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Abstract. We are considering typed hierarchies of total, continuous functionals using
complete, separable metric spaces at the base types. We pay special attention to the so-
called Urysohn space constructed by P. Urysohn. One of the properties of the Urysohn
space is that every other separable metric space can be isometrically embedded into it.

We discuss why the Urysohn space may be considered as the universal model of possibly
infinitary outputs of algorithms. The main result is that all our typed hierarchies may be
topologically embedded, type by type, into the corresponding hierarchy over the Urysohn
space. As a preparation for this, we prove an effective density theorem that is also of
independent interest.

1. Introduction

1.1. Discussion. One of the important paradigms of the theory of computing, and of that
of computability, is that we may view algorithms and programs as data. We are not going
to challenge this paradigm. The paradigm is important practically in the design of digital
computers, where everything, input data, programs and output data deep down are just
sets of bits and bytes. It is also important theoretically, as it makes the existence of a
universal algorithm possible and the unsolvability of the halting problem a mathematical
statement.

However, using almost any programming language in practice, we have to distinguish
between input data and output data, or at least declare what is what, and the programs
are considered as syntactical entities that for most cases are distinguished from other kinds
of data.

In this paper we will be interested in models for computing where the input data and
the output data may be infinite entities. As a simple, but basic example, let us discuss the
operator

I(f) =

∫ 1

0
f(x)dx

and how we should construct mathematical models for the kinds of data involved in com-
puting integrals. Of course, in the world of digital computers, what we will aim at is to
compute the integral as a floating point value, and then the input function f has to be
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digitally represented in some way suitable for this aim. From the point of view of numerical
analysis, this is not hard to achieve, and in fact, the computability of the integral is not a
big issue. However, from the point of view of a conceptual analysis it is undesirable to make
the leap all at once from the set theoretical world of mathematical analysis to the finitistic
world of digital computers. There are several reasons for this. We will discuss two of them:

(1) The step from the continuous to the discrete inevitably has to violate some of the
geometrical, algebraic and analytical properties of the reals. Unless one shows some
care, it is not obvious that

∫ 1

0
(x2 + x5)dx =

∫ 1

0
x2dx+

∫ 1

0
x5dx

as numerically calculated integrals, and there are certainly going to be algebraically valid
identities of this sort that are not identities in the numerical interpretation. Though
the practical harm of phenomena like this may be kept at a minimum, it will be nice to
have a model of computability in analysis that does not suffer from such deficiencies.

(2) Though technological standards for representing various kinds of data are important
for the exchange of data and programs, a conceptual analysis of computability where
data of the form reals and real valued functions appear, should not be restricted to a
particular standard for digitalization.

It is of course impossible to view a real as the genuine output of an algorithm, since such
outputs, even in a mathematical model, should be of a finitistic nature. An algebraic
expression denoting a real may be considered to be such a finitistic entity, but then we
will be facing the problem of the meaning of calculating the value of expressions like this.
Thus, algebraic expressions are not satisfactory representations of outputs in the sense of
this paper.

We will view output data as data of a particular kind, and we will advise some care in
the choice of representing such data. Of course we have to consider more than just the set of
data, we have to consider approximations to these data as well. But, and this is the core of
our view, since it is the output data themselves that are of importance, the structure used
to model the outputs of algorithms computing such data should contain the output data we
are really interested in as a kind of substructure. We may view an algorithm computing a
real as running in infinite time, producing better and better approximations as time passes,
but in the end, in an ideal world, and after possibly an infinite elapse of time, the output
should be the real itself.

If we consider the directed complete partial ordering (dcpo) of all closed intervals or-
dered by reversed inclusion, we may identify a real x with the closed interval [x, x], and in
this way, R may be viewed as a substructure of the closed interval domain.

If we want to stick to finitistic representations of approximations of reals, e.g. as closed
intervals [p, q] with rational endpoints or as closed intervals [ n

2k
, m
2k
] with dyadic endpoints,

and represent a real as an ideal of such approximations, we may canonically represent a real
x as the ideal of all approximating intervals with x in the interior.

This latter kind of representation is known as a retract domain representation, and we
will come back to this.

In Section 1.3 we will bring this discussion further, and draw the conclusion that the
class of complete, separable metric spaces is a suitable choice of spaces modeling types of
output data, or more generally, as types of ground data.
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In our example of the integral, there are two other kinds of data that may concern
us, those of the input function f and the integration operator itself. Here we will view
functions from reals to reals as operators on ground data, and the integral as an operator
at the next level, and we will use a convenient cartesian closed category containing the
complete, separable metric spaces to model such classes of operators or functions.

1.2. Outline of the paper. We will address the following general problem;

− Given (interpretations of the expressions) σ(X) and σ(Y ) where X and Y are complete,
separable metric spacesand σ is a type, how will relationships between X and Y give rise
to relationships between σ(X) and σ(Y )?

In Section 2 we give a brief introduction to qcb-spaces and domain representations in general,
and we define our ”convenient” class Q of qcb-spaces. In Section 3 we introduce the Urysohn
Space U [19, 20], and survey some of the main properties.

One of the key results of the paper is that the universality of U extends to higher types.

Let ~X = (X1, . . . ,Xn) be a sequence of complete, separable metric spaces, and let ~U be the
sequence of n occurrences of U . In Section 5 we will show that if σ is a type with n free

variables for base types, then we have a topological embedding of σ( ~X) into σ(~U). If we

replace occurrence no. i of U in ~U with a separable Banach space Yi and let each Xi be

homeomorphic to a closed subset of Yi, our proof can also be used to prove that σ( ~X) can

be topologically embedded into σ(~Y ).
An embedding-projection pair between spaces Y and X is normally a pair (ε, π) of

continuous functions ε : Y → X and π : X → Y such that π(ε(y)) = y for all y ∈ Y . If we
have two typed structures, one with base type Y and one with base type X, one standard
way to show that we may embed the first into the second type by type is to establish
an embedding-projection pair between Y and X and then show that this generates an
embedding-projection pair at each type.

Sometimes it is topologically impossible to have a continuous projection from X to Y ,
for instance when X = R and Y = N. We will see that for many important cases, we can
replace the use of the projection with a sequence of probabilistic approximations.

For spaces in Q, we introduce probabilistic embedding-projection pairs in Section 5 as
a tool in the proof of the embedding theorems.

Prior to this, we introduce the concept of density with probabilistic selection in Section
4. In some sense, this is a warm-up for the more general concept, but it is also used as a
tool for proving effective density theorems of independent interest.

The introduction of probabilistic embedding-projection pairs, and the simpler concept
density with probabilistic selection can be seen as the main methodological contribution in
the paper. The method first appeared in Normann [11] with N for Y and R for X.

In our setting, the proof of an effective density theorem will involve a construction of
an enumeration of a topologically dense set. We will be more precise in the sequel.

The main result in Section 5 is a purely topological result, with no constructive or
computable content. There is an effective, but restricted, version of the imbedding theorem
from Section 5 in preparation, and the proof of the effective density theorem in Section 4
can be viewed as a preparation for this as well.
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1.3. Representing output data. Blanck [4, 5] carried out some pioneering work on the
use of domain theory for representing topological spaces. Though we add some conceptual
analysis, the technical definitions and results of this section are due to Blanck. We have
to assume some familiarity with basic domain theory, see e.g. Abramsky and Jung [1],
Stoltenberg-Hansen & al. [16] or Amadio and Curien [2] for introductions to the subject.

Definition 1.1. In this paper, ifX is a topological space, then a domain representation ofX
will consist of a separable algebraic domain (D,⊑), a nonempty set DR ⊆ D of representing
objects with the induced Scott topology and a continuous surjection δ : DR → X.

The representation is dense if DR is a dense subset of D in the Scott topology.

If (D,DR, δ) is a domain representation of X, and we let D0 be the set of compact or finitary
elements of D, we may view the elements of D0 as approximations to the elements of X.

Now, if X is a set of ideal output data, the elements of D0 may be chosen as the possible
intermediate approximative values obtained through the computation of some element x of
X. If we view this set of approximations as an extension of X, it is natural to identify
each x ∈ X with some canonical set of approximations of x, preferably a set that in some
abstract sense can “be computed” from x itself. This leads us to consider the retract
representations, representations where there is a continuous right inverse ν : X → DR of δ
such that δ(ν(x)) = x for all x ∈ X.

Finally, an output should be complete with no room for computing another output
with strictly more information. This leads us to consider upwards closed representations,
i.e. representations where, if α ∈ DR and α ⊑ β, then β ∈ DR and δ(α) = δ(β).

Blanck [5] proved that if a topological space X accepts an upwards closed retract
representation, then X is a regular space, and in fact it is normal. Since we restrict our
attention to separable domains, X will have a countable base. Then, as an application of
the Urysohn metrization theorem, X will be metrizable.

We will bring this analysis a bit further. If we use a domain representation of a space of
output data, it is reasonable to assume that the set of representing objects is a closed set in
the Scott topology, simply because we then work with the completion of the approximating
finitary data. This leads us to consider Polish spaces, topological spaces that can be induced
from complete, separable metric spaces. In Section 3 we will introduce the Urysohn space
U . This is universal in the sense that Polish spaces are exactly, up to homeomorphisms, the
topological spaces that are closed subsets of U with the induced topology. Thus we consider
U to be a suitable candidate for the universal datatype of output data, or of ground data in
general.

Blanck [4] showed how we can construct a representation of each separable metric space,
and this representation will indeed be an upwards closed retract representation. Since in
later sections we will want to refer to Blanck’s construction, we give some of the details
here.

Definition 1.2. Let 〈X, d〉 be a nonempty separable metric space with a countable dense
subset {an | n ∈ N}.

(a) For each n ∈ N and positive rational number r, let

Bn,r = {x ∈ X | d(x, an) ≤ r},

i.e. the closed ball of radius r around an.
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(b) Let E0 be the set of finite sets of such closed balls, such that whenever Bn,p and Bm,q

are in the set, then p+q ≥ d(an, am). (The balls have at least a potential of a nonempty
intersection.)

(c) If K and L are in E0, we let K ⊑ L if for all balls Bn,r in K there is a ball Bm,s in L
such that s+ d(an, am) ≤ r. In this case ⊑ will be a preorder. (This express that

⋂

L
has to be a subset of

⋂

K, as a consequence of the triangle inequality.)
(d) An ideal I in E0 represents x ∈ X if:

(i) x ∈ Bn,r whenever Bn,r ∈ K ∈ I.
(ii) For each ǫ > 0 there is a K ∈ I such that all balls in K have radii < ǫ.

(e) We let D = DX be the ideal completion of E0, i.e. the set of ideals ordered by inclusion.
Then the set of finitary elements D0 will be the set of prime ideals in D.

This construction may seem unnecessarily complicated, but something of this complexity
is required if one wants to construct an effective domain representation uniformly from an
effective metric space.

Like all domains, DX is equipped with the Scott topology, where a typical element of
the basis will consist of all ideals containing some fixed element of E0. Then the map
sending a representative for x ∈ X to x will be continuous. Now, an element x ∈ X may
have more than one representative, but there will always be a least one in the inclusion
ordering of the set of ideals, and in fact, the function mapping an element x ∈ X to the
least ideal representing x is continuous with respect to the Scott topology. Thus X is
homeomorphic to a subspace of the representing space DX . The least ideal representing
x ∈ X will consist of all K such that x is in the interior of each Bn,r ∈ K. It is the fact
that we restrict ourselves to clusters of neighborhoods where x is in the interior that makes
this construction continuous.

Also observe that if I ⊆ J are two ideals, and if I represents x ∈ X, then J represents
x. Moreover, due to the fact that metric spaces are Hausdorff, the same ideal may not
represent two different elements of X. Blanck’s construction is that of an upwards closed
retract representation.

A simpler approach. If we are not concerned with effectivity, we may construct the repre-
senting domain based on nonempty finite intersections of closed balls. Then we automati-
cally get a dense retract representation that is upwards closed. This approach will be taken
in Section 5.

2. A category of qcb’s

In this paper, we will assume that all spaces are nonempty.
Adopting the convention from Battenfeld, Schröder and Simpson [3] we say that a

topological space X is a qcb-space if it is T0 and can be viewed as the quotient space of an
equivalence relation on a space with a countable base. The corresponding category QCB is,
in some sense, the richest category of topological spaces that can be handled with decency
using domain theory.

Schröder introduced the concept of a pseudobase, see e.g. [13].

Definition 2.1. LetX be a topological space. A pseudobase forX is a family P of nonempty
subsets of X closed under finite nonempty intersections such that whenever x = limxn in
X and x ∈ O where O ⊆ X is open, there is an element p ∈ P such that
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(i) x ∈ p ⊆ O
(ii) xn ∈ p for almost all n ∈ N.

A topological space is sequential if the topology is the finest one where the convergent
sequences indeed are convergent. Schröder showed that all qcb-spaces will admit countable
pseudobases and that every T0-space with a countable pseudobase will be a qcb-space. If we
consider the Blanck representation of separable metric spaces, we may form a pseudobase
from the set of finitary objects, which is a set of clusters of closed balls, by letting the
pseudobase elements be all nonempty intersections of such clusters. These pseudobase
elements will be closed.

In QCB we use continuous functions as morphisms. Since the spaces are sequential, a
function f : X → Y is continuous if and only if it maps a convergent sequence and its limit
point to a convergent sequence and its limit point.

We are going to work within a subcategory Q of QCB:

Definition 2.2. Let Q be the class of sequential Hausdorff spaces that permit a countable
pseudobase of closed sets.

By the observation above, every complete, separable metric space will be in Q. We will
show that Q is closed under the function space operator used in QCB, and Q will then be
a convenient subclass of qcb for us to work with.

Remark 2.3. In [14], Schröder works with a similar category, requiring that there is a
pseudobase of functionally closed sets (see Definition 2.9), but not insisting on the spaces
being Hausdorff. It is open whether the subcategory of Hausdorff spaces in Schröder’s
category coincides with Q.

For our next result, we need the concept of an admissible domain representation due
to Hamrin [6], based on a similar concept due to Schröder [12, 13], see also Weihrauch [22]:

Definition 2.4. Let 〈D,DR, δ〉 be a representation of the space X, see Definition 1.1. We
call the representation admissible if for every dense representation 〈E,ER, π〉 of a space Y
and every continuous function f : Y → X there is a continuous function φ : E → D such
that φ maps ER into DR and such that

δ(φ(e)) = f(π(e))

for all e ∈ ER.

Remark 2.5. If 〈D,DR, δ〉 is an admissible representation of X and x = limn→∞ xn, there
will be a convergent sequence α = limn→∞ αn in DR with x = δ(α) and xn = δ(αn) for
each n ∈ N.

We call this a lifting of the convergent sequence, and the existence of a lifting is easy
to prove given an admissible representation. This is a standard observation.

Lemma 2.6. Every space in Q has an upwards closed admissible representation.

Proof. Let X ∈ Q and let P be a countable pseudobase of closed subsets of X. We apply the
argument from Hamrin [6], and assume w.l.o.g. that P is closed under finite unions. Then
the ideal completion 〈D,⊑〉 of 〈P,⊇〉 offers an admissible representation of X, where each
x ∈ X is represented by the elements of

DR
x = {α ∈ D | ∀p ∈ α(x ∈ p) ∧ ∀O open(x ∈ O ⇒ ∃p ∈ α(p ⊆ O))}.
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By Hamrin [6] this is an admissible representation, and we are left with showing that DR
x

is upwards closed.
If α ∈ DR

x and α ⊆ β ∈ D, the second requirement for β ∈ DR
x is trivially satisfied.

Now, let q ∈ β and assume that x 6∈ q. Then x ∈ X \ q, which is open, so

∃p ∈ α(x ∈ p ⊆ X \ q).

Then p ∩ q ∈ β since β is an ideal. But p ∩ q = ∅ and β will only contain nonempty sets.
This is a contradiction, so x ∈ q.

These spaces are sequential, which means that the topology will be the finest topology
where all convergent sequences do converge. This offers a natural topology on the function
spaces X → Y of continuous functions, induced by the limit-space construction

f = lim
n→∞

fn ⇔ ∀(x = lim
n→∞

xn)(f(x) = lim
n→∞

fn(xn)).

Lemma 2.7. If X and Y are in Q, then X → Y ∈ Q.

Proof. Let p1, . . . , pn be closed pseudobase elements in X and q1, . . . , qn be closed pseu-
dobase elements in Y such that for all K ⊆ {1, . . . , n} ,

⋂

k∈K

pk 6= ∅ ⇒
⋂

k∈K

qk 6= ∅.

Let
P{〈p1,q1〉,...〈pn,qn〉} = {f | ∀k ≤ n(f [pk] ⊆ qk)}.

The nonempty such sets will form a pseudobase of closed sets for X → Y . X → Y is clearly
Hausdorff.

Remark 2.8. We do not use that X is in Q, only that X is a qcb.

Still using continuous functions as morphisms, we may view Q as a category. Our
key examples will be the spaces we may obtain from complete, separable nonempty metric
spaces closing under the function space construction. It is known, see Schröder [15], that
these spaces need not be regular (or normal) spaces. We will be interested in the finest
regular (or normal, this amounts to the same in this case) subtopology of the sequential
one:

Definition 2.9. Let X ∈ Q and let A ⊆ X.
We say that A is functionally closed if there is a continuous map f : X → [0, 1] such

that
x ∈ A⇔ f(x) = 0.

The complement of a functionally closed set is functionally open.

Remark 2.10. This is standard terminology from general topology. Functionally closed
sets are also known as zero-sets.

It is not hard to show that the functionally open sets form a regular subtopology on X.
The fact that the topology on X is hereditarily Lindelöf, i.e. that every open covering of a
subset accepts a countable subcovering, is useful in showing that this class is closed under
arbitrary unions. These concepts will be important in Section 5.

In the sequel we will use the fact that if X ∈ Q and P is a pseudobase for X consisting
of closed sets, and Y ⊆ X, then

{p ∩ Y | p ∈ P ∧ p ∩ Y 6= ∅}
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forms a pseudobase of closed sets for Y .
In this paper, we let V1, . . . , Vk be formal variables for complete, separable metric spaces,

and we define the formal types as the least set of expressions containing each variable Vi
and closed under the syntactical operation σ, τ ⊢ (σ → τ).

If X1, . . . ,Xk are separable, complete metric spaces and σ is a type in the variables
V1, . . . , Vk, its interpretation σ(X1, . . . ,Xk) is given in Q.

It is easy to see that if each Xi is nonempty, then σ(X1, . . . ,Xk) is nonempty.

3. The Urysohn Space

In Section 1 we were primarily interested in mathematical models for data-types where
the data could be viewed as the ultimate outputs of algorithms running in infinite time,
and we observed that we may use Polish spaces or separable, complete metric spaces for
this purpose. Given some metric spaces as basic data-types, we will then be interested
in derived data-types, where the objects in a sense are operators with ultimate values in
metric spaces. In this paper, we will be mainly interested in hereditarily total objects of
this kind, but of course, if one is interested in functional programming where such base
types are involved, the hereditarily partial operators are essential for the construction of
denotational semantics.

Urysohn [19, 20] showed that there is a richest separable metric space, the so-called
Urysohn space, and the main aim of this paper is to show that any space of hereditarily total
continuous functionals over any set of complete separable metric spaces can be topologically
embedded into a space of functionals of the same type, but now over just the Urysohn space.

In order to be able to prove our results, we have to refer to the basic original properties
of this space and to some of the more recent results about it.

Definition 3.1. Let X be a metric space. We call X finitely saturated if whenever K ⊆ L
are finite metric spaces, and φ : K → X is a metric-preserving map, then φ can be extended
to a metric-preserving map ψ from L to X.

Remark 3.2. The word saturated is common in model theory for this kind of phenomenon,
so we adopt it here.

Urysohn proved that there exists a complete, separable metric space U that is finitely
saturated, and that, up to isometric equivalence, there is exactly one such space. This space
is known as the Urysohn space.

Urysohn gave an explicit construction of U , as the completion of a countable metric
space where all distances are rational numbers, and which is saturated with respect to pairs
of finite spaces with rational distances. He showed that if X is a metric space, x1, . . . , xn
are elements of X and {x1, . . . , xn} is extended to a metric space {x1, . . . , xn, y} where y is
a new element with distance d(xi, y) to each xi, we may consistently define a distance from
y to any element x ∈ X by

d(x, y) = min{d(x, xi) + d(xi, y) | 1 ≤ i ≤ n}.

By iterating this construction using some book-keeping that ensured that all rational one
point extensions of finite subspaces of the set under construction will be taken care of, he
constructed the dense subset U0 of U .
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There are both effective (Kamo [7]) and constructive (Lešnik [9, 10]) versions of the
main results of Urysohn. Since effectivity is essential for our results in Section 4, we will
give a brief introduction to what we mean by effectivity.

Definition 3.3. A real x is computable if there is a fast converging computable sequence
{xi}i∈N of rationals with x as the limit, where fast converging means that |xn − x| ≤ 2−n

for all n.
A sequence {xn}n∈N of reals is computable if there is a computable map γ of N into the

set of fast converging sequences of rational numbers such that xn = limn→∞ γ(n) for each
n.

A metric space (X, d) is effective if there is an enumeration {ri}i∈N of a dense subset of
X such that the map

(i, j) 7→ d(ri, rj)

is computable.
If (X, d, {ri}i∈N) and (Y, d′, {sj}j∈N) are two effective metric spaces, then an effective

embedding of X into Y is a computable map

i 7→ {jn,i}n∈N

such that

(i) {sjn,i
}n∈N is fast converging to some yi ∈ Y for each i ∈ N.

(ii) d(ri, rj) = d′(yi, yj) for all i and j in N.

A careful reading of Urysohn’s construction tells us that U is effective in this sense.
In order to prove that the completion U of U0 is saturated, we will start with elements

u1, . . . , uk in U and requirements d(ui, x) = ai consistent with the axioms of metric spaces
for i = 1, . . . , k, and we have to prove that there is some u ∈ U satisfying these requirements.

The proof can be made effective in the following sense:
If we represent u1, . . . , uk with fast converging sequences from U0 and a1, . . . , ak with

fast converging sequences from Q, we can construct a fast converging sequence from U0

converging to a desired u. There are details to be filled in here, of course.
Then, by an application of the recursion theorem, we see that every effective metric

space (X, d) can be effectively embedded into U . Thus we have:

Theorem 3.4. Every separable metric space X can be isometrically embedded into the
Urysohn space, and if X is an effective space, the embedding can be made effective.

We of course have that the image of X will be functionally closed (i.e. just closed) in
U exactly when X is complete, and this is the reason for why we restrict our attention to
complete, separable metric spaces in the technical sections of the paper.

There has been a renewed interest in the Urysohn space over the last 25 years. One
result in particular is of importance to us:

Uspenskij [21] shows that U as a topological space is homeomorphic to the Hilbert
space l2, and thus to any separable Hilbert space of infinite dimension. Uspenskij depends
on a characterization of the class of topological spaces homeomorphic to Hilbert spaces due
to Toruńczyk [17].

The combined Toruńczyk - Uspenskij proof gives us no information about whether this
result is constructive in any sense.

In the case of choosing a domain representation for the Urysohn space, the two ap-
proaches discussed in Section 1 are equivalent. This can be seen from the following
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Observation 3.5. Let U be the Urysohn space and let B1, . . . , Bn be a family of closed balls
where Bi has radius ri and center in ai, and assume that none of the balls are contained in
the interior of any of the others.

Then the following are equivalent:

(1) B1 ∩ · · · ∩Bn 6= ∅.
(2) ri − rj ≤ d(ai, aj) ≤ ri + rj for all i, j with 1 ≤ i, j ≤ n.

(2) ⇒ (1) is a consequence of saturation, there is an element in the intersection of the
spheres of radius ri around ai for i = 1, . . . , n.

(1) ⇒ (2) is a consequence of the triangle inequality.

4. Effective density theorems

The underlying problem in this section is when we may effectively enumerate a dense subset
of the set of continuous functionals of a fixed type using effective, separable metric spaces
at base types. We will not answer this problem completely, but that the answer is not
“always” is demonstrated by the following example, where we construct an effective metric
space A such that there is no effective enumeration of a dense subset of A→ N:

Example 4.1. Let A ⊆ N be recursively enumerable but not computable, and let f : N → N

be a computable 1-1 enumeration of A.
We will construct an effective subspace of the Banach space l∞ of all bounded sequences

of reals.
Let a < b be reals, and let [a, b]n be those g ∈ l∞ where g(n) ∈ [a, b] and g(m) = 0 for

m 6= n.
Let X consist of the constant 0 together with all [0, 3]n for n ∈ A and all [1, 3]n for

n 6∈ A.
It is easy to see that we can effectively enumerate a dense subset ofX with a computable

metric, using a stage m where f(m) = n to decide to extend the ongoing sub-enumeration
of [1, 3]n to a sub-enumeration of [0, 3]n. Thus X is an effective metric space.

If we have an effectively enumerated dense set {gn | n ∈ N} of total functions in X → N,
we see from the obvious connectedness-properties of X that

n 6∈ A⇔ ∃m(gm(λk.0) 6= gm(n 7→ 2))

where n 7→ 2 is the element in [1, 3]n that takes the value 2 on n.
This would imply that A is computable, so there is no such sequence {gn}n∈N.

As a tool of independent interest, we develop the concept of density with probabilistic selec-
tion. Probabilistic selection from a dense set may replace the use of a continuous or even
effective selection of a sequence from a dense set converging to a given point, when such
selections are topologically impossible.

Let A = {a1, . . . , an} be a finite set. A probability distribution on A is a map m : A→
R[0,1] such that

∑

k≤n

m(ak) = 1.

A probability distribution on a finite set A induces a probability measure on the powerset
of A, and we will not distinguish between the distribution and the induced measure.
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We let PD(A) be the set of probability distributions on A, where we assume that A
comes with an enumeration. PD(A) can be viewed as a convex subspace of a finite dimen-
sional Euclidean space, and thus PD(A) has a canonical topology. PD(A) can actually be
identified with the standard simplex in Rn.

Definition 4.2. Let {〈An, νn,mn〉}n∈N be a sequence of finite sets An, maps νn : An → X
into a space X ∈ Q together with probability distributions mn on each An.

Let x ∈ X. We say that
x = lim

n→∞
νn[An] mod mn

if whenever we for each n ∈ N select an an ∈ An withmn(an) > 0 , then x = limn→∞ νn(an).

We write νn[An] since it is actually the image of An under νn that converges modulo
the sequence of measures.

Definition 4.3. Let X be in Q. X satisfies density with probabilistic selection if there are

(i) a sequence {An}n∈N of finite sets together with maps νn : An → X
(ii) a sequence of continuous maps

µn : X → PD(An)

such that for each x ∈ X:
x = lim

n→∞
νn[An] mod µn(x).

When this is the case, we call {〈An, νn, µn〉}n∈N a probabilistic selection on X.

If {〈An, νn, µn〉}n∈N is a probabilistic selection on X, then
⋃

i∈N
νn[An] will be dense in

X and for every x ∈ X, the set of sequences

{an}n∈N ∈
∏

n∈N

An

such that x = limn→∞ νn(an) will have measure 1 in the product measure
∏

n∈N
µn(x).

Remark 4.4. This concept will be an important tool in showing density theorems. In order
to prove embedding theorems, we will extend this concept in Section 5 to what we will call
a probabilistic projection.

In our applications, X will be a space

X = σ(X1, . . . ,Xk)

where each Xi is a complete, separable metric space. Then An will consist of finite func-
tionals of the same type, where the base types are interpreted as finite subsets of the metric
spaces in question. Then νn represents a way to embed these finitary functionals into the
space of continuous functionals.

Lemma 4.5. Let X be a separable metric space. Then X satisfies density with probabilistic
selection.

Proof. Let d be the metric on X, and let {a0, a1, . . .} be a countable dense subset of X. Let
An = {a0, . . . , an} and let νn be the inclusion function from An to X.

− For any x ∈ X, let d(An, x) = min{d(x, ai) | i ≤ n}.
− If u and v are non-negative reals, let u ·−v = max{u− v, 0}.
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− For each x ∈ X and a ∈ An, let

µn(x)(a) =
(d(x,An) + δn)

·−d(x, a)
∑

b∈An
[(d(x,An) + δn)

·−d(x, b)]
,

where δn is the minimum of 2−n and all distances d(a, b) for a 6= b in An.

The required properties are easy to verify.

Definition 4.6. Let X ∈ Q. We say that X is semiconvex if for every finite set

A = {a1, . . . , an}

and map ν : A→ X, there is a continuous

hA,ν : PD(A) → X

such that the following holds: Whenever

− An is finite for each n ∈ N,
− νn : An → X for each n ∈ N,
− mn ∈ PD(An) for each n ∈ N,
− x ∈ X is such that

x = lim
n→∞

νn[An] mod mn

for each n ∈ N,

then
x = lim

n→∞
hAn,νn(mn).

Lemma 4.7. The Urysohn space U is semiconvex.

Proof. Let A = {a1, . . . , an} be finite and let ν : A → U . Let vi = ν(ai) and let V =
{v1, . . . , vn}. We may let φ embed V isometrically into Rn with the max-norm and we may
let ψ embed Rn with the max-norm isometrically into U such that ψ(φ(vi)) = vi for all
i ≤ n. Then let

hA,ν(m) = ψ(
n
∑

i=1

m(ai) · φ(vi)),

where the algebra takes place in Rn. It is easy to see that this works.

Remark 4.8. Clearly, every Banach space X is semiconvex. If A = {a1, . . . , an} and
ν : A→ X we let

hA,ν(m) =

n
∑

i=1

m(ai) · ν(ai).

Theorem 4.9. Let X and Y be Q-spaces that satisfy density with probabilistic selection,
and assume that Y is semiconvex. Then X → Y satisfies density with probabilistic selection.

Proof. Let {An}n∈N be a sequence of finite sets with maps νn : An → X and continuous
functions

µn : X → PD(An)

forming a probabilistic selection.
Let Cn with θn : Cn → Y and λn : Y → PD(Cn) for each n ∈ N witness that Y

satisfies density with probabilistic selection. Let hn : PD(Cn) → Y be derived from the
map C 7→ hC witnessing that Y is semiconvex.
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Let Bn = An → Cn and let φ ∈ Bn. First we will see how to construct a continuous
ν∗n(φ) : X → Y :

Let x ∈ X. For each c ∈ Cn let µ−1
n,x,φ(c) be defined as

µ−1
n,x,φ(c) = µn(x)(φ

−1({c}))

and let
ν∗n(φ)(x) = hn(µ

−1
n,x,φ).

We will see how the sets Bn together with the maps ν∗n from Bn to X → Y can be organized
to a probabilistic selection.

Let f : X → Y be continuous. We will define the probability distribution ηn(f) on Bn

as a product measure and prove the required properties. Let

ηn(f)(φ) =
∏

a∈An

λn(f(a))(φ(a)).

ηn(f) will be a probability distribution since it is the finite full product of probability
distributions. We have to show

Claim: Let f = limn→∞ fn in X → Y and assume that

ηn(fn)(φn) > 0

for each n. Then f = limn→∞ ν∗n(φn).

Proof of Claim: Since we are operating in the category of sequential topological spaces, this
amounts to showing that if x = limn→∞ xn in X, then f(x) = limn→∞ ν∗n(φn)(xn) in Y .

This will follow from the construction of the ν∗n’s, the properties of the hn’s and the
following

Subclaim: f(x) = limn→∞ θn[Cn] mod µ
−1
n,xn,φn

.

Proof of Subclaim: Let µ−1
n,xn,φn

(cn) > 0 for each n. Then there is an an ∈ An with

φn(an) = cn and µn(xn)(an) > 0.
x = limn→∞ νn(an) since we have probabilistic selection on X, so

f(x) = lim
n→∞

fn(νn(an)).

Since ηn(fn)(φn) > 0 we must have that

λn(fn(an))(φn(an)) > 0

so
f(x) = lim

n→∞
θ(φn(an)),

or, in other words
f(x) = lim

n→∞
θn(cn).

This ends the proof of the subclaim, the claim and the theorem.
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The proof of Theorem 4.9 is effective in the sense that we have given explicit construc-
tions of all items involved. In particular this means that if we start with effective domain
representations where the extra parameters (ν, µ etc.) are effective, then X → Y will be
represented over an effective domain, with effective density with probabilistic selection.

We have not proved that X → Y will be semiconvex under the assumptions of Theorem
4.9. In order to make use of Theorem 4.9 as an induction step, we in addition need the
following observation:

Observation 4.10. If X and Y are in Q and satisfy density with probabilistic selection,
then so does X ×Y , where X ×Y is the sequentialisation of the product topology on the set
X × Y (i.e. the product in QCB).

Clearly this observation extends to finite cartesian products. Using standard currying
of types, Observation 4.10 and Theorem 4.9 for the induction step, we then get

Theorem 4.11. Let each of X1, . . . ,Xk be either an effective Banach space or the Urysohn
space U , let σ be a type and let X = σ(X1, . . . ,Xk). Then there is an effective sequence of
finite sets An, an effective sequence of finite maps νn : An → X and an effective sequence of
continuous maps µn : X → PD(An) such that {〈An, νn, µn〉}n∈N is a probabilistic selection
on X.

Our starting point was the search for an effective enumeration of a dense subset of some
spaces of functionals of a given type. We have obtained

Corollary 4.12. Let each of X1, . . . ,Xk be either an effective Banach space or the Urysohn
space U . Let σ be a type and let X = σ(X1, . . . ,Xk).

Then there is an effective enumeration of a dense subset of X.

Proof. Recall the comment after Definition 4.3 and then use Theorem 4.11.

5. An embedding theorem

In this section we will prove a theorem that is strictly topological in formulation, but where
the motivation for proving it comes from the wish to understand the nature of the spaces
used in the semantics of functional programming.

We will prove the following:

Theorem 5.1. Let σ be a type in the variables V1, . . . , Vk and let X1, . . . ,Xk be complete,
separable metric spaces.

Then σ(X1, . . . ,Xk) is homeomorphic to a functionally closed set in σ(U, . . . , U), where
U is the Urysohn space.

In order to prove this theorem, we have to work with a combination of the concept of
an embedding-projection pair and probabilistic selection as defined in Section 4.

Definition 5.2. A probabilistic embedding-projection pair between Y and X consists of

(i) A sequence {An}n∈N of finite sets together with maps νn : An → Y .
(ii) A continuous map ε : Y → X onto a functionally closed subset of X.
(iii) A sequence of continuous maps

µn : X → PD(An)

such that:
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− When x = limn→∞ xn in X with x = ε(y) for some y ∈ Y , and an ∈ An for each n ∈ N

is such that µn(xn)(an) > 0, we have that y = limn→∞ νn(an).

We will call a sequence {〈An, νn, µn〉}n∈N like this a probabilistic projection.

In a probabilistic embedding-projection pair as above, we clearly have that ε is injective.

Lemma 5.3. Let X and Y be complete separable metric spaces, and let Y be isometric to
a subspace of X via ε : Y → X. Then ε is the embedding-part of a probabilistic embedding-
projection pair between Y and X.

Proof. We use the construction from the proof of Lemma 4.5, replacing the enumeration of
a dense subset of X with an enumeration of a dense subset of Y , and relating x ∈ X to the
ε-range of finite parts of the dense subset of Y . There are no new technical aspects of the
proof. Note that since Y is complete, the image of ε is closed in X, and thus functionally
closed.

The key lemma in proving Theorem 5.1 is

Lemma 5.4. Let X ∈ Q, Y homeomorphic to a functionally closed set in X via an embed-
ding ε : Y → X. Let A ⊆ U be a closed subset of the Urysohn space U .

If ε is the embedding-part of a probabilistic embedding-projection pair between Y and
X, then Y → A is homeomorphic to a functionally closed set Z in X → U admitting a
probabilistic embedding-projection pair between Y → A and X → U .

Remark 5.5. We restrict ourselves to Q everywhere, also in cases where the proof works
for qcb-spaces in general, or even in a greater generality.

Theorem 5.1 is proved by induction on the type, using Lemma 5.3 in the base case and
Lemma 5.4 in the induction step. For the induction step, we will also need Lemma 5.6
handling cartesian products.

Proof of Lemma 5.4. For each n let An ⊆ Y be finite, νn : An → Y and µn : X → PD(An)
be continuous such that the sequences form a probabilistic projection.

Let f : X → [0, 1] be continuous such that

ε[Y ] = f−1({0}).

First we will show how to embed Y → A into X → U . We will use that U is homeo-
morphic to l2, see Uspenskij [21], and the linear operations below are carried out via this
homeomorphism.

Let g : Y → A be continuous and let x ∈ X. Let

ε∗(g)(x) =



















g(ε−1(x)) if x ∈ ε[Y ]

(1− λ)
∑

a∈An

µn(x)(a) · g(νn(a)) + λ
∑

b∈An+1

µn+1(x)(b) · g(νn(b))

where n ∈ N and λ ∈ [0, 1) are unique such that f(x) = 1
n+λ , otherwise

We have to show that ε∗(g) ∈ X → U is continuous and that

ε∗ ∈ (Y → A) → (X → U)

is continuous.
Since we are working with sequential spaces, this amounts to showing
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Claim 1: If g = limn→∞ gn in Y → A and x = limn→∞ xn in X then

ε∗(g)(x) = lim
n→∞

ε∗(gn)(xn).

Proof of Claim 1: There will be two cases

Case 1. x 6∈ ε[Y ]: Then f(x) 6= 0 and f(xn) 6= 0 for almost all n. Then, locally around x,
everything is continuous.

Case 2. x ∈ ε[Y ]: Then ε∗(g)(x) = g(ε−1(x)). We may, without serious loss of generality,
assume that for every n ∈ N we have that xn 6∈ ε[Y ] (since g is continuous on Y and
g = limn→∞ gn as functions defined on Y in the limit space sense). Then

ε∗(gn)(xn) = (1− λn)
∑

a∈Amn

µmn(xn)(a) · gn(νmn(a)) + λn
∑

b∈Amn+1

µmn+1(xn)(b) · gn(νmn+1(b))

where mn ∈ N and λn ∈ [0, 1) are such that f(xn) =
1

mn+λn
.

Now, if we for each n select an such that an ∈ Amn and µmn(xn)(an) > 0 or such that
an ∈ Amn+1 and µmn+1(xn)(an) > 0, we may use that x = limn→∞ xn and the properties of
probabilistic projections to see that ε−1(x) = limn→∞ νmn/mn+1(an), where we choose the
index mn or mn + 1 that is relevant for an.

Then g(ε−1(x)) = limn→∞ gn(νmn/mn+1(an)) for each such sequence.
Since ε∗(gn)(xn) is a weighted sum of values gn(νmn(a)) for a ∈ Amn and gn(νmn+1(a))

for a ∈ Amn+1, where the sum of the coefficients is 1 and the coefficients are given by the
probabilities derived from xn, it follows from the consideration above that

ε∗(g)(x) = g(ε−1(x)) = lim
n→∞

ε∗(gn)(xn).

This ends the proof of Claim 1.
Note that (ε∗)−1(γ) defined by

(ε∗)−1(γ)(y) = γ(ε(y))

will map X → U onto Y → U , and that (ε∗)−1 will be the inverse of ε∗ on the image of ε∗.
Thus ε∗ is a homeomorphism onto its range.

Claim 2: There is a continuous

h : (X → U) → [0, 1]

such that h−1({0}) is the range of ε∗.

Proof of Claim 2: Let {yn}n∈N be a dense subset of Y and {xm}m∈N a dense subset of X.
Given γ : X → U we will let h(γ) measure to what extent γ does not map ε[Y ] into A

and to what extent γ will differ from ε∗((ε∗)−1(γ)).
Note that the definition of (ε∗)−1(γ) makes sense since we never use that a function

takes values in A in the definition or in the proof of Claim 1.
We simply let

h(γ) =
∑

n∈N

2−(n+1)(min{1, dU (A, γ(ε(yn))) + dU (γ(xn), ε
∗((ε∗)−1(γ))(xn))}).

This ends the proof of Claim 2.
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It remains to produce the probabilistic projection. Let P be a countable pseudobase for
Y , see Section 2. Let {ξn | n ∈ N} be a countable dense subset of U . For r > 0, r ∈ Q, we
let

Bn,r = {a ∈ U | dA(a, ξn) ≤ r}.

Let {〈pi, Bi〉}i∈N be an enumeration of all pairs 〈p,B〉 where p ∈ P and B is a nonempty
finite intersection of closed neighborhoods of the form Bn,r.

We say that 〈pi, Bi〉 approximates γ ∈ X → U if γ(y) ∈ Bi whenever y ∈ pi, cf. the
construction of pseudobase elements for function spaces.

Let K ⊆ N be finite. K is relevant if there is a g : Y → A such that

∗ ∀i ∈ K∀y ∈ pi(g(y) ∈ Bi).

If K is relevant, let gK satisfy ∗.
If K is not relevant, let m be maximal such that K ∩ {1, . . . ,m} is relevant, and let

gK = gK∩{1,...m}.

Now, we assume that the enumeration {yj}j∈N of the dense subset of Y used in the proof
of Claim 2 is chosen such that for all p ∈ P, {yj | yj ∈ p} is a dense subset of p. Then,
whenever p ∈ P, B ⊆ A is a closed set and g : Y → A is continuous we have that

∀y ∈ p(g(y) ∈ B) ⇔ ∀j ∈ N(yj ∈ p⇒ g(yj) ∈ B).

Now, let Cn be the powerset of {1, . . . , n}. We will construct a sequence of continuous
functions

µ∗n : (X → U) → PD(Cn).

Let k = kn be so large that for all i ≤ n there is a j ≤ k such that yj ∈ pi.

− Let µ∗n,i(γ)(∈) = 1 if γ(ε(yj)) ∈ Bi for all j ≤ k with yj ∈ pi.

− Let µ∗n,i(γ)(∈) = 0 if dU (Bi, γ(ε(yj))) ≥ 2−n for at least one j ≤ k with yj ∈ pi
− Let µ∗n,i(γ)(∈) = 1− λ if

2−n · λ = max{dU (Bi, γ(ε(yj))) | j ≤ k ∧ yj ∈ pi}

otherwise.
− Let µ∗n,i(γ)(/∈) = 1− µ∗n,i(γ)(∈).

µ∗n,i(γ) is a probability distribution on the two-point set {∈, /∈} where the probability of ∈
is measuring how probable it is, given n, that 〈pi, Bi〉 approximates γ.

Let
µ∗n(γ)(K) =

∏

i∈K

µ∗n,i(γ)(∈) ·
∏

i 6∈K

µ∗n,i(γ)(6∈).

This gives us the n’th estimate of how likely it is that K is the set of indices of the
approximations to γ.

Claim 3: Assume that g : Y → A, γ = ε∗(g) and that γ = limn→∞ γn. Assume further that
for each n ∈ N, Kn ∈ Cn is such that µ∗n(γn)(Kn) > 0. Then g = limn→∞ gKn .

Proof of Claim 3: Using the lim-space characterization it is sufficient to show that whenever
z = limn→∞ zn ∈ Y , then g(z) = limn→∞ gKn(zn) in U . We will use Lemma 2.6.

Let (D,DR, δ) be the admissible domain representation of Y , where D consists of ideals
of pseudobase elements in P, and let (E,ER, δ1) be the corresponding domain representation
of Y → U , see the proof of Lemma 2.7 for the construction and the notation used below.
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Let α = limn→∞ αn be a convergent sequence from ER representing

g = lim
n→∞

(ε∗)−1(γn)

and let ζ = limn→∞ ζn be a convergent sequence from DR representing z = limn→∞ zn, see
Remark 2.5.

Let ǫ > 0. Since α represents g and ζ represents z, there is an m ∈ N such that
P{〈pm,Bm〉} ∈ α, pm ∈ ζ and such that the diameter of Bm is less than ǫ. We will show that
for sufficiently large n we have that gKn(zn) ∈ Bm. This will show the claim.

Let n0 be such that for n ≤ n0 we have that P{〈pm,Bm〉} ∈ αn and that pm ∈ ζn.
Recall how we used kn in the construction of µ∗n(g). Let n1 be so large that for any

i ≤ m, if g[pi] 6⊆ Bi, then there is a j ≤ kn1
such that yj ∈ pi and g(yj) 6∈ Bi.

Select one such ji for each relevant i ≤ m, and then choose n2 so large that for each
n ≥ n2 and each relevant i ≤ m we have that

dU (γn(ε(yji)), Bi) > 2−n.

This is possible since γ(ε(yji)) = limn→∞ γn(ε(yji)).
Let n ≥ max{n0, n1, n2} and let K ⊆ {1, . . . , n} be such that µ∗n(γn)(K) > 0.
For i < m we have ensured that if γn[ε[pi]] 6⊆ Bi, then µ∗n,i(γn)(∈) = 0 and since

P{〈pm,Bm〉} ∈ αn we also have that µ∗n,m(γn)(∈) = 1. It follows that g witnesses that
K ∩ {1, . . . ,m} is relevant and contains m. This holds in particular for K = Kn, so
gKn(zn) ∈ Bm. This ends the proof of Claim 3.

Now the proof of Lemma 5.4 is complete, but let us summarize what we have achieved.

− We have defined the embedding ε∗ : (Y → A) → (X → U) and proved that it is
continuous and has a continuous inverse on its range.

− We have proved that the range of ε∗ is a functionally closed set.
− We have defined the finite set Cn and the map

K 7→ gK

from Cn into Y → A. Let ν∗n(K) = gK .
− For each γ ∈ X → U , we have defined the probability distribution µ∗n(γ) on Cn

and proved that altogether, ε∗ and {〈Cn, ν
∗
n, µ

∗
n〉}n∈N form a probabilistic embedding-

projection pair between Y → A and X → U .

We have not included cartesian products as one type constructor, but in order to handle
types of the form σ = τ → δ in the reflection of Lemma 5.4 it will make life simpler if we
view any type σ as a type σ = τ1, . . . , τm → Vi where Vi is interpreted as some separable
metric space. This means that we need an extra induction step in the proof of Theorem
5.1, the case of products.

If X1, . . . ,Xm are spaces in Q or in qcb in general, the product
∏m

i=1Xi is not just
the standard topological product, but the finest topology accepting the induced convergent
sequences in the product topology as convergent. We then have

Lemma 5.6. Let Y1, . . . , Ym and X1, . . . ,Xm be two sequences of spaces in Q, and assume
that there are probabilistic embedding-projection pairs between Yi and Xi for each i ≤ m.
Then there is a probabilistic embedding-projection pair between

∏m
i=1 Yi and

∏m
i=1Xi.

Proof. This is more an observation than a lemma:

− If εi is the embedding for each i ≤ m, we let ε =
∏m

i=1 εi.
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− If fi witnesses that the range of εi is a functionally closed set for each i ≤ m, let

f(x1, . . . , xm) =
1

m

m
∑

i=1

fi(xi)

witness that the range of ε is a functionally closed set.
− If Ak

n and νkn : Ak
n → Yi are the finite “approximations” to Yi used for the probabilistic

projections, we let An and νn be obtained by just taking products.
− The probability distributions of the product are just the products of the probability

distributions of each coordinate.

It is easy to verify that all properties are preserved in this construction.

Now we have all the ingredients needed to prove Theorem 5.1:
If X1, . . . ,Xk are complete, separable metric spaces, and σ is a type expression in the

variables V1, . . . , Vk, we prove by induction on σ that there is a probabilistic embedding-
projection pair between σ(X1, . . . ,Xk) and σ(U, . . . , U), where the image of the embedding
is a functionally closed set.

The induction start σ = Vi is covered by Lemma 5.3.
For the induction step, we let σ = τ1, . . . , τm → Vj .
We then use Lemma 5.6 and the induction hypothesis to show that there is a proba-

bilistic embedding-projection pair between
m
∏

i=1

τi(X1, . . . ,Xk) and

m
∏

i=1

τi(U, . . . , U).

We then use Lemma 5.4 to complete the induction step.

Remark 5.7. This proof is noneffective. We have used that U is homeomorphic to l2, and
we do not know of any effective proof of that. There are likely to be methods that get us
around this problem, using effective semiconvexity like we did in Section 4.

However, the concept of a relevant set of natural numbers, and the choice of the func-
tions gK in the proof of Lemma 5.4, are not effective in a general situation, even when the
metric spaces X1, . . . ,Xk are effective. Thus we may as well use the topological characteri-
zation of U as homeomorphic to l2 in this proof.

Remark 5.8. If we let εVi
be the isometric map from Xi to U used in this proof, we in

reality construct, in the proof of Theorem 5.1, an embedding

εσ : σ(X1, . . . ,Xk) → σ(U, . . . , U)

by recursion on σ. Actually, we construct an embedding of the typed hierarchy over
X1, . . . ,Xk to the corresponding hierarchy over U, . . . , U in the sense that our local em-
beddings commute with application in the two hierarchies. We did not stress this in the
proof, and leave it as an observation.

6. Conclusions and further research

We have shown that the typed hierarchy of hereditarily continuous and total functionals
over the Urysohn space U is rich enough to contain all typed hierarchies over separable
metric spaces as topological sub-hierarchies. One problem is if this can be generalized to
a situation where we do not consider only the full space of continuous functions at types
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σ = τ → δ, but also cases where we select a functionally closed subset of the set of all
continuous functions. If we work within the category of qcb-spaces with a pseudobase of
functionally closed sets, see Schröder [14], we may apply his result stating that functionally
closed in functionally closed is functionally closed, and our embedding theorem should also
be valid in this generalized context. We consider this as a conjecture since we have not
worked out a detailed proof.

All our spaces σ( ~X) are homeomorphic to functionally closed subsets of spaces of the
form X → U where X ∈ Q, but we have not studied this class, denoted by zero(Q → U),
more closely. (Recall that these sets are also called zero-sets.) P. K. Køber [8] has obtained
some partial results related to strictly positive inductive definitions of topological spaces,
and one consequence of his results is that there is a least fixed point of a strictly positive
inductive definition with parameters from zero(Q → U) in zero(Q → U) itself.

We know that U is homeomorphic to l2, but we do not know if the l2-structure on U is
effective in the sense that there are computable

|| || : U → R≥0 + : U × U → U · : R× U → U

representing the l2 - structure, or any other Banach space structure on U .
It may be of interest to equip U with some structure offering an internal computability

theory, e.g. by identifying subsets representing N, Z and R.
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