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Abstract. In interactive theorem provers (ITPs), extensible syntax is not only crucial
to lower the cognitive burden of manipulating complex mathematical objects, but plays a
critical role in developing reusable abstractions in libraries. Most ITPs support such exten-
sions in the form of restrictive “syntax sugar” substitutions and other ad hoc mechanisms,
which are too rudimentary to support many desirable abstractions. As a result, libraries
are littered with unnecessary redundancy. Tactic languages in these systems are plagued
by a seemingly unrelated issue: accidental name capture, which often produces unexpected
and counterintuitive behavior. We take ideas from the Scheme family of programming
languages and solve these two problems simultaneously by proposing a novel hygienic macro
system custom-built for ITPs. We further describe how our approach can be extended to
cover type-directed macro expansion resulting in a single, uniform system offering multiple
abstraction levels that range from supporting simplest syntax sugars to elaboration of
formerly baked-in syntax. We have implemented our new macro system and integrated
it into the new version of the Lean theorem prover, Lean 4. Despite its expressivity, the
macro system is simple enough that it can easily be integrated into other systems.

1. Introduction

Mixfix notation systems have become an established part of many modern ITPs for attaching
terse and familiar syntax to functions and predicates of arbitrary arity.

_`_:_ = Typing
Notation "Ctx ` E : T" := (Typing Ctx E T).
notation typing ("_ ` _ : _")
notation Γ ``` e `:` τ := Typing Γ e τ

Agda
Coq

Isabelle
Lean 3

As a further extension, all shown systems also allow binding names inside mixfix notations.
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∗This is an extended version of [UdM20], with the most significant changes being the addition of Section 4.1

and Section 7.
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syntax ∃ A (λ x → P) = ∃[ x ∈ A ] P
Notation "∃ x , P" := (exists (fun x => P)).
notation exists (binder "∃")
notation `∃` binder `,` r:(scoped P, Exists P) := r

Agda
Coq

Isabelle
Lean 3

While these extensions differ in the exact syntax used, what is true about all of them
is that at the time of the notation declaration, the system already, statically knows what
parts of the term are bound by the newly introduced variable. This is in stark contrast to
macro systems in Lisp and related languages where the expansion of a macro (a syntactic
substitution) can be specified not only by a template expression with placeholders like above,
but also by arbitrary syntax transformers, i.e. code evaluated at compile time that takes
and returns a syntax tree.1 As we move to more and more expressive notations and ideally
remove the boundary between built-in and user-defined syntax, we argue that we should
no more be limited by the static nature of existing notation systems and should instead
introduce syntax transformers to the world of ITPs.

However, as usual, with greater power comes greater responsibility. By using arbi-
trary syntax transformers, we lose the ability to statically determine what parts of the
macro template can be bound by the macro input (and vice versa). Thus it is no longer
straightforward to avoid hygiene issues (i.e. accidental capturing of identifiers; [KFFD86]) by
automatically renaming identifiers. We propose to learn from and adapt the macro hygiene
systems implemented in the Scheme family of languages for interactive theorem provers in
order to obtain more general but still well-behaved notation systems.

After giving a practical overview of the new, macro-based notation system we implemented
in Lean 4 [dMU21] in Section 2, we describe the issue of hygiene and our general hygiene
algorithm, which should be just as applicable to other ITPs, in Section 3. Section 4 gives
a detailed description of the implementation of this algorithm, and macros in general, in
Lean 4. In Section 5, we extend the use case of macros from mere syntax substitutions to
type-aware elaboration.2 Finally, we have already encountered hygiene issues in the current
version of Lean in a different part of the system: the tactic framework. We discuss how these
issues are inevitable when implementing reusable tactic scripts and how our macro system
can be applied to this hygiene problem as well in Section 6.

Contributions. We present a system for hygienic macros optimized for theorem proving
languages as implemented3 in the new version of the Lean theorem prover, Lean 4.
• We describe a novel, efficient hygiene algorithm to employ macros in ITP languages at
large: a combination of a white-box, effect-based approach for detecting newly introduced
identifiers and an efficient encoding of scope metadata.
• We show how such a macro system can be seamlessly integrated into existing elaboration
designs to support type-directed expansion even if they are not based on homogeneous
source-to-source transformations.
• We show how hygiene issues also manifest in tactic languages and how they can be solved
with the same macro system. To the best of our knowledge, the tactic language in Lean 4
is the first tactic language in an established theorem prover that is automatically hygienic
in this regard.

1These two macro declaration styles are commonly referred to as pattern-based vs. procedural.
2By “elaboration”, we mean the transformation of surface-level syntax into the explicit kernel term/decla-

ration representation, including type and typeclass inference.
3https://github.com/leanprover/lean4/blob/IJCAR20-LMCS/src/Lean/Elab

https://github.com/leanprover/lean4/blob/IJCAR20-LMCS/src/Lean/Elab
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2. The New Macro System

Lean’s previous notation system as shown in Section 1 is still supported in Lean 4, but
based on a much more general macro system; in fact, the notation command4 itself has been
reimplemented as a macro, more specifically as a macro-generating macro making use of our
tower of abstraction levels. The corresponding Lean 4 command5 for the example from the
previous section

notation Γ "`" e ":" τ => Typing Γ e τ

expands to the macro declaration

macro Γ:term "`" e:term ":" τ:term : term => `(Typing $Γ $e $τ)

where the syntactic category (term) of placeholders and of the entire macro is now specified
explicitly. The right-hand side uses an explicit syntax quasiquotation to construct the syntax
tree, with syntax placeholders (antiquotations) prefixed with $. As suggested by the explicit
use of a quotation, the right-hand side may now be an arbitrary Lean term computing a
syntax object; in other words, there is no distinction between pattern-based and procedural
macros in our system. We can now use this abstraction level to implement simple macros in
syntactic categories other than term, such as for commands.

macro "defthunk" id:ident ":=" e:term : command =>
`(def $id := Thunk.mk (fun _ => $e))

defthunk big := mkArray 100000 true

macro itself is another command-level macro that, for our notation example, expands to two
commands

syntax term "`" term ":" term : term
macro_rules

| `($Γ ` $e : $τ) => `(Typing $Γ $e $τ)

that is, a pair of parser extension (which we will not further discuss in this paper) and syntax
transformer. Our reason for ultimately separating these two concerns is that we can now
obtain a well-structured syntax tree pre-expansion, i.e. a concrete syntax tree, and use it to
implement source code tooling such as auto-completion, go-to-definition, and refactorings.
Implementing even just the most basic of these tools for the Lean 3 frontend that combined
parsing and notation expansion meant that they had to be implemented right inside the
parser, which was not an extensible or even maintainable approach in our experience.

Both syntax and macro_rules are in fact further macros for regular Lean definitions
encoding procedural metaprograms, though users should rarely need to make use of this
lowest abstraction level explicitly. Both commands can only be used at the top level; we are
not currently planning support for local macros.

There is no more need for the complicated scoped syntax since the desired translation
can now be specified naturally, without any need for further annotations.

notation "∃" b "," P => Exists (fun b => P)

4A Lean file is made up of a sequence of commands, which are processed in turn and can extend the
environment with new declarations or metadata (such as custom parsers).

5All examples including full context can be found in the supplemental material at https://github.com/
Kha/macro-supplement.

https://github.com/Kha/macro-supplement
https://github.com/Kha/macro-supplement
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The lack of static restrictions on the right-hand side ensures that this works just as well
with custom binding notations, even ones whose translation cannot statically be determined
before substitution.

syntax "{" term "|" term "}" : term
macro_rules

| `({$x ∈ $s | $p}) => `(setOf (fun $x => $x ∈ $s ∧ $p))
| `({$b | $p}) => `(setOf (fun $b => $p))

notation "
⋃
" b "," p => Union {b | p}

Here we explicitly make use of the macro_rules abstraction level for its convenient syntactic
pattern matching syntax. macro_rules are “open” in the sense that multiple transformers for
the same syntax declaration can be defined; they are tried up to the first match, starting with
the newest declaration (though this can be customized using explicit priority annotations).
Thus the following extension will not be shadowed by the $b default case above:

macro_rules
| `({$x ≤ $e | $p}) => `(setOf (fun $x => $x ≤ $e ∧ $p))

As a final example, we present a partial reimplementation of the arithmetic “bigop”
notations found6 in Coq’s Mathematical Components library [MT] such as

\sum_ (i <- [0, 2, 4] | i != 2) i

for summing over a filtered sequence of elements. The specific bigop notations are defined in
terms of a single \big_ fold operator; however, because Coq’s notation system is unable to
abstract over the indexing syntax, every specific bigop notation has to redundantly repeat
every specific index notation before delegating to \big_. In total, the 12 index notations for
\big_ are duplicated for 3 different bigops in the file.

Notation "\sum_ ( i <- r ) F" := (\big[addn/0]_(i <- r) F).
Notation "\sum_ ( i <- r | P ) F" := (\big[addn/0]_(i <- r | P) F).
. . .

Notation "\prod_ ( i <- r ) F" := (\big[muln/1]_(i <- r) F).
Notation "\prod_ ( i <- r | P ) F" := (\big[muln/1]_(i <- r | P) F).
. . .

In contrast, using our system, we can introduce a new syntactic category for index notations,
interpret it once in \big_, and define new bigops on top of it without any redundancy.

declare_syntax_cat index
syntax ident "<-" term : index
syntax ident "<-" term "|" term : index
. . .

macro "Σ" "(" idx:index ")" F:term : term =>
`(\big_ [Add.add, 0] ($idx) $F)

macro "Π" "(" idx:index ")" F:term : term =>
`(\big_ [Mul.mul, 1] ($idx) $F)

6https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v

https://github.com/math-comp/math-comp/blob/master/mathcomp/ssreflect/bigop.v
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The full example is included in the supplement. We reiterate that this is not merely a
showcase of a parsing extension, but that abstracting over binding syntax in this manner
is fundamentally incompatible with any static approach of ensuring hygiene. The dynamic
nature of Scheme-like macros allows us to always apply such factorings without being
burdened by static restrictions while still preserving hygiene.

3. Hygiene Algorithm

In this section, we will give a mostly self-contained description of our algorithm for automatic
hygiene applied to a simple recursive macro expander; we postpone comparisons to existing
hygiene algorithms to Section 8.

Hygiene issues occur when transformations such as macro expansions lead to an unex-
pected capture (rebinding) of identifiers. For example, we would expect the notation

notation "const" e => fun x => e

to always produce a constant function regardless of the specific e. We would not expect the
term const x to be the identity function because intuitively there is no x in scope at the
argument position of const; that the implementation of the macro makes use of the name
internally should be of no concern to the macro user.

Thus hygiene issues can also be described as a confusion of scopes when syntax parts
are removed from their original context and inserted into new contexts, which makes name
resolution strictly after macro expansion (such as in a compiler preceded by a preprocessor)
futile. Instead we need to track scopes as metadata before and during macro expansion so as
not to lose information about the original context of identifiers. Specifically,

(1) when an identifier captured in a syntax quotation matches one or more7 top-level symbols,
the identifier is annotated with a list of these symbols as top-level scopes to preserve
its extra-macro context (which, because of the lack of local macros, can only contain
top-level bindings), and

(2) when a macro is expanded, all identifiers freshly introduced by the expansion are
annotated with a new macro scope to preserve the intra-macro context. In particular,
different expansions of the same macro introduce different annotations. Macro scopes
are appended to a list, i.e. ordered by expansion time. This full “history of expansions”
is necessary to treat macro-producing macros correctly, as we shall see in Section 3.2.

Thus, the expansion of the above term const x should be (an equivalent of) fun x.1 => x
where 1 is a fresh macro scope appended to the macro-introduced x, preventing it from
capturing the x from the original input. In general, we will present hygienic identifiers in the
following as n.msc1.msc2.. . ..mscn{tsc1,. . .,tscn} where n is the original name, msc are
macro scopes, and tsc top-level scopes, eliding the braces if there are no top-level scopes
as in the example above. We use the dot notation to suggest both the ordered nature of
macro scopes and their eventual implementation in Section 4. We will now describe how to
implement these operations in a standard macro expander.

7Lean allows overloaded top-level bindings whereas local bindings are shadowing.



1:6 S. Ullrich and L. de Moura Vol. 18:2

3.1. Expansion Algorithm. A Scheme-style macro expander takes a syntax tree as input
and produces a fully expanded tree, that is, where all macro uses have been reduced to core
forms that cannot be described as macros and are instead handled by the later stages, such as
an elaborator. The expander should furthermore rename bindings where necessary to avoid
hygiene issues such that later stages do not have to know anything about the implementation
of hygiene, or indeed that it was applied at all.

Given a global context (a set of symbols), our expansion algorithm does so by a conven-
tional top-down expansion, keeping track of an initially-empty local context (another set of
symbols). When a binding core form is encountered, the local context is extended with the
bound symbol(s); existing top-level scopes on bindings are discarded at this step since they
are only meaningful on references. Thus we will formally define a symbol as an identifier
together with a list of macro scopes, such as x.1 above. As we shall see in Section 4, this
definition of symbol is covered by the existing one in Lean, so later stages indeed do not have
to concern themselves with it.

When a reference (another core form), i.e. an identifier not in binding position, is
encountered, it is resolved according to the following rules:

(1) If the local context has an entry for the same symbol, the reference binds to the
corresponding local binding; any top-level scopes are again discarded.

(2) Otherwise, if the identifier is annotated with one or more top-level scopes or matches
one or more symbols in the global context, it binds to all of these (to be disambiguated
by the elaborator).

(3) Otherwise, the identifier is unbound and an error is generated.

In the common incremental compilation mode of ITPs, every command is fully processed
before subsequent commands. Thus, an expander for such a system will never extend the
global context by itself, but pass the fully expanded command to the next compilation stage
before being called again with the next command’s unexpanded syntax tree and a possibly
extended global context.

Notably, our expander does not introduce macro scopes by itself, either, much in contrast
to other expansion algorithms. We instead delegate this task to the macro’s implementation,
though in a completely transparent way for all pattern-based and for many procedural macros.
We claim that a macro should in fact be interpreted as an effectful computation since two
expansions of the same identifier-introducing macro should not return the same syntax tree
to avoid unhygienic interactions between them. Thus, as a side effect, it should apply a fresh
macro scope to each newly introduced identifier. In particular, a syntax quotation should not
merely be seen as a datum, but as an effectful value that obtains and applies this fresh scope
to all the identifiers captured by it to immediately ensure hygiene for pattern-based macros.
Procedural macros producing identifiers not originating from syntax quotations might need
to obtain and make use of the fresh macro scope explicitly. Note that forgoing to do so is not
sufficient to reliably implement anaphoric or other hygiene-bending macros that make an
identifier (conventionally it in Lisp languages) available in the scope of the macro caller, as
discussed in [BCF11]. Instead, we believe that the correct translation of anaphoric macros
to Lean is to change such identifiers to keywords that do not participate in hygiene at all,
analogous to the syntax parameters of [BCF11]. An example for this is the this keyword
introduced by tactics such as have that can be used to refer to the just-proved fact.8

8https://github.com/leanprover/lean4/blob/6d0c91c/src/Init/Notation.lean#L204-L207

https://github.com/leanprover/lean4/blob/6d0c91c/src/Init/Notation.lean#L204-L207
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We give a specific monad-based [Mog91] implementation of effectful syntax quotations as
a regular macro in Section 4. For the remainder of this section, we will simply assume that
macros have been implemented in this way and observe their interaction with the expansion
algorithm described above.

3.2. Examples. Given the following input,

def x := 1
def e := fun y => x
notation "const" e => fun x => e
def y := const x

a Lean-like system using the presented expansion algorithm should incrementally parse,
expand, and elaborate each declaration before advancing to the next one. For a first, trivial
example, let us focus on the expansion of the second line. At this point, the global context
contains the symbol x (plus any default imports that we will ignore here). Descending
into the right-hand side of the definition, the expander first adds y to the local context.
The reference x does not match any local definitions, so it binds to the matching top-level
definition.

In the next line, the built-in notation macro expands to the definitions

syntax "const" term : term
macro_rules

| `(const $e) => `(fun x => $e)

When a top-level macro application unfolds to multiple declarations, we expand and elaborate
these incrementally as well to ensure that declarations are in the global context of subsequent
declarations from the same expansion. When recursively expanding the macro_rules declara-
tion (we will assume for this example that macro_rules itself is a core form) in the global
context {x, e}, we first visit the syntax quotation on the left-hand side. The identifier e
inside of it is in an antiquotation and thus not captured by the quotation. It is in binding
position for the right-hand side, so we add e to the local context. Visiting the right-hand
side, we find the quotation-captured identifier x and annotate it with the matching top-level
definition of the same name; we do not yet know that it is in a binding position. When
visiting the reference e, we see that it matches a local binding and do not add top-level
scopes.

macro_rules
| `(const $e) => `(fun x{x} => $e)

Visiting the last line

def y := const x

with the global context {x, e}, we descend into the right-hand side. We expand the const
macro given a fresh macro scope 1, which is applied to any captured identifiers.

def y := fun x.1{x} => x

We add the symbol x.1 (discarding the top-level scope x) to the local context and finally
visit the reference x. The reference does not match the local binding x.1 but does match the
top-level binding x, so it binds to the latter.

def y := fun x.1 => x
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Now let us briefly look at a more complex macro-macro example demonstrating use of
the macro scopes stack:

macro "m" n:ident : command => `(
def f := 1
macro "mm" : command => `(

def $n := f + 1
def f := $n + 1))

If we use this macro as in m f, we apply a fresh macro scope 1 to all captured identifiers,
then incrementally process the two new declarations.

def f.1 := 1
macro "mm" : command => `(

def f := f.1{f.1} + 1
def f.1{f.1} := f + 1)

If we use the new macro mm, we apply one more macro scope 2.

def f.2 := f.1.2{f.1} + 1
def f.1.2{f.1} := f.2 + 1

When processing these new definitions, we see that the scopes ensure the expected name
resolution.

def f.1 := 1
. . .

def f.2 := f.1 + 1
def f.1.2 := f.2 + 1

In particular, we now have global declarations f.1, f.2, and f.1.2 that show that storing
only a single macro scope would have led to a collision.

4. Implementation

Syntax objects in Lean 4 are represented as an inductive type of nodes (or nonterminals),
atoms (or terminals), and, as a special case of terminals, identifiers.

inductive Syntax where
| node (kind : Name) (args : Array Syntax)
| atom (info : SourceInfo) (val : String)
| ident (info : SourceInfo) (rawVal : String) (val : Name) (preresolved :
List (Nat × List String))

| missing

An additional constructor represents missing parts from syntax error recovery. Atoms
and identifiers are annotated with source location metadata unless generated by a macro.
Identifiers carry macro scopes inline in their Name while top-level scopes are held in a separate
list. The additional Nat is an implementation detail of Lean’s hierarchical name resolution.

The type Name of hierarchical names precedes the implementation of the macro system
and is used throughout Lean’s implementation for referring to (namespaced) symbols.
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1 partial def expand : Syntax → ExpanderM Syntax
2 | `($id:ident) => do
3 let val : Name := getIdentVal id
4 let gctx ← getGlobalContext
5 let lctx ← getLocalContext
6 if lctx.contains val then
7 pure (mkIdent val)
8 else match resolve gctx val ++ getPreresolved id with
9 | [] => throw ("unknown identifier " ++ toString val)

10 | [(id, _)] => pure (mkIdent id)
11 | ids => pure (mkOverloadedIds ids)
12 | `(fun ($id : $ty) => $e) => do
13 let val := getIdentVal id
14 let ty ← expand ty
15 let e ← withLocal val (expand e)
16 `(fun ($(mkIdent val) : $ty) => $e)
17 | . . . -- other core forms
18 | _ => do
19 let t ← getTransformerFor stx.getKind
20 let stx ← withFreshMacroScope (t stx)
21 expand stx

Figure 1: Abbreviated implementation of a recursive expander for our macro system

inductive Name where
| anonymous
| str (base : Name) (s : String)
| num (base : Name) (n : Nat)

The syntax `a.b is a literal of type Name for use in meta-programs. The numeric part of Name
is not accessible from the surface syntax and reserved for internal names; similar designs are
found in other ITPs. By reusing Name for storing macro scopes, but not top-level scopes, we
ensure that the new definition of symbol from Section 3.1 coincides with the existing Lean
type and no changes to the implementation of the local or global context are necessary for
adopting the macro system.

A Lean 4 implementation of the expansion algorithm described in the previous section is
given in Fig. 1; the full implementation including examples is included in the supplement.
As a generalization, syntax transformers in the full implementation have the type Syntax →
TransformerM Syntax where the TransformerM monad gives access to the global context and
a fresh macro scope per macro expansion. The expander itself uses an extended ExpanderM
monad based on TransformerM that also stores the local context and the set of registered
macros. We use the Lean equivalent of Haskell’s do notation [M+10] to program in these
monads.

As described in Section 3.1, the expander in Fig. 1 has built-in knowledge of some “core
forms” (lines 2-16) with special expansion behavior, while all other forms are assumed to be
macros and expanded recursively (lines 19-21). Identifiers form one base case of the recursion.
As described in the previous section, they are first looked up in the local context (recall that
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the Name of an identifier includes macro scopes), then as a fall back in the global context
plus its own top-level scopes. mkIdent : Name → Syntax creates an identifier without source
information or top-level scopes, which are not needed after expansion. mkOverloadedIds
implements the Lean special case of overloaded symbols to be disambiguated by elaboration;
systems without overloading support should throw an ambiguity error instead in this case.

As an example of a core binding form, the expansion of a single-parameter fun is shown in
lines 12-16 of Fig. 1. It recursively expands the given parameter type, then expands the body
in a new local context extended with the value of id. Here getIdentVal : Syntax → Name
in particular implements the discarding of top-level scopes from binders.

Finally, in the macro case, we fetch the syntax transformer for the given node kind, run
it in a new context with a fresh current macro scope, and recurse.

1 partial def quoteSyntax : Syntax → TransformerM Syntax
2 | Syntax.ident info rawVal val preresolved => do
3 let gctx ← getGlobalContext
4 let preresolved := resolve gctx val ++ preresolved
5 `(Syntax.ident SourceInfo.none $(quote rawVal)
6 (addMacroScope $(quote val) msc) $(quote preresolved))
7 | stx@(Syntax.node k args) =>
8 if isAntiquot stx then pure (getAntiquotTerm stx)
9 else do

10 let args ← args.mapM quoteSyntax
11 `(Syntax.node $(quote k) $(quote args))
12 | Syntax.atom info val => `(Syntax.atom SourceInfo.none $(quote val))
13 | Syntax.missing => pure Syntax.missing
14
15 def expandStxQuot (stx : Syntax) : TransformerM Syntax := do
16 let stx ← quoteSyntax (stx.getArg 1)
17 `(do msc ← getCurrMacroScope; pure $stx)

Figure 2: Simplified syntax transformer for syntax quotations

Syntax quotations are given as one example of a macro: they do not have built-in
semantics but transform into code that constructs the appropriate syntax tree (expandStxQuot
in Fig. 2). More specifically, a syntax quotation will, at run time (of the surrounding macro),
query the current macro scope msc from the surrounding TransformerM monad (code generated
by expandStxQuot) and apply it to all captured identifiers (code generated by quoteSyntax).
quoteSyntax recurses through the quoted syntax tree, reflecting its constructors. Basic
datatypes such as String and Name are turned into Syntax via the typeclass method quote.
For antiquotations, we return their contents unreflected. In the case of identifiers, we resolve
possible global references at compile time and reflect them, while msc is applied at run time.
Thus a quotation `(a + $b) inside a global context where the symbol a matches declarations
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a.a and b.a is transformed to the equivalent of
do let msc ← getCurrMacroScope

pure (Syntax.node `plus [
Syntax.ident SourceInfo.none "a" (addMacroScope `a msc)

[`a.a, `b.a],
Syntax.atom SourceInfo.none "+",
b])

This implementation of syntax quotations itself makes use of syntax quotations for
simplicity and thus is dependent on its own implementation in the previous stage of the
compiler. Indeed, the helper variable msc must be renamed should the name already be in
scope and used inside an antiquotation.9 Note that quoteSyntax is allowed to reference the
same msc as expandStxQuot because they are part of the same macro call and the current
macro scope is unchanged between them. While alternative approaches that use fresh macro
scopes on function calls within a macro are thinkable, we prefer the presented behavior,
which matches that of the Scheme family, because it preserves referential transparency: if
quoteSyntax is inlined into expandStxQuot, the behavior is unchanged.

4.1. Extended Quasiquotations. Automatic hygiene can greatly simplify development
of macros, but a convenient way for con- and destructing syntax is at least as important.
Before we get to more complex macro examples below, we want to describe some syntactic
extensions to quotations and antiquotations we have implemented that will come in useful.

A first obvious such extension is to allow quotations including antiquotations as patterns
such as after match or fun.

fun
| `(()) => . . .

| `(($e)) => . . .

| `(($e, $f)) => . . .

Because every use of patterns eventually unfolds to a match in Lean, this is in fact implemented
as a macro that expands match terms with quotation patterns into ones without such patterns.
Note also that because no new syntactic identifiers are generated while matching against a
quotation, there is no issue of hygiene in this case.

For syntax with repeated parts, quotation splices enable us to match or introduce these
parts as a whole. For example, a recursive macro for n-tuple syntax can be written as

macro_rules
| `(()) => `(Unit.unit)
| `(($e)) => e
| `(($e, $es,*)) => `(Prod.mk $e ($es,*))

Here $es,* matches/introduces the remaining elements of the tuple, including its separators.
Analogous splicing syntax exists for other separators, as well as $x* for separator-less iteration.
At most one splice can be used per sequence, but it can be pre- and suffixed with an arbitrary
(but fixed) number of other elements.

In $x*, x has type Array Syntax, the same type as the second argument of the node
constructor. For $x,* and similar we instead use the dependent wrapper type SepArray ","

9As long as no such case exists, a hygienic implementation of syntax quotations can be bootstrapped from
an unhygienic one, which is what we did in the case of Lean.
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that provides convenience access functions for the sequence both with and without separator
elements. Finally, we also provide implicit coercions between these types that automatically
insert/remove/replace the separators accordingly.

While exposing splices as typed values in this way ensures that we can comfortably
process or synthesize them procedurally as well, it is often more convenient to inspect splice
contents immediately as part of the quotation. For this we support extended splices $[. . .]*
etc. where the splice content is parsed like an element of the sequence and can contain nested
antiquotations. If used as a pattern, the match succeeds if and only if the nested pattern
matches every element, in which case the contained antiquotations are each bound to an
Array of all corresponding element-wise matches.

match stx with
| `(match $discr with $[| $patss,* => $branches]*) =>

-- discr : Syntax
-- patss : Array (SepArray ",")
-- branches : Array Syntax
. . .

By default, quotations are parsed as either terms or top-level commands, since these
syntactic categories are both commonly used and should usually be disjoint. Other syntactic
categories, e.g. the category of universe levels that heavily overlaps with term, can be
specified explicitly at the beginning of a quotation. Similarly, antiquotations can be suffixed
with a colon followed by a category or named parser where otherwise ambiguous.

match levelStx with
| `(level| $id:ident) => . . . -- a universe variable
| `(level| _) => . . . -- a universe placeholder
| `(level| $l) => . . . -- any (other) universe term

For a full example of using these and other features, we can look at a macro rule unfolding
syntax such as

fun
| some a, some b => some (a + b)
| _, _ => none

into
fun x.1 x.2 =>

match x.1, x.2 with
| some a, some b => some (a + b)
| _, _ => none

The macro rule (Fig. 3) derives the number of discriminants (x.1, x.2 in the example)
from the number of patterns of the first alternative; if other alternatives have differing
number of patterns, it will lead to an elaboration error in match later on. The macro then
introduces a lambda abstraction over a sequence of fresh variable names of this number and
subsequently matches on them using the given patterns.

It does so by matching on the first alternative of the match in detail, then capturing
the remaining ones in alts : Array Syntax. The left-hand side ps1 of the first alternative
is a SepArray ",", so we use getElems to access its elements and generate a fresh variable
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1 macro_rules
2 | `(fun
3 | $ps1,* => $rhs1
4 $alts:matchAlt*) => do
5 let discrs ← ps1.getElems.mapM (fun _ => withFreshMacroScope `(x))
6 `(fun $discrs* =>
7 match $[$discrs:ident],* with
8 | $ps1,* => $rhs1
9 $alts:matchAlt*)

Figure 3: A macro rule for expanding a combined fun-match syntax.

for each of them, which we do by running the single quotation `(x) repeatedly under
withFreshMacroScope, annotating the variable with a unique macro scope each time10.

With discrs : Array Syntax generated, we insert it into the final quotation, once as
a straight sequence after fun and once separated by commas after match, followed by the
alternatives copied from the input without changes. Note that $discrs:ident* would not
have worked in this case because identifiers are merely a special case of the more general
match discriminant syntax that allows prefixing a discriminant with h:, where the identifier
h will then hold the proof that the discriminant matched the corresponding pattern. Thus
there is no direct identifier sequence to insert and we have to instead say that we insert a
sequence of general discriminants, each one built up of an identifier without a proof variable
prefix, which internally will wrap each element in an additional syntax tree node of the
matchDiscr kind. This necessary disambiguation of overlapping syntax sadly is a price we
have to pay for our preference of such syntax over more regular but verbose one such as
S-expressions.

Finally, for the sake of completeness we will mention the token antiquotation %$x
that any token can be suffixed with to extract/set its SourceInfo metadata. This kind of
antiquotation is mostly useful for displaying errors on specific tokens and preserving metadata
in transformations.

| `(tactic| case $tag =>%$arrTk $tac) => do
. . .

reportUnsolvedGoalsAt arrTk

. . .

case cons => skip
--^ unsolved goals displayed here

5. Integrating Macros into Elaboration

The macro system as described so far can handle most syntax sugars of Lean 3 except for
ones requiring type information. For example, the anonymous constructor 〈e, . . .〉 is sugar
for (c e . . .) if the expected type of the expression is known and it is an inductive type with
a single constructor c. While trivial to parse, there is no way to implement this syntax as

10This is comparable to a call to the gensym function found in many Lisp systems.



1:14 S. Ullrich and L. de Moura Vol. 18:2

a macro if expansion is done strictly prior to elaboration. A more complex example is the
structure instance notation { field1 := e, . . .} that must analyze the definition of the given
or inferred structure type in order to expand to the correct constructor call. To the best
of our knowledge, none of the ITPs listed in the introduction support hygienic elaboration
extensions of this kind, but we will show how to extend their common elaboration scheme in
that way in this section.

Elaboration11 can be thought of as a function elabTerm : Syntax → ElabM Expr in an
appropriate monad ElabM12 from a (concrete or abstract) surface-level syntax tree type
Syntax to a fully-specified core term type Expr [dMAKR15]. We have presented the (concrete)
definition of Syntax in Lean 4 in Section 4; the particular definition of Expr is not important
here. While such an elaboration system could readily be composed with a type-insensitive
macro expander such as the one presented in Section 3, we would rather like to intertwine
the two to support type-sensitive but still hygienic-by-default macros (henceforth called
elaborators) without having to reimplement macros of the kind discussed so far. Indeed, these
can automatically be adapted to the new type given an adapter between the two monads,
similarly to the adaption of macros to expanders in [DFH86]:

def transformerToElaborator (t : Syntax → TransformerM Syntax) :
Syntax → ElabM Expr :=

fun stx => do
let stx' ← (transformerMToElabM t) stx
elabTerm stx'

Because most parts of our hygiene system are implemented by the expander for syntax
quotations, the only changes to an elaboration system necessary for supporting hygiene are
storing the current macro scope in the elaboration monad (to be passed to the expansion
monad in the adapter) and allocating a fresh macro scope whenever a macro or elaborator
is invoked. Thus elaborators immediately benefit from hygiene as well whenever they use
syntax quotations to construct unelaborated helper syntax objects to pass to elabTerm.
In order to support syntax quotations in these two and other monads, we generalize their
implementation to a new monad typeclass implemented by both monads.

class MonadQuotation (m : Type → Type) where
getCurrMacroScope : m MacroScope
withFreshMacroScope : m α → m α

The second operation is not used by syntax quotations directly, but can be used by procedural
macros and elaborators to manually enter new macro call scopes.

As an example, the following is a simplified implementation of the anonymous constructor
syntax mentioned above.

@[termElab anonymousCtor] def elabAnonymousCtor : Syntax → ElabM Expr
| `(〈$args,*〉) => do

let expectedType ← getExpectedType
match Expr.getAppFn expectedType with
| Expr.const constName _ _ => do

let ctors ← getCtors constName

11At the term level; elaboration of other syntactic categories work analogously but with different output
types.

12Or some other encoding of effects.
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match ctors with
| [ctor] => do

let stx ← `($(mkCIdent ctor) $args*)
elabTerm stx

. . . -- error handling

The [termElab] attribute registers this elaborator for the given syntax node kind. The
function mkCIdent : Name → Syntax synthesizes a hygienic reference to the given constant
name by storing it as a top-level scope and applying a reserved macro scope to the constructed
identifier. Note the monadic binding of the syntax quotation, and that the separators of
$args,* are implicitly discarded when it is used as a plain sequence $args*.

This implementation fails if the expected type is not yet sufficiently known at this point.
The actual implementation13 of this elaborator extends the code by postponing elaboration in
this case. When an elaborator requests postponement, the system returns a fresh metavariable
as a placeholder and associates the input syntax tree with it. Before finishing elaboration of
a command, postponed elaborators associated with unsolved metavariables are retried until
they all ultimately succeed, or else elaboration is stuck because of cyclic dependencies and
an error is signed.

6. Tactic Hygiene

Lean 3 includes a tactic framework that, much like macros, allows users to write custom
automation either procedurally inside a tactic monad or “by example” using tactic language
quotations, or in a mix of both [EUR+17]. For example, Lean 3 uses a short tactic block to
prove injection lemmas for data constructors.

def mkInjEq : TacticM Unit :=
`[intros; apply propext; apply Iff.intro; . . .]

Unfortunately, this code unexpectedly broke in Lean 3 when used from a library for homotopy
type theory that defined its own propext and Iff.intro declarations;14 in other words, Lean
3 tactic quotations are unhygienic and required manual intervention in this case. Just like
with macros, the issue with tactics is that binding structure in such embedded terms is not
known at declaration time. Only at tactic run time do we know all local variables in the
current context that preceding tactics may have added or removed, and therefore the scope
of each captured identifier.

Arguably, the Lean 3 implementation also exhibited a lack of hygiene in the handling
of tactic-introduced identifiers: it did not prevent users from referencing such an identifier
outside of the scope it was declared in.

def myTac : TacticM Unit := `[intro h]
lemma triv (p : Prop) : p → p := begin myTac; exact h end

Coq’s similar Ltac tactic language [Del00] exhibits the same issue and users are advised
not to introduce fixed names in tactic scripts but to generate fresh names using the fresh
tactic first,15 which can be considered a manual hygiene solution.

13https://github.com/leanprover/lean4/blob/IJCAR20-LMCS/src/Lean/Elab/BuiltinNotation.
lean#L16

14https://github.com/leanprover/lean/pull/1913
15https://github.com/coq/coq/issues/9474

https://github.com/leanprover/lean4/blob/IJCAR20-LMCS/src/Lean/Elab/BuiltinNotation.lean#L16
https://github.com/leanprover/lean4/blob/IJCAR20-LMCS/src/Lean/Elab/BuiltinNotation.lean#L16
https://github.com/leanprover/lean/pull/1913
https://github.com/coq/coq/issues/9474
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Lean 4 instead extends its automatically hygienic macro implementation to tactic scripts
by allowing regular macros in the place of tactic invocations.

macro "myTac" : tactic => `(intro h; exact h)
theorem triv (p : Prop) : p → p := by myTac

By the same hygiene mechanism described above, introduced identifiers such as h are renamed
so as not to be accessible outside of their original scope, while references to global declarations
are preserved as top-level scope annotations. Thus Lean 4’s tactic framework resolves both
hygiene issues discussed here without requiring manual intervention by the user. Expansion of
tactic macros in fact does not precede but is integrated into the tactic evaluator evalTactic
: Syntax → TacticM Unit such that recursive macro calls are expanded lazily, allowing for
combinators like repeat that would otherwise lead to infinite recursion during expansion.

syntax "repeat" tactic : tactic
macro_rules

| `(tactic| repeat $t) => `(tactic| try ($t; repeat $t))

Note that macro cannot be used here because the parser for repeat would not yet be available
in the right-hand side. When $t eventually fails, the recursion is broken without visiting and
expanding the subsequent repeat macro call. The try tactical is used to ignore this eventual
failure.

While we believe that macros will cover most use cases of Lean 3’s tactic quotations in
Lean 4, their use within larger TacticM metaprograms can be recovered by passing such a
quotation to evalTactic:

def myTac2 : TacticM Unit := do
let stx ← `(tactic| intro h; exact h)
evalTactic stx

TacticM implements the MonadQuotation typeclass for this purpose.

7. Best-Effort Eager Name Analysis in Macros

The dynamic nature of binding in macros has enabled us to implement many Lean language
features as macros, with hygiene guaranteeing that bindings within the macro do not interfere
with ones outside of it. However, while knowing that a mistyped identifier in a macro will
not be accidentally be bound by bindings at the use site is great in theory, in practice it
would be even better to be told about the typo immediately while writing the macro! This
is especially true when renaming a declaration, either manually where we might accidentally
miss an occurrence of it inside a macro and then must track name binding errors at use
sites back to the responsible macro, or automatically where refactoring tools must treat
macros as black boxes. After all, a static view of a notation’s binding structure is exactly
what we gave up in Section 1 in exchange for the ability to arbitrarily abstract over bindings.
For example, there is no general way to statically analyze whether x inside the following
quotation is well-scoped given an arbitrary computation resulting in stx:

let stx ← . . .

`(fun $stx => x)

With this theoretical limitation in mind, and given that this is more of a practical issue of
maintenance, perhaps a practical, best-effort solution is sufficient as long as we retain all
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hygiene guarantees. We have done so with an opt-in, partial but extensible approach to eager
name resolution in macros based on a variant of our quotation syntax.

``(fun x => x + $y + id z) -- error: unknown identifier 'z'

A double-backtick quotation eventually unfolds to the basic, single-backtick version and thus
retains all its semantics. Before that, however, it recursively checks for identifiers that can
statically be assumed to be unbound using the following heuristics:
(1) If there is a special precheck hook registered for the syntax kind in question, we use it.

Precheck hooks can signal binding errors as well as recursively continue the precheck on
nested syntax, possibly with an extended (untyped) quotation context, which is initially
empty. For example, we provide a precheck hook for fun x => e that recurses into e
after adding x to the quotation context. The central identifier precheck hook ultimately
raises an error if an identifier is reached that is neither in the global, extra-macro context,
nor in the quotation context. Other examples for precheck hooks we have added are for
match and function application.

(2) Otherwise, if there are no identifiers in the quoted syntax, we assume that there is no risk
of unbound ones, and the check succeeds. In particular, antiquotations (which contain
unquoted identifiers only) are always skipped.

(3) Otherwise, if the quoted syntax is a macro, we unfold it and precheck the result. Here
we assume that the macro is sufficiently good-natured: while macros are pure functions
by definition in Lean, their behavior and in particular binding structure could in theory
change drastically enough in the presence of antiquotations that it could lead to false
positives of this analysis. If that is the case, the user either has to provide a custom
precheck hook for it, or fall back to the basic quotation syntax.

In contrast to macros, we cannot typically run elaborators directly during this check
because they usually depend on type information that is not yet available, and are not
guaranteed to be pure.

(4) Otherwise the check fails since we do not know how to analyze the syntax at hand.
Again, users would either have to provide a precheck hook, or use to the single-backtick
quotation syntax.

This approach is clearly best-effort with many opportunities for unhandled cases. However,
since it is guaranteed that after the check the semantics are the same as for the basic quotation
syntax, including unchanged hygiene guarantees, we believe that the practical advantages
of using the syntax where possible are significant. In particular, we have observed that
quotations capturing global identifiers, which are most at risk of breaking during refactorings,
are usually quite simple while complicated quotations that are used to translate one syntax
into a more general one often do not reference any identifiers at all, and thus would not
benefit from the additional check anyway.

This is especially true for notations, which are usually exceedingly simple in structure,
most often consisting of nothing but an application of a global function symbol to the
notation arguments, which is covered by the identifier and application precheck hooks. Thus
we have modified the notation macro to use double-backtick quotations by default in order
to make users immediately aware of any unbound identifiers inside of them, restoring its
Lean 3 behavior (where the absence of macros naturally allowed for such a check).

notation "∃" x "," e => Exits.intro (fun x => e) -- error: unknown identifier
'Exits.intro'
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We provide an option to disable this change, though all notations in the standard library
passed the additional check without modification. The check did on the other hand find a
notation example in our documentation that contained an accidentally unbound identifier.

8. Related Work

The main inspiration behind our hygiene implementation was Racket’s Sets of Scopes [Fla16]
hygiene algorithm. Much like in our approach, Racket annotates identifiers both with scopes
from their original context as well as with additional macro scopes when introduced by a
macro expansion. However, there are some significant differences: Racket stores both types
of scopes in a homogeneous, unordered set and does name resolution via a maximum-subset
check. For both simplicity of implementation and performance, we have reduced scopes to the
bare minimal representation using only strict equality checks, which we can easily encode in
our existing Name implementation. In particular, we only apply scopes to matching identifiers
and only inside syntax quotations. This optimization is of special importance because top-
level declarations in Lean and other ITPs are not part of a single, mutually recursive scope
as in Racket, but they each open their own scope over all subsequent declarations, which
would lead to a total number of scope annotations quadratic in the number of declarations
using the Sets of Scopes algorithm. Finally, Racket detects macro-introduced identifiers using
a “black-box” approach without the macro’s cooperation following the marking approach
of [KFFD86]: a fresh macro scope is applied to all identifiers in the macro input, then inverted
on the macro output. While elegant, a naive implementation of this approach can again result
in quadratic runtime compared to unhygienic expansion and requires further optimizations
in the form of lazy scope propagation [DHB93], which is difficult to implement in a pure
language like Lean. Our “white-box” approach based on the single primitive of an effectful
syntax quotation, while slightly easier to escape from in procedural syntax transformers, is
simple to implement, incurs minimal overhead, and is equivalent for pattern-based macros.

The idea of automatically handling hygiene in the macro, and not in the expander, was
introduced in [CR91], though only for pattern-based macros. MetaML [TS00] refined this
idea by tying hygiene more specifically to syntax quotations that could be used in larger
metaprogram contexts, which Template Haskell [SJ02] interpreted as effectful (monadic)
computations requiring access to a fresh-names generator, much like in our design. However,
both of the latter systems should perhaps be characterized more as metaprogramming
frameworks than Scheme-like macro systems: there are no “macro calls” but only explicit
splices and so only built-in syntax with known binding semantics can be captured inside
syntax quotations. Thus the question of which captured identifiers to rename becomes trivial
again, just like in the basic notation systems discussed in Section 1.

While the vast majority of research on hygienic macro systems has focused on S-
expression-based languages, there have been previous efforts on marrying that research with
non-parenthetical syntax, with different solutions for combining syntax tree construction and
macro expansion. The Dylan language requires macro syntax to use predefined terminators
and eagerly scans for the end of a macro call using this knowledge [BPS99], while in
Honu [RF12] the syntactic structure of a macro call is discovered during expansion by a
process called “enforestation”. The Fortress [ACH+05] language strictly separates the two
concerns into grammar extensions and transformer declarations, much like we do. Dylan and
Fortress are restricted to pattern-based macro declarations and thus can make use of simple
hygiene algorithms while Honu uses the full generality of the Racket macro expander. On the
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other hand, Honu’s authors “explicitly trade expressiveness for syntactic simplicity” [RF12].
In order to express the full Lean language and desirable extensions in a macro system, we
require both unrestricted syntax of macros and procedural transformers.

Many of the antiquotation extensions presented in Section 4.1 have been inspired by
similar syntax in Rust’s pattern-based macro language, though we have opened their use to
procedural macros as well, using appropriate type representations.

Many theorem provers such as Agda, Coq, Idris, and Isabelle not already based on a
macro-powered language provide restricted syntax extension mechanisms, circumventing
hygiene issues by statically determining binding as seen in Section 1. Extensions that go
beyond that do not come with automatic hygiene guarantees. Agda’s macros,16 for example,
operate on the De Bruijn index-based core term level and are not hygienic.17 The ACL2
prover in contrast uses a subset of Common Lisp as its input language and adapts the hygiene
algorithm of [DHB93] based on renaming [EF10]. The experimental Cur [CBTB19] theorem
prover is a kind of dual to our approach: it takes an established language with hygienic
macros, Racket, and extends it with a dependent type system and theorem proving tools.
ACL2 does not support tactic scripts, while in Cur they can be defined via regular macros.
However, this approach does not currently provide tactic hygiene as defined in Section 6.18
The Eisbach [MMW16] proof method language for Isabelle is notable in that while it allows
for reusable proof methods (comparable to Lean’s tactics) to be abstracted over terms, these
terms are analyzed and typechecked before being passed to the proof method, and there is
no interaction between names in different proof methods either when using the “structured”
proof style, so the question of hygiene is moot. Using the “unstructured” proof style, the
same hygiene issue as noted for other system can be triggered.

method my_allI =
rule_tac allI, rename_tac escaped

lemma "∀ x. x = x"
apply my_allI
apply (rule_tac t = escaped in refl)

9. Conclusion

We have proposed a new macro system for interactive theorem provers that enables syntactic
abstraction and reuse far beyond the usual support of mixfix notations. Our system is
based on a novel hygiene algorithm designed with a focus on minimal runtime overhead as
well as ease of integration into pre-existing codebases, including integration into standard
elaboration designs to support type-directed macro expansion. Despite that, the algorithm is
general enough to provide a complete hygiene solution for pattern-based macros and provides
flexible hygiene for procedural macros. We have also demonstrated how our macro system
can address unexpected name capture issues that haunt existing tactic frameworks. We have
implemented our method in the new version of the Lean theorem prover, Lean 4; it should be
sufficiently attractive and straightforward to implement to be adopted by other interactive
theorem proving systems as well.

16https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
17https://github.com/agda/agda/issues/3819
18https://github.com/wilbowma/cur/issues/104

https://agda.readthedocs.io/en/v2.6.0.1/language/reflection.html#macros
https://github.com/agda/agda/issues/3819
https://github.com/wilbowma/cur/issues/104
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