core was used) and 4G RAM. The deadlock checking was performed with
the LoLA tool,3 configured to assume safeness of the PN (CAPACITY 1), use the stubborn
sets and symmetry reductions (STUBBORN, SYMMETRY), compress states using P-invariants
(PREDUCTION), use a light-weight data structure for states (SMALLSTATE), and check for
deadlocks (DEADLOCK). The FCP to PN translation times were negligible (< 0.1 sec in all
cases) and so are not reported.

The experiments indicate that the sizes of the PNs grow moderately with the sizes of
the FCPs, and that the PNs are suitable for efficient verification: deadlock checking took
less than a minute in all examples.

3 Available from http://service-technology.org/tools/lola.

http://service-technology.org/tools/lola
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10. PN to FCP translation

We now study a translation in the reverse direction. We translate safe PNs into FCPs that
are weakly bisimilar and thus do not introduce false deadlocks. Moreover, no livelocks are
introduced. This improves over the translations in [1, 15].

The motivation for proposing this translation is twofold. First, we obtain a PSPACE

lower bound for verification problems on FCPs, see Sect. 1.1. Second, the idea can be
adapted to translate polyadic communication and match/mismatch operators into safe PNs
in a faithful way, see Sect. 8.

The main difficulty is faithful modelling of n-ary synchronisations in PNs by a sequence
of binary synchronisations in π-calculus. We address it in three steps. First, we give
a folklore translation of PNs into FCPs [1, 15], whose advantage is its simplicity. The
drawback is that it can introduce false deadlocks. To fix this problem, we develop a second
translation, which yields a weakly bisimilar FCP. This in particular implies the absence
of false deadlocks. The translation may, however, introduce livelocks. We eliminate these
livelocks in our third translation using scheduling.

All these translations are linear. Moreover, they use a very restricted set of π-calculus
capabilities: communications do not pass information (in particular, no reference passing is
used), no restricted names are used, the calls do not have any parameters, no τ actions are
used, and the result is a safe FCP (see Sect. 2). As a consequence, the translations can be
adopted to process calculi with weaker communication capabilities, such as CCS [18].

We fix N = (P, T, F,M0) as the safe PN to be translated. All communications will
pass a fixed public name ε, which is not used for any other purpose. Thus, the simplified
syntax a and x is used instead of a〈ε〉 and x(y), respectively. Similarly, since calls do not
pass parameters, we write K for K⌊−⌋.

Blocking translation The following translation is inspired by [1, 15]. For each place
p ∈ P , there is a separate public channel, also denoted by p, and a thread with two defining
equations corresponding to the presence and absence of a token in p:

Markedp := p.Emptyp

Emptyp := p.Markedp

A marked place can send a message over channel p, which models token consumption, and
become empty. Similarly, an empty place can receive a message over p, which models token
production, and become marked.

For each transition t ∈ T with •t = {p1, p2, . . . , pm} and t• = {q1, q2, . . . , qn}, we create
a thread with the following defining equation:

Trant := p1.p2. . . . .pm.q1.q2. . . . .qn.Trant

Intuitively, the transition consumes tokens, one-by-one, from the places in •t by receiving
messages over the corresponding channels. Then it produces tokens, one-by-one, in the
places in t•, by sending messages over the corresponding channels. Since the PN is safe, it
is guaranteed that the places in t• were empty.

The initial term of the FCP is as follows:
∏

p∈M0

Markedp |
∏

p∈P\M0

Emptyp |
∏

t∈T

Trant

Clearly, the size of the FCP is linear in the size of the original PN. However, this basic
translation can introduce false deadlocks. Indeed, it is possible for a thread Trant to
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consume some, but not all tokens from •t, and become blocked. In such a case the already
consumed tokens are not returned back to the corresponding places in •t, which can prevent
other transitions from firing. In practice, one can deal with this problem by declaring the
process in which some Trant is not in the beginning of its control flow as unstable, and
considering only stable processes.

Non-blocking translation To fix the blocking translation, we change the specification
of the place and transition processes. The idea is to let transitions detect that some tokens
in the preset are missing, and return the already consumed tokens in such a case.

The initial term is the same as above. For each place p ∈ P we create another public
channel p×, over which the place process can communicate a failure to consume a token if
it is empty. The specification of the place process is amended as follows:

Emptyp := p.Markedp + p×.Emptyp

The definition of Markedp remains the same.
The specification of the transition process is now as follows:

Trant := TryCons
1
t

TryCons
1
t := p1.TryCons

2
t + p×

1 .Ret
0
t

TryCons
2
t := p2.TryCons

3
t + p×

2 .Ret
1
t

. . .

TryCons
m
t := pm.Prodt + p×

m.Ret
m−1
t

Ret
0
t := Trant

Ret
1
t := p1.Ret

0
t

. . .

Ret
m−1
t := pm−1.Ret

m−2
t

Prodt := q1.q2. . . . .qn.Trant

Initially, Trant tries to consume all the tokens from •t = {p1, p2, . . . , pm}, one-by-one, by
calling TryCons

1
t . TryCons

i
t communicates with the thread for pi and either consumes a

token from this place (by receiving a message from channel pi) and then calls TryCons
i+1
t

to consume the remaining tokens, or detects that the place is empty (by receiving a message

over channel p×

i ), in which case it calls Ret
i−1
t to return the previously consumed tokens, if

any. Note that the tokens are returned in the reverse order of their consumption. Once all
tokens have been successfully consumed, Prodt is called to communicate with the processes
for the places in t• = {q1, q2, . . . , qn}, one-by-one, to produce tokens on them.

The size of the FCP is still linear in the size of the original PN, and there are no
false deadlocks. In fact, this FCP is weakly bisimilar to the original PN. It may, however,
introduce livelocks, e.g. a disabled transition can perpetually try and fail to fire.

Scheduling translation To solve the problem of livelocks, we augment the non-blocking
translation with the process Scheduler responsible for the global operation of the net.
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Hence, the initial term of the FCP becomes
∏

p∈M0

Markedp |
∏

p∈P\M0

Emptyp |
∏

t∈T

Trant | Scheduler

The simulation is performed in rounds. In each round the scheduler tries to execute a single
transition, trying them one-by-one in some non-deterministically chosen order. If none of
them can be executed, the scheduler blocks. Otherwise, some transition is executed and a
new round starts.

Assuming that T = {t1, t2, . . . , tk}, the specification of the scheduler is as follows:

Scheduler := go.(failure .Scheduler+ success .reset t1 .reset t2 . . . . .reset tk .Scheduler)

In each round, the scheduler non-deterministically chooses a transition by communicating
with a process Trant over the public channel go. Upon receiving a message from the
selected transition about a failed execution attempt, the scheduler chooses another available
transition, or blocks if there is none (in which case the simulated PN has reached a deadlock
state). Upon receiving a message about successful execution of a transition, the scheduler
communicates over channels reset t with every transition process in some fixed order to make
them available again. The transition processes that are still available also participate in
this communication, but do nothing in response. Then a new round starts.

The specification of the place process remains the same, and that of the transition
process is amended as follows:

Trant := reset t.Trant + go.TryCons
1
t

Ret
0
t := failure .reset t.Trant

Prodt := q1.q2. . . . .qn.success .Trant

The definitions of TryCons
i
t and Ret

j
t for j 6= 0 remain the same.

Initially, Trant may receive a reset request over the public channel reset t and return to
the initial state. Alternatively, it competes with the other transitions to communicate over
the go channel, which results in a non-deterministic selection of a transition to be executed.
Note that the non-deterministic selection is essential here, as any fixed order of selection
may perpetually ignore some enabled transition by always executing preceding transitions.
The selected transition process then works as in the non-blocking translation above, but
additionally communicates its failure or success to the scheduler. In case of failure, the
transition is blocked until it is reset by the scheduler with a communication over reset t.

One can see that the resulting FCP is weakly bisimilar with the original PN, and the
problem of livelocks is solved.

11. Conclusions

We developed a polynomial translation from finite control π-calculus processes to safe low-
level Petri nets. To our knowledge, this is the first such translation. There is a close
correspondence between the control flow of the π-calculus specification and the resulting
PN, and the latter is suitable for practical model checking. The translation has been
implemented in the Fcp2Pn tool, and the experimental results are encouraging.

We have also proposed a number of optimisations allowing one to reduce the size of the
resulting PN. Moreover, we have shown how to generalise the translation to more expressive
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classes of processes. In particular, we discussed how to handle polyadic communication,
polyadic synchronisation, and match/mismatch operators.

In future work, we plan to further improve the translation by a more thorough static
analysis, and to incorporate it into different model checking tool-chains, in particular, ones
based on PN unfolding prefixes and abstraction-refinement approaches. Moreover, it would
be interesting to check if some analog of Theorem 6.2 holds for barbed bisimulation. Fur-
thermore, we would like to consider the labelled semantics of π-calculus.
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