
Logical Methods in Computer Science
Volume 18, Issue 2, 2022, pp. 5:1–5:37
https://lmcs.episciences.org/

Submitted Mar. 04, 2020
Published Apr. 26, 2022

PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR:

ON TERMINATION AND UNIQUE NORMAL FORMS

CLAUDIA FAGGIAN

IRIF, CNRS, Université de Paris, F-75013 Paris, France

Abstract. While a mature body of work supports the study of rewriting systems, abstract
tools for Probabilistic Rewriting are still limited. In this paper we study the question of
uniqueness of the result (unique limit distribution), and develop a set of proof techniques
to analyze and compare reduction strategies. The goal is to have tools to support the
operational analysis of probabilistic calculi (such as probabilistic lambda-calculi) where
evaluation allows for different reduction choices (hence different reduction paths).

1. Introduction

Rewriting Theory [Ter03] is a foundational theory of computing. Its impact extends to both
the theoretical side of computer science, and the development of programming languages. A
clear example of both aspects is the paradigmatic term rewriting system, λ-calculus, which
is also the foundation of functional programming. Abstract Rewriting Systems (ARS) are the
general theory which captures the common substratum of rewriting theory, independently of
the particular structure of the objects. It studies properties of terms transformations, such
as normalization, termination, unique normal form, and the relations among them. Such
results are a powerful set of tools which can be used when we study the computational and
operational properties of any calculus or programming language. Furthermore, the theory
provides tools to study and compare strategies, which become extremely important when a
system may have reductions leading to a normal form, but not necessarily. Here we need
to know: is there a strategy which is guaranteed to lead to a normal form, if any exists
(normalizing strategies)? Which strategies diverge if at all possible (perpetual strategies)?

Probabilistic Computation models uncertainty. Probabilistic forms of automata [Rab63],
Turing machines [San71], and the λ-calculus [Sah78] exist since long. The pervasive role it
is assuming in areas as diverse as robotics, machine learning, natural language processing,
has stimulated the research on probabilistic programming languages, including functional
languages [KMP97, RP02, PPT05] whose development is increasingly active. A typical
programming language supports at least discrete distributions by providing a probabilistic
construct which models sampling from a distribution. This is also the most concrete way to
endow the λ-calculus with probabilistic choice [DPHW05, DLZ12, EPT11]. Within the vast
research on models of probabilistic systems, we wish to mention that probabilistic rewriting
is the explicit base of PMaude [AMS06], a language for specifying probabilistic concurrent
systems.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(2:5)2022
© C. Faggian
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

5:2 C. Faggian Vol. 18:2

Probabilistic Rewriting. Somehow surprisingly, while a large and mature body of work
supports the study of rewriting systems—even infinitary ones [DKP91, KKSdV95]—work
on the abstract theory of probabilistic rewriting systems is still sparse. The notion of
Probabilistic Abstract Reduction Systems (PARS) has been introduced by Bournez and
Kirchner in [BK02], and then extended in [BG06] to account for non-determinism. Recent
work [LFVY17, DM18, KC17, ALY20] shows an increased research interest. The key element
in probabilistic rewriting is that even when the probability that a term leads to a normal
form is 1 (almost sure termination, AST), that degree of certitude is typically not reached in
any finite number of steps, but it appears as a limit. Think of a rewrite rule (as in Fig. 1)
which rewrites c to either the value T or c, with equal probability 1/2. We write this as

c→ {c1/2, T1/2}. After n steps, c reduces to T with probability 1
2 + 1

22
+ · · ·+ 1

2n . Only at
the limit this computation terminates with probability 1.

The most well-developed literature on PARS is concerned with methods to prove almost
sure termination, see e.g. [BG06, FH15, HFCG19, ALY20] (this interest matches the fact that
there is a growing body of methods to establish AST [ACN18, FC19, KKMO18, MMKK18,
LFR21]). However, considering rewrite rules subject to probabilities opens numerous other
questions, which motivate our investigation.

We study a rewrite relation which describes the global evolution of a probabilistic system,
for example a probabilistic program P . The result of the computation is a probability
distribution β over all the possible output of P . The intuition (see [KMP97]) is that the
program P is executed, and random choices are made by sampling. This process defines
a distribution β over the various outputs that the program can produce. We write this

P
∞
=⇒ β.

What happens if the evaluation of a term P is not deterministic, in the sense that
different reduction choices are available? Remember that non-determinism arises naturally in
the λ-calculus, because a term may have several redexes. This aspect has practical relevance
to programming. Together with the fact that the result of a terminating computation is
unique, (independently from the evaluation choices), it is key to the inherent parallelism of
functional programs (see e.g. [Mar13]).

Assume program P generates a distribution over booleans {T
1
16 , F

15
16 }; it is desirable that

the distribution which is computed is unique: it only depends on the “input” (the problem),
not on the way the computational steps are performed.

When assuming non-deterministic evaluation, several questions on PARS arise naturally.

For example: (1.) when—and in which sense—is the result unique? (naively, if P
∞
=⇒ α

and P
∞
=⇒ β, is α = β?) (2.) Do all rewrite sequences from the same term have the same

probability to reach a result? (3.) If not, does there exist a strategy to find a result with
greatest probability?

Such questions are relevant to the theory and to the practice of computing. We believe
that to study them, we can advantageously adapt techniques from Rewrite Theory. However,
we cannot assume that standard properties of ARSs hold for PARSs. The game-changer
is that termination appears as a limit. In Section 4.2.3 we show that a well-known ARSs
property, Newman’s Lemma, does not hold for PARSs. This is not surprising; indeed,
Newman’s Lemma is known not to hold in general for infinitary rewriting [Ken92, KdV05].
Still, our counter-example points out that moving from ARS to PARS is non-trivial. There
are two main issues: we need to find the right formulation and the right proof technique. It

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:3

seems then especially important to have a collection of proof methods which apply well to
PARS.

Content and contributions. Probability is concerned with asymptotic behaviour: what
happens not after a finite number n of steps, but when n tends to infinity. In this paper
we focus on the asymptotic behaviour of rewrite sequences with respect to normal forms—
normal form being the most standard notion of result in rewriting. We study computational
properties such as (1.), (2.), (3.) above. We do so with the point of view of ARSs, aiming
for properties which hold independently of the specific nature of the rewritten objects; the
purpose is to have tools which apply to any probabilistic rewriting system.

PARS. After motivating and introducing our formalism for PARSs (Section 2 and 3), in
Section 4 we formalize the notion of limit distribution, and of well-defined result. Since in a
PARS each term has different possible reduction sequences (with each sequence leading to
a possibly different limit distribution), to each term is naturally associated a set of limit
distributions. To study when a PARS has a well-defined result is the main focus of the paper.

Recall a property which is crucial to the computational interpretation of a system such
as the λ-calculus: if a term has a normal form, it is unique—meaning that the result of the
computation is well-defined. With this in mind, we investigate in the probabilistic setting an
analogue of the ARS notions of Unique Normal Form (UN), and the possibility or necessity
to reach a result: Normalization (WN), Termination (SN). We provide methods and criteria
to establish these properties, and we uncover relations between them. Specific contributions
are the following.

• We propose an analogue of UN for PARS. The question was already studied in [DM18] for
PARS which are almost surely terminating, but the solution there does not extend to the
general case.
• We investigate the classical ARS method to prove UN via confluence; we uncover that

subtle aspects appear when dealing with a notion of result as a limit. We do prove
an analogue of “confluence implies UN” for PARS—however the proof is not simply an
adaptation of the standard techniques, due to the fact that the set of limit distributions
is—in general—infinite, and it is not guaranteed to have maximal elements (think of [0, 1[
which has a sup, but not a max).

Asymptotic rewriting: QARS. To better understand the asymptotic behaviour of computa-
tion, in Section 5 we introduce the setting of Quantitative Abstract Rewrite System (QARS).
While motivated from the analysis of probabilistic rewriting, QARSs abstract from the
probabilistic structure. This allows us to capture the essence of the arguments, and to
separate the properties which really depend on probability (and its specific properties) from
those which are only concerned with the fact that results are limits.

QARS are a natural refinement of the notion of Abstract Rewrite Systems with In-
formation content (ARSI), introduced by Ariola and Blom [AB02]. There, to the ARS is
associated a partial order that expresses the information content of the elements. We adopt
the same view. ARSI however have a notion of limit which is tailored to infinite normal
forms in the sense of Böhm trees [Bar84] and Levy-Longo trees [Lév78]. With QARS, we
simply move from partial orders (and a specific definition of limit), to ω-complete partial
orders—this is enough to capture also probabilistic computation.

5:4 C. Faggian Vol. 18:2

First, we study the properties of limits. Then, we provide a set of proof techniques to
support the asymptotic analysis of reduction strategies. To do so, we extend to our setting
a method which was introduced for ARSs by Van Oostrom [vO07], and which is based on
Newman’s property of Random Descent (RD) [New42, vO07, vOT16] (see Section 1.1.2).
The Random Descent method turns out to be well-suited to asymptotic and probabilistic
rewriting, providing a useful family of tools. In analogy to their counterpart in [vO07], we
generalize in a quantitative way the notions of Random Descent (which becomes obs-RD)
and of being better (which become obs-better); both properties are here parametric with
respect to the information content which we wish to observe.

A significant technical feature (inherited from [vO07]) is that both notions of obs-RD
and obs-better come with a characterization via a local condition, in the sense that only
single steps from an object—rather than all possible sequences of steps—need to be examined.

Probabilistic rewriting: tools and applications. In Sections 7 and 8 we specialize the Random
Descent techniques to PARS.

• obs-RD entails that all rewrite sequences from a term lead to the same result, in the same
expected number of steps (the average of number of steps, weighted w.r.t. probability).
• obs-better offers a method to compare strategies (“strategy S is always better than

strategy T ”) w.r.t. the probability of reaching a result and the expected time to reach a
result. It provides a sufficient criterion to establish that a strategy is normalizing (resp.
perpetual) i.e. the strategy is guaranteed to lead to a result with maximal (resp. minimal)
probability.

To illustrate their use, we apply these methods to a probabilistic λ-calculus—Weak Call-
by-Value λ-calculus—which is discussed in Section 7.2. A larger example of application
to probabilistic λ-calculi is [FR19], whose developments rely also on the abstract results
presented here; we illustrate this in Section 9.

Remark 1.1 (On the term Random Descent). Please note that in [New42], the term
Random refers to non-determinism (in the choice of the redex), not to randomized choice.

Journal vs conference version. This paper is the journal version of [Fag19]. The content
has been considerably extended. In particular, we develop the setting of QARS (Section (5)),
which formalizes the notion of asymptotic rewriting, and does not appear in [Fag19]. This
allows us to separate the properties which really depend on probability from those which
are concerned with results as limits, cleaning the arguments from unnecessary structure.
The study of limits in both probabilistic and non-probabilistic setting is unified to a more
general theory. The results obtained for QARS can be transferred to ARS and PARS alike,
but also to other frameworks where reduction is asymptotic.

1.1. Motivations and Background.

1.1.1. Probabilistic λ-calculus, non-deterministic evaluation,
and (non-)Unique Result. Rewrite theory provides numerous tools to study uniqueness
of normal forms, as well as techniques to study and compare strategies. This is not the
case in the probabilistic setting. Perhaps a reason is that when extending the λ-calculus
with a choice operator, confluence is lost, as was observed early [dP95]; we illustrate it in
Example 1.2 and 1.3, which is adapted from [dP95, DLZ12]. The way to deal with this issue

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:5

in probabilistic λ-calculi (e.g. [DPHW05, DLZ12, EPT11]) has been to fix a deterministic
reduction strategy, typically “leftmost-outermost”. To fix a deterministic strategy is not
satisfactory, neither for the theory nor the practice of computing. To understand why
this matters, recall for example that confluence of the λ-calculus is what makes functional
programs inherently parallel: every sub-expression can be evaluated in parallel, still, we
can reason on a program using a deterministic sequential model, because the result of the
computation is independent of the evaluation order (we refer to [Mar13], and to Harper’s
text “Parallelism is not Concurrency” for discussion on deterministic parallelism, and how
it differs from concurrency). Let us see what happens in the probabilistic case.

Example 1.2 (Confluence failure). Let us consider the untyped λ-calculus extended with a
binary operator⊕ which models probabilistic choice. Here⊕ is just flipping a fair coin: M⊕N
reduces to either M or N with equal probability 1/2; we write this as M ⊕N → {M

1
2 , N

1
2 }.

Consider the term PQ, where P = (λx.x)(λx.x XOR x) and Q = (T⊕ F); here XOR is
the standard constructs for the exclusive OR, T and F are terms which encode the booleans.

• If we evaluate P and Q independently, from P we obtain λx.(x XOR x), while from Q we
have either T or F, with equal probability 1/2. By composing the partial results, we obtain

{(T XOR T)
1
2 , (F XOR F)

1
2 }, and therefore {F1}.

• If we evaluate PQ sequentially, in a standard leftmost-outermost fashion, PQ reduces to

(λx.x XOR x)Q which reduces to (T⊕ F) XOR (T⊕ F) and eventually to {T
1
2 , F

1
2 }.

Example 1.3. The situation becomes even more complex if we examine also the possibility
of diverging; try the same experiment on the term PR, with P as above, and R = (T⊕F)⊕∆∆

(where ∆ = λx.xx). Proceeding as before, we now obtain either {F
1
2 } or {T

1
8 , F

1
8 }.

We do not need to loose the features of λ-calculus in the probabilistic setting. In fact,
while some care is needed, determinism of the evaluation can be relaxed without giving up
uniqueness of the result: the calculus we introduce in Section 7.2 is an example (we relax
determinism to Random Descent); we fully develop this direction in further work [FR19].
To be able to do so, we need abstract tools and proof techniques to analyze probabilistic
rewriting. The same need for theoretical tools holds, more in general, whenever we desire to
have a probabilistic language which allows for deterministic parallel reduction.

In this paper we focus on uniqueness of the result, rather than confluence. While
important, confluence is a sufficient but not necessary property to have uniqueness of normal
forms.

1.1.2. Other key notions.
Confluence is not enough. Key to non-deterministic evaluation strategies is that, despite
the fact that there are many ways of evaluating a term, all choices eventually yield the
same result. To this aim, confluence is not enough. The reduction of a term that has a
normal form may still produce diverging computations, which yield no result (think of
β-reduction in usual λ-calculus, reducing the term (λx.z)(∆∆)). What we really want for a
non-deterministic evaluation strategy is that all reduction sequences from the same t have
the same behaviour : if t has a normal form, then all reduction sequences from t eventually
reach it (uniform normalization); ideally, all should do so in the same number of steps.
This latter property is known as Random Descent [New42, vO07, vOT16], and it is often

5:6 C. Faggian Vol. 18:2

guaranteed in the literature of λ-calculus via a diamond-like property. We will lift these
notions to the probabilistic and asymptotic setting.

Random Descent. Newman’s Random Descent (RD) [New42] is an ARS property which
guarantees that normalization suffices to establish both termination and uniqueness of
normal forms. Precisely, if an ARS has random descent, paths to a normal form do not need
to be unique, but they have unique length. In its essence: if a normal form exists, all rewrite
sequences lead to it, and all have the same length1. While only few systems directly verify
it, RD is a powerful ARS tool; a typical use in the literature is to prove that a strategy has
RD, to conclude that it is normalizing. A well-known property which implies RD is a form
of diamond: ← · → ⊆ (→ · ←) ∪ =.

Von Oostrom [vO07] has defined a characterization of RD by means of a local property,
proposing RD as a uniform method to (locally) compare strategies for normalization and
minimality (resp. perpetuality and maximality). Such a method has then been extended
in [vOT16], where the notion of length is abstracted into a notion of measure. In Section 7
and 8 we develop similar methods in a probabilistic setting. The probabilistic analogous of
length, is the expected number of steps (Section 7.1).

Weak Call-by-Value λ-calculus (and its probabilistic counter-part). A notable
example of system which satisfies Random Descent is Call-by-Value (CbV) λ-calculus
endowed with weak evaluation.

In Plotkin’s Call-by-Value λ-calculus, β-redexes are fired only when the argument is a
value (i.e., a variable or a λ-abstraction). Since the goal is to compute values—as is natural
in functional programming—evaluation is often restricted to be weak [How70, CH98], where
weak means no reduction in the function bodies (i.e. within the scope of λ-abstractions).
Weak CbV is the basis of the ML/CAML family of functional languages—and of most
probabilistic functional languages. There are three main weak schemes: reducing from left to
right, as originally defined by Plotkin [Plo75], from right to left, as in Leroy’s ZINC abstract
machine [Ler90] (resulting in a more efficient implementation), or in an arbitrary order, used
for example in [DLM08]. While left and right reduction are deterministic, weak reduction in
arbitrary order is non-deterministic and subsumes both.

If we consider programs (closed terms), values are exactly the normal forms of weak
reduction. Because it satisfies Random Descent, CbV weak reduction →w has striking

properties (see e.g. [DLM08] for an account). First, if M reduces to a value (M →w
∗ V), then

any sequence of →w -steps from M will reach V ; second, the number n of steps such that

M →w
n V is always the same.

In Section 7.2, we study a probabilistic extension of weak CbV, Λw
⊕. We show that it

has analogous properties to its classical counterpart: all rewrite sequences converge to the
same result, in the same expected number of steps.

Local vs global conditions. An important distinction in rewriting theory is between
local and global properties. A property of a term t is global if it is quantified over all
rewrite sequences from t, it is local if it is quantified only over one-step reductions from the
term. Local properties are easier to test, because the analysis (usually) involves a finite

1Or, in Newman’s original terminology: the end-form is reached by random descent (whenever x→k y
and x→n u with u in normal form, all maximal reductions from y have length n− k and end in u).

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:7

number of cases. To work locally—that is, reducing a test problem which is global to local
properties—dramatically reduces the space of search when testing. Let us exemplify this
with a familiar example.

A paradigmatic example of global property is confluence (CR): b ∗← a→∗ c ⇒ ∃d s.t.
b→∗ d ∗← c. Its global nature makes it difficult to establish. A standard way to factorize
the problem is: (1.) prove termination and (2.) prove local confluence (WCR): b← a→ c
⇒ ∃d s.t. b →∗ d ∗← c. This is exactly Newman’s lemma: Termination + WCR ⇒ CR.
The beauty of Newman’s lemma is that a global property (CR) is guaranteed by a local
property (WCR).

Locality is also the strength and beauty of the Random Descent method. While
Newman’s lemma fails in a probabilistic setting, Random Descent methods adapt well.

1.2. Related work. First, let us observe that there is a vast literature on probabilistic
transition systems, however objectives and therefore questions and tools are different than
those of PARS. A similar distinction exist between abstract rewrite systems and transition
systems. Here we discuss related work in the context of PARS [BG06, BK02].

We are not aware of any work which investigates normalizing strategies (or normalization
in general, rather than termination). Instead, confluence in probabilistic rewriting has already
drawn interesting work. A notion of confluence for a probabilistic rewrite system defined over
a λ-calculus is studied in [DAGG11, DLMZ11]; in both cases, the probabilistic behaviour
corresponds to measurement in a quantum system. The work more closely related to our
goals is [DM18]. It studies confluence of non-deterministic PARS in the case of finitary
termination (being finitary is the reason why Newman’s Lemma holds), and in the case
of AST . As we observe in Section 4.2.2, their notion of unique limit distribution (if α, β
are limits, then α = β), while simple, it is not an analogue of UN for general PARS. We
extend the analysis beyond AST, to the general case, which arises naturally when considering
untyped probabilistic λ-calculus. On confluence, we also mention [KC17], whose results
however do not cover non-deterministic PARS ; the probability of the limit distribution
is concentrated in a single element, in the spirit of Las Vegas Algorithms. [KC17] revisits
results from [BK02], while we are in the non-deterministic framework of [BG06].

The way we define the evolution of a PARS, via the one-step relation ⇒, follows the
approach in [LFVY17], which also contains an embryo of the current work (a form of
diamond property); the other results and developments are novel. A technical difference
with [LFVY17] is that for the formalism to be general, a refinement is necessary (see
Section 2.5); the issue was first pointed out in [DM18]. Our refinement is a variant of the one
introduced (for the same reasons) in [ALY20]; there, normal forms are discarded—because
the authors are only interested in the probability of termination—while we are interested in
a more qualitative analysis of the result. [ALY20] demonstrates the equivalence with the
approach in [BG06].

Quantitative Abstract Rewrite Systems (QARS) refine Ariola and Blom’s notion of
Abstract Rewrite Systems with Information content (ARSI) [AB02]; there, to the ARS is
associate a partial order which expresses a comparison between the “information content” of
the elements. Here, we simply move from partial orders to ω-complete partial orders (ω-cpo).
The difference is in the notion of limit, hence its properties, and our novel contribution is
the study of such properties. ARSI are tailored to infinite normal forms in the sense of
Böhm and Levy-Longo trees—limits (infinite normal forms) are there given by completing

5:8 C. Faggian Vol. 18:2

the partial order via a specific standard construction, ideal completion (see for instance
Ch. 1 in [AC98]). So, given an element t in an ARSI, the infinite normal form of t is the
downward closure of the set of the information contents of all its reducts. Such an approach
would not suit probability distributions, but moving to ω-cpo suffices. Being simply the
supremum of an ω-chain, the notion of limit which come with QARS is more general2 and
flexible, allowing us to model a larger variety of situations. All results we establish for
limits in the setting of QARS also hold for the infinite normal forms of ARSI, while the
converse is not true. In Appendix A.1 we give a concrete example that shows the difference:
a confluent ARSI has unique infinite normal forms (Theorem 5.4 there)—the analogue result
is (in general) not true for QARS.

2. Probabilistic Abstract Rewriting System

We assume the reader familiar with the basic notions of rewrite theory (such as Ch. 1
of [Ter03]), and of discrete probability theory. We review the basic language of both. We
then recall the definition of probabilistic abstract rewrite system from [BK02, BG06]—here
denoted pars—and explain on examples how a system described by a pars evolves. This will
motivate the formalism which we present in Section 3.

2.1. Basics on ARS. An abstract rewrite system (ARS) is a pair C = (C,→) consisting of
a set C and a binary relation → on C (called reduction) whose pairs are written t→ s and
called steps; →∗ (resp. →=) denotes the transitive reflexive (resp. reflexive) closure of →.
We write c 6→ if there is no u such that c→ u; in this case, c is a normal form. NFC denotes
the set of the normal forms of C. If c→∗ u and u ∈ NFC , we say c has a normal form u.

A relation → is deterministic if for each t ∈ C there is at most one s ∈ C such that
t→ s.

Unique Normal Form. C has the property of unique normal form (with respect to
reduction) (UN) if ∀c ∈ C,∀u, v ∈ NFC ,

(
c→∗ u & c→∗ v ⇒ u = v

)
. C has the normal form

property (NFP) if ∀b, c ∈ C,∀u ∈ NFC ,
(
b →∗ c & b →∗ u ⇒ c →∗ u

)
. Clearly, NFP implies

UN (and confluence implies NFP).

Normalization and Termination. The fact that an ARS has unique normal forms does
not imply neither that all elements have a normal form, nor that if an element has a normal
form, each rewrite sequence converges to it. An element c is terminating3 (aka strongly
normalizing, SN), if it has no infinite sequence c → c1 → c2 . . .; it is normalizing (aka
weakly normalizing, WN), if it has a normal form. These are all important properties to
establish about an ARS, as it is important to have a rewrite strategy which finds a normal
form, if it exists.

2Notice that the ideal completion of a partial order is in particular an ω-cpo.
3Please observe that the terminology is community-dependent. In logic: Strong Normalization, Weak Nor-

malization, Church-Rosser (hence the standard abbreviations SN, WN, CR). In computer science: Termination,
Normalization, Confluence.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:9

r0 : c→ {c1/2, T1/2}

c
c

c
. . .

T
T

T

1/2

1/4

1/4

1/2

Figure 1. Almost Sure
Termination

2

1
0

2 · · ·

3
2 · · ·

4 · · ·

1/2
1/4

1/4

1/2
1/4

1/4

Figure 2. Deter-
ministic pars

2

1
0

2
1 · · ·

3 · · ·

3
2 stop

4 · · ·

1/2

1/4

1/4

1/8

1/8

1/2

1/4 1/4

1/4

Figure 3. Non-
deterministic pars

2.2. Basics on Probabilities. The intuition is that random phenomena are observed
by means of experiments (running a probabilistic program is such an experiment); each
experiment results in an outcome. The collection of all possible outcomes is represented
by a set, called the sample space Ω. When the sample space Ω is countable, the theory
is simple. A discrete probability space is given by a pair (Ω, µ), where Ω is a countable
set, and µ is a discrete probability distribution on Ω, i.e. a function µ : Ω → [0, 1]
such that

∑
ω∈Ω µ(ω) = 1. A probability measure is assigned to any subset A ⊆ Ω as

µ(A) =
∑

ω∈A µ(ω). In the language of probabilists, a subset of Ω is called an event.

Example 2.1 (Die). Consider tossing a die once. The space of possible outcomes is the set
Ω = {1, 2, 3, 4, 5, 6}. The probability µ of each outcome is 1/6. The event “result is odd” is
the subset A = {1, 3, 5}, whose probability is µ(A) = 1/2.

Each function F : Ω→ ∆, where ∆ is another countable set, induces a probability
distribution µF on ∆ by composition: µF (d) := µ(F−1(d)) i.e. µ({ω ∈ Ω : F (ω) = d}).
Thus (∆, µF) is also a probability space. In the language of probability theory, F is called a
discrete random variable on (Ω, µ). The expected value (also called the expectation or
mean) of a random variable F is the weighted (in proportion to probability) average of the
possible values of F . Assume F : Ω→ ∆ discrete and g : ∆→ R a non-negative function,
then E(g(F)) =

∑
d∈∆ g(d)µF (d).

2.3. (Sub)distributions: operations and notation. We need the notion of subdistribu-
tion to account for partial results, and for unsuccessful computation. Given a countable
set Ω, and a function µ : Ω → [0, 1], we define ‖µ‖ :=

∑
ω∈Ω µ(ω). The function µ is a

probability subdistribution if ‖µ‖ ≤ 1. We write Dst(Ω) for the set of subdistributions on
Ω. The support of µ is the set Supp(µ) = {a ∈ Ω | µ(a) > 0}. DstF(Ω) denotes the set of
µ ∈ Dst(Ω) with finite support, and 0 indicates the subdistribution of empty support.

Dst(Ω) is equipped with the pointwise order relation of functions: µ ≤ ρ if µ(a) ≤ ρ(a)
for each a ∈ Ω. Multiplication for a scalar (p · µ) and sum (σ + ρ) are defined as usual,
(p · µ)(a) = p · µ(a), (σ + ρ)(a) = σ(a) + ρ(a), provided p ∈ [0, 1], and ‖σ‖+ ‖ρ‖ ≤ 1.

Notation 2.2 (Representation). We represent a (sub)distribution by explicitly indicating
the support, and (as superscript) the probability assigned to each element by µ. We write
µ = {ap00 , . . . , a

pn
n } if µ(a0) = p0, . . . , µ(an) = pn and µ(aj) = 0 otherwise.

5:10 C. Faggian Vol. 18:2

2.4. Probabilistic Abstract Rewrite Systems (pars). A probabilistic abstract rewrite
system (pars) is a pair (A,→) of a countable set A and a relation → ⊆ A× DstF(A) such
that for each (a, β) ∈ →, ‖β‖ = 1. We write a→ β for (a, β) ∈ → and we call it a rewrite
step, or a reduction. An element a ∈ A is in normal form if there is no β with a→ β. We
denote by NFA the set of the normal forms of A (or simply NF when A is clear). A pars is
deterministic if, for all a, there is at most one β with a→ β.

Remark 2.3. The intuition behind a → β is that the rewrite step a → b (b ∈ A) has
probability β(b). The total probability given by the sum of all steps a→ b is 1.

Probabilistic vs Non-deterministic. It is important to understand the distinction be-
tween probabilistic choice (which globally happens with certitude) and non-deterministic
choice (which leads to different distributions of outcomes.) Let us discuss some examples.

Example 2.4 (A deterministic pars). Fig. 2 shows a simple random walk over N, which
describes a gambler starting with 2 points and playing a game where every time he either
gains 1 point with probablity 1/2 or looses 1 point with probability 1/2. This system is

encoded by the following pars on N: n+ 1→ {n1/2, (n+ 2)1/2}. Such a pars is deterministic,
because for every element, at most one choice applies. Note that 0 is the (only) normal form.

Example 2.5 (A non-deterministic pars). Assume now (Fig. 3) that the gambler of Exam-
ple 2.4 is also given the possibility to stop at any time. The two choices are here encoded as
follows:

n+ 1→ {n1/2, (n+ 2)1/2}, n+ 1→ {stop1}
The choice between two possible rules makes the system non-deterministic, and therefore
the system can evolve in several different ways. Fig. 3 illustrates one possible way.

Probabilistic vs Non-deterministic. We now need to explain how a system which is
described by a pars evolves. An option is to follow the stochastic evolution of a single run, a
sampling at a time, as we have done in Fig. 1, 2, and 3. This is the approach in [BG06],
where non-determinism is solved by the use of policies. Here we follow a different (though
equivalent) way. We describe the possible states of the system, at a certain time t, globally,
essentially as a distribution on the space of all elements. The evolution of the system is then
a sequence of such states. Since all the probabilistic choices are taken together, a global
step happens with probability 1; the only source of non-determinism in the evolution of the
system is choice. This global approach allows us to deal with non-determinism by using
techniques which have been developed in Rewrite Theory. Before introducing the formal
definitions, we informally examine some examples, and point out why some care is needed.

Example 2.6 (Fig.1 continued). The pars described by the rule r0 : c → {c1/2, T1/2} (in

Fig. 1) evolves as follows: {c}, {c1/2, T1/2}, {c1/4, T3/4},

Example 2.7 (Fig.4). Fig. 4 illustrates the possible evolutions of a non-deterministic

system which has two rules: r0 : a→ {a1/2, T1/2} and r1 : a→ {a1/2, F1/2}. The arrows are
annotated with the chosen rule.

Example 2.8 (Fig.5). Fig. 5 illustrates the possible evolutions of a system with rules

r0 : a→ {a1/2, T1/2} and r2 : a→ {a1}.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:11

r0 : a→ {a1/2, T1/2}, r1 : a→ {a1/2, F1/2}

{a1}

{a1/2, T1/2}{a1/2, T1/2}{a1/2, T1/2}
{a1/4, T3/4}{a1/4, T3/4}{a1/4, T3/4} · · ·

{a1/4, T1/2, F1/4}, · · ·

{a1/2, F1/2}
{a1/4, T1/4, F1/2} · · ·

{a1/4, F3/4}· · ·

r0

r0

r1

r1
r0

r1

Figure 4. Ex.2.7 (non-deterministic
pars)

r0 : a→ {a1/2, T1/2}, r2 : a→ {a1}

{a1}

{a1/2, T1/2}{a1/2, T1/2}{a1/2, T1/2}
{a1/4, T3/4}{a1/4, T3/4}{a1/4, T3/4} · · ·

{a1/2, T1/2}· · ·

{a1}
{a1/2, T1/2} · · ·

{a1} · · ·

r0

r0

r2

r2
r0

r2

Figure 5. Ex.2.8 (non-deterministic
pars)

If we look at Fig. 3, we observe that after two steps, there are two distinct occurrences of
the element 2, which live in two different runs of the program: the run 2.1.2, and the run
2.3.2. There are two possible transitions from each 2. The next transition only depends on
the fact of having 2, not on the run in which 2 occurs: its history is only a way to distinguish
the occurrence. For this reason, given a pars (A,→), we keep track of different occurrences
of an element a ∈ A, but not necessarily of the history. Next section formalizes these ideas.

Markov Decision Processes. To understand our distinction between occurrences of a ∈ A
in different paths, it is helpful to think how a system is described in the framework of Markov
Decision Processes (MDP) [Put94]. Indeed, in the same way as ARS correspond to transition
systems, pars correspond to probabilistic transitions. Let us regard a pars step r : a→ β as
a probabilistic transition (r is here a name for the rule). Let assume a0 ∈ A is an initial
state. In the setting of MDP, a typical element (called sample path) of the sample space Ω
is a sequence ω = (a0, r0, a1, r1 . . .) where r0 : a0 → β1 is a rule, a1 ∈ Supp(β1) an element,
r1 : a1 → β1, and so on. The index t = 0, 1, 2, . . . , n, . . . is interpreted as time. On Ω various
random variables are defined; for example, Xt = at, which represents the state at time t.
The sequence 〈Xt〉 is called a stochastic process.

3. A Formalism for Probabilistic Rewriting

This section presents a formalism to describe the global evolution of a system described
by a pars, which is a variant of that used in [ALY20]. The equivalence with the approach
in [BG06] is demonstrated in [ALY20].

3.1. PARS. Let A be a countable set on which a pars A = (A,→) is given. We define a
rewrite system (mA,⇒), where mA is the set of objects to be rewritten, and ⇒ a relation
on mA. We indicate as PARS the resulting rewriting system.

The objects to be rewritten. mA is the set of all multidistributions on A, which are
defined as follows. Let m be a multiset4 of pairs of the form pa, where p ∈]0, 1] is a real
number, and a ∈ A an element of A; the multiset m = [piai | i ∈ I] is a multidistribution on
A if ‖m‖ =

∑
i∈I pi ≤ 1. We write the multidistribution [1a] simply as [a].

Sum and product are partial operations, similarly to what happens for distributions. The
sum of multidistributions is denoted by +, and it is the disjoint union of multisets (think of
list concatenation). Given two multidistributions m1 = [piai | i ∈ I] and m2 = [qjbj | j ∈ J],

4A multiset is a (finite) list of elements, modulo reordering.

5:12 C. Faggian Vol. 18:2

their sum [piai | i ∈ I]] [qjbj | j ∈ J] is defined only if ‖m1‖ + ‖m2‖ ≤ 1. The product
q · m of a scalar q and a multidistribution m is defined pointwise, provided that p ∈ [0, 1]:
q · [p1a1, . . . , pnan] = [(qp1)a1, . . . , (qpn)an].

Intuitively, a multidistribution m ∈ mA is a syntactical representation of a discrete
probability space where each point in the space (each outcome) is associated to a probability
and an element of A. More precisely, each pair in m correspond to a trace of computation,
or—in the language of Markov Decision Processes—to a sample path.

The rewriting relation. The binary relation ⇒ on mA is obtained by lifting the relation
→ of the pars A = (A,→), as follows.

Definition 3.1 (Lifting). Given a relation →⊆ A × Dst(A), its lifting to a relation ⇒⊆
mA×mA is defined by the rules

a 6→
[a] ⇒ [a]

L1
a→ {apkk | k ∈ K}

[a] ⇒ [pkak | k ∈ K]
L2

(
[ai] ⇒ mi

)
i∈I

[piai | i ∈ I] ⇒
∑

i∈I pi · mi
L3

For the lifting, several natural choices are possible. Here we force all non-terminal
elements to be reduced. This choice plays an important role for the development of the paper,
as it corresponds to the key notion of one step reduction in classical ARS (see discussion in
Section 10). Let us discuss some more the lifting rules.

• Rule L1. Note that the relation ⇒ is reflexive on normal forms.
• Rule L2. Please observe that [pkak | k ∈ K] ∈ mA is simply a representation of the

distribution {apkk | k ∈ K} ∈ Dst(A).
• Rule L3. To apply rule L3, we have to choose a reduction step from ai for each i ∈ I.

The (disjoint) sum of all mi (i ∈ I) is weighted with the scalar pi associated to each piai.

Example 3.2. Let us derive the reduction in Fig. 3. For readability, elements in N are in
bold.

2→ {1 1
2 ,3

1
2 }

[2] ⇒ [121, 123]

1→ {0 1
2 ,2

1
2 } 3→ {2 1

2 ,4
1
2 }

[121, 123] ⇒ [140, 142, 142, 144]

. . . 2→ {stop1} 2→ { 121, 123} . . .

[140, 142, 142, 144] ⇒ [. . . , 14stop, 181, 183, . . .]

PARS. We indicate as PARS the rewrite system (mA,⇒) which is induced by the pars
(A,→).

Rewrite sequences. We write m0 ⇒∗ mn to indicate that there is a finite sequence m0, . . . , mn
such that mi ⇒ mi+1 for all 0 ≤ i < n (and m0 ⇒k mk to specify its length k). We write
〈mn〉n∈N to indicate an infinite rewrite sequence.

Figures conventions: we depict any rewrite relation simply as→; as it is standard, we use
� for →∗; solid arrows are universally quantified, dashed arrows are existentially quantified.

3.2. Normal forms and observations. Intuitively, a multidistribution m ∈ mA is a
syntactical representation of a discrete probability space where at each element of the space
is associated a probability and an element of A. This space may contain various information.
We analyze this space by defining random variables that observe specific properties of interest.
Here we focus on a specific event of interest: the set NFA of normal forms of A.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:13

Distribution over the elements of A. First of all, to each multidistribution m = [piai |
i ∈ I] we can associate a (sub)distribution mdst ∈ Dst(A) as follows:

mdst(c) =
∑
i∈I

qi qi =

{
pi if ai = c
0 otherwise

Informally, for each c ∈ A, we sum the probability of all occurrence of c in the multidistri-
bution (observe that, m being a multiset, there are in general more than one elements piai
where ai = c).

Distribution over the normal forms of A. Given m ∈ mA, the probability that the
system is in normal form is described by mdst(NFA) (recall Example 2.1); the probability
that the system is in a specific normal form u is described by mdst(u).

It is convenient to spell-out a direct definition of both, to which we will refer in the rest
of the paper.

• The function −NF : mA→ Dst(NFA) m 7→ mNF is the restriction of mdst to NFA.
Informally, this function extracts from m = [piai]i∈I the subdistribution mNF over normal

forms.

• The norm ‖ − ‖ : Dst(NFA)→ [0, 1]
(

recall that ‖µ‖ =
∑

u∈NFA
µ(u)

)
induces the function

‖ −NF ‖ : mA→ [0, 1] m 7→ ‖mNF‖

which observes the probability that m has reached a normal form. Clearly, ‖mNF‖ = mdst(NFA).

Example 3.3. Let m = [1
4T,

1
8T,

1
4F,

3
8c] (where T, F are normal forms, and c is not). Then

mNF = {T
3
8 , F

1
4 }, and ‖mNF‖ = 5

8 .

The probability of reaching a normal form u can only increase in a rewrite sequence
(because of (L1) in Def. 3.1). Therefore the following key lemma holds.

Lemma 3.4. If m1 ⇒ m2 then mNF
1 ≤ mNF

2 and ‖mNF
1 ‖ ≤ ‖mNF

2 ‖.

Equivalences and Order. In this paper m ∈ mA is a multiset, for simplicity and uniformity
with [FR19], but we could have used lists rather than multisets—as we do in [Fag19]. We do
not really care of equality of elements in mA—what we are interested are instead equivalence
and order relations w.r.t the observation of specific events. For example, the following (recall
from Section 2.3 that the order on Dst(A) is the pointwise order):

Let m, r ∈ mA.

(1) Flat Equivalence: m =flat r, if mdst = rdst. Similarly, m ≥flat r if mdst ≥ rdst.
(2) Equivalence in Normal Form: m =NF r, if mNF = rNF. Similarly, m ≥NF r, if mNF ≥ rNF

(3) Equivalence in the NF-norm: m =‖‖ r, if ‖mNF‖ = ‖rNF‖, and m ≥‖‖ r, if ‖mNF‖ ≥ ‖rNF‖
Note that (2.) and (3.) compare m and r abstracting from any element which is not in
normal form.

Example 3.5. Assume T is a normal form and a 6= c are not.

(1) Let m = [1
2T,

1
2T], r = [1T]. m =flat r, m =NF r, m =‖‖ r all hold.

(2) Let m = [1
2a,

1
2T], r = [1

2c,
1
6T,

2
6T]. m =NF r, m =‖‖ r both hold, m =flat r does not.

The above example illustrates also the following.

5:14 C. Faggian Vol. 18:2

Fact 3.6. (m =flat r) ⇒ (m =NF r) ⇒ (m =‖‖ r). Similarly for the order relations.

4. Asymptotic Behaviour of PARS

We examine the asymptotic behaviour of rewrite sequences with respect to normal forms,
which are the most common notion of result.

The intuition is that a rewrite sequence describes a computation; an element mi such
that m ⇒i mi represents a state (precisely, the state at time i) in the evolution of the system
with initial state m. The result of the computation is a distribution over the possible normal
forms of the probabilistic program. We are interested in the result when the number of steps
tends to infinity, that is at the limit. This is formalized by the (rather standard) notion of
limit distribution (Def. 4.3). What is new here, is that since each element m has different
possible rewrite sequences (each sequence leading to a possibly different limit distribution)
to m is naturally associated a set of limit distributions.

A fundamental property for a system such as the λ-calculus is that if an element has a
normal form, it is unique. This is crucial to the computational interpretation of the calculus,
because it means that the result of the computation is well defined. A question we need to
address in the setting of PARS, is what does it mean to have a well-defined result. With
this in mind, we investigate an analogue of the ARS notions of normalization, termination,
and unique normal form.

4.1. Limit Distributions. Before introducing limit distributions, we revisit some facts on
sequences of bounded functions.

Monotone Convergence. We recall the following standard result.

Theorem 4.1 (Monotone Convergence for Sums). Let X be a countable set, fn : X → [0,∞]
a non-decreasing sequence of functions, such that f(x) := limn→∞ fn(x) = supn fn(x) exists
for each x ∈ X. Then

lim
n→∞

∑
x∈X

fn(x) =
∑
x∈X

f(x)

Recall that subdistributions over a countable set X are equipped with the pointwise
order : α ≤ α′ if α(x) ≤ α′(x) for each x ∈ X. Let 〈αn〉n∈N be a non-decreasing sequence
of (sub)distributions over X. For each t ∈ X, the sequence 〈αn(t)〉n∈N of real numbers
is nondecreasing and bounded, therefore the sequence has a limit, which is the supremum:
limn→∞ αn(t) = supn{αn(t)}. Observe that if α < α′ then ‖α‖ < ‖α′‖, where we recall that
‖α‖ :=

∑
x∈X α(x).

Lemma 4.2. Given 〈αn〉n∈N as above, the following properties hold. Define

β(t) = limn→∞ αn(t), ∀t ∈ X
(1) limn→∞ ‖αn‖ = ‖β‖
(2) limn→∞ ‖αn‖ = supn{‖αn‖} ≤ 1
(3) β is a subdistribution over X.

Proof. (1.) follows from the fact that 〈αn〉n∈N is a nondecreasing sequence of functions,
hence (by Monotone Convergence, Thm. 4.1) we have:

limn→∞
∑

t∈X αn(t) =
∑

t∈X limn→∞ αn(t)

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:15

(2.) is immediate, because the sequence 〈‖αn‖〉n∈N is nondecreasing and bounded.
(3.) follows from (1.) and (2.). Since ‖β‖ = supn ‖αn‖ ≤ 1, then β is a subdistribution.

Limit distributions. Let A = (mA,⇒) be the rewrite system induced by a pars (A,→).
Let 〈mn〉n∈N be a rewrite sequence. If t ∈ NFA, then 〈mNF

n (t)〉n∈N is nondecreasing (by
Lemma 3.4); so we can apply Lemma 4.2, with 〈αn〉n∈N now being 〈mNF

n 〉n∈N.

Definition 4.3 (Limits). Let 〈mn〉n∈N be a rewrite sequence from m ∈ mA. We say

(1) 〈mn〉n∈N converges with probability p = supn{‖mNF
n ‖}.

(2) 〈mn〉n∈N converges to β ∈ Dst(NFA)

β(t) = supn{mNF
n (t)}

We call β a limit distribution (on normal forms) of m, and p a limit probability (to

reach a normal form) of m. We write m
∞
=⇒ β (resp. m

∞
=⇒‖‖p) if m has a sequence which

converges to β (resp. converges with probability p). We define Lim(m) := {β | m ∞=⇒ β} the

set of limit distributions, and Lim‖‖(m) := {p | m ∞=⇒‖‖p}.

Note that in the definition above, p (item 1.) is a scalar, while β (item 2.) is subdis-
tribution over normal forms. The former is a quantitative version of a boolean (yes/no)
property, to reach a normal form. The latter, is a quantitative (more precisely, probabilistic)
version of “which normal form is reached.”

Clearly

Lim‖‖(m) = {‖β‖ | β ∈ Lim(m)}
because supn ‖mNF

n ‖ = ‖ supn m
NF‖ (by Lemma 4.2, point 1.).

A computationally natural question is if the result of computing an element m is well
defined. We analyze it in Section 5—putting this question in a more general, but also simpler,
context. In fact, most properties of the asymptotic behaviours of PARSs are not specific
to probability, and are best understood when focusing only on the essentials, abstracting
from the details of the formalism. Before doing so, we build an intuition by informally
investigating the notions of normalization, termination, and unique normal form in our
concrete setting.

4.2. PARS vs ARS: Subtleties, Questions, and Issues.

4.2.1. On Normalization and Termination. In the setting of ARS, a rewrite sequence from
an element c may or may not reach a normal form. The notion of reaching a normal form
comes in two flavours (see Section 2.1): (1.) there exists a rewrite sequence from c which
leads to a normal form (normalization, WN); (2.) each rewrite sequence from c leads to
a normal form (termination, SN). If no rewrite sequence leads to a normal form, then c
diverges.

It is interesting to analyze a similar ∃/∀ distinction in a quantitative setting. We
distinguish two cases.

5:16 C. Faggian Vol. 18:2

Convergence with probability 1. If we restrict the notion of convergence to probability 1,
then it is natural to say that an element m weakly normalizes if it has a rewrite sequence
which converges with probability 1, and strongly normalizes (or, it is AST) if all rewrite
sequences converge with probability 1.

The general case. Many natural examples—in particular when we consider untyped
probabilistic λ-calculus—are not limited to convergence with probability 1, as Example 1.3
shows. In the general case, extra subtleties emerge, due to the fact that each rewrite sequence
converges with some probability p ∈ [0, 1] (possibly 0).

A first important observation is that the set {q | m ∞
=⇒‖‖q} has a supremum (say p),

but not necessarily a greatest element. Think of [0, p[, which has a sup, but not greatest
element. If Lim‖‖ has no greatest element, it means that no rewrite sequence converges to
the supremum p.

A second remark is that we naturally speak of termination/normalization with probability
0. Not only does it appear awkward to separate the case 0 (as distinct from 0.00001), but
divergence also—dually—should be quantitative.

We say that m (weakly) normalizes (with probability p) if {q | m ∞=⇒‖‖q} has a greatest

element p. This means that there exists a reduction sequence whose limit is p. Dually, we can
say that m strongly normalizes (or terminates) (with probability p), if all reduction
sequences converge with the same probability p ∈ [0, 1].

Since in this case all reduction sequences from the same element have the same behaviour,
a better term seems that m uniformly normalizes. And indeed, “all reduction sequences
from the same element converge with the same probability” is the analogue of the ARS
notion of uniform normalization, the property that all reduction sequences from an element
either all terminate, or all diverge (otherwise stated: weak normalization implies strong
normalization). Summing up, we use the following terminology:

Definition 4.4 (Normalization and Termination). A PARS is WN∞, SN∞, or AST, if each m

satisfies the corresponding property, where

• m is WN∞ (m normalizes) if there exists a sequence from m which converges with greatest
probability (say p). To specify, we say that m is p-WN∞.
• m is SN∞ (m strongly—or uniformely—normalizes) if all sequences from m converge

with the same probability (say p). To specify, we say that m is p-SN∞.
• m is Almost Sure Terminating (AST) if it strongly normalizes with probability 1 (i.e.,

it is 1-SN∞).

Example 4.5. The system in Fig. 5 is 1-WN∞, but not 1-SN∞. The top rewrite sequence (in
blue) converges with probability 1 = limn→∞

∑n
k:1

1
2k

. The bottom rewrite sequence (in red)
converges with probability 0. In between, we have all dyadic possibilities. In contrast, the
system in Fig. 4 is AST .

4.2.2. On Unique Normal Forms and Confluence. We now focus on two natural questions.
First: when is the notion of the result [[m]] well defined? Second: given a probabilistic

program M , if [M]
∞
=⇒ α and [M]

∞
=⇒ β, how do β and α relate?

Normalization and termination are quantitative yes/no properties—we are only interested

in the number ‖β‖, for β limit distribution; for example, if m
∞
=⇒ {F1} and m

∞
=⇒ {T1/2, F1/2},

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:17

then m converges with probability 1, but we make no distinction between the two—very
different—results. Similarly, consider again Fig. 4. The system is AST, however the limit
distributions are not unique: they span an infinity of distributions which have shape
{Tp, F1−p}. These observations motivate attention to finer-grained properties.

In the usual theory of rewriting, the fact that the result is well defined is expressed by
the unique normal form property (UN). Let us examine an analogue of UN in a probabilistic
setting. An intuitive candidate is the following, which was first proposed in [DM18]:

ULD: if α, β ∈ Lim(m), then α = β
[DM18] shows that, in the case of AST, confluence implies ULD. However, ULD is not a good

analogue in general, because a PARS does not need to be AST (or SN∞); it may well be that

m
∞
=⇒ α and m

∞
=⇒ β, with ‖α‖ 6= ‖β‖. We have seen rewrite systems which are not AST

in Fig. 5, and in Example 1.3. Similar examples are natural in an untyped probabilistic
λ-calculus (recall that the λ-calculus is not SN!).

We then prefer not to limit the analysis to AST. In such a case, ULD is not implied by
confluence: the system in Fig. 5 is indeed confluent, but not ULD. Still, we would like to say
that it satisfies a form of UN .

We propose as probabilistic analogue of UN the following property

UN∞: Lim(m) has a greatest element.

which we justify in Section 5, where we show that PARS satisfy an analogue of standard
ARS results: “Confluence implies UN” (Thm. 5.18), and “the Normal Form Property implies
UN” (Prop. 5.11). There are however two important observations to make.

Important observation! While the statements are similar to the classical ones, the content
is not. To understand the difference, and what is non-trivial here, observe that in general
there is no reason to believe that Lim(m) has maximal elements. Think again of the set [0, 1[,
which has no max, even if it has a sup. Observe also that Lim(m) is—in general—uncountable.

In Section 5.2 we will see that to prove the existence of maximal limits is indeed not
immediate. For this reason, while in the case of finitary termination uniqueness of normal
forms follows immediately from confluence, it is not so when termination is asymptotic:
confluence does not directly guarantee UN∞, and more work is needed.

Which notion of Confluence? Property UN∞ is guaranteed by a form of confluence weaker
than one would expect. Assume s ∗⇔ m ⇒∗ r; with the standard notion of confluence in
mind, we may require that ∃u such that s ⇒∗ u, r ⇒∗ u or that ∃u, u′ such that s ⇒∗ u,
r ⇒∗ u′ and u =flat u

′. Both are fine, but in Section 5.2 we show that a weaker notion of
equivalence (which was already discovered in [AB02]) suffices—we only need to compare
multidistributions w.r.t. their information content on normal forms.

Remark 4.6. In the case of AST (and SN∞), all limits are maximal, hence UN∞ becomes
ULD.

4.2.3. Newman’s Lemma Failure, and Proof Techniques for PARS. The statement of Thm. 5.18
“Confluence implies UN∞” has the same flavour as the analogue one for ARSs, but the notions
are not the same. The notion of limit (and therefore that of UN∞, SN∞, and WN∞) does not
belong to the theory of ARSs. For this reason, the rewrite system (mA,⇒) which we are
studying is not simply an ARS. One should not assume that standard properties of ARSs

5:18 C. Faggian Vol. 18:2

transfer to their asymptotic analog. An illustration of this is Newman’s Lemma. Given
a PARS, let us assume AST and observe that in this case, confluence at the limit can be
identified with UN∞. A wrong attempt: AST + WCR∞ ⇒ UN∞, where WCR∞: if m ⇒ s1 and

m ⇒ s2, then ∃r, with s1
∞
=⇒ r, s2

∞
=⇒ r. This does not hold. A counterexample is the

PARS in Fig. 4, which does satisfy WCR∞.

Remark 4.7. Could a different formulation uncover properties similar to Newman Lemma?
Another “ candidate” statement we can attempt is : AST + WCR ⇒ UN∞. Unfortunately,
here we did not find an answer. However, this property is an interesting case study. It is
not hard to show that such a property holds when Lim(m) is finite, or uniformly discrete,
meaning that—given a definition of distance—there exist a minimal distance between two
elements in Lim(m). This fact also implies that a counterexample (if any) cannot be trivial.
On the other side, if the property holds, the difficulty is which proof technique to use, since
well-founded induction is not available to us.

What is at play here is that the notion of termination is not the same for ARSs and
for PARSs. A fundamental fact of ARSs (on which all proofs of Newman’s Lemma rely) is:
termination implies that the rewriting relation is well founded. All terminating ARSs allow
well-founded induction as proof technique; this is not the case for probabilistic termination.
To transfer properties from ARSs to PARSs there are two issues: we need to find the right
formulation and the right proof technique.

Notice that our counter-example above still leaves open the question “Can a different
formulation uncover properties similar to Newman’s Lemma?” Or, better, “Are there local
properties which guarantee UN∞?”

5. Quantitative Abstract Rewriting Systems

We observed that the notion of result as a limit does not belong to ARSs. However, in
many arguments we do not need all the structure coming from PARS. To be able to study
asymptotic rewriting, in this section we define Quantitative Abstract Rewriting Systems
(QARS). As already noted, QARS are a natural refinement of ARSI in [AB02]—we simply
move from partial orders to ω-cpos. The main contribution of this section is to provide a set
of proof techniques, first to study properties of the limits, and then to compare reduction
strategies. Working abstractly allows us to study the asymptotic properties, capturing the
essence of the arguments.

QARS. We can see computation as a process that produces a result by gradually increasing
the amount of available information. So a reduction sequence gradually computes a result
by converging (in a finite or infinite number of steps) to the maximal amount of information
which it can produce. The standard structure to express a result in terms of partial
information is that of an ω-cpo.

Recall that a partially ordered set S = (S,≤) is an ω-complete partial order (ω-cpo)
if every ω-chain b0 ≤ b1 ≤ . . . has a supremum in S. We assume the partial order to have a
least element ⊥. We denote the elements of S with bold letters a, b, c. . .

Let (C,→) be an ARS. To each element t ∈ C it is associated a notion of (partial)
information, which is modeled by a function from C to an ω-cpo. Def. 5.1 formalizes this
intuition.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:19

Definition 5.1 (QARS). A Quantitative ARS (QARS) is an ARS (C,→) together with a
function obs : C → S, where S is an ω-cpo and such that

t→ t′ implies obs(t) ≤ obs(t′).

Intuitively, the function obs observes a specific property of interest about t ∈ C. The
observation obs(t) indicates how much stable information t delivers: the information content
is monotone increasing during computation.

Example 5.2. The following are examples of QARS.

(1) ARSs: take S = ({0, 1},≤) and the boolean function obs(t) = 1 if t is a normal form,
obs(t) = 0 otherwise.

(2) PARS: take S = ([0, 1],≤), and a function which corresponds to a probability measure, for
example the probability to be in normal form obs(m) 7→ ‖mNF‖ (as defined in Section 3.2).

The observation obs(t) does not need to take numerical values. In the examples below, S is
an ω-cpo of partial results.

Example 5.3. (1) ARS: take for S the flat order on normal forms, and define the function
obs(t) = t if u is normal, obs(t) = ⊥ otherwise.

(2) PARS: take for S the ω-cpo of subdistributions on normal forms Dst(NFA), and for obs
the function −NF, as defined in Section 3.2.

Maximal rewrite sequences. From now on, to indicate in a uniform way maximal rewrite
sequences, whenever finite or infinite, we write 〈tn〉n∈N for an infinite sequence such that
either ti → ti+1, or ti = ti+1 ∈ NFA (hence, 〈tn〉n∈N is constant from an index k on, i.e.
t→∗ tk 6→). Letters s, t range over maximal sequences.

We still write t→∗ s to indicate that there is a finite sequence from t to s.

5.1. Limits as Results. In this section we let Q = ((C,→), obs) be an arbitrary but fixed
QARS. Intuitively, the result computed by a possibly infinite reduction sequence 〈mn〉n∈N is
the limit observation.

By definition, given a →-sequence 〈mn〉n∈N, its limit w.r.t. obs

supn{obs(mn)}.
always exists, because S is an ω-cpo. Intuitively, this is the maximal amount of information
produced by the sequence, the result of that specific computation.

If→ is a deterministic reduction—and so from t there is a unique maximal→-sequence—
it is standard to interpret the limit as the meaning of t. In a QARS, however, t has several
possible rewrite sequences, and therefore can produce several results/have several limits.

Definition 5.4 (obs-limits). For m ∈ C, we write

m→∞obs a

if there exists a sequence 〈mn〉n∈N from m such that supn{obs(mn)} = a. Then

• Limobs(m) := {a | m→∞obs a}
• [[m]] denotes the greatest element of Limobs(m), if any exists.

5:20 C. Faggian Vol. 18:2

Informally, to m is associated a well-defined result, which we denote [[m]], if the maximal
amount of information produced by any reduction sequence is well defined. The intuition is
that [[m]] is well defined if different reduction sequences from m do not produce “essentially
different” results: if b 6= b′ then they are both approximants of a same result a (i.e.,
b, b′ ≤ a).

Thinking of usual rewriting, consider obs as defined in point 1, Ex. 5.3. Then to have a
greatest limit exactly corresponds to uniqueness of normal forms.

Example 5.5. Let us revisit Ex. 5.2.

(1) ARS: consider usual λ-calculus with β-reduction. The term t = (λx.z)(∆∆) has infinitely
many possible →β-sequences. With the same definition of obs as in Ex. 5.2, Point 1,
the set of limits w.r.t. obs contains two elements: Limobs(t) = {0, 1}.

(2) PARS (probabilistic λ-calculus): consider m = [1 I⊕∆∆], which has exactely one maximal
reduction sequence, starting with m ⇒ [1

2I,
1
2∆∆] ⇒ Define obs(m) = ‖mNF‖. In this

case m ⇒∞
obs

1
2 and Limobs(m) = {1

2}.

Point 2. in Ex. 5.5 shows well that the notion of result is quantitative: m reaches a normal
form with probability 1

2 . This also shows that maximal elements of Limobs(m) do not need to
be maximal elements of S; the reason for this choice is exactly that terms like I⊕∆∆ (which
converges with probability 1

2 rather than 1) are natural in an untyped setting like λ-calculus.
As a consequence, in general, the set of limits may or may not have maximal elements. Note
that, even if Limobs(m) has maximal elements, a greatest limit does not necessarily exist.
The probabilistic λ-term in Ex. 1.2 is a good example: different reduction sequences lead to
different limits. Another clear example is Ex. 2.7: a has an infinity of limits, all maximal.

Remark 5.6 (greatest limit). We are interested in the case when a greatest limit does
exist. The reason is that if Limobs(m) has a sup b ∈ S which does not belong to Limobs(m), no
rewrite sequence converges to b. That is, we cannot compute b internally in the calculus.

Like for PARS, the natural question is if the result of computing an element m is well
defined. This is exactly the sense of the property UN∞, which we can state in full generality
for QARS.

A QARS satisfies property UN∞ if Limobs(m) has a greatest element.

Clearly, by definition:

UN∞ if and only if [[m]] is defined.

5.2. Confluence and UN∞. In our setting, maximal limits play a role similar to that of
normal forms in ARSs. However, since termination is asymptotic, the situation is more
complex than in a finitary case. Notably, in the case of QARS, confluence does not guarantee
UN∞, at least not in general. In this section, we show that confluence (and variants of it)
imply the following: if a maximal element exists in Limobs(m), it is the greatest element.
Note that such a property is stronger than uniqueness of maximal limits—however, it does
not imply UN∞, because we have no guarantee that Limobs(m) contains any maximal element.

Fortunately, in the case of PARS, confluence does imply UN∞. However, the proof
(Section 5.4) relies on more properties than the basic ones which we have assumed for QARS.

Definition 5.7 (Confluence). A QARS ((C,→), obs) satisfies

• Confluence if: for all s, r ∈ C with s ∗← m→∗ r, there exist u such that s→∗ u, r→∗ u.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:21

r0

s sr1

r1

sr2

r2 . . .

. . .

≤obs ≤obs

Figure 6. Skew-Confluence implies LIM

• obs-Confluence if: for all s, r ∈ C with s ∗← m→∗ r, there exist s′, r′ such that s→∗ s′,
r→∗ r′, and obs(s′) = obs(r′).
• Skew-Confluence5 if: ∀s, r ∈ C with s ∗← m →∗ r, exists s′ such that s →∗ s′, and
obs(r) ≤ obs(s′).

Clearly,

Fact 5.8. Confluence ⇒ obs-Confluence ⇒ Skew-Confluence.

In analogy to the normal form property of ARS (NFP, see Section 2.1), we define the
following

Definition 5.9 (Limit Property (LIM)). A QARS ((C,→), obs) satisfies the Limit Property
LIM if (∀m, s ∈ C):

a ∈ Limobs(m) and m→∗ s imply that there exists b ∈ Limobs(m) such that s→∞obs b and
a ≤ b.

Lemma 5.10 (Main Lemma). Given a QARS, Skew-Confluence implies LIM.

Proof. Let r0, s ∈ C, a ∈ Limobs(r0), r0 →∗ s. Let 〈rn〉n∈N be a sequence with limit a.
As illustrated in Fig. 6, starting from s, we build a sequence s = sr0 →∗ sr1 →∗ sr2 . . . ,
where sri , i ≥ 1 is given by Skew Confluence: from r0 →∗ ri and r0 →∗ sri−1 we obtain
sri−1 →∗ sri with obs(ri) ≤ obs(sri). Let b be the limit of the sequence so obtained; observe
that b ∈ Limobs(r0). By construction, ∀i, obs(ri) ≤ obs(sri) ≤ b. From a = sup 〈obs(rn)〉
it follows that a ≤ b.

LIM implies that if a maximal limit exists, it is the greatest limit.

Proposition 5.11 (Greatest limit). Given a QARS ((C,→), obs), and m ∈ C, LIM implies
that if Limobs(m) has a maximal element, then it is the greatest element.

Proof. Let a ∈ Limobs(m) be maximal. For each c ∈ Limobs(m), there is a sequence 〈mn〉n∈N
from m such that c = supn obs(mn). LIM implies that ∀n, mn →∞obs bn ≥ a. By maximality
of a, bn = a and therefore obs(mn) ≤ a. From c = supn obs(mn) we conclude that c ≤ a,
that is, a is the greatest element of Limobs(m).

Given a confluent QARS, to guarantee that UN∞ holds, and therefore for each m ∈ C,
[[m]] is defined, it suffices to establish that Limobs(m) has a maximal element.

In Section 5.4 we prove that in the case of PARS, confluence implies the existence
of a maximal element and therefore of a greatest element. To do that, we use more

5In [Fag19] we call this property Semi-Confluence. The same property is studied in [AB02]—here we
adopt their terminology.

5:22 C. Faggian Vol. 18:2

structure, namely the fact that the ω-cpo Dst(NFA) is equipped with an order-preserving
norm ‖‖ : Dst(NFA)→ [0, 1].

5.3. Observing in the unit interval. Let us consider the case of QARS where the
associated ω-cpo is the bounded interval [0, 1] ⊂ R, equipped with the standard order.

Assume fixed a QARS Q = ((C,→), obs) such that obs : C → [0, 1] ⊂ R. We show
that property LIM implies that p = sup Limobs(m) belongs to Limobs(m), where Limobs(m) =
{q | m→∞obs q}. Therefore, UN∞ holds.

We need a technical lemma

Lemma 5.12. Let Q, Limobs(m) and p be as above. For each ε > 0, property LIM implies
the following: if q ∈ Limobs(m), |p− q| ≤ ε, and m→∗ s, then there exists t, such that s→∗ t
and |p− obs(t)| ≤ 2ε.

Proof. The assumption m→∗ s and LIM imply that there exists a rewrite sequence 〈sn〉n∈N
from s which converges to q′ ≥ q; clearly |p− q′| ≤ ε.

By definition of limit of a sequence, there is an index kε such that |q′ − obs(skε)| ≤ ε,
hence |p− obs(skε)| ≤ 2ε. Since s→∗ skε , t = skε satisfies the claim.

Proposition 5.13 (Greatest limit). Given a QARS Q = ((C,→), obs) such that obs : C →
[0, 1], property LIM implies that Limobs(m) has a greatest element.

Proof. Let p = sup Limobs(m). We show that p ∈ Limobs(m), by building a rewrite sequence

〈mn〉n∈N from m such that 〈mn〉n∈N
∞
=⇒ p.

For each k ∈ N, we define εk = 1
2k

. Observe that for each ε ∈ R+, there exists q ∈ Limobs
such that |p− q| ≤ ε.

Let s0 = m. From here, we build a sequence of reductions m→∗ s1 →∗ s2 →∗ . . . whose
limit is p, as follows. For each k > 0:

• there exists qk ∈ Limobs(m) such that |p− qk| ≤ εk
2

• From m→∗ sk−1, we use Lemma 5.12 to establish that there exists sk such that sk−1 →∗ sk
and |p− obs(sk)| ≤ εk (p, qk, sk−1, sk resp. instantiate p, q, s, t of Lemma 5.12).

Let 〈mn〉n∈N be the concatenation of all the finite sequences sk−1 →∗ sk. By construction,
limn→∞〈obs(mn)〉 = p. We conclude that p ∈ Limobs(m).

5.4. PARS: Confluence implies UN∞. We now can show that in the case of PARSs,
confluence (in all its variants) implies UN∞ (Thm. 5.18) and therefore for each m, [[m]]
is defined. In this section, we fix a PARS (mA,⇒), and define P = ((mA,⇒),−NF) and
P‖‖ = ((mA,⇒), ‖−NF ‖), where −NF and ‖−NF ‖ are as defined in Section 3.2. It is immediate
to check that

Fact 5.14. P = ((mA,⇒),−NF) and P‖‖ = ((mA,⇒), ‖ −NF ‖) are QARS.

Recall that ‖ −NF ‖ is induced by composing −NF with the norm ‖ ‖ : Dst(NFA)→ [0, 1],
and that letters α, β, γ denote elements in Dst(NFA).

First, we observe that

Fact 5.15. P‖‖ satisfies the conditions of Prop. 5.13. Therefore, if P‖‖ satisfies confluence
(and so LIM), then Lim‖‖(m) has a greatest element.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:23

We now lift the result to P. Precisely, we prove that for P, property LIM (Def. 5.9)
implies existence of a maximal element α of Lim(m). Then (by Prop. 5.11) α is the greatest
element of Lim(m). We rely on the following properties, which we already established in
Section 4.1.

• α < β implies ‖α‖ < ‖β‖,
• Lim‖‖(m) = {‖β‖ | β ∈ Lim(m)}

Lemma 5.16. If P satisfies LIM, then P‖‖ also does. Similarly for all variants of confluence
in Def. 5.7.

Proposition 5.17 (Maximal elements). If P satisfies LIM, then Lim(m) has maximal ele-
ments.

Proof. Lim‖−NF‖(m) has a greatest element. We observe that if α ∈ Lim(m) and ‖α‖ is

maximal in Lim‖−NF‖(m), then α is maximal in Lim(m) (because if γ ∈ Lim(m) and γ > α,

then ‖γ‖ > ‖α‖).

Theorem 5.18 (Confluence implies UN∞). Given a PARS, any variant of confluence in
Def. 5.7 implies UN∞.

Proof. The claim follows from Fact 5.8, Lemma 5.10, and Propositions 5.11 and 5.17.

6. Tools for the analysis of QARS

We closed Section 4.2.3 with the question:

“Are there local properties which guarantee UN∞?”

This section develops criteria of this kind.

If the result [[m]] of computing m is well defined, the next natural question is how to
compute it: does there exist a strategy →♣ ⊆ → whose limit is guaranteed to be [[m]]? More
generally: does there exist a strategy →♣ ⊆ → whose limit is guaranteed to be a maximal
element of Limobs(m), if it exists?

We introduce some tools to help in this analysis. Our focus is on properties which can
be expressed by local conditions.

6.1. Weighted Random Descent. We present a method to establish—with a local test—
that for each element m of a QARS, Limobs(m) contains a unique element by generalizing
the ARS property of Random Descent. Random Descent is not only an elegant technique
in rewriting, developed in [vO07, vOT16], but adapts well and naturally to the asymptotic
setting.

Random Descent. A reduction → has random descent (RD) [New42] if whenever an
element t has normal form, then all rewrite sequences from t lead to it, and all have the same
length. The best-known property which implies RD, as first observed by Newman [New42],
is the following

RD-diamond : if s1 ← t→ s2 then either s1 = s2, or s1 → u← s2 for some u.

This is only a sufficient condition. Quite surprisingly, Random Descent can be characterized
by a local (one-step) property [vO07].

5:24 C. Faggian Vol. 18:2

m

obs(ri) = obs(si)

obs-RD

m
r s

local obs-RD

obs(ti) = obs(si)

Figure 7. Random Descent

obs-diamond

m

t s

r

obs(t) = obs(s)

Figure 8. Dia-
mond

m

usk−1tk−1r

t s

Figure 9. Proof of
Thm. 6.5

Weighted Random Descent. We generalize Random Descent to observations. The
property obs-RD states that even though an element m may have different reduction
sequences, they are all indistinguishable if regarded through the lenses of obs. That is, if we
consider all reduction sequences 〈mn〉n∈N starting from the same m, they all induce the same
ω-chain 〈obs(mn)〉. Obviously, if all ω-chains from m are equal, they all have the same limit
supn{obs(mn)}.

The main technical result of the section is a local characterization of the property
(Thm 6.5), similarly to [vO07].

Definition 6.1 (Weighted Random Descent). The QARS ((C,→), obs) satisfies the following
properties (illustrated in Fig. 7) if they hold for each m ∈ C.

(1) obs-RD: for each pair of →-sequences 〈rn〉n∈N, 〈sn〉n∈N from t, and for each n ∈ N:
obs(rn) = obs(sn).

(2) local obs-RD: if r← m→ s, there exists a pair of sequences 〈rn〉n∈N from r and 〈sn〉n∈N
from s such that, for each n ∈ N, obs(sn) = obs(rn).

Example 6.2. Let us revisit the Random Descent property of weak Call-by-Value λ-calculus.
Let I = λz.z; the following are two different →w -sequences from the term (II)(Ix).

(1) (II)(Ix)→w I(Ix)→w Ix→w x

(2) (II)(Ix)→w II(x)→w Ix→w x

Let obs : Λ → {0, 1} be 1 if the term is a value (i.e., a variable or an abstraction), 0
otherwise. Seen through the lenses of obs, both sequences appear as 〈0, 0, 0, 1〉.

Example 6.3. In Fig. 4 obs-RD holds for obs = ‖ −NF ‖, and not for obs = −NF.

It is immediate that

Proposition 6.4. If a QARS ((C,⇒), obs) satisfies obs-RD, then for each m ∈ C, Limobs(m)
has a unique element.

While expressive, obs-RD is of little practical use, as it is a property which is universally
quantified on the sequences from m. Remarkably, the local obs-RD property characterizes
obs-RD .

Theorem 6.5 (Characterization). The following properties are equivalent:

(1) local obs-RD;
(2) ∀k, ∀m, u, r ∈ C if m→k u and m→k r, then obs(u) = obs(r);
(3) obs-RD .

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:25

Proof. The proof is illustrated in Fig. 9.
(1 ⇒ 2). We prove that (2) holds by induction on k. If k = 0, the claim is trivial. If

k > 0, let m → s be the first step from m to u and m → t the first step from m to r. By
local obs-RD, there exists sk−1 such that s→k−1sk−1 and tk−1 such that t →k−1 tk−1,
with obs(sk−1) = obs(tk−1). Since s→k−1 u, we can apply the induction hypothesis, and
conclude that obs(sk−1) = obs(u). By using the induction hypothesis on t, we have that
obs(tk−1) = obs(r) and conclude that obs(r) = obs(u).

(2 ⇒ 3). Immediate.
(3 ⇒ 1). Assume t← m→ s. Take a sequence 〈tn〉n∈N from t and a sequence 〈sn〉n∈N

from s. By (3), obs(tk) = obs(sk) ∀k.

A diamond. A useful case of local obs-RD is the obs-diamond property (Fig. 8): ∀m, s, t,
if t← m→ s, then obs(s) = obs(t), and either s = t, or ∃u s.t.

(
t→ u← s

)
. It is easy

to check that obs-diamond ⇒ local obs-RD .

Proposition 6.6. (obs-diamond) ⇒ local obs-RD ⇒ Limobs(t) contains a unique element.

Notice that while local obs-RD characterizes obs-RD, obs-diamond is only a sufficient
condition.

Remark 6.7 (The beauty of local). Observe locality at work in this and next section. To
show that a property P holds globally (i.e. for each two rewrite sequences, P holds), we
show that P holds locally (i.e. for each pair of one-step reductions, there exist two rewrite
sequences such that P holds). The space of search when testing property P is then reduced,
a fact that we exploit in the proofs of Section 7.2.

6.2. Strategies and Completeness. Strategies are a way to control the non-determinism
which arises from different possible choices of reduction.

ARS Strategies. Given an ARS (C,→), a strategy for → is a relation →
s
⊆ → with the

same normal forms as →.

QARS Strategies. Given a QARS Q = (C,→, obs), we call strategy6 for → a relation
→♣ ⊆→. We indicate strategies for → by colored arrows →♣,→♥.

Completeness. We formulate an asymptotic notion of completeness.

Definition 6.8 (Completeness). A reduction →♣ ⊆→ is obs-complete (or asymptotically
compelte) for → if:

t→∞obs b implies t→♣∞obs a with a ≥ b.

Note that a strategy →♣ which is asymptotically complete is not guaranteed to find the
“best” result, as one can immediately see by noticing that → is trivially a complete strategy
for → itself. However, it does if →♣ is deterministic, or “essentially” deterministic w.r.t.
obs. This is what the method in Section 6.1 provides.

6Note that the ARS condition of having the same normal forms, is replaced by the fact that we (tacitly)
consider the QARS

(
(C,→♣), obs

)
, where the function obs is the same as for Q.

5:26 C. Faggian Vol. 18:2

m

u

sk−1tk−1 ≥≥

m

≥

obs-LB

r ≥

t
m

rk ≥ uk

obs-better ♥ ♣♥♣ ♥ ♣

♥♣

♥♣

♣ ♥

u

s

Figure 10. obs-better

6.3. Comparing Strategies. In this section we refine the results given in the previous
section into a method to compare strategies. In which case is strategy →♣ better than
strategy →♥? We adapt to QARSs the ARS notion of “better” introduced in [vO07]. Again,
we obtain a local characterization (Thm. 6.11) of the property, similarly to [vO07].

In Section 8 we will analyze these notions in the setting of PARS. What we obtain are
sufficient criteria to establish that a strategy is normalizing or perpetual (Cor. 8.2), and to
compare the expected number of steps of rewrite sequences.

The method also provides another sufficient condition to establish UN∞.

Definition 6.9 (obs-better). The following properties are illustrated in Fig. 10.

• →♣ is obs-better than →♥ (obs-better(→♣,→♥)): for each m and for each pair of a
→♣-sequence 〈rn〉n∈N and a →♥-sequence 〈un〉n∈N from m, obs(rn) ≥ obs(un) holds, for
each n.
• →♣ is locally obs-better than →♥ (written obs-LB(→♣,→♥)): if t ♣← m→♥s, then

for each n ≥ 0, ∃sn, tn, such that s→n
♣ sn, t→♥n tn, and obs(tn) ≥ obs(sn)

Remark 6.10. Please notice that obs-RD (resp. local obs-RD) is a special case of obs-better
(resp. obs-LB). We have treated obs-RD first and independently, for the sake of presentation.

It is immediate that obs-better(→♣,→) implies that →♣ is obs-complete for →
(Def. 6.8). The notion of obs-better is again a condition which is expressive, but quantified
over all reduction sequences from m. We now prove that the local property obs-LB is sufficient
to establish obs-better, and even necessary when comparing with →.

Theorem 6.11. obs-LB(→♣,→♥) implies obs-better(→♣,→♥). The reverse also holds if
either →♣ or →♥ is →.

Proof. ⇒⇒⇒. The proof is illustrated in Fig. 10. We prove by induction on k the following:

obs-LB(→♣,→♥) implies(
∀k, ∀m, r, u ∈ C, if m→♣kr and m→♥ku, then obs(r) ≥ obs(u)

)
.

If k = 0, the claim is trivial. If k ≥ 1, let m→♣s be the first step from m to u, and m→♥t
the first step from m to r, as in Fig. 10. obs-LB implies that there exist sk−1 and tk−1 such
that s→♣k−1sk−1, t→♥k−1 tk−1, with obs(tk−1) ≥ obs(sk−1). Since s→♥k−1 u we can
apply the induction hypothesis, and obtain that obs(sk−1) ≥ obs(u). Again by induction
hypothesis, from t→♣k−1r we obtain obs(r) ≥ obs(tk−1). By transitivity, it holds that
obs(r) ≥ obs(u).
⇐⇐⇐. Assume →♥ =→, and t ♣←m → s. Let 〈tn〉n∈N and 〈sn〉n∈N be obtained by

extending t and s with a maximal →♣ sequence. The claim follows from the hypothesis
that →♣ dominates →, by viewing the →♣ steps in 〈sn〉n∈N as → steps.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:27

Greatest Element. Finally, we mention that obs-LB provides another method to establish
UN∞, and therefore the fact that for each m, [[m]] is defined.

Proposition 6.12 (Greatest Element). Given Q = {(C,→), obs}, if there is a strategy →♣
such that obs-LB(→♣,→), then Q satisfies UN∞.

Proof. First, observe that the assumption implies in particular obs-LB(→♣,→♣), and
therefore (by Thm. 6.5) the QARS ((C,→♣), obs) satisfies obs-RD. So, given m ∈ C, all
→♣-sequences from m have the same limit a. From obs-LB(→♣,→), it follows that a is the
greatest limit of Limobs(m).

7. PARS: Weighted Random Descent

When applied to PARS, obs-RD is able to guarantee some remarkable properties: UN∞ and
p-SN∞ as soon as there exists a sequence which converges with probability p, and also the
fact that all rewrite sequences from an element have the same expected number of steps.

Take obs to be either −NF or ‖ −NF ‖, obs-RD implies that all rewrite sequences from m:

• have the same probability of reaching a normal form after k steps (for each k ∈ N);
• converge to the same limit;
• have the same expected number of steps.

Proposition 7.1.

(1) ‖ −NF ‖-RD implies SN∞ (uniform normalization); moreover, for each m ∈ mA all
elements in Lim(m) are maximal.

(2) −NF-RD implies SN∞ and UN∞.

Point-wise formulation. In Section 7.2, we exploit the fact that not only obs-RD admits
a local characterization, but also that the properties local obs-RD and obs-diamond can be
expressed point-wise, making the condition even easier to verify.

(1) pointed local obs-RD: ∀a ∈ A, if t ⇔ [a1] ⇒ s, then ∀k, ∃sk, tk with s ⇒k sk, t ⇒k tk,
and obs(sk) = obs(tk).

(2) pointed obs-diamond: ∀a ∈ A, if t ⇔ [a1] ⇒ s, then it holds that obs(t) = obs(s), and
∃r such that t ⇒ r ⇔ s.

Proposition 7.2 (point-wise local obs-RD). The following hold

• local obs-RD iff pointed local obs-RD;
• obs-diamond iff pointed obs-diamond.

Proof. Immediate, by the definition of ⇒. Given m = [piai]i∈I , we establish the result for
each ai, and put all the resulting multidistributions together.

5:28 C. Faggian Vol. 18:2

7.1. Expected Termination Time. For ARS, Random Descent captures the property
(Length) “all maximal rewrite sequences from an element have the same length.”

obs-RD also implies a property similar to (Length) for PARS, where we consider not
the number of steps of the rewrite sequences, but its probabilistic analogue, the expected
number of steps.

In an ARS, if a maximal rewrite sequence terminates, the number of steps is finite; we
interpret this number as time to termination. In the case of PARS, a system may have
infinite runs even if it is AST; the number of rewrite steps → from an initial state is (in
general) infinite. However, what interests us is its expected value, i.e. the weighted average
w.r.t. probability (see Section 2.2) which we write ETime(〈mn〉n∈N). This expected value
can be finite; in this case, not only the system is AST, but is said PAST (Positively AST)
(see [BG06]).

Example 7.3. An example of probabilistic system with finite expected time to termination
is the one in Fig. 1. The reduction from c has ETime 2. We can see this informally,
recalling Section 2.2. Let the sample space Ω be the set of paths ending in a normal
form, and let µ be the probability distribution on Ω. What is the expected value of
the random variable length : Ω → N? We have E(length) =

∑
ω length(ω) · µ(ω) =∑

n∈N n · µ{ω | length(ω) = n} =
∑
n · 1

2n = 2.

a very simple formulation, as follows:

ETime(〈mn〉n∈N) =
∑
n∈N

(1− ‖mNF
n ‖) (7.1)

Intuitively, each tick in time (i.e. each ⇒ step) is weighted with its probability to take
place, which is µi{c | c 6∈ NFA} = 1− ‖mNF

i ‖ (where µi is the distribution over A associated to
mi). We refer to [ALY20] for the details.

Example 7.4. It is immediate to check that in Example 2.6 (Fig. 1), the (unique) maximal
rewrite sequence s from [c1] has ETime(s) =

∑
n∈N

1
2n = 2.

Using this formulation, the following result is immediate.

Corollary 7.5. Let m ∈ mA. ‖ −NF ‖-RD implies that all maximal rewrite sequences from m

have the same ETime.

The well-known consequence is that
∑

n(1−‖mNF
n ‖) <∞ implies limn→∞(1−‖mNF

n ‖) = 0,
hence limn→∞ ‖mNF

n ‖ = 1. Cor. 7.5 means that if there exists one sequence from m with finite
ETime, all do, hence m is AST and PAST .

7.2. Analysis of probabilistic reduction: Weak CbV λ-calculus. We define Λw
⊕, a

probabilistic analogue of weak Call-by-Value λ-calculus (see Section 1.1.2). Evaluation
is non-deterministic, because in the case of an application there is no fixed order in the
evaluation of the left and right subterms (see Example 7.6). We show that Λw

⊕ satisfies
−NF-RD. Therefore it has remarkable properties (Cor. 7.11), analogous to those of its classical
counter-part: the choice of the redex is irrelevant with respect to the final result, to its
approximants, and to the expected number of steps.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:29

7.2.1. The syntax. The set Λ⊕ of terms (M,N,P,Q) and the set V of values (V,W) are
defined as follows:

M ::= x | λx.M |MM |M ⊕M V ::= x | λx.M

Free variables are defined as usual. A term M is closed if it has no free variable. The
substitution of V for the free occurrences of x in M is denoted M [x := V].

pars. The pars (Λ⊕,→) is given by the set of terms together with the relation → ⊆
Λ⊕ × DstF(Λ⊕) which is inductively defined by the rules below.

(λx.M)V → {M [x := V]1}
P ⊕Q→ {P 1/2}+ {Q1/2}

N → {Npi
i | i ∈ I}

MN → {(MNi)
pi | i ∈ I}

M → {Mpi
i | i ∈ I}

MN → {(MiN)pi | i ∈ I}

PARS Λw
⊕. The calculus Λw

⊕ is the PARS (mΛ⊕,⇒), where mΛ⊕ is the set of multidistribu-
tions on Λ⊕, and ⇒ ⊆ mΛ⊕ ×mΛ⊕ is the lifting (Definition 3.1) of →.

7.2.2. Examples.

Example 7.6 (Non-deterministic evaluation). A term may have several reductions. The
two reductions here join in one step:

[
P [x := Q](A ⊕ B)

]
⇔ [((λx.P)Q)(A ⊕ B)] ⇒

[1
2(λx.P)QA, 1

2(λx.P)QB].

Example 7.7 (Infinitary reduction). Let R = (λx.xx⊕T)(λx.xx⊕T). We have [R1]
∞
=⇒ {T1}.

This term models the behaviour we discussed in Fig.1.

Example 7.8 (Fix-Points). Λw
⊕ is expressive enough to allow fix-point combinators. A

simple one is the Turing combinator Θ = AA where A = λxf.f(xxf). For each value F ,
{ΘF}⇒∗ {F (ΘF)}.

Example 7.9. The term PR in Example 1.3 has (among others) the following reduction.

[PR] ⇒ [
1

2
P (T⊕ F),

1

2
P (∆∆)] ⇒ [

1

4
P (T),

1

4
P (F),

1

2
P (∆∆)]

⇒∗ [
1

4
(T XOR T),

1

4
(F XOR F),

1

4
∆∆] ⇒ [

1

4
F,

1

4
F,

1

2
∆∆] . . .

We conclude that PR
∞
=⇒ {F1/2}.

7.2.3. Properties.

Theorem 7.10. Λw
⊕ satisfies obs-RD, with obs = −NF, because it satifies the obs-diamond

property.

Proof. We prove the obs-diamond property, using the definition of lifting and induction on
the structure of the terms (see Appendix A.2).

Therefore, each m satisfies the following properties:

Corollary 7.11. • All rewrite sequences from m converge to the same limit distribution.
• All rewrite sequences from m have the same expected termination time ETime.
• If m ⇒k s and m ⇒k t, then sNF = tNF, ∀s, t, k.

5:30 C. Faggian Vol. 18:2

7.3. More diamonds. We have discussed weak evaluation of Call-by-Value λ-calculus,
because this is arguably the most relevant paradigm for functional programming. Similar
properties hold for several other reductions from the literature of λ-calculus, we just mention
a few which are relevant to the probabilistic setting.

Call-by-Name λ-calculus has a non-deterministic variant of head reduction (well studied
in Linear Logic) whose normal forms are precisely the head normal forms. Exactly as
weak reduction for Call-by-Value, this variant is well known to satisfy the form of diamond
which gives Random Descent. Another well-known calculus with a similar property is
surface reduction in Simpson’s linear λ-calculus [Sim05]. For both—head CbN and surface
reduction—Random Descent extends to the corresponding probabilistic reductions, which
satisfy similar properties as those of Λw

⊕ (the proof is an easy variation of the one given
here). All three reductions are used in [FR19].

Another calculus which satisfy Random Descent is Lafont’s interaction nets [Laf90]—we
expect that its extension with a probabilistic choice would also satisfy Weighted Random
Descent.

8. PARS: Comparing Strategies

In this section, we briefly examine the notion of obs-better in the setting of PARS. We
focus on the following question:

“is there a strategy which is guaranteed to reach a normal form
with greatest probability”?

ARS Normalizing Strategies. The strategy →
s
⊆ → is a normalizing strategy for → if

whenever c ∈ A has a normal form, then every maximal→
s

-sequence from c ends in a normal

form.

PARS Normalizing Strategies. Let (mA,⇒) be a PARS. We recall that Lim‖‖(m) = {p |
m
∞
=⇒‖‖p}. We write q ≥ Lim‖‖(m) if for each p ∈ Lim‖‖(m), q ≥ p. Similarly for ≤.

Definition 8.1. Given a PARS (mA,⇒), a strategy ⇒♣ for ⇒ is (asymptotically) nor-
malizing if for each m, each ⇒♣-sequence starting from m converges with the same probability
pmax(m) ≥ Lim‖‖(m). A strategy ⇒♥ for ⇒ is (asymptotically) perpetual if for each m,
each ⇒♥ sequence from m converges with the same probability pmin(m) ≤ Lim‖‖(m).

It is immediate that obs-better(⇒♣,⇒) with obs = ‖ −NF ‖ implies that ⇒♣ is normal-
izing. By using the results in Section 6.3, we have a method to prove that a strategy is
normalizing or perpetual by means of a local condition.

Corollary 8.2 (Normalizing criterion). Let obs be ‖ −NF ‖. It holds that:

(1) obs-LB(⇒♣,⇒) implies that ⇒♣ is asymptotically normalizing.
(2) obs-LB(⇒,⇒♥) implies that ⇒♥ is asymptotically perpetual.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:31

Expected Number of Steps. Let obs = ‖ −NF ‖. Using Equation (7.1) in Section 7.1, it
is easy to check that if obs-better(⇒♣,⇒) holds, and s is a ⇒♣-sequence, then ETime(s)
≤ETime(t), for each t ⇒-sequence. Notice that obs-better(⇒♣,⇒) also implies that ETime(s)
is the same for any ⇒♣-sequence s. Therefore, to establish obs-better(⇒♣,⇒) implies not
only that the strategy ⇒♣ is asymptotically normalizing, but also that it is of minimal
expected termination time. A similar, dual observation holds for the perpetuity criterion.

9. Further work and discussion.

A larger example of application. Let us illustrate with an example the use of the tools
which we have developed. We do so by summarizing further work [FR19]. There, for
each of the following, Plotkin’s Call-by-Value [Plo75], Call-by-Name, and Simpson’s linear
λ-calculus [Sim05], a fully fledged probabilistic extension is developed. Each probabilistic
calculus satisfies confluence, and a form of standardization (surface standardization). To
obtain confluence, only the probabilistic reduction is constrained, while β reduction is
unrestricted. In the three calculi, the role of asymptotically standard strategy is played
by a reduction which is non-deterministic but satisfies Random Descent—this is necessary,
because with the (usual) deterministic strategy, a standardization result for finite sequences
fails.

Let us see some details.
The notion of result which is studied in [FR19] are, respectively, values in CbV, head

normal forms in CbN, and surface normal forms in the linear calculus. Once confluence is
established, [FR19] relies on the abstract results given in Section 5.4 to conclude that—in
each calculus—the evaluation of a program m leads to a unique maximal result [[m]]—the
greatest limit distribution. [FR19] then studies the question “is there a strategy which is
guaranteed to reach the unique result (asymptotic standardization)?”. Again, key elements
rely on the abstract tools developed here; let us sketch the construction.

We focus on the CbV calculus, namely Λcbv
⊕ = (mΛ⊕,⇒), where mΛ⊕ is as in Section 7.2,

and ⇒ is the (more general) reduction which is defined in [FR19]. The role of standard
strategy is played by a relation⇒s⊆⇒ which is a (more relaxed) lifting of the weak reduction
→ defined in Section 7.2. The construction then goes as follows.

(1) First, it is proved that ⇒s is asymptotically complete for ⇒. Note however that ⇒s is
not guaranteed to compute [[m]].

(2) It is observed that the relation ⇒ as defined in Section 7.2 is asymptotically complete
for ⇒s, and therefore for ⇒.

(3) The properties of ⇒ which are proved in Section 7.2 guarantee that, from m, the limit of
any ⇒-sequence is the same, and it is exactly [[m]].

A similar reasoning applies to Call-by-Name.
Point 3. has another implication: for both CbN and CbV, the leftmost strategy reaches

the best possible limit distribution (respectively over values and over head normal forms).
This is remarkable for two reasons. First—as we already observed in Section 1.1.1—the
leftmost strategy is the deterministic strategy which has been adopted in the literature
of probabilistic λ-calculus, in either its CbV ([KMP97, DLMZ11]) or its CbN version
([DPHW05, EPT11]), but without any completeness result with respect to probabilistic
computation. The work in [FR19] offers an “a-posteriori” justification for its use. Second,
the result is non-trivial, because in the probabilistic case, a standardization result for finite

5:32 C. Faggian Vol. 18:2

sequences using the leftmost strategy fails for both CbV and CbN. The tools in Section 7
allow for an elegant solution.

On the necessity for non-deterministic evaluation and Random Descent in
probabilistic λ-calculi. A programming language which is built on a λ-calculus implements
a specific evaluation strategy. Typically, evaluation is given by a strategy →

s
of the general

reduction →. In this paper, we studied a property of strategies which is more flexible than
determinism, Random Descent. Why not simply fix a deterministic strategy? This choice
has several motivations. Non-deterministic evaluation is a useful feature, which supports
optimization techniques and parallel/distributed implementation, but in some cases it is
also a necessity and a key reasoning tool—this appears clearly in the probabilistic case.

We illustrate this with two examples from the literature on probabilistic λ-calculus, [FR19]
and [CP20]. Here we discuss the most familiar of all reductions: Call-by-Name λ-calculus
with head reduction (similar arguments hold for weak reduction in CbV λ-calculus). The
usual definition of head reduction [Bar84] is deterministic, but it also has a non-deterministic
variant (well studied in Linear Logic) whose normal forms are precisely the head normal
forms. We write this reduction simply →

h
. Exactly as weak reduction for Call-by-Value, →

h

is well known to have Random Descent, and the same hold for its probabilistic incarnation
(an explicit definition is in [FR19], Ch. X).

• In [FR19], moving from head reduction to its non-deterministic variant→
h

allows to obtain

a standardization result, which was known [Alb14, Lev19] not to hold when adopting
usual, left-to-right head reduction (see [FR19], Ex. 45 for a counter-example).
• Similarly, Curzi and Pagani [CP20] move from usual head reduction to head spine reduction,

which in turn is included in →
h

. The fact that the evaluation order is not left-to-right, but

still there is no difference with respect to head normal forms is crucial to obtain the result
of that paper.

10. Conclusions

The motivation behind this work is the need for theoretical tools to support the study of
operational properties in probabilistic computation, similarly to the role that ARS have for
classical computation.

We have investigated several abstract properties of probabilistic rewriting, and how
the behaviour of different rewrite sequences starting from the same element compare w.r.t.
normal forms. To guarantee that the result of a computation is well defined, we have
introduced and studied the property UN∞, a robust probabilistic analogue of the notion of
unique normal form. In particular, we have analyzed its relation with (various notions of)
confluence. We also investigated relations with normalization (WN∞) and termination (SN∞),
and between these notions. We have developed the notions of obs-RD and obs-better as tools
to analyze and compare PARS strategies. obs-RD is an alternative to strict determinism,
analogous to Random Descent for ARS (non-determinism is irrelevant w.r.t. a chosen event
of interest). The notion of obs-better provides a sufficient criterion to establish that a
strategy is normalizing (resp. perpetual) i.e. the strategy is guaranteed to lead to a result
with maximal (resp. minimal) probability.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:33

We have illustrated our techniques by studying a probabilistic extension of weak call-by-
value λ-calculus; it has analogous properties to its classical counterpart: all rewrite sequences
converge to the same result, in the same expected number of steps.

One-Step Reduction and Expectations. In this paper, we focus on normal forms and
properties related to the event NFA. However, we believe that the methods would allow
us to compare strategies w.r.t. other properties and random variables of the system. The
formalism seems especially well suited to express the expected value of random variables.
A key feature of the binary relation ⇒ is to exactly capture the ARS notion of one-step
reduction (in contrast to one or no step), with a gain which is two-folded.

(1) Probability Theory. Because all terms in the distribution are forced to reduce at the same
pace, a rewrite sequence faithfully represents the evolution in time of the system (i.e.
if m ⇒i mi, then mi captures the state at time i of all possible paths a0 → . . .→ ai). This
makes the formalism well suited to express the expected value of stochastic processes.

(2) Rewrite Theory. The results in Sections 6.1, 6.3, 7.2, crucially rely on exactly one-step
reduction. The reason why this is crucial, is similar to the classical fact that termination
follows from normalization by the diamond property [Newman 1942], but not by the
very similar property b← a→ c⇒ ∃d (b→= d =← c) (see [Terese], 1.3.18).

Finite Approximants. obs-RD characterizes the case when (not only at the limit, but also
at the level of the approximants) the non-deterministic choices are irrelevant. The notion of
approximant which we have studied here is “stop after a number k of steps” (k ∈ N). We
can consider different notion of approximants. For example, we could also wish to stop the
evolution of the system when it reaches a normal form with probability p. Our method
can easily be adapted to analyze this case. We believe it is also possible to extend to the
probabilistic setting the results in [vOT16], which would go further in this direction.

Further and future work. In this paper, we have studied existence and uniqueness of the
result of asymptotic computation. The next goal is to study how to compute such a result,
i.e. the study of reduction strategies—this is the object of current investigation. [vO07]
makes a convincing case of the power of the RD methods for ARS, by using a large range
of examples from the literature, to elegantly and uniformly revisit normalization results of
various λ-calculi. We cannot do the same here, because the rich development of strategies
for λ-calculus has not yet an analogue in the probabilistic case. Nevertheless, we hope that
the availability of tools to analyze PARS strategies will contribute to their development.

Acknowledgements. This work benefited of fruitful discussions with U. Dal Lago, T.
Leventis, and B. Valiron. I am very grateful to V. Van Oostrom for valuable comments and
suggestions. The proof of Prop. 5.13 appearing here is a simplification of the original one,
thanks to the insightful remarks of an anonymous reviewer.

References

[AB02] Zena M. Ariola and Stefan Blom. Skew confluence and the lambda calculus with letrec. Annals
of Pure and Applied Logic, 117(1):95 – 168, 2002.

[AC98] Roberto M. Amadio and Pierre-Louis Curien. Domains and lambda-calculi, volume 46 of Cam-
bridge tracts in theoretical computer science. Cambridge University Press, 1998.

5:34 C. Faggian Vol. 18:2

[ACN18] Sheshansh Agrawal, Krishnendu Chatterjee, and Petr Novotný. Lexicographic ranking su-
permartingales: an efficient approach to termination of probabilistic programs. PACMPL,
2(POPL):34:1–34:32, 2018.

[Alb14] Michele Alberti. On operational properties of quantitative extensions of λ-calculus. PhD thesis,
Aix-Marseille University, France, 2014.

[ALY20] Martin Avanzini, Ugo Dal Lago, and Akihisa Yamada. On probabilistic term rewriting. Sci.
Comput. Program., 185, 2020.

[AMS06] Gul A. Agha, José Meseguer, and Koushik Sen. PMaude: Rewrite-based specification language
for probabilistic object systems. Electr. Notes Theor. Comput. Sci., 153(2):213–239, 2006.

[Bar84] Hendrik Pieter Barendregt. The Lambda Calculus – Its Syntax and Semantics, volume 103 of
Studies in logic and the foundations of mathematics. North-Holland, 1984.

[BG06] Olivier Bournez and Florent Garnier. Proving positive almost sure termination under strategies.
In Rewriting Techniques and Applications, RTA, pages 357–371, 2006.

[BK02] Olivier Bournez and Claude Kirchner. Probabilistic rewrite strategies. Applications to ELAN. In
Rewriting Techniques and Applications, RTA, pages 252–266, 2002.

[CH98] N. Cagman and J.R. Hindley. Combinatory weak reduction in lambda calculus. Theor. Comput.
Sci., 1998.

[CP20] Gianluca Curzi and Michele Pagani. The benefit of being non-lazy in probabilistic λ-calculus:
Applicative bisimulation is fully abstract for non-lazy probabilistic call-by-name. In LICS ’20:
35th Annual ACM/IEEE Symposium on Logic in Computer Science, 2020, pages 327–340. ACM,
2020.

[DAGG11] Alejandro Dı́az-Caro, Pablo Arrighi, Manuel Gadella, and Jonathan Grattage. Measurements
and confluence in quantum lambda calculi with explicit qubits. Electr. Notes Theor. Comput.
Sci., 270(1):59–74, 2011.

[DKP91] Nachum Dershowitz, Stéphane Kaplan, and David A. Plaisted. Rewrite, rewrite, rewrite, rewrite,
rewrite, ... Theor. Comput. Sci., 83(1):71–96, 1991.

[DLM08] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable machine. Theor.
Comput. Sci., 398(1-3):32–50, 2008.

[DLMZ11] Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. Confluence results for a quantum lambda
calculus with measurements. Electr. Notes Theor. Comput. Sci., 270(2):251–261, 2011.

[DLZ12] Ugo Dal Lago and Margherita Zorzi. Probabilistic operational semantics for the lambda calculus.
RAIRO - Theor. Inf. and Applic., 46(3):413–450, 2012.

[DM18] Alejandro Dı́az-Caro and Guido Martinez. Confluence in probabilistic rewriting. Electr. Notes
Theor. Comput. Sci., 338:115–131, 2018.

[dP95] Ugo de’Liguoro and Adolfo Piperno. Non deterministic extensions of untyped lambda-calculus.
Inf. Comput., 122(2):149–177, 1995.

[DPHW05] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. Probabilistic lambda-calculus and
quantitative program analysis. J. Log. Comput., 15(2):159–179, 2005.

[EPT11] Thomas Ehrhard, Michele Pagani, and Christine Tasson. The computational meaning of prob-
abilistic coherence spaces. In Proceedings of the 26th Annual IEEE Symposium on Logic in
Computer Science, LICS 2011, pages 87–96. IEEE Computer Society, 2011.

[Fag19] Claudia Faggian. Probabilistic rewriting: Normalization, termination, and unique normal forms.
In 4th International Conference on Formal Structures for Computation and Deduction, FSCD
2019, volume 131 of LIPIcs, pages 19:1–19:25. Schloss Dagstuhl, 2019.

[FC19] Hongfei Fu and Krishnendu Chatterjee. Termination of nondeterministic probabilistic programs.
In Verification, Model Checking, and Abstract Interpretation VMCAI, pages 468–490, 2019.

[FH15] Luis Maŕıa Ferrer Fioriti and Holger Hermanns. Probabilistic termination: Soundness, complete-
ness, and compositionality. In POPL, pages 489–501, 2015.

[FR19] Claudia Faggian and Simona Ronchi Della Rocca. Lambda calculus and probabilistic computation.
In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2019, pages 1–13.
IEEE, 2019.

[HFCG19] Mingzhang Huang, Hongfei Fu, Krishnendu Chatterjee, and Amir Kafshdar Goharshady. Modular
verification for almost-sure termination of probabilistic programs. Proc. ACM Program. Lang.,
3(OOPSLA):129:1–129:29, 2019.

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:35

[How70] W.A. Howard. Assignment of ordinals to terms for primitive recursive functionals of finite type.
In Intuitionism and Proof Theory, 1970.

[KC17] Maja H. Kirkeby and Henning Christiansen. Confluence and convergence in probabilistically
terminating reduction systems. In Logic-Based Program Synthesis and Transformation - 27th
International Symposium, LOPSTR 2017, pages 164–179, 2017.

[KdV05] Jan Willem Klop and Roel C. de Vrijer. Infinitary normalization. In We Will Show Them!
Essays in Honour of Dov Gabbay, Volume Two, pages 169–192, 2005.

[Ken92] Richard Kennaway. On transfinite abstract reduction systems. Tech. rep., CWI, Amsterdam,
1992.

[KKMO18] Benjamin Lucien Kaminski, Joost-Pieter Katoen, Christoph Matheja, and Federico Olmedo.
Weakest precondition reasoning for expected runtimes of randomized algorithms. J. ACM,
65(5):30:1–30:68, 2018.

[KKSdV95] Richard Kennaway, Jan Willem Klop, M. Ronan Sleep, and Fer-Jan de Vries. Transfinite
reductions in orthogonal term rewriting systems. Inf. Comput., 119(1):18–38, 1995.

[KMP97] Daphne Koller, David A. McAllester, and Avi Pfeffer. Effective bayesian inference for stochastic
programs. In National Conference on Artificial Intelligence and Innovative Applications of
Artificial Intelligence Conference, AAAI 97, IAAI 97, pages 740–747, 1997.

[Laf90] Yves Lafont. Interaction nets. In Conference Record of the Seventeenth Annual ACM Symposium
on Principles of Programming Languages, San Francisco, California, USA, January 1990, pages
95–108. ACM Press, 1990.

[Ler90] Xavier Leroy. The ZINC experiment: an economical implementation of the ML language.
Technical report 117, INRIA, 1990. URL: http://gallium.inria.fr/~xleroy/publi/ZINC.pdf.

[Lév78] Jean-Jacques Lévy. Réductions Corrects et Optimales dans le Lambda-Calcul. PhD thesis,
Université Paris VII, 1978.

[Lev19] Thomas Leventis. A deterministic rewrite system for the probabilistic λ-calculus. Mathematical
Structures in Computer Science, 29(10):1479–1512, 2019.

[LFR21] Ugo Dal Lago, Claudia Faggian, and Simona Ronchi Della Rocca. Intersection types and (positive)
almost-sure termination. Proc. ACM Program. Lang., 5(POPL):1–32, 2021.

[LFVY17] Ugo Dal Lago, Claudia Faggian, Benôıt Valiron, and Akira Yoshimizu. The geometry of paral-
lelism: classical, probabilistic, and quantum effects. In Proceedings of the 44th ACM SIGPLAN
Symposium on Principles of Programming Languages, POPL 2017, Paris, pages 833–845. ACM,
2017.

[Mar13] Simon Marlow. Parallel and Concurrent Programming in Haskell. O’Reilly Media, 2013.
[MMKK18] Annabelle McIver, Carroll Morgan, Benjamin Lucien Kaminski, and Joost-Pieter Katoen. A new

proof rule for almost-sure termination. PACMPL, 2(POPL):33:1–33:28, 2018.
[New42] Mark Newman. On theories with a combinatorial definition of “Equivalence”. Annals of Mathe-

matics, 43(2):223–243, 1942.
[Plo75] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor. Comput. Sci.,

1(2):125–159, 1975.
[PPT05] Sungwoo Park, Frank Pfenning, and Sebastian Thrun. A probabilistic language based upon sam-

pling functions. In Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2005, pages 171–182. ACM, 2005.

[Put94] Martin L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., New York, NY, USA, 1st edition, 1994.

[Rab63] Michael O. Rabin. Probabilistic automata. Information and Control, 6(3):230–245, 1963.
[RP02] Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of probability distri-

butions. In Conference Record of POPL 2002: The 29th SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2002, pages 154–165. ACM, 2002.

[Sah78] N. Saheb-Djahromi. Probabilistic LCF. In Mathematical Foundations of Computer Science, pages
442–451, 1978.

[San71] Eugene S. Santos. Computability by probabilistic turing machines. In Transactions of the
American Mathematical Society, pages 159:165–184, 1971.

[Sim05] Alex K. Simpson. Reduction in a linear lambda-calculus with applications to operational
semantics. In Rewriting Techniques and Applications, RTA, pages 219–234, 2005.

http://gallium.inria.fr/~xleroy/publi/ZINC.pdf

5:36 C. Faggian Vol. 18:2

[Ter03] Terese. Term Rewriting Systems, volume 55 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 2003.

[vO07] Vincent van Oostrom. Random descent. In Term Rewriting and Applications, RTA, page 314–328,
2007.

[vOT16] Vincent van Oostrom and Yoshihito Toyama. Normalisation by random descent. In Formal
Structures for Computation and Deduction, FSCD, pages 32:1–32:18, 2016.

Appendix A. Omitted Proofs and Further Details

A.1. Section 5.2. Confluence and UN∞. Note that for ARS, UN does not imply confluence.
Similarly, for QARS and PARS, UN∞ does not imply Confluence or Skew-Confluence.

Example A.1 (UN∞ does not imply Confluence or Skew-Confluence). Consider the PARS
generated by the following pars:

c→ {a
1
2 , F

1
2 }, c→ {T

1
2 , b

1
2 }, a→ {T

1
2 , a

1
2 }, b→ {F

1
2 , b

1
2 }.

Each PARS element [c], [a], [b], . . . has a unique limit. No version of confluence holds, as it
is easily seen taking the two sequences [c] ⇒ [1

2a,
1
2F] and [c] ⇒ [1

2b,
1
2T], and observing that

they do not join, because there exists no m such that [1
2a,

1
2F] ⇒∗ m and [1

2b,
1
2T] ⇒∗ m

Remark A.2 (QARS limits vs ARSI infinite normal forms). The notion of limit which
is associated to QARS is more general than the notion of infinite normal form which is
defined for ARSI [AB02]. Note that in the setting of [AB02] the following holds (Theorem
5.4 there):

“an ARSI is skew confluent if and only if it has unique infinite normal forms”.

An analogue property does not hold for QARS. Even for PARS, the “if” direction fails
(Ex. A.1).

A.2. Section 7.2. Weak CbV λ-calculus.

Theorem (7.10). Λw
⊕ satisfies the obs-diamond property, with obs = −NF.

Proof. We show by induction on the structure of the term M that for all pairs of one-step
reductions t ⇔ [M1] ⇒ s, either t = s, (and therefore ∃u. t ⇒ u ⇔ s) or the following hold:
(1.) sNF = 0 = tNF (i.e. they are equal because they both take value 0 everywhere), and (2.)
exists u such that t ⇒ u ⇔ s.

• Case M = x or M = λx.P : no reduction is possible.
• Case M = P ⊕Q, or M = (λx.N)V : only one reduction is possible, and t = s.
• Otherwise, M = PQ, and two cases are possible.

– Assume that both P and Q reduce; PQ has the following reductions:

P → {(Pi)pi | i ∈ I}
PQ→ {(PiQ)pi | i ∈ I} and

Q→ {Qqjj | j ∈ J}
PQ→ {(PQj)qj | j ∈ J}

Observe that none of the PiQ or PQj is a normal form, hence (1.) holds. By the
definition of →, the following holds Q→ {Qqjj | j ∈ J}

PiQ→ {(PiQj)qj | j ∈ J}

i∈I

Vol. 18:2 PROBABILISTIC REWRITING AND ASYMPTOTIC BEHAVIOUR 5:37

and therefore by Lifting we have
∑

i pi ·[PiQ] ⇒
∑

i pi ·(
∑

j qj ·[PiQj]) =
∑

i,j piqj ·[PiQj].
Similarly we obtain

∑
j qj · [PQj] ⇒

∑
i,j piqj · [PiQj].

– If one subterm has two reductions, we conclude by i.h..
Let assume that P has two different redexes (the case of Q is similar):

[P] ⇒ s =
∑

i si · [Si] and [P] ⇒ t =
∑

j tj · [Tj]
By induction hypothesis, two facts hold: (1.) sNF = 0 = tNF, therefore no Si and no Tj is
a normal form; (2.) there exist steps [Si] ⇒

∑
k rk · [Rik] and [Tj] ⇒ rh · [Rjh] such that

P ⇒
∑

i[Si] ⇒
∑

i(
∑

k sirk · [Rik]) = r′ and P ⇒
∑

j [Tj] ⇒
∑

j(
∑

h tjrh · [Rjh]) = r′′,

and r′ = r′′.
For PQ we have

P → {Ssii | i ∈ I}
PQ→ {(SiQ)si | i ∈ I} and

P → {T tjj | j ∈ J}
PQ→ {(TjQ)tj | j ∈ J}

First, we observe that no SiQ and no TjQ is a normal form, hence property (1.) is
verified. Moreover, it holds that
PQ⇒

∑
i si·[SiQ] ⇒

∑
i(
∑

k sirk·[RikQ]) = u′ and PQ⇒
∑

j tj ·[TjQ] ⇒
∑

j(
∑

h tjrh·
[RjhQ]) = u′′. From r′ = r′′ it follows that u′ = u′′; hence property (2.) is also
verified.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	1.1. Motivations and Background
	1.2. Related work

	2. Probabilistic Abstract Rewriting System
	2.1. Basics on ARS
	2.2. Basics on Probabilities
	2.3. (Sub)distributions: operations and notation
	2.4. Probabilistic Abstract Rewrite Systems (pars)

	3. A Formalism for Probabilistic Rewriting
	3.1. PARS
	3.2. Normal forms and observations

	4. Asymptotic Behaviour of PARS
	4.1. Limit Distributions
	4.2. PARS vs ARS: Subtleties, Questions, and Issues

	5. Quantitative Abstract Rewriting Systems
	5.1. Limits as Results
	5.2. Confluence and UNlim
	5.3. Observing in the unit interval
	5.4. PARS: Confluence implies UNlim

	6. Tools for the analysis of QARS
	6.1. Weighted Random Descent
	6.2. Strategies and Completeness
	6.3. Comparing Strategies

	7. PARS: Weighted Random Descent
	7.1. Expected Termination Time
	7.2. Analysis of probabilistic reduction: Weak CbV lambda-calculus
	7.3. More diamonds.

	8. PARS: Comparing Strategies
	9. Further work and discussion.
	10. Conclusions
	References
	Appendix A. Omitted Proofs and Further Details
	A.1. Section 5.2. Confluence and UNlim
	A.2. Section 7.2. Weak CbV lambda-calculus

