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Abstract. The constraint satisfaction problem (CSP) of a first-order theory T is the
computational problem of deciding whether a given conjunction of atomic formulas is
satisfiable in some model of T . We study the computational complexity of CSP(T1 ∪ T2)
where T1 and T2 are theories with disjoint finite relational signatures. We prove that if
T1 and T2 are the theories of temporal structures, i.e., structures where all relations have
a first-order definition in (Q;<), then CSP(T1 ∪ T2) is in P or NP-complete. To this end
we prove a purely algebraic statement about the structure of the lattice of locally closed
clones over the domain Q that contain Aut(Q;<).

1. Introduction

Deciding the satisfiability of formulas with respect to a given theory or structure is one of
the fundamental problems in theoretical computer science. One large class of problems of
this kind are Constraint Satisfaction Problems (CSPs). For a finite relational signature τ ,
the CSP of a τ -theory T , written CSP(T ), is the computational problem of deciding whether
a given finite set S of atomic τ -formulas is satisfiable in some model of T . A general goal is
to identify theories T such that CSP(T ) can be solved in polynomial time.

Many theories that are relevant in program verification and automated deduction are
of the form T1 ∪ T2 where the signatures of T1 and T2 are disjoint; satisfiability problems
of the form CSP(T1 ∪ T2) are also studied in the field of Satisfiability Modulo Theories
(SMT). If we already have a decision procedure for CSP(T1) and for CSP(T2), then, under
certain conditions, we can use these decision procedures to construct a decision procedure for
CSP(T1∪T2) in a generic way. Most results in the area of combinations of decision procedures
concern decidability, rather than polynomial-time decidability; see for example [Ghi04, TR03,
BGN+06, Rin96]. We are particularly interested in polynomial-time decidability and the
borderline to NP-hardness. The seminal result in this direction is due to Greg Nelson and
Derek C. Oppen, who provided a criterion assuring that satisfiability of conjunctions of atomic
and negated atomic formulas can be decided in polynomial time [NO79, Opp80]. The work
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of Nelson and Oppen has been further developed later on (see for example [BS01]) and their
algorithm has been implemented in many SMT solvers (see for example [KG07]). While their
result directly gives sufficient conditions for polynomial-time tractability of CSP(T1∪T2), one
of their conditions called ‘convexity’ can be weakened to ‘independence of 6=’ (see [BJR02])
without changing their proof, if we only consider conjunctions of atomic formulas as input
(see Section 2.3 and Section 3 for details). Interestingly, the weakened criterion also turns out
to be remarkably tight; Schulz [Sch00] as well as Bodirsky and Greiner [BG20] proved that
in many cases not covered by the weaker criterion, CSP(T1 ∪ T2) is NP-hard even though
both CSP(T1) and CSP(T2) can be solved in polynomial time. However, there are examples
of theories T1 and T2 that do not satisfy the weakened conditions of Nelson and Oppen, but
CSP(T1 ∪ T2) can be solved in polynomial time nevertheless (see [BG21]). Unfortunately,
there is still no general theory of polynomial-time tractability for combinations of theories.

An important subclass of constraint satisfaction problems are temporal CSPs, which
are CSPs for the theories of structures of the form (Q;R1, . . . , Rn) where R1, . . . , Rn are
relations defined by quantifier-free first-order formulas over (Q;<); we refer to such structures
as temporal structures. A well-known example of such a structure is (Q; Betw) where
Betw := {(a, b, c) | a < b < c ∨ c < b < a}. The CSP for the theory of this structure
is the so-called Betweenness problem and is NP-complete [Opa79]. Other well-known
temporal CSPs are the Cyclic Ordering problem [GM77], Ord-Horn constraints [NB95],
the network satisfaction problem for the point algebra [VKvB89], and scheduling with
and/or precedence constraints [MSS04]. It has been shown that every temporal CSP is in
P or NP-complete [BK09]. Temporal CSPs are of particular importance for the study of
polynomial-time procedures for combinations of theories, because many of the polynomial-
time tractable cases do not satisfy the weakened conditions of Nelson and Oppen because
6= is not independent in these cases. This is unlike several other classifications for CSPs
where all the polynomial-time tractable cases do satisfy the weakened conditions of Nelson
and Oppen [BK08, BMPP19, BW12, BP15, BH12, KP18, BMM21] and hence CSPs for
combinations of such theories can be solved in polynomial time. Some results about the
complexity of CSPs for combinations of theories of temporal structures were obtained
in [BG20], but they were restricted to temporal structures that contain the relations < and
6=.

1.1. Contributions. Our main result is a complexity dichotomy for all problems of the
form CSP(T1 ∪ T2) where T1 and T2 are first-order theories of temporal structures with
disjoint finite signatures. In order to phrase our results in this section, we need the concepts
of primitive positive definability and polymorphisms, which are of fundamental importance
in universal algebra and will be recalled in Section 2.2. The main result is the following:

Theorem 1.1. Let T1 and T2 be the theories of temporal structures A1 and A2 with disjoint
finite signatures. Then CSP(T1 ∪ T2) is polynomial-time tractable if

(1) for both i ∈ {1, 2}, the structure Ai has a binary injective polymorphism and CSP(Ai) is
in P, or

(2) for both i ∈ {1, 2}, the structure Ai has a constant polymorphism, or
(3) there is a temporal structure B such that CSP(B) = CSP(T1 ∪ T2), and CSP(B) is in

P (this happens if, for some i ∈ {1, 2}, all permutations are polymorphisms of Ai).

Otherwise, CSP(T1 ∪ T2) is NP-complete.
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The technique we use to prove NP-hardness in Theorem 1.1 is based on the notion of
cross prevention introduced in [BG20].

Definition 1.2. A τ -structure B can prevent crosses if there exists a primitive positive
τ -formula φ(x, y, u, v) such that

(1) φ(x, y, u, v) ∧ x = y ∧ u 6= v ∧ x 6= u ∧ x 6= v is satisfiable in B,
(2) φ(x, y, u, v) ∧ x 6= y ∧ u = v ∧ x 6= u ∧ y 6= u is satisfiable in B, and
(3) φ(x, y, u, v) ∧ x = y ∧ u = v is not satisfiable in B.

Any such formula φ will be referred to as a cross prevention formula of B.

An example of a structure that can prevent crosses is (Q;<); a cross prevention formula
is u < x ∧ y < v. Another example is (N;E,N) where E is an equivalence relation where
all classes have exactly two elements and N is the complement of E. In this structure
E(x, u) ∧N(y, v) is a cross prevention formula.

Our next contribution, Theorem 1.3, is the complexity result underlying the hardness
proof for Theorem 1.1 and is not limited to temporal structures. It uses the relation Rmix,
which is of fundamental importance to this article and defined as follows:

Rmix :=
{

(a1, a2, a3) ∈ Q3 | (a1 = a2) ∨ (a3 < a1 ∧ a3 < a2)
}

=
{

(a1, a2, a3) ∈ Qn | a3 ≥ min(a1, a2)⇒ a1 = a2
}
.

Theorem 1.3. Let A be a countably infinite ω-categorical structure with finite relational
signature and without algebraicity. If A can prevent crosses, then CSP(Th(Q;<,Rmix) ∪
Th(A)) is NP-hard.

Examples of ω-categorical structures without algebraicity and with cross prevention can
be found in Section 6.

Our third contribution is the algebraic cornerstone of this article, which is a result
about the definability of Rmix. If R is a temporal relation, then −R denotes the dual of
R, which is the temporal relation {(a1, . . . , an) ∈ Qn | (−a1, . . . ,−an) ∈ R}. The dual of
an operation f : Qn → Q is defined by (x1, . . . , xn) 7→ −f(−x1, . . . ,−xn). Hence, for any
temporal relation R and any operation f on Q, the operation f preserves R if and only if
the dual of f preserves the dual of R. The functions min,min,mx and ll will be explained
in Section 2.5.

Theorem 1.4. Let A be a first-order expansion of (Q;<) with a finite relational signature
such that min, mi, mx, ll or one of their duals is a polymorphism of A. Then the following
are equivalent:

• A does not have a binary injective polymorphism.
• Rmix or its dual −Rmix has a primitive positive definition in A.

Theorem 1.4 characterises the first-order expansions of (Q;<) among the polynomial-
time tractable cases in the dichotomy of Bodirsky and Kára (see Theorem 2.9) whose
first-order theory does not satisfy the weakened tractability conditions by Nelson and Oppen
because 6= is not independent from their theory (see Section 2.3 for the definition).

1.2. Significance of the Result in Universal Algebra. Theorem 1.4 is of independent
interest in universal algebra; for an introduction to the universal-algebraic concepts that
appear in this section we refer the reader to Section 2.2. Theorem 1.4 can be seen as a result
about locally closed clones on a countably infinite domain B that are highly set-transitive. A
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permutation group G on a set B is said to be highly set-transitive if for all finite subsets S1
and S2 of B of equal size there exists a permutation in G that maps S1 to S2. An operation
clone on a set B is said to be highly set-transitive if it contains a highly set-transitive
permutation group.

It can be shown that the highly set-transitive locally closed clones are precisely the
polymorphism clones of temporal structures (possibly with infinitely many relations), up to
a bijection between B and Q [BK09]. These objects form a lattice: the meet of two clones
is the intersection of the clones and the join can be obtained as the polymorphism clone of
all relations preserved by both of the clones (see, e.g., Section 6.1 in [Bod21]). Similarly, as
the lattice of clones over the set {0, 1} plays a fundamental role for studying finite algebras
(it has been classified by Post [Pos41]), the lattice of locally closed highly set-transitive
clones over Q is of fundamental importance for the study of locally closed clones in general.
This lattice is of size 2ω even if we restrict our attention to closed clones that contain all
permutations [BCP10]. However, the lower parts of the lattice appears to be more structured
and amenable to classification. We pose the following question.

Question 1.5. Are there only countably many locally closed highly set-transitive clones
over a fixed countably infinite set that do not contain a binary injective operation?

Question 1.5 has a positive answer in the case that the clone contains all permutations
of the base set [BCP10]. Theorem 2.6 below shows that answering Question 1.5 can be split
into finitely many cases, depending on whether the clone contains a constant operation, or
whether it preserves one out of a finite list of temporal relations. Theorem 1.4 shows that in
case 1 of Theorem 2.9, we can even focus on clones that preserve the relation Rmix or its
dual.

1.3. Outline of the Article. We first recall some basic concepts from model theory in
Section 2.1. Then, the classical Nelson-Oppen conditions for obtaining polynomial-time
decision procedures for combined theories are presented in Section 2.3; a slight generalisation
of their results can be found in Section 3. We then define the model-theoretic notion of
a generic combination of two structures with disjoint relational signatures in Section 2.4,
which plays a crucial role in our proof. The reason is that we may apply universal algebra
to study the complexity of CSPs of structures but not of theories. Basic universal-algebraic
concepts are introduced in Section 2.2. Our results build on the classification of the temporal
CSPs that can be solved in polynomial time [BK09], which we present along with other
known facts about temporal structures in Section 2.5.

The proof of Theorem 1.4 is organised as follows. The difficult direction is to find
a primitive positive definition of Rmix in A if A is not preserved by a binary injective
polymorphism. If Pol(A) contains mi, then the proof is easier if ≤ is primitively positively
definable in the structure A. If the relation ≤ is not primitively positively definable in A,
then a certain operation mix is a polymorphism of A. We discuss mix in Section 4 and use
results thereof in Section 5.1 to show the primitive positive definability of Rmix in A.

The case that Pol(A) contains mx but not mi is treated in Section 5.2, and the case that
Pol(A) contains min but neither mi nor mx is treated in Section 5.3. All of these partial
results are put together in Section 5.4.

Finally, Section 6 uses our definability dichotomy theorem (Theorem 1.4) to prove the
complexity dichotomy for combinations of temporal CSPs.
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2. Preliminaries

We use the notation [k] for the set {1, . . . , k} ⊆ N.

2.1. Model Theory. A relational signature is a set of relation symbols, each endowed with
a natural number, stating its arity. Let τ be relational signature. A τ -structure A consists
of a set A, the domain of A, and a relation R ⊆ Ak for each R ∈ τ of arity k. We use the
notation A = (A;R1, . . . , Rn) for relational structures with finite signature.

A τ -formula is atomic if it is of the form x1 = x2, ⊥ (the logical “false”), or R(x1, . . . , xn)
for R ∈ τ of arity n where x1, . . . , xn are variables. A literal is either an atomic formula
or a negated atomic formula. A τ -formula is primitive positive (pp) if it is of the form
∃xk, xk+1, . . . , x`. φ(x1, . . . , x`) where φ is a conjunction of atomic τ -formulas and k ≥ 1
is allowed to be larger than `, in which case all variables are unquantified. A τ -formula
is existential positive if it is a disjunction of primitive positive formulas; note that every
first-order formula which does not contain negation or universal quantification is equivalent
to such a formula. A τ -theory is a set of first-order τ -sentences, i.e., τ -formulas without free
variables. For a τ -strucutre A the (first-order) theory of A, denoted by Th(A), is the set of
all first-order τ -sentences that hold in A. If T is a τ -theory and A a τ -structure, then A is a
model for T , written A |= T , if all sentences in T hold in A. In particular A |= Th(A).

The CSP of a τ -structure A, written CSP(A), is the computational problem of deciding,
given a conjunction of atomic τ -formulas, whether or not the conjunction is satisfiable in A.
More generally, the CSP of a τ -theory T , written CSP(T ), is the computational problem
of deciding whether a given conjunction of atomic τ -formulas is satisfiable in some model
of T . Note that CSP(A) and CSP(Th(A)) are the same problem. Let A be a relational
τ -structure and B a relational σ-structure with τ ⊆ σ.

If A is a τ -structure and φ(x1, . . . , xn) is a τ -formula with free variables x1, . . . , xn,
then the relation defined by φ is the relation {(a1, . . . , an) ∈ An | A |= φ(a1, . . . , an)}. We
say that a relation is primitively positively definable in A if there is a primitive positive
formula that defines R in A. First-order and existential positive definability are defined
analogously. Notice that a definition of a relation R via a formula φ in the above way also
yields a bijection between coordinates of tuples of R and the free variables of φ. We will use
this bijection implicitly whenever we say that t ∈ R satisfies a formula on the free variables
of φ.

If A can be obtained from B by deleting relations from B, then A is called a reduct of
B, and B is called an expansion of A. If the signature of A equals τ , then the reduct A of
B is also denoted by Bτ . An expansion B of A is called first-order expansion if all relations
in B have a first-order definition in A. The expansion of A by a relation R is denoted by
(A;R). As usual, Aut(A) denotes the set of all automorphisms of A, i.e., isomorphisms from
A to A. For k ∈ N and a ∈ Ak, the set Aut(A)a := {(α(a1), . . . , α(ak)) | α ∈ Aut(A)} is
called the orbit of a.

The theory of (Q;<), or any first-order expansion thereof, has the remarkable property of
ω-categoricity, that is, it has only one countable model up to isomorphism (see, e.g., [Hod97]).
The class of ω-categorical relational structures can be characterised by the following theorem.

Theorem 2.1 Engeler, Ryll-Nardzewski, Svenonius, see [Hod97], p. 171. Let A be a countably
infinite structure with countable signature. Then, the following are equivalent:

(1) A is ω-categorical;
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(2) for all n ≥ 1 every orbit of n-tuples is first-order definable in A;
(3) for all n ≥ 1 there are only finitely many orbits of n-tuples.

2.2. Universal Algebra. A operation f : Am → A preserves a relation R ⊆ An if for all
t1, . . . , tm ∈ R we have f(t1, . . . , tm) ∈ R where f is applied component-wise. For instance,
the projection of arity n to the i-th coordinate, denoted by πni , preserves every relation over
A. For a set S of relations over A we define Pol(S) as the set of all operations on A that
preserve all relations in S. We define Pol(A) as Pol(S) where S is the set of all relations of
A. Unary polymorphisms are also called endomorphisms of A; the set of all endomorphisms
is denoted by End(A).

For a set S of functions on a set A we define Inv(S) (‘invariants of S’) as the set of all
finitary relations over A which are preserved by all functions in S.

Theorem 2.2 [BN06], Theorem 4. Let A be a countable ω-categorical relational structure.
Then a relation R over A is preserved by the polymorphisms of A if and only if R has a
primitive positive definition in A.

As a consequence of Theorem 2.2, we may go back and forth between the existence
of certain polymorphisms and the primitive positive definability of certain relations. Fur-
thermore, Theorem 2.2 implies that the set of polymorphisms of an ω-categorical relational
structure A fully captures the complexity of CSP(A).

One of the central notions of universal algebra is that of a clone. A set of operations on
a common domain is a clone if it contains all projections and is closed under composition of
functions. Thus, if we fix the domain, an arbitrary intersection of clones is again a clone.
Therefore, given a set of operations F over a common domain, there is a unique minimal
clone 〈F 〉 containing F , which we call the clone generated by F . For a clone F on domain
A we will also need the local closure of F , denoted by F , which is the smallest clone which
contains F and for any n ∈ N and g : An → A the following holds: If for all finite S ⊆ A
there exists fS ∈ F such that fS |Sn = g|Sn then g ∈ F . If F = F , then F is locally closed.
It is easy to show that Pol(A) is always a locally closed clone for any relational structure A.

2.3. The Conditions of Nelson and Oppen. In this section we recall the classical
conditions of Nelson and Oppen on theories T1 and T2 with disjoint signatures that guarantee
the polynomial-time tractability of CSP(T1 ∪ T2). Their condition can be found in [NO79,
Opp80] and [BS01] and are the following:

• Both theories T1 and T2 must be stably infinite, i.e., whenever a finite set of literals S
is satisfiable in a model of the theory, then there is also an infinite model of the theory
where S is satisfiable.
• Both theories must be convex, i.e., if we choose a finite set of literals S such that for all
i ∈ [n] there exist a model of the theory where S ∪{xi 6= yi} is satisfiable, then there exists
a model of the theory where S ∪{x1 6= y1, . . . , xn 6= yn} is satisfiable.
• For i = 1 and i = 2 there exist polynomial-time decision procedures to decide whether a

finite set of τi-literals is satisfiable in some model of Ti.

The theorem of Nelson and Oppen states that if T1 and T2 satisfy these three conditions,
then there exists a polynomial-time procedure that decides whether a given set of literals
over the signatures of T1 and T2 is satisfiable in a model of T1 ∪ T2. Note that this decision
problem is in general not equal to CSP(T1 ∪ T2), as S is restricted to atomic formulas



Vol. 18:2 TRACTABLE COMBINATIONS OF TEMPORAL CSPS 11:7

in the latter. Nelson and Oppen always allow relations of the form x 6= y in the input,
which we would like to avoid, because there are first-order expansions A of (Q;<) with a
polynomial-time tractable CSP where adding the relation 6= to A makes the CSP hard, as
the following examples shows.

Example 2.3. Let A be the temporal structure (Q;<,Rmin
≤ ) where Rmin

≤ is the relation

defined by φ(x, y, z) := x ≥ y ∨ x ≥ z. Then CSP(A) is in P by Theorem 2.9 below because
A is preserved by min. But CSP(A; 6=) is NP-hard by Theorem 2.9 because (A; 6=) is neither
preserved by a constant operation, mi, mx, min, nor by their duals.

An analysis of the correctness proof of the algorithm of Nelson and Oppen yields that
the set of literals in the definition of convexity can be replaced by a set of atomic formulas
if the input of the decision problem is restricted to a set of atomic formulas, i.e., we only
require that 6= is independent from T1 and T2 (see Definition 3.1). Independence of 6=, stably
infinite theories, tractable CSPs and the presence of 6= in the signature of T1 and T2 is what
we refer to as the weakened conditions of Nelson and Open.

Furthermore, Nelson and Oppen did not require that the signature is purely relational.
However, this difference is rather a formal one, because a function can be represented by
its graph and nested functions can be unnested in polynomial time by introducing new
existentially quantified variables for nested terms. In Section 3 we will prove a tractability
criterion which is slightly stronger than the criterion of Nelson and Oppen with weakened
conditions.

2.4. Generic Combinations. In the context of combining decision procedures for CSPs,
the notion of generic combinations has been introduced in [BG20]. However, others have
studied such structures before (for instance in [Cam90, KPT05, BPP15, LP15]).

Definition 2.4. Let A1 and A2 be countably infinite ω-categorical structures with disjoint
relational signatures τ1 and τ2. A countable model A of Th(A1) ∪ Th(A2) is called a
generic combination of A1 and A2 if for any k ∈ N and any a, b ∈ Ak with pairwise distinct
coordinates

Aut(Aτ1)a ∩Aut(Aτ2)b 6= ∅ and

Aut(Aτ1)a ∩Aut(Aτ2)a = Aut(A)a.

All generic combinations of A1 and A2 are isomorphic (Lemma 2.8 in [BG20]), so we will
speak of the generic combination of two structures, and denote it by A1 ∗ A2.

By definition, the τi reduct of A := A1 ∗A2 is a model of Th(Ai), which is ω-categorical,
and therefore, Aτi ∼= Ai for i = 1 and i = 2. Hence, we may assume without loss of generality
that A1, A2, and A have the same domain. It is an easy observation that an instance
φ1 ∧ φ2 of CSP(T1 ∪ T2), where φi is a τi-formula, is satisfiable if and only if for i = 1 and
i = 2 there exist models Ai of Ti with |A1| = |A2| such that φi is satisfiable in Ai and the
satisfying assignments of φ1 and φ2 identify exactly the same variables. Therefore, the fact
that CSP(A) = CSP(Th(A1) ∪ Th(A2)) easily follows from Aut(Aτ1)a ∩Aut(Aτ2)b 6= ∅ and
ω-categoricity of A1 and A2.

A structure A has no algebraicity if every set defined by a first-order formula over A
with parameters from A is either contained in the set of parameters or infinite. The following
proposition characterises when generic combinations of ω-categorical structures exist.
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Theorem 2.5 Proposition 1.1 in [BG20]. Let A1 and A2 be countably infinite ω-categorical
structures with disjoint relational signatures. Then A1 and A2 have a generic combination if
and only if either both A1 and A2 do not have algebraicity or one of A1 and A2 does have
algebraicity and the other structure is preserved by all permutations.

2.5. Temporal Structures. A relation with a first-order definition over (Q;<) is called
temporal. An example of a temporal relation is the relation Betw from the introduction.
A temporal structure is a relational structure A with domain Q all of whose relations are
temporal. The structure (Q;<) is homogeneous, i.e., every order-preserving map between
two finite subsets of Q can be extended to an automorphism of (Q;<). Therefore, the orbit
of a tuple in A is determined by identifications and the ordering among the coordinates. It
follows from Theorem 2.1 that all temporal structures are ω-categorical.

2.5.1. Polymorphisms of Temporal Structures. One of the fundamental results in the proof
of the complexity dichotomy for temporal CSPs, Theorem 2.6 below, also plays an important
role for combinations of temporal CSPs. To understand Theorem 2.6 and for later use, we
define the relations Cycl, Betw, and Sep:

Betw := {(x, y, z) ∈ Q3 | (x < y < z) ∨ (z < y < x)}
Cycl := {(x, y, z) ∈ Q3 | (x < y < z) ∨ (y < z < x) ∨ (z < x < y)}

Sep := {(x, y, u, v) ∈ Q3 | (x < u < y < v) ∨ (y < u < x < v)∨
(x < v < y < u) ∨ (y < v < x < u)}

Theorem 2.6 Bodirsky and Kára [BK09], Theorem 20. Let A be a temporal structure.
Then at least one of the following cases applies.

• A has a constant endomorphism;
• One of the relations <, Cycl, Betw, or Sep has a primitive positive definition in A.
• A is preserved by all permutations of Q.

We introduce several notions that are needed to describe the polynomial-time tractable
temporal CSPs from [BK09]. However, as opposed to [BK09] we flip the roles of 0 and
1 in the following definition because in this way the resulting systems of equations are
homogeneous (see Theorem 2.11 (4) below; we follow [BPR20]).

Definition 2.7. For a tuple t ∈ Qn we define the min-indicator function χ : Qn → {0, 1}n
by χ(t)[i] := 1 if and only if t[i] ≤ t[j] for all 1 ≤ j ≤ n. The tuple χ(t) ∈ {0, 1}n is called
the min-tuple of t ∈ Qn. For an n-ary relation R we define

χ(R) :={χ(t) | t ∈ R} and χ0(R) := χ(R) ∪ {(0, . . . , 0︸ ︷︷ ︸
n zeros

)}.

Let min denote the binary minimum operation on Q. For any fixed endomorphisms
α, β, γ of (Q;<) which satisfy α(a) < β(a) < γ(a) < α(a + ε) for every a ∈ Q and every
ε ∈ Q with ε > 0, the binary operation mi on Q is defined by

mi(x, y) :=

 α(x) if x = y,
β(y) if x > y,
γ(x) if x < y.
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The intuition behind this definition is best explained through illustrations; for such illustra-
tions, additional explanation, and the argument why such functions do exist we refer the
reader to [BK09] or [Bod21]; the same applies to the operations that are introduced in this
section. For α, β satisfying the same conditions, mx is the binary operation on Q defined by

mx(x, y) :=

{
α(min(x, y)) if x 6= y,
β(x) if x = y.

Theorem 2.8 [BPR20], Lemma 4.1 and Theorem 5.2. We have

〈{mx} ∪Aut(Q;<)〉 = Pol(Q;X)

where

X := {(x, y, z) ∈ Q3 | x = y < z ∨ x = z < y ∨ y = z < x}.
Moreover, every temporal structure B preserved by mx either admits a primitive positive
definition of X or is preserved by a constant operation or by min.

Let ll be an arbitrary binary operation on Q such that ll(a, b) < ll(a′, b′) if and only if

• a ≤ 0 and a < a′, or
• a ≤ 0 and a = a′ and b < b′, or
• a, a′ > 0 and b < b′, or
• a > 0 and b = b′ and a < a′.

Let lex : Q2 → Q be an arbitrary operation that induces the lexicographic order on Q2 (just
like ll if the first argument is not positive). Let pp: Q2 → Q be an arbitrary operation such
that pp(a, b) ≤ pp(a′, b′) if and only if either

• a ≤ 0 and a ≤ a′, or
• 0 < a, 0 < a′ and b ≤ b′ holds.

Notice that the functions mi, mx, pp, ll, their duals, and lex are not uniquely specified by their
definitions. They rather specify a unique weak linear order on Q2. By Observation 10.2.3
in [Bod12], any two functions in Pol(Q;<) which generate the same weak linear order on
Q2 are equivalent with respect to containment in subclones of Pol(Q;<). Hence, we may
assume the following additional properties for convenience:

• mx(0, 0) = 1 and mx(1, 0) = 0,
• mi(0, 0) = 0,mi(1, 0) = 1,mi(0, 1) = 2,mi(1, 1) = 3,
• ll(0, 0) = 0, ll(1, 0) = 1, ll(2, 0) = 2, ll(3, 0) = 3 and ll(1, 1) = 4.

The polymorphisms we presented are connected by the following inclusions (see [BK09] or
Chapter 12 in [Bod21]). For m ∈{min,mi,mx} and l ∈{ll,dual-ll} we have

〈pp,Aut(Q)〉 ⊆ 〈m,Aut(Q)〉,

〈dual-pp,Aut(Q)〉 ⊆ 〈dual-m,Aut(Q)〉,

〈lex,Aut(Q)〉 ⊆ 〈l,Aut(Q)〉.

2.5.2. Complexity of Temporal CSPs. We can now state the complexity dichotomy for
temporal CSPs.

Theorem 2.9 [BK09], Theorem 50. Let A be a temporal structure with finite signature.
Then one of the following applies:
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(1) A is preserved by min, mi, mx, ll, the dual of one of these operations, or by a constant
operation. In this case CSP(A), is in P.

(2) CSP(A) is NP-complete.

In our proofs, we also need some intermediate results from [BK09]. In particular, we use the
ternary temporal relation introduced in Definition 3 in [BK09]:

T3 :={(x, y, z) | x = y < z ∨ x = z < y}
T3 is preserved by pp, but by none of the polymorphisms listed in item (1) of Theorem 2.9
and therefore CSP(Q;T3) is NP-complete.

Theorem 2.10 [BK09], Lemma 36. Let A be a first-order expansion of (Q;<) preserved by
pp. Then either T3 has a primitive positive definition in A, or A is preserved by mi, mx, or
min.

2.5.3. Known Syntactic Descriptions of Temporal Relations. We also need syntactic de-
scriptions for temporal relations preserved by the operations introduced in the previous
sections.

Theorem 2.11 [BCW14] (Theorems 4, 5, and 6), [Bod12] (Proposition 10.4.7 and The-
orem 10.5.18), and [BK09] (observation above Theorem 42). A temporal relation R is
preserved by

(1) pp if and only if R can be defined by a conjunction of formulas of the form

x1 ◦2 x2 ∨ · · · ∨ x1 ◦n xn where ◦i ∈ {6=,≥};

(2) min if and only if R can be defined by a conjunction of formulas of the form

x1 ◦2 x2 ∨ · · · ∨ x1 ◦n xn where ◦i ∈ {>,≥}.

(3) mi if and only if R can be defined by a conjunction of formulas of the form

x1 ◦2 x2 ∨ · · · ∨ x1 ◦n xn where ◦i ∈{6=, >,≥} with at most one ◦i equal to ≥ .

(4) mx if and only if R can be defined by a conjunction of {<}-formulas φ(x1, . . . , xn) for
which there exists a homogeneous system Ax = 0 of linear equations over GF2 such that
for every t ∈ Qn

t satisfies φ if and only if Aχ(t) = 0.

In this case, there exists a homogeneous system Ax = 0 of linear equations over GF2

with solution space χ0(R).
(5) ll if and only if R can be defined by a conjunction of formulas of the form

(x1 > x2 ∨ · · · ∨ x1 > xm) ∨ (x1 = · · · = xm) ∨
∨

m<2i<n

x2i 6= x2i+1,

where the clause x1 = · · · = xm may be omitted.

Note that the relation Rmix can equivalently be written as

Rmix =
{

(a, b, c) ∈ Q3 | (a ≥ b ∨ a > c) ∧ (b ≥ a ∨ b > c)}.

Theorem 2.11 then implies that Rmix is preserved by min and mi. To see that Rmix is also
preserved by mx, note that χ0(R

mix) = {(1, 1, 1), (1, 1, 0), (0, 0, 1), (0, 0, 0)}, which is the
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solution space of the linear equation x1 = x2, and Rmix contains all triples over Q whose
min-tuple satisfies x1 = x2.

Every temporal relation can be defined by a quantifier-free {<}-formula φ and one may
assume that φ is written in conjunctive normal form (CNF)

k∧
`=1

∨
i∈I`

φ`,i

where φ`,i is an atomic {<}-formula. We say that φ is in reduced CNF if we cannot remove
any disjunct φ`,i from φ without altering the defined relation. If φ is in reduced CNF, then
for any ` ∈ [k] and i ∈ I` there exists t ∈ R that satisfies φ`,i and does not satisfy any
other disjunct φ`,j for j ∈ I` \ {i}. We use the symbols ≤, 6=,≥, > as the usual shortcuts,
for x < y ∨ x = y, etc. Clearly, every formula is equivalent to a formula in reduced CNF.
Remarkably, the syntactic form in 2 is preserved by removing literals; hence, in 2 we may
assume without loss of generality that the definition of R is additionally reduced.

2.6. Known Relational Generating Sets. Many important temporal structures A can
also be described elegantly and concisely by specifying a finite set of temporal relations such
that the temporal relations of A are precisely those that have a primitive positive definition
in A. Note that such a finite set might not exist even if A contains all relations that are
primitively positively definable in A. We need such a result for the temporal structure that
contains all temporal relations preserved by pp.

Theorem 2.12 [Bod21], Theorem 12.7.4. A temporal relation is preserved by pp if and only
if it has a primitive positive definition in (Q; 6=, Rmin

≤ , Smi) where

Rmin
≤ :=

{
(x, y, z) ∈ Q3 | x ≥ y ∨ x ≥ z

}
and

Smi :=
{

(x, y, z) ∈ Q3 | x 6= y ∨ x ≥ z
}
.

3. Polynomial-Time Tractable Combinations

The following definition already appeared in [Bod21] and [BJR02] and is closely related to
the convexity condition of Nelson and Oppen. The key difference to convexity of T is that
we consider conjunctions of atomic formulas instead of conjunctions of literals.

Definition 3.1. Let T be a τ -theory. We say that 6= is independent from T if for any

conjunction of atomic τ -formulas φ the formula φ∧
∧k
i=1 xi 6= yi is satisfiable in some model

of T whenever the formula φ ∧ xi 6= yi is satisfiable in some model of T for every i ∈ [k].

The following is easy to see (see, e.g., [Bod21]).

Proposition 3.2. For every structure A with a binary injective polymorphism, 6= is inde-
pendent from Th(A).

Nelson and Oppen require that both theories are stably infinite. We will make a weaker
assumption captured by the following notion.

Definition 3.3. Let T1 and T2 be theories with signatures τ1 and τ2, respectively. We
say that T1 and T2 are cardinality compatible if for all for i ∈ [2] and all conjunctions
φi(x1, . . . , xn) of atomic τi-formulas, such that {∃x1, . . . , xn. φi} ∪ Ti has a model, there are
models of {∃x1, . . . , xn. φ1} ∪ T1 and {∃x1, . . . , xn. φ2} ∪ T2 of equal cardinality.
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Clearly, if T1 and T2 are stably infinite, then they are also cardinality compatible.
Contrary to stably infinite theories where we require that we can choose the cardinality of
the models to be countably infinite, the definition of cardinality compatibility also allows
theories with finite models only. We also allow theories where some formulas are only
satisfiable in finite models while others have infinite models, as the following example shows.

Example 3.4. Let T be the theory {∀x, y (¬Q(x) ∨ x = y)} whose signature only contains
the unary relation symbol Q. There is an infinite model for T where Q is empty. However, if
φ is the formula Q(x), then all models for T ∪{φ} have exactly one element and this element
is contained in Q. Hence, T is not stably infinite, but cardinality compatible with itself.

The sufficient conditions for polynomial-time tractability of CSP(T1 ∪ T2) given in the
following theorem are slightly weaker than those by Nelson and Oppen.

Theorem 3.5. Let T1 and T2 be cardinality compatible theories with finite, disjoint relational
signatures and polynomial-time tractable CSPs. If 6= is independent from both T1 and T2 and
6= has an ep-definition in both T1 and T2, then CSP(T1 ∪ T2) is polynomial-time tractable.

Proof. Let τ1 and τ2 be the signatures of T1 and T2, respectively. Let S be a set of atomic
τ1 ∪ τ2-formulas with free variables among x1, . . . , xn. Then we may partition S into S1 and
S2 such that Si is a set of τi-formulas and S = S1 ∪ S2. Without loss of generality, we may
assume that all variables occur in both S1 and S2 (this can also be attained by introduction
of dummy constraints like x = x). Let φi(x, y) be an existential positive definition of x 6= y
in Ti for i ∈ {1, 2}. For i = 1 and i = 2 and for each tuple of variables (xk, xl) and each
disjunct D(· , ·) in φi we test whether Si ∪{D(xk, xl)} is satisfiable is some model of Ti.
If, for a fixed tuple (xk, xl), the answer is ‘unsatisfiable’ for all disjuncts of φi, then we
replace all occurrences of xl in S1 and in S2 by xk. We iterate this procedure until no
more replacements are made. If S1 or S2 is unsatisfiable in all models of T1, T2 respectively
thereafter, we return ‘unsatisfiable’. Otherwise, we return ‘satisfiable’.

To prove that this algorithm is correct, notice that if Si ∪{D(xk, xl)} is unsatisfiable
for all disjuncts D of φi, then clearly Si ∪{xk 6= xl} is not satisfiable. Moreover, if S1 or
S2 is unsatisfiable, then their union is unsatisfiable as well. Hence, the substitutions done
by the algorithm do not change the satisfiability of S1 ∪ S2 in models of T1 ∪ T2. Let
us therefore assume that after the substitution process both S1 and S2 are satisfiable in
some model of T1 and T2, respectively. Without loss of generality we may assume that the
variables x1, . . . , xm remain in S1 and in S2. Furthermore, we know that Si ∪{xk 6= xl} is
satisfiable for all k 6= l with k, l ≤ m and both i ∈ {1, 2}. Therefore, Si ∪

⋃
k 6=l{xk 6= xl}

is satisfiable in some model of Ti, because 6= is independent from Ti, i.e., there exists
Mi |= Ti and an injective assignment si : {x1, . . . , xm} →Mi such that Mi |=

∧
σ∈Si

σ(si),
where σ(si) denotes σ(si(y1), . . . , si(yk)) and y1, . . . , yk denote the variables in σ. By the
cardinality compatibility of T1 and T2, we may assume that M1 and M2 have the same
cardinality. Therefore, there exists a bijection f : M1 → M2 between their domains such
that f(s1(xk)) = s2(xk) for all k ∈ [m]. With this bijection we define a τ1 ∪ τ2 structure
M which is a model of T1 ∪ T2 via RM := RM1 for R ∈ τ1, and a ∈ RM if and only if
f(a) ∈ RM2 for R ∈ τ2. This is well-defined, because the signatures of T1 and T2 are disjoint
and because s1 and s2 are both injective. It is easy to verify that M is a model of T1 ∪ T2
and M |=

∧
σ∈S1

σ(s1) ∧
∧
σ∈S2

σ(s1) and hence, the original instance is satisfiable.
The number of calls to the decision procedures for T1 and T2 is bounded by the number

of pairs (xk, xl) multiplied by the maximal number of rounds of substitutions and the number
of disjuncts in φ1 and φ2. Hence, the runtime of the algorithm is in O(n3).
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Notice that the tractability result by Nelson and Oppen can be obtained as a special
case of Theorem 3.5 when we consider theories which are stably infinite and where the set of
atomic formulas is closed under negation. The following example shows that our condition
covers strictly more cases already for combinations of temporal CSPs.

Example 3.6. For i = 1 and i = 2, let (Q;<i,≤i) be a structure where <i denotes the usual
strict linear order on the rational numbers, and ≤i denotes the corresponding weak linear
order. Let Ti := Th(Q;<i,≤i). Note that the relation 6= does not have a primitive positive
definition in (Q;<i,≤i); however, it has the existential positive definition x <1 y ∨ y <1 x.
It is well-known that CSP(Q;<i,≤i) can be solved in polynomial time [VKvB89] and that
6= is independent from Ti [BJR02]. Then T1 and T2 satisfy the conditions from Theorem 3.5
but do not satisfy the conditions of Nelson and Oppen.

4. The Operation mix

A certain temporal structure plays an important role in our proof; it contains the set of all
temporal relations preserved by an operation, which we call mix, and which is similar to the
polymorphisms mi and mx. We also present an equivalent description of these relations in
terms of syntactically restricted quantifier-free {<}-formulas (Theorem 4.5).

Definition 4.1. Let α, β, γ be endomorphisms of (Q;<) such that γ(a) < α(a) < β(a) <
γ(a+ ε) for every a, ε ∈ Q with ε > 0. Then mix is the binary operation on Q defined by

mix(x, y) :=

 α(x) if x < y,
β(x) if x = y,
γ(y) if x > y.

In analogy to our convention in the case of the operations mi, mx, and ll, we fix some
concrete values for the operation mix. We claim that the endomorphisms α, β, and γ from the
definition of mix can be chosen so that γ(x) = 3x, α(x) = 3x+1, and β(x) = 3x+2 for every
x ∈ Z+. Figure 1 shows some values for mix. For every k ∈ Z+, we define γk, αk, and βk
inductively as follows. In the base case k = 0, we set α0 := δ0◦α, β0 := δ0◦β, and γ0 := δ0◦γ,
where α, β, γ are arbitrary operations satisfying the requirements in Definition 24 and δ0 is
an automorphism of (Q;<) such that (δ0 ◦ γ)(0) = 0, (δ0 ◦ α)(0) = 1, and (δ0 ◦ β)(0) = 2.
Such δ0 exists because (Q;<) is homogeneous and γ(0) < α(0) < β(0). In the induction step
k → k + 1 we assume that, for every integer 0 ≤ ` ≤ k, the endomorphisms α`, β`, and γ` of
(Q;<) are already defined and satisfy:

(1) the requirements in Definition 24;
(2) γ`(`) = 3`, α`(`) = 3`+ 1, and β`(`) = 3`+ 2;
(3) if ` > 0, then α`, β`, and γ` take the same values as α`−1, β`−1, and γ`−1 on (−∞, `− 1],

respectively.

We set αk+1 := δk+1 ◦αk, βk+1 := δk+1 ◦βk, and γk+1 := δk+1 ◦ γk, where δk+1 is the identity
map on (−∞, 3k + 2] and otherwise a piecewise affine transformation sending

• [3k + 2, γk(k + 1)] to [3k + 2, 3(k + 1)],
• [γk(k + 1), αk(k + 1)] to [3(k + 1), 3(k + 1) + 1],
• [αk(k + 1), βk(k + 1)] to [3(k + 1) + 1, 3(k + 1) + 2], and
• [βk(k + 1),∞) to [3(k + 1) + 2,∞).
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Figure 1: The image of mix on {0, 1, 2, 3}2.

Such δk+1 is clearly an automorphism of (Q;<) and αk+1, βk+1, and γk+1 satisfy the items 1-
3. from above. The sequences (αk), (βk), and (γk) converge pointwise to endomorphisms
α, β, γ of (Q;<) with the desired properties.

Lemma 4.2. The locally closed clone generated by mix and Aut(Q;<) contains mi.

Proof. It is easy to check that f(x, y) := mix(mix(x, y), 3y) induces the same linear order as
mi(x, y) on (Z+)2. Hence, for any finite set S ⊆ Q there exist α, β, γ ∈ Aut(Q;<) such that

αf(β(x), γ(y))|S2 = mi(x, y)|S2 . Then, by definition, mi ∈ 〈mix,Aut(Q;<)〉.

The relation Rmix has the generalisation Rmix
n of arity n ≥ 3 defined as follows.

Rmix
n :=

{
(a1, . . . , an) ∈ Qn | min(a3, . . . , an) ≥ min(a1, a2)⇒ a1 = a2

}
(4.1)

Note that Rmix
n (x1, . . . , xn) has the following definition in CNF

φmix
n (x1, . . . , xn) :=

(
x1 ≥ x2 ∨

∨
i∈{3,...,n}

x1 > xi) ∧ (x2 ≥ x1 ∨
∨

i∈{3,...,n}

x2 > xi
}

which is both of the form described in item 2 and of the form described in 3 in Theorem 2.11.
Hence, Rmix

n is preserved by min and by mi. Also note that Rmix = Rmix
3 and that Rmix(a, b, c)

is equivalent to Rmi(a, b, c) ∧Rmi(b, a, c) where

Rmi :=
{

(a, b, c) ∈ Q3 | a ≥ b ∨ a > c
}
.

The relation Rmix
n is also preserved by mx; we first prove this for Rmix

3 .

Lemma 4.3. For every n ≥ 3, the relation Rmix
n has a primitive positive definition in

(Q;<,Rmix).

Proof. A primitive positive definition of Rmix
n can be obtained inductively by the observation

that Rmix
n (x1, . . . , xn) is equivalent to the following formula.

∃h
(
Rmix
n−1(x1, h, x3, . . . , xn−1) ∧Rmix(h, x2, xn)

)
(4.2)

Every tuple t ∈ Rmix
n satisfies (4.2): if t satisfies x1 = x2 or if t satisfies xn < min(x1, x2),

choose h = x1; if t satisfies xi < min(x1, x2) for some i ∈ {3, . . . , n − 1}, choose h = x2.
Conversely, suppose that t ∈ Qn satisfies (4.2). If t satisfies x1 = h, then t satisfies
x1 = x2 = h or xn < x1 ∧ xn < x2 and therefore Rmix

n . The case that t satisfies x2 = h is
analogous. If t satisfies xn < h∧ xn < x2 and xi < x1 ∧ xi < h for some i ∈ {3, . . . , n}, then
it also satisfies min(xi, xn) < min(x1, x2) and hence t satisfies Rmix

n .

Lemma 4.4. For every n ≥ 3, the operation mix preserves Rmix
n .
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Proof. To prove that mix preserves Rmix
n it suffices prove that mix preserves Rmix due to

Lemma 4.3 and Theorem 2.2. Suppose for contradiction that there are t1, t2 ∈ Rmix such that
t3 := mix(t1, t2) 6∈ Rmix. Then t3 must satisfy (x < y ∧ x ≤ z) ∨ (y < x ∧ y ≤ z). Without
loss of generality we may assume that t3 satisfies the first disjunct. As t3[x] is minimal in t3,
the coordinate x must be minimal in either t1 or t2. Assume the coordinate x is minimal in
t1; the case with t2 can be proven analogously. Then t1 satisfies x = y because t1 ∈ Rmix. If
t2 satisfies x = y then t3 satisfies x = y, contrary to our assumptions. This implies that t2 ∈
Rmix satisfies z < min(x, y). If t2[z] < t1[x] then min(t1[z], t2[z]) = t2[z] < min(t1[x], t2[x]),
and hence t3[z] < t3[x], a contradiction. Therefore, min(t2[x], t2[y]) > t1[x] = t1[y] and hence
t3[x] = t3[y], a contradiction.

Theorem 4.5. A temporal relation is preserved by mix if and only if it has a definition by
a conjunction of clauses of the form

n∨
i=1

x 6= zi ∨
m∨
i=1

x > yi for n,m ∈ N (4.3)

and φmix
n (x1, x2, x3, . . . , xn) for n ≥ 3. (4.4)

Proof. Let R be a temporal relation preserved by mix. Due to Lemma 4.2, the relation R is
also preserved by mi. By Theorem 2.11 case 3 the relation R can be defined by a conjunction
φ of clauses of the form

x ≥ y ∨
n∨
i=1

x 6= zi ∨
m∨
i=1

x > yi for n,m ∈ N (4.5)

where the literal x ≥ y can be omitted. Let Uφ be the set of clauses in φ which do have a literal
of the form x ≥ y and which cannot be paired with another clause such that their conjunction
is of the form φmix

k for some k. Without loss of generality, we may assume that φ is chosen
such that |Uφ| is minimal and such that no literal of the form x 6= zj can be replaced by
x > zj without altering the relation defined by φ. If Uφ is empty, then we are done. Suppose
towards a contradiction that Uφ contains a clause C :=

(
x ≥ y ∨

∨n
1 x 6= zi ∨

∨m
1 x > yi

)
.

Consider the new formulas φ1, . . . , φn+3 obtained from φ by replacing C by, respectively,

x > y ∨
n∨
1

x 6= zi ∨
m∨
1

x > yi, (4.6)

x ≥ y ∨ x > z1 ∨
n∨
2

x 6= zi ∨
m∨
1

x > yi, (4.7)

φmix
2+n+m(x, y, z1, . . . , zn, y1, . . . , ym), (4.8)

or φmix
2+n+m(zi, y, z1, . . . , zi−1, x, zi+1, . . . , zn, y1, . . . , ym) for some i ∈ [n]. (4.9)

Note that φj implies φ for each j ∈ [n+ 3]. Also note that if φ is equivalent to φj we found
a contradiction to our choice of φ because either |Uφj | < |Uφ| or we can replace a literal of
the form x 6= zj . This implies the existence of tuples t1, . . . , tn+3 ∈ R that do not satisfy
φ1, . . . , φn+3, respectively. We start the analysis of these tuples with the special case n = 0.
In this case we get

• a tuple t1 ∈ R that does not satisfy Clause (4.6). Since t1 ∈ R it must satisfy U , and
hence it satisfies x = y ∧

∧m
i=1 x ≤ yi;

• a tuple t3 ∈ R that does not satisfy Clause (4.8), i.e., t3 satisfies x > y ∧
∧m
i=1 y ≤ yi.



11:16 M. Bodirsky, J. Greiner, and J. Rydval Vol. 18:2

x y y1≤i≤m
t′3 := α(t3) > 0 0 ≥ 0
t′1 := β(t1) 0 0 ≥ 0
mix(t′3, t

′
1) 0 > 0 ≥ 0

Table 1: Calculation for the proof of Theorem 4.5 in case n = 0.

But then there exist α, β ∈ Aut(Q;<) such that t := mix(α(t3), β(t1)) does not satisfy C.
The automorphisms α and β have nothing to do with α and β from the definition of mix,
and their behaviour is illustrated in Table 1. The automorphism α maps the coordinate of
t3 corresponding to x in C to some value greater 0. Likewise for the other entries of Table 1.

Therefore, t does not satisfy φ, contradicting the assumption that R is preserved by
mix. If n ≥ 1 the tuples are as follows:

• t1 does not satisfy Clause (4.6), i.e., t1 satisfies x = y ∧
∧n
i=1 x = zi ∧

∧m
i=1 x ≤ yi;

• t2 does not satisfy Clause (4.7), i.e., t2 satisfies x < y∧x < z1 ∧
∧n
i=2 x = zi ∧

∧m
i=1 x ≤ yi;

• t4 does not satisfy Clause (4.9) for i = 1, i.e., t4 satisfies

z1 6= y ∧ (x ≥ z1 ∨ x ≥ y) ∧
n∧
j=2

(zj ≥ z1 ∨ zj ≥ y) ∧
m∧
j=1

(yj ≥ z1 ∨ yj ≥ y).

One of the following cases must apply:

(1) R contains t4,z1 satisfying ψz1 := y > z1 ∧ x > z1 ∧
∧n
j=2 zj ≥ z1 ∧

∧m
j=1 yj ≥ z1;

(2) R contains t4,xz1 satisfying ψxz1 := y > z1 ∧ x = z1 ∧
∧n
j=2 zj ≥ z1 ∧

∧m
j=1 yj ≥ z1;

(3) R contains t4,y satisfying ψy := z1 > y ∧ x > y ∧
∧n
j=2 zj ≥ y ∧

∧m
j=1 yj ≥ y;

(4) R contains t4,xy satisfying ψxy := z1 > y ∧ x = y ∧
∧n
j=2 zj ≥ y ∧

∧m
j=1 yj ≥ y.

Using suitable automorphisms α1, . . . , α6 ∈ Aut(Q;<), we deduce the following (see Table 2):

• in case (1) there is also t′′′4,y ∈ R satisfying ψy, so we are also in case (3);

• in case (2) there is also t′′4,y ∈ R satisfying ψy, so we also in case (3);

• in case (3) the tuple t∗ := mix(t′4,y, t
′
1) ∈ R does not satisfy C, a contradiction.

• in case (4) there is also t′′4,z1 ∈ R satisfying ψz1 , so we are also in case (3).

Hence, in each case we reached a contradiction, which shows that the assumption that Uφ is
non-empty must be false.

It remains to show that conjunctions of clauses of the form (4.3) and (4.4) are preserved
by mix. It suffices to verify that every relation defined by a single clause of this form is
preserved by mix. For the clauses of the form (4.4) we have already shown this in Lemma 4.4.
Let S be the relation defined by

∨n
i=1 x 6= zi ∨

∨m
i=1 x > yi. Suppose for contradiction that

there exist t1, t2 ∈ S such that t3 := mix(t1, t2) 6∈ S. Then t3 must satisfy x = z1 = · · · =
zn ∧

∧m
i=1 x ≤ yi. Therefore, either t1 or t2 must satisfy C := x = z1 = · · · = zn > yj for

some j, because mix is only constant on a set of pairs if one coordinate is constant and
the other coordinate is bigger or equal to the first one. Without loss of generality we may
assume that t1 satisfies C with j = 1.

If t2 satisfies C with some j2 then min(t1[x], t2[x]) > min(t1[y1], t2[yj2 ]) and therefore
t3[x] > min(t3[y1], t3[yj2 ]), contradicting t3 6∈ R. If t2 satisfies x 6= zj for some j, then
t3[x] = t3[zj ] implies that min(t2[x], t2[zj ]) > t1[x]. But then t3[x] > t3[y1], contradicting
t3 6∈ S.
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x y z1 z2≤i≤n y1≤i≤m
t′2 := α2(t2) 0 > 0 > 0 0 ≥ 0
t′1 := α1(t1) 0 0 0 0 ≥ 0

tyz1 := mix(t′2, t
′
1) > 0 0 0 > 0 ≥ 0

t′4,xz1 := α3(t4,xz1) 0 > 0 0 ≥ 0 ≥ 0
tyz1 > 0 0 0 > 0 ≥ 0

t′′4,y := mix(t′4,xz1 , tyz1) > 0 0 > 0 > 0 ≥ 0

t′4,xy := α4(t4,xy) 0 0 > 0 ≥ 0 ≥ 0
t′1 0 0 0 0 ≥ 0

t′′4,z1 := mix(t′4,xy, t
′
1) > 0 > 0 0 ≥ 0 ≥ 0

t′4,z1 := α5(t4,z1) > 0 > 0 0 ≥ 0 ≥ 0
tyz1 > 0 0 0 > 0 ≥ 0

t′′′4,y := mix(t′4,z1 , tyz1) > 0 0 > 0 > 0 ≥ 0

t′4,y := α6(t4,y) > 0 0 > 0 > 0 ≥ 0
t′1 0 0 0 0 ≥ 0

t∗ := mix(t′4,y, t
′
1) 0 > 0 0 0 ≥ 0

Table 2: Calculation for the proof of Lemma 4.5 in case n ≥ 1.

5. Primitive Positive Definability of the Relation Rmix

In this section we prove the following theorem.

Theorem 5.1. Let A be a first-order expansion of (Q;<) that is preserved by pp. Then
Rmix has a primitive positive definition in A if and only if A is not preserved by ll.

The proof of this results is organised as follows. If the relation T3 is primitively positively
definable in A, then so is Rmix (Proposition 5.11). Otherwise, Theorem 2.10 implies that
A is preserved by mi, mx, or min. It therefore suffices to treat first-order expansions A of
(Q;<) that are

• preserved by mi (Section 5.1),
• preserved by mx but not by mi (Section 5.2), and finally
• preserved by min but not by mi and not by mx (Section 5.3).

5.1. Temporal Structures Preserved by mi. In this section we prove Theorem 5.1 for
first-order expansions A of (Q;<) that are preserved by mi (Proposition 5.6). For this purpose,
it turns out to be highly useful to distinguish whether the relation ≤ has a primitive positive
definition in A or not. If yes, then the statement can be shown directly (Proposition 5.2).
Otherwise, A is preserved by the operation mix from Section 4 (Proposition 5.4). Then the
syntactic normal form for temporal relations preserved by mix from Section 4 can be used
to show the statement.

Proposition 5.2. Let A be a first-order expansion of (Q;≤) which is preserved by mi but
not by ll. Then Rmi and Rmix have a primitive positive definition in A.



11:18 M. Bodirsky, J. Greiner, and J. Rydval Vol. 18:2

Proof. Let R be a relation of A which is not preserved by ll. As R is preserved by mi,
Theorem 2.11 3 implies that R can be defined by a conjunction φ of clauses of the form

x ≥ y ∨
m∨
i=1

x > yi ∨
n∨
i=1

x 6= zi.

We may assume that the literals x > y1, . . . , x > ym cannot be removed from such
clauses without changing the relation defined by the formula. As R is not preserved
by ll, Theorem 2.11 5 implies that φ must contain a conjunct C of the form x ≥ y ∨∨m
i=1 x > yi ∨

∨n
i=1 x 6= zi where m ≥ 1. Assume for contradiction that φ ∧ x = y

implies x = y1 = · · · = ym ∨
∨m
i=1 x > yi ∨

∨n
i=1 x 6= zi. Then we can replace C by

x > y ∨
∨m
i=1 x > yi ∨ x = y = y1 = · · · = ym ∨

∨n
i=1 x 6= zi. However, if this is possible for

all C with m ≥ 1, then R is preserved by ll, contradiction. So we may suppose that there
exists a tuple t1 ∈ R and j ∈ [m] such that

t1 satisfies x = y ∧ x < yj ∧
∧
i 6=j

x ≤ yi ∧
n∧
i=1

x = zi.

For the sake of notation, we assume that j = 1. As the literal x > y1 can not be removed
from C without changing the relation defined by φ, there is a tuple t2 ∈ R such that

t2 satisfies y > x ∧ x > y1 ∧
∧
i 6=j

x ≤ yi ∧
n∧
i=1

x = zi.

We may assume that x, y, y1, . . . , ym, z1, . . . , zn refer to the first 2 +m+ n coordinates of R,
in that order. Choose k ∈ N such that 2 +m+n+ k is the arity of R and let u1, . . . , uk, y

′, z
be fresh variables. The following is a primitive positive definition of Rmi in A:

ψ(x, y′, z) := ∃y, y1, y2, . . . , ym, z1, . . . , zn, u1, . . . , uk
(
y′ ≤ y ∧ z ≤ y1

∧ R(x, y, y1, . . . , ym, z1, . . . , zn, u1, . . . , uk) ∧
m∧
i=2

x ≤ yi ∧
n∧
i=1

x = zi

)
To see this, first note that the quantifier-free part of ψ implies that x ≥ y ∨ x > y1, and
hence that x ≥ y′ ∨ x > z.

Conversely, choose (a, b, c) ∈ Rmi. If a ≥ b then choose α ∈ Aut(Q;<) such that
α(t1[x]) = a and α(t1[y1]) ≥ c and set y′ = b and z = c. This is possible because
t1[y1] > t1[x]. Then α(t1) provides values for y, y1, . . . , uk which satisfy all conjuncts of
ψ: the conjunct R(x, y, y1, . . . ) is satisfied because α(t1) ∈ R, and for the other conjuncts
this is immediate. Hence, ψ(a, b, c) holds. If a > c then choose α ∈ Aut(Q;<) such that
α(t2[x]) = a, α(t2(y)) ≥ b and α(t2[y1]) = c, y′ = b and z = c. This is possible because
t2[y] > t2[x] > t2[y1]. Then α(t2) provides values for y, y1, . . . , uk which satisfy all conjuncts
of ψ: the conjunct R(x, y, y1, . . . ) is satisfied because α(t2) ∈ R and for the other conjuncts
this is immediate.

Lemma 5.3. Let A be a first-order expansion of (Q;<) which is preserved by mi and where
≤ is not primitively positively definable. Then A has a binary polymorphism f such that for
all positive a1, a2, b1, b2 ∈ Q

2 = f(0, 0) > f(0, b1) = 1 = f(0, b2) > f(a1, 0) = f(a2, 0) = 0. (5.1)
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Proof. By Theorem 2.2 there exists a polymorphism of A that does not preserve ≤. There is
also a binary polymorphism g with this property, by Lemma 10 in [BK09]. We can without
loss of generality assume that there exist p1, p2, q ∈ Q such that p1 < p2 and g(p1, q) >
g(p2, q). Define g′ := γg(α, β) with α, β, γ ∈ Aut(Q;<) such that α−1(p1, p2) = (0, 1),
β−1(q) = 0, and γ(g(p1, q), g(p2, q)) = (1, 0). Then g′(0, 0) = 1 and g′(1, 0) = 0. Defining
g′′(x, y) := g′(mi(x, y), y) we get g′′(0, 0) = g′(0, 0) = 1 and for all c > 0 we get g′′(c, 0) =
g′(1, 0) = 0 and g′′(0, c) = g′(2, c) =: d > 1. Defining f(x, y) := mi(g′′(y, x), g′′(x, y))
we get f(0, 0) = mi(1, 1) = 3, and for all c > 0 we get f(c, 0) = mi(d, 0) = 1, and
f(0, c) = mi(0, d) = 2. As x 7→ x − 1 is in Aut(A), the function (x, y) 7→ f(x, y) − 1
satisfies (5.1).

The following proposition is similar to Proposition 10.5.13 in [Bod12].

Proposition 5.4. Let A be a temporal structure preserved by pp such that ≤ does not have
a primitive positive definition in A. Then A is preserved by mix.

Proof. Let R be a k-ary relation of A and r, s ∈ R. We have to show that t := mix(r, s) is in
R. Let α, β, γ ∈ End(Q;<) be from the definition of mix. Let v1 < · · · < vl be the shortest
sequence of rational numbers such that ti ∈

⋃
j∈[l]{α(vj), β(vj), γ(vj)} for every i ∈ [k]. For

every j ∈ [l] we define

Mj :=
{
i ∈ [k] | ti ∈{α(vj), β(vj), γ(vj)}

}
.

Observe that M1, . . . ,Ml is a partition of [k] and therefore defines a partition on {t1, . . . , tk}.
Furthermore, for each i ∈ Mj either vj = ri ≤ si or vj = si ≤ ri holds. This defines a
partition of Mj into three parts:

Mα
j := {i ∈Mj | vj = rj < sj},

Mβ
j := {i ∈Mj | vj = rj = sj},

and Mγ
j := {i ∈Mj | vj = sj < rj}.

Let α1, . . . , αl ∈ Aut(Q;<) be such that αj(vj) = 0 for all j ∈ [l]. By Lemma 5.3 there is a
binary f ∈ Pol(A) satisfying (5.1). For each j ∈ [l] we define

uj := pp
(
f(αjr, αjs), pp(αjs, αjr)

)
It is easy to verify that for all i ∈Mj and w,w′ > 0

if i ∈Mα
j then uji = pp(f(0, w),pp(w′, 0)) = pp(1,pp(1, 0)),

if i ∈Mβ
j then uji = pp(f(0, 0),pp(0, 0)) = pp(2,pp(0, 0)),

and if i ∈Mγ
j then uji = pp(f(w, 0),pp(0, w′)) = pp(0, 0).

In particular, uj is constant on each of Mα
j , Mβ

j , Mγ
j and uji > uji′ for i ∈ Mα

j and

i′ ∈Mβ
j . We apply f again to obtain zj := f(αjr, βju

j) where βj ∈ Aut(Q;<) is such that

βj(pp(2, pp(0, 0))) = 0. Then we get for all i ∈Mj and w > 0 that

if i ∈Mα
j then zji = f(0, w) = 1,

if i ∈Mβ
j then zji = f(0, 0) = 2,

and if i ∈Mγ
j then zji = f(w, e) < f(0, e′) = 0 for some e′ < e < 0.
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x y zi zj 6=i
t′ := α1(ty,i) 2 1 0 ≥ 1
t′c := α2(tc) 1 1 ≥ 1 ≥ 1

mix(t′, t′c) 3 5 1 ≥ 3

Table 3: Calculation for Claim 2 (Case 2) in the proof of Proposition 5.5.

Thus, we found z1, . . . , zl ∈ R such that for all i ∈ Mβ
j , i′ ∈ Mα

j , and i′′ ∈ Mγ
j we have

zji > zji′ > zji′′ . Take any j, j′ ∈ [l] such that j < j′ and choose i ∈Mβ
j and i′ ∈Mj′ . Then

vj = ri = si < vj′ = min(si′ , ri′) and therefore zji < zj
′

i′ because f , pp, and all automorphisms

preserve <. Therefore, we can apply Lemma 10.5.3 in [Bod12] to z1, . . . , zl which yields the
existence of a tuple t∗ ∈ R with satisfies t∗i < t∗i′ if and only if there exists j < j′ such that

i ∈Mj , i
′ ∈Mj′ , and zji < zj

′

i′ . However, this is the same ordering that t satisfies and hence,
t ∈ R.

Proposition 5.5. Let A be a first-order expansion of (Q;<) preserved by mix but not by ll.
Then Rmix has a primitive positive definition in A.

Proof. Let R be a relation in A that is not preserved by ll. Lemma 4.5 implies that R can
be defined by conjunctions of clauses the form (4.3) and (4.4). As R is not preserved by ll,
any such definition must include at least on clause of the form (4.4). Consider a clause of
the form (4.4), written in CNF φmix

n = Cx ∧ Cy with

Cx :=

(
x ≥ y ∨

n∨
i=1

x > zi

)
Cy :=

(
y ≥ x ∨

n∨
i=1

y > zi

)
.

Claim 1. Suppose that the literal x ≥ y can be replaced by x > y in Cx without
changing the relation defined by φ. Then we can also replace the literal y ≥ x by y > x in
Cy without changing the relation defined by φ.

The assumption implies that if x ≥ y is satisfied by a tuple t ∈ R then either t satisfies
x > y, or t satisfies x = y and there exists i such that t satisfies x > zi. In the first case t
satisfies y > zj (in order to satisfy Cy) and hence t still satisfies φ after replacing y ≥ x by
y > x in Cy. In the second case, t satisfies y = x > zi and thus again satisfies Cy after the
same replacement.

Claim 2. Suppose that for some i ∈ [n], the literal x > zi can be removed from Cx
without changing the relation defined by φ. Then y > zi can be removed from Cy without
changing the relation defined by φ.

Case 1: All tuples t ∈ R satisfy x ≤ zi, i.e., x > zi is never true. If there is t ∈ R such
that t satisfies y > zi, then t also satisfies y > x. Hence, we can also remove y > zi from Cy
without altering the relation defined by the formula.

Case 2: There exists t ∈ R where x > zi holds. Suppose for contradiction that there
exists a tuple ty,i ∈ R which does not satisfy Cy after deletion of y > zi in Cy. Then

ty,i satisfies x > y ∧ y > zi ∧
∧
j 6=i

zj ≥ y.
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x y zk zi
α1(tc) 0 0 > 0 0
α2(tx,i) 1 2 ≥ 1 0

t′c := mix(α1(tc), α2(tx,i)) 1 1 > 2 2

Table 4: Calculation of t′c in the proof of Proposition 5.5.

As we already know that literal replacement can be applied to C (Claim 1), we can assume
that no literal in φ can be replaced. Therefore, there exists tc ∈ R such that

tc satisfies x = y ∧
n∧
i=1

x ≤ zi.

Then there exist α1, α2 ∈ Aut(Q;<) such that mix(ty,i, tc) satisfies y > x∧x > zi∧
∧
j 6=i zj ≥

x (see Table 3), contradicting the assumption that we can remove x > zi.
Claims 1 and 2 imply that we may assume without loss of generality that the literal

x ≥ y cannot be replaced by x > y, that the literal x > zi cannot be removed from Cx and,
symmetrically, that y > zi cannot be removed from Cy without changing the relation defined
by φ. Hence, there are tc, tx,i, ty,i ∈ R such that for all 1 ≤ i ≤ n

tc satisfies x = y ∧
n∧
i=1

x ≤ zi, tx,i satisfies zi < x < y ∧
∧
j 6=i

x ≤ zj ,

and ty,i satisfies zi < y < x ∧
∧
j 6=i

y ≤ zj .

Now we apply automorphisms and mix to tc, tx,i, and ty,i to prove that R contains tuples
with more specific properties. We first prove that R must contain a tuple t∗c satisfying

x = y ∧
∧
i∈[n]

x < zi. (5.2)

Choose tc as above such that the number m of indices j ∈ [n] such that tc satisfies x < zj
is maximal. If m = n, then tc satisfies (5.2) and hence satisfies the requirements for
t∗c . Otherwise, there exists i ∈ [n] such that tc satisfies x = zi; this case will lead to a
contradiction. Choose automorphisms α1, α2 ∈ Aut(Q;<) such that α1(tc) satisfies x = 0
and α2(tx,i) satisfies zi = 0. Then

t′c := mix(α1(tc), α2(tx,i)) ∈ R

satisfies zi > x and x = y (see Table 4). Moreover, if k ∈ [n] is such that α1(tc) satisfies
x < zk then t′c satisfies x < zk as well. Hence, the number m of indices j ∈ [n] such that t′c
satisfies x < zj is at least m+ 1, a contradiction to the choice of tc.

Our next goal is to prove the existence of t∗x,i, t
∗
y,i ∈ R such that

t∗x,i satisfies zi < x < y ∧
∧
j 6=i

y < zj

and t∗y,i satisfies zi < y < x ∧
∧
j 6=i

x < zj .
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x y zi zj 6=i
t′x,i := α1(tx,i) 1 2 0 ≥ 1

t∗c
′ := α2(t

∗
c) 1 1 > 1 > 1

hx,i := mix(t′x,i, t
∗
c
′) 5 3 1 ≥ 4

t′y,i := α3(ty,i) 2 1 0 ≥ 1

t∗c
′ 1 1 > 1 > 1

hy,i := mix(t′y,i, t
∗
c
′) 3 5 1 ≥ 4

h′x,i := α4(hx,i) 3 1 0 ≥ 2

h′y,i := α5(hy,i) 1 3 0 ≥ 2

t∗x,i := mix(h′x,i, h
′
y,i) 3 4 2 ≥ 6

h′y,i 1 3 0 ≥ 2

h′x,i 3 1 0 ≥ 2

t∗y,i := mix(h′y,i, h
′
x,i) 4 3 2 ≥ 6

Table 5: Calculation of t∗x,i and t∗y,i in the proof of Proposition 5.5.

Using t∗c and appropriately chosen α1, . . . , α5 ∈ Aut(Q;<) we may first produce hx,i, hy,i ∈ R
and combine them to get t∗x,i, t

∗
y,i ∈ R as shown in Table 5.

Without loss of generality we may assume that x, y, z1, . . . , zn correspond to the first
n+2 coordinates in R. Let u1, . . . , um be fresh variables such that the arity of R is 2+n+m
and define

ψ(x, y, z̄, ū) := R(x, y, z̄, ū) ∧
n∧
i=2

x < zi ∧ y < zi

and ψ′(x, y, z) := ∃z1, . . . , zk, u1, . . . , um
(
ψ(x, y, z̄, ū) ∧ z < z1

)
.

To show that ψ′ defines Rmix, first notice that t∗x,1, t∗y,1, and t∗c satisfy ψ and that ψ implies
x ≥ y ∨ x > z1 and y ≥ x ∨ y > z1 because all disjuncts of Cx and Cy involving z2, . . . , zn
do not hold. This in turn implies that the set of orbits of (x, y, z1) in tuples that satisfy ψ is
contained in Rmix. It follows that if (a, b, c) satisfies ψ′, then either a = b, or there exists z1
such that c < z1 < min(a, b), so (a, b, c) ∈ Rmix.

Conversely, let (a, b, c) be in Rmix. If a = b and we may choose α ∈ Aut(A) such that
α(t∗c [x]) = a and α(t∗c [z1]) > c, in which case α(t∗c) yields values for z1, . . . , um which prove
that (a, b, c) satisfies ψ′. If c < a < b then there exists α ∈ Aut(A) such that α(t∗x,1)[x] = a,

α(t∗x,1)[y] = b and α(t∗x,1)[z1] > c. Hence, α(t∗x,1) shows that (a, b, c) satisfies ψ′. The
argument for c < b < a works with t∗y,1 in an analogous way.

Now we are ready to prove the main result of this subsection.

Proposition 5.6. Let A be a first-order expansion of (Q;<) which is preserved by mi, but
not by ll. Then Rmix has a primitive positive definition in A.

Proof. If ≤ is primitively positively definable in A, then Proposition 5.2 yields that Rmix is
primitively positively definable in A. If ≤ is not primitively positively definable in A then
Proposition 5.4 yields that A is preserved by mix. In this case Proposition 5.5 implies that
Rmix is primitively positively definable.
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5.2. Temporal Structures Preserved by mx. In this section we consider first-order
expansions of (Q;<) that are preserved by mx. We distinguish the cases whether X
is primitively positively definable in A or not. Theorem 2.8 implies that if X is not
primitively positively definable in A, then A is also preserved by min. So we first consider
the situation that A is preserved by both mx and min. For R ⊆ Qn, t = (t1, . . . , tn) ∈ R
and I = {i1, . . . , il} ⊆ [n] we write πI(t) for the tuple (ti1 , . . . , til) where i1 < i2 < · · · < il
and πI(R) for the relation {πI(t) | t ∈ R}.

Proposition 5.7. Let A be a first-order expansion of (Q;<) that is preserved by mx and
min. Then A is preserved by mi.

Proof. Let R be a relation in A. The proof proceeds by induction on the arity n of R. For
n = 1, or if R is empty, there is nothing to be shown. Suppose that the statement holds
for all relations of arity less than n and that R is not empty. For every I ⊆ [n] we fix a
homogeneous system ARI x = 0 of Boolean linear equations with solution space χ0(πI(R)),
which exists due to case 4 in Theorem 2.11. As R is preserved by min, the Boolean maximum
operation preserves χ0(πI(R)). Furthermore, the solution space of a system of homogeneous
linear equations over GF2 is also preserved by the operation (x, y, z) 7→ x+ y + z mod 2
(because it is a subspace of GF3

2), we get that χ0(πI(R)) is also preserved by min because
min(x, y) = max(x, y) + x + y mod 2. For every pair t, t′ ∈ R we want to show that
mi(t, t′) ∈ R. If min(t) = min(t′), we consider the set S := {i ∈ [n] | χ(t)[i] = χ(t′)[i] = 1}
and distinguish two cases:

(1) If S 6= ∅ then χ(mi(t, t′)) = min(χ(t), χ(t′)) ∈ χ(R).
(2) If S = ∅, then χ(mi(t, t′)) = χ(t′) ∈ χ(R).

If min(t) 6= min(t′), then χ(mi(t, t′)) ∈ {χ(t), χ(t′)} ⊆ χ(R).
Thus, there exists a tuple c ∈ R with χ(c) = χ(mi(t, t′)). Let I :={i | χ(c)[i] = 1} and

observe that I is non-empty. By induction hypothesis, the statement holds for π[n]\I(R) and
we have π[n]\I(mi(t, t′)) = mi(π[n]\I(t), π[n]\I(t

′)) ∈ π[n]\I(R). Therefore, there exists r ∈ R
with π[n]\I(mi(t, t′)) = π[n]\I(r). We can apply an automorphism of (Q;<) to r to obtain a
tuple r′ ∈ R where all entries are positive. We can also apply an automorphism to c to obtain
a tuple c′ ∈ R so that its minimal entries are 0 and for every other entry i ∈ [n] \ I it holds
that c′[i] > r′[i]. Then mx(c′, r′) yields a tuple in R which is minimal at the coordinates in
I and all other coordinates are ordered like the coordinates in r, i.e., mx(c′, r′) is equal to
mi(t, t′) under an automorphism. Hence, mi(t, t′) ∈ R, i.e., R is preserved by mi.

Proposition 5.8. Let A be a first-order expansion of (Q;<) that is preserved by mx but
not by mi. Then Rmix is primitively positively definable in A.

Proof. First suppose that X is primitively positively definable in A. It is easy to check that
∃h
(
X(z, z, h) ∧ X(x, y, h)

)
primitively positively defines Rmix(x, y, z), and hence Rmix is

primitively positively definable in A. Otherwise, if X is not primitively positively definable
in A, then Theorem 2.8 implies that A is also preserved by min, and hence by mi by
Proposition 5.7, which contradicts our assumptions.

5.3. Temporal Structures Preserved by min. This section treats first-order expansions
of (Q;<) that are preserved by min but not by mi and mx. We first show that we may
assume that ≤ has a primitive positive definition in A.
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Lemma 5.9. Let A be a first-order expansion of (Q;<) which is preserved by pp and does
not admit a primitive positive definition of ≤. Then A is preserved by mi or by mx.

Proof. By Theorem 2.2 there exists an f ∈ Pol(A) that does not preserve ≤. As ≤ is a
union of two orbits of Aut(Q;<) = Aut(A), there is a binary polymorphism f ′ of A that
does not preserve ≤ by Lemma 10 in [BK09]. As A is also preserved by pp, Lemma 35 in
[BK09] implies that A is preserved by an operation providing min-intersection closure or
min-xor closure. Then A is preserved by mi or by mx by Proposition 27 and Proposition 29
in [BK09], respectively.

Proposition 5.10. Let A be a first-order expansion of (Q;<) preserved by min but not by
mi and not by mx. Then Rmin

≤ , Rmi, and Rmix have a primitive positive definition in A.

Proof. Let R be a relation of A that is not preserved by mi and let n be the arity of R. As
R is preserved by min, it is definable by a conjunction φ of formulas where each conjunct is
of the form as described in Theorem 2.11 2. Furthermore, there must be a clause C in φ
that is not preserved by mi. By Theorem 2.11 3 C is of the form

x > x1 ∨ · · · ∨ x > x` ∨ x ≥ y1 ∨ · · · ∨ x ≥ yk
with k > 1. Furthermore, we can assume that φ is in reduced CNF. Hence, there exist tuples
t1, t2 ∈ R witnessing that the literals x ≥ y1 and x ≥ y2 cannot be replaced by x > y1 and
by x > y2, respectively, i.e.,

t1 satisfies x = y1 ∧ x < y2 ∧
∧̀
i=1

x ≤ xi ∧
k∧
i=3

x < yi,

t2 satisfies x < y1 ∧ x = y2 ∧
∧̀
i=1

x ≤ xi ∧
k∧
i=3

x < yi.

Let z1, . . . , zm be all the variables from φ that do not occur in C. Without loss of generality,
we may assume that the coordinates of R are in the following order: x, x1, . . . , x`, y1, . . . , yk,
z1, . . . , zm. As A is not preserved by mx, Lemma 5.9 implies that ≤ has a primitive positive
definition in A; so we may assume that ≤ is among the relations of A. We claim that Rmin

≤
can be defined over A by the primitive positive formula φ(x, u, v) given as follows.

∃z1, . . . , zm, x1, . . . , x`, y1, . . . , yk
(
R(x, x1, . . . , x`, y1, . . . , yk, z1, . . . , zm)

∧ y1 ≥ u ∧ y2 ≥ v ∧
∧̀
i=1

x ≤ xi ∧
k∧
i=3

x < yi

)
To prove the claim, let (a, b, c) ∈ Rmin

≤ . Assume that a ≥ b. There exists α ∈ Aut(A)

such that t′1 := α(t1) satisfies t′1[x] = a and t′1[y2] > max(a, c). Now we extend t′1 by two
coordinates, named u and v such that t′1[u] = b and t′1[v] = c. Then π{x,u,v}(t

′
1) = (a, b, c)

and t′1 satisfies the quantifier-free part of φ. Therefore, φ(a, b, c) holds. The case where
a ≥ c holds is handled analogously using t2 instead of t1.

Now suppose that (a, b, c) satisfies φ(x, u, v) and let t∗ be any tuple which satisfies the
quantifier-free part of φ such that π{x,u,v}(t

∗) = (a, b, c). Then t∗ satisfies C, and hence

t∗ satisfies x ≥ y1 ∨ x ≥ y2. Therefore, t∗ satisfies x ≥ u ∨ x ≥ v, i.e., t ∈ Rmin
≤ . It is

easy to check that the formula ∃h (φ(x, h, y) ∧ h > z) is a primitive positive definition of
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Rmi in A. Therefore, Rmix is primitively positively definable in A as well (see note below
Theorem 2.11).

5.4. Definability Dichotomy. In this section we prove Theorem 5.1, following the strategy
outlined earlier, and subsequently we prove Theorem 1.4

Proposition 5.11. A temporal relation has a primitive positive definition in (Q;T3) if and
only if it is preserved by pp.

Proof. By Theorem 2.12, it suffices to prove that the relations 6=, Rmin
≤ , and Smi are

primitively positively definable in (Q;T3). Clearly, x ≤ y is equivalent to ∃z. T3(x, y, z) and
x 6= y is equivalent to ∃z. T3(z, x, y). We claim that the following primitive positive formula
defines Rmin

≤ in (Q;T3,≤).

φ(x, y, z) := ∃x′, y′, z′
(
T3(x

′, y′, z′) ∧ x ≥ x′ ∧ y ≤ y′ ∧ z ≤ z′
)

Suppose that (a, b, c) ∈ Rmin
≤ holds. By the symmetry of the second and third argument in

Rmin
≤ we may assume that a ≥ b holds. Choose a′ = b′ such that b ≤ a′ = b′ ≤ a holds and

c′ > max(a′, b′, c). Then T3(a
′, b′, c′) ∧ a ≥ a′ ∧ b ≤ b′ ∧ c < c′ holds and therefore (a, b, c)

satisfies φ. For the converse direction, suppose for contradiction that (a, b, c) is not in Rmin
≤

but φ(a, b, c) holds. Then we have a < b ∧ a < c. The quantifier-free part of φ implies
x′ ≤ a < b ≤ y′ and therefore x′ = z′ < y′. However, c ≤ z′ = x′ ≤ a follows, contradicting
a < c.

Finally, we claim that the formula

ψ(x, y, z) := ∃u, v
(
T3(x, u, v) ∧ (u 6= y) ∧ (v ≥ z)

)
defines Smi. If (a, b, c) satisfies ψ we either have a = u 6= b or a = v ≥ c. Therefore (a, b, c)
satisfies Smi. If (a, b, c) satisfies Smi we have two cases. If a 6= b, we choose u = a and
v > max(c, a). Then b 6= a = u < v and v > c holds and therefore ψ(a, b, c) holds. If c ≤ a
holds, then we choose v = a and u > max(a, b). Then c ≤ a = v < u 6= b holds, i.e., ψ(a, b, c)
holds.

Proof of Theorem 5.1. =⇒: Suppose that Rmix has a primitive positive definition in A.
Then A is not preserved by ll because Rmix is not preserved by lex: consider for instance
lex((0, 0, 1), (2, 3, 0)), which is in the same orbit as (0, 1, 2) and therefore not in Rmix.
⇐=: Suppose that A is not preserved by ll. If the relation T3 is primitively positively

definable in A, then so is Rmix by Proposition 5.11 because Rmix is preserved by pp and we
are done. Otherwise, Theorem 2.10 implies that A is preserved by mi, mx, or min. If A is
preserved by mi, then Rmix is primitively positively definable in A by Proposition 5.6. If
A is preserved by mx but not by mi, then Rmix is primitively positively definable in A by
Proposition 5.8. If A is preserved by min but neither by mi nor by mx, then A primitively
positively defines Rmix by Proposition 5.10.

Proof of Theorem 1.4. Suppose that A does not have a binary injective polymorphism. Then
A is preserved by min,mi, mx, or their duals. Therefore, A is preserved by pp or dual-pp by
the inclusions presented in Section 2.5.1. If A is preserved by pp, then Theorem 5.1 implies
that Rmix is primitively positively definable in A. If A is preserved by dual-pp, the dual of
A, i.e., the structure obained from A by substituting all relations by their duals, has pp
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as a polymorphism. Hence, Rmix has a primitive positive definition in the dual of A and
therefore −Rmix has a primitive positive definition in A.

It remains to show that the two cases of the theorem are mutually exclusive. Suppose
that A has a binary injective polymorphism f ; we may also assume without loss of generality
that f(0, 1) > f(1, 0). Since f(0, 1) 6= f(0, 2) we have (f(0, 1), f(0, 2), f(1, 0)) /∈ Rmix. As
(0, 0, 1), (1, 2, 0) ∈ Rmix we have that Rmix is not preserved by f and hence does not have a
primitive positive definition in A. The dual case works analogously. Therefore, primitive
positive definability of Rmix in A and binary injective polymorphisms in Pol(A) are mutually
exclusive by Theorem 2.2.

6. Combinations of Temporal CSPs

In this section we prove that the every generic combination of the structure (Q;<,Rmix)
with another structure that can prevent crosses has an NP-hard CSP (Theorem 1.3). We
then derive our complexity classification for the CSP of combinations of temporal structures
(Theorem 1.1). In our NP-hardness proof we use the following.

Proposition 6.1 (Corollary 6.1.23 in [Bod21]). Let A be a countably infinite ω-categorical
structure with finite relational signature and without constant polymorphisms. If all poly-
morphisms of A are essentially unary then CSP(A) is NP-hard.

The next definition introduces the key property of the polymorphisms of (Q;Rmix).

Definition 6.2. For any n, i ∈ N, 1 ≤ i ≤ n, a ∈ Qn, and operations f : Qn → Q we define

H(a, i) :={b ∈ Qn | for all j ∈ [n] \ {i} we have bj > aj and bi = ai}
and If (a) :={i ∈ N | f is constant on H(a, i)} .

Let K be the set of all operations f : Qn → Q with n ≥ 1 where If (a) 6= ∅ for all a ∈ Qn.

Examples of operations in K are min, mi, mix, mx, pp, and all unary operations.
Non-examples are max and ll.

Lemma 6.3. All polymorphisms of (Q;Rmix) are in K.

Proof. Let f : Qn → Q be a polymorphism of (Q;Rmix). We proceed by induction on n ∈ N.
If n = 1, the statement is trivial. For n ≥ 2, assume towards a contradiction that f 6∈ K.
Then there exists c ∈ Qn such that for every k ∈ [n] there exists ak, bk ∈ H(c, k) such that
f(ak) < f(bk). Without loss of generality we may assume that max(f(b1), . . . , f(bn)) = f(b1).
If there exists k 6= 1 and e > b11 such that f(ak) 6= f(e, ak2, . . . , a

k
n), then (ak1, e, b

1
1) ∈ Rmix and

(akl , a
k
l , b

1
l ) ∈ Rmix for all l ∈{2, . . . , n}, but (f(ak), f(e, ak2, . . . , a

k
n), f(b1)) 6∈ Rmix because

f(b1) ≥ f(ak) 6= f(e, ak2, . . . , a
k
n), contradicting the assumption that f preserves Rmix.

Similarly, if there exists k 6= 1 and e > b11 such that f(bk) 6= f(e, bk2, . . . , b
k
n), then (bk1, e, b

1
1) ∈

Rmix and (bkl , b
k
l , b

1
l ) ∈ Rmix for all l ∈ {2, . . . , n}, but (f(bk), f(e, bk2, . . . , b

k
n), f(b1)) 6∈ Rmix.

Hence, for every k 6= 1 and every e > b11 we have

f(e, ak2, . . . , a
k
n) = f(ak) < f(bk) = f(e, bk2, . . . , b

k
n).

Choose e > b11 and define f ′ : Qn−1 → Q as (x2, . . . , xn) 7→ f(e, x2, . . . , xn); as Rmix is
preserved by all constant polymorphisms, f ′ is a composition of polymorphisms of (Q;Rmix)
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and hence a polymorphism of (Q;Rmix). Then for all k ∈{2, . . . , n} we have

(bk2, . . . , b
k
n), (ak2, . . . , a

k
n) ∈ H((c2, . . . , cn), k) and

f ′(ak2, . . . , a
k
n) = f(e, ak2, . . . , a

k
n) < f(e, bk2, . . . , b

k
n) = f ′(bk2, . . . , b

k
n).

Therefore, f ′ is an (n− 1)-ary polymorphism of A which is not in K, a contradiction to the
induction hypothesis.

Lemma 6.4. Let f ∈ K ∩ Pol(Q;<) be of arity n ≥ 2. Let a, b ∈ Qn and i ∈ If (a).

(1) If bi < ai ∧
∧
k 6=i bk > ak, then If (b) ={i}.

(2) If bi ≤ ai ∧
∧
k 6=i bk ≥ ak, then i ∈ If (b).

Proof. To prove (1), suppose for contradiction that bi < ai ∧
∧
k 6=i bk > ak and j ∈ If (b)

with j 6= i. Then there exists c ∈ H(b, j) such that bi < ci < ai. Now consider d, e ∈ Qn

such that

dj = cj ∧ di = ai ∧
∧
k 6∈i,j

dk > ck and ei = ai ∧
∧
k 6=i

ek > dk.

Then ej > dj = cj = bj > aj , di = ai = ei > ci > bi, and ek > dk > ck > bk > ak
for k ∈ [n] \ {i, j}. Hence, d ∈ H(b, j) ∩ H(a, i) and e ∈ H(a, i). This implies that
f(c) = f(d) = f(e), which contradicts the assumption that f preserves <, because ck < ek
for every k ∈ [n]. Since If (b) 6= ∅ by assumption, we therefore conclude that If (b) = {i}.

To prove (2), first consider the case that bi = ai. Then H(b, i) ⊆ H(a, i) and therefore
i ∈ If (b). If bi < ai, choose u, v ∈ H(b, i). Then there exists b′ ∈ H(b, i) such that for each
k 6= i we have b′k < min(uk, vk). Then u, v ∈ H(b′, i) and b′ satisfies b′i < ai ∧

∧
k 6=i b

′
k > aj .

Hence, we have If (b′) = {i} by the first claim of the statement and therefore f(u) = f(v).
As H(b′, i) ⊆ H(b, i) we conclude that i ∈ If (b).

Proof of Theorem 1.3. Let B be the generic combination of (Q;<,Rmix) and A, which exists
by Theorem 2.5. Without loss of generality we may assume that the domain of B is Q and
that A and (Q;<,Rmix) are reducts of B. Let f ∈ Pol(B) be of arity n. Our goal is to show
that f is essentially unary; the NP-hardness of CSP(B) then follows from Proposition 6.1.

By Lemma 6.3 we have Pol(B) ⊆ Pol(Q;<,Rmix) ⊆ K and therefore f ∈ K. Suppose
for contradiction that there are a, b ∈ Qn such that i ∈ If (a), j ∈ If (b), and i 6= j. We will
treat the case that i = 1 and j = 2; all other cases can be treated analogously. Let φ be a
cross prevention formula of A.

Consider the following first-order formula ψ(x̄, ȳ, ū, v̄) with parameters a1, . . . , an,
b1, . . . , bn.

ψ := x1 < a1 ∧ x1 = y1 ∧
∧

k∈[n]\{1}

(xk > ak ∧ yk > ak)

∧ u2 < b2 ∧ u2 = v2 ∧
∧

k∈[n]\{2}

(uk > bk ∧ vk > bk)

For k ∈ [n] let ψk(xk, yk, uk, vk) be the conjunction of all atomic formulas in ψ that contain
xk, yk, uk, or vk. Notice that every atomic formula in ψ only contains variables from
{xk, yk, uk, vk} for a fixed k. Hence, ψ(x̄, ȳ, ū, v̄) is equivalent to

∧n
k=1 ψ

k(xk, yk, uk, vk). Let
δ(z1, z2, z3, z4) be the first-order formula

z1 = z2 ∧ z2 6= z3 ∧ z3 6= z4 ∧ z2 6= x4.
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For each k there exists an assignment sk,1 : {xk, yk, uk, vk} → Q which satisfies ψk and
additionally satisfies δ(xk, yk, uk, vk)∨ δ(uk, vk, xk, yk). For k = 1 there exists an assignment
s1,2 that satisfies φ(xk, yk, uk, vk) ∧ δ(xk, yk, uk, vk), and for each k > 1 there exists an
assignment sk,2 that satisfies φ(xk, yk, uk, vk) ∧ δ(uk, vk, xk, yk). For each k, both sk,1 and
sk,2 can be chosen such that their images are disjoint to the set of all entries of c :=
(a1, . . . , an, b1, . . . , bn), because both (Q;<) and A do not have algebraicity. Now we apply
the first statement of Lemma 2.7 in [BG20] for each k ∈ [n] to c, sk,1, sk,2. This yields, for

each k ∈ [n], a solution sk to ψk ∧ φ(xk, yk, uk, vk). Let s(x) denote (s1(x1), . . . , sn(xn)) and
likewise for s(y), s(u), s(v). Let a′ and b′ be the componentwise minimum of a, s(x), s(y)
and b, s(u), s(v), respectively. Then s(x), s(y) ∈ H(a′, 1) and s(u), s(v) ∈ H(b′, 2). We apply
Case 2 of Lemma 6.4 to a and a′ (in the role of b) and i = 1 and get 1 ∈ If (a′). Similarly,
we apply Case 2 of Lemma 6.4 to b, b′ and i = 2 and get 2 ∈ If (b′). Therefore, f(s(x)) =
f(s(y)) and f(s(u)) = f(s(v)) must hold. However, as f preserves φ we must also have
φ(f(s(x)), f(s(y)), f(s(u)), f(s(v))), contradicting the fact that φ(x, y, u, v) ∧ x = y ∧ u = v
is not satisfiable in A.

We conclude that there exists an i ∈ [n] such that If (a) = {i} for all a ∈ Qn. This
implies that f only depends on the i-th coordinate: to prove this, let a, b ∈ Qn be such that
ai = bi. We choose any c ∈ Qn such that ci = ai and cj < min(aj , bj) for every j ∈ [n] \ {i}.
As a, b ∈ H(c, i) and i ∈ If (c) we have f(a) = f(b), i.e., f can only depend on the i-th
coordinate. The case that f is constant cannot happen, because f preserves <. Thus, f is
essentially unary.

Theorem 1.3 is applicable to countably infinite ω-categorical structures with finite
relational signature which can prevent crosses and do not have algebraicity. Besides (Q;<),
the following structures satisfy all of these conditions:

• the random graph with edge and non-edge relation [BP15]
• the univeral homogeneous Kn-free graph, for n ≥ 3, also called Henson graph [BMPP19]

with edge relation
• first-order expansions of the binary branching C-relation in [BJP17]
• the Fräıssé-limit of all finite 3-uniform hypergraphs which do not embed a tetrahedron

(see Chapter 6 in [Hod97] for the construction method)

Proof of Theorem 1.1. Let B be the generic combination of A1 and A2, which exists by
Theorem 2.5. We may assume that B, A1, and A2 all have the domain Q and that A1 and
A2 are reducts of B. For i = 1 and i = 2, let <i be a linear order on Q such that all relations
of Ai are first-order definable in (Q;<i); correspondingly Betwi,Cycli,Sepi, R

mix
i are defined

as the relations Betw,Cycl, Sep, Rmix but with respect to <i instead of <. The same holds
for mini,mii,mxi, lli and their duals.

If both A1 and A2 have a constant polymorphism, then both A1 and A2 have all constant
operations as polymorphisms, and it follows that B has a constant polymorphism, too. In
this case CSP(B) = CSP(T1 ∪ T2) can be solved in constant time because only instances
with an empty relation or ⊥ as conjunct are unsatisfiable (item (2) of the statement). Hence,
we may suppose without loss of generality that A1 does not have a constant polymorphism.
Then by Theorem 2.6, one of the following cases applies.

• A1 is preserved by all permutations;
• the relation Betw1, Cycl1, or Sep1 is primitively positively definable in A1;
• the relation <1 is primitively positively definable in A1.
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In the first case, B itself is a temporal structure and CSP(B) is in P (item (3) of the
statement) or NP-complete by Theorem 2.9. If one of the relations Betw1, Cycl1, or Sep1

is primitively positively definable in A1, then CSP(A1) is NP-hard and hence CSP(B) is
NP-hard. So we may assume in the following that <1 is primitively positively definable in
A1. Hence, we can assume without loss of generality that <1 is in the signature of A1.

We now consider the case that both A1 and A2 have a binary injective polymorphism. If
for some i ∈ {1, 2} the problem CSP(Ai) is NP-hard, then clearly CSP(B) = CSP(T1 ∪ T2)
is NP-hard as well. Otherwise, Theorem 2.9 implies that for i = 1 and i = 2, the structure
Ai is preserved by ll or by dual-ll (or P=NP, in which case Theorem 1.1 is trivial). Note
that ll and dual-ll also preserve 6=, so we may add 6= to the signature of A1 and A2. As 6= is
independent from T1 and from T2 by Proposition 3.2, the polynomial-time tractability of
CSP(T1 ∪ T2) then follows from Theorem 3.5.

If A1 does not have a binary injective polymorphism, then CSP(A1) and CSP(B) are NP-
hard unless mx1, min1, mi1, or one of their duals is a polymorphism of A1, by Theorem 2.9.
We assume in the following that A1 is preserved by mx1, min1, or mi1; if A1 is preserved by
one of their duals, then the NP-hardness of CSP(T1 ∪ T2) can be shown analogously. By
Theorem 1.4, the relation Rmix

1 has a primitive positive definition in A1.
Now, we make a case distinction for A2. If the structure A2 is preserved by all per-

mutations, we are again done (this is analogous to the situation that A1 is preserved by
all permutations, which was already treated above). Otherwise, we apply Theorem 2.6 to
(A2; 6=) and obtain that a relation R ∈ {<2,Betw2,Cycl2, Sep2} has a primitive positive
definition φ in (A2; 6=). Let E be the set of all sets {xi, xj} such that xi 6= xj appears in φ
and n the arity of R. Then, for some m ≥ n, the formula φ can be written in the following
way: φ(x1, . . . , xn) = ∃xn+1, . . . , xm

(
ψ(x1, . . . , xm) ∧

∧
i,j∈E xi 6= xj

)
where ψ is a primitive

positive τ2-formula. Notice that for all i, j ∈ [n] with i 6= j we may add {i, j} to E because
for any choice of R, all coordinates in tuples of R are pairwise distinct.

Consider the undirected graph ([m], E). We may choose any linear order E′d on [n] and
extend E′d to Ed on [m] by choosing a direction for each edge in E such that ([m], Ed) is a
cycle-free directed graph. Because x < y ∨ x > y defines x 6= y we have

φ(x1, . . . , xn) ≡ ∃xn+1, . . . , xm

(
(ψ(x1, . . . , xm) ∧

∧
(i,j)∈Ed

((xi <1 xj) ∨ (xj <1 xi))
)
.

Now notice that ∃xn+1, . . . , xm
(
ψ(x1, . . . , xm)∧

∧
(i,j)∈Ed

xi <1 xj
)

is a primitive positive

formula in B which defines the same relation as the formula

R(x1, . . . , xn) ∧
∧

(i,j)∈E′
d

xi <1 xj (6.1)

in B. Now, we go through all possible choices for R and present primitive positive definitions
for either <2 or 6= in B. In order to simplify the presentation, we will use conjuncts of the
form (6.1) instead of their equivalent primitive positive definitions in B.

• If R equals <2 then ∃z
(
(x <2 z ∧ x <1 z) ∧ (z <2 y ∧ y <1 z)) is a primitive positive

definition of x <2 y. This is easy to see with the equivalent expression ∃z
(
(x <2 z <2

y) ∧ (x <1 z) ∧ (y <1 z)
)
.
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• If R equals Betw2 we claim that

∃u, v
(
(Betw2(x, u, v) ∧ (x <1 u) ∧ (u <1 v))

∧ (Betw2(u, v, y) ∧ (y <1 u) ∧ (u <1 v))
)

is a primitive positive definition of x 6= y. Again we give an equivalent expression which
helps to verify the claim: ∃u, v

(
((x <2 u <2 v <2 y) ∨ (y <2 v <2 u <2 x)) ∧ (x <1 u <1

v) ∧ (y <1 u)
)
. In the latter, it is clear that x 6= y always holds and that all distinct x, y

satisfy the formula.
• If R equals Cycl2 we claim that

∃u, v
(
(Cycl2(x, u, v) ∧ (x <1 u) ∧ (u <1 v))

∧ (Cycl2(u, y, v) ∧ (y <1 u) ∧ (u <1 v))
)

is a primitive positive definition of x 6= y. A case analysis of Cycl2(x, u, v) yields that the
given formula is equivalent to

∃u, v
((

(x <2 u <2 y <2 v)

∨ (u <2 y <2 v <2 x)

∨ (y <2 v <2 x <2 u)

∨ (v <2 x <2 u <2 y)
)

∧ (x <1 u <1 v) ∧ (y <1 u)
)
.

In the latter formula, it is clear that x 6= y must always hold and that for any distinct x, y
the formula is satisfiable.
• If R equals Sep2 we claim that

∃u, v, w
(
(Sep2(x, u, v, w) ∧ (x <1 u) ∧ (u <1 v) ∧ (v <1 w))

∧ (Sep2(u, v, w, y) ∧ (y <1 u) ∧ (u <1 v) ∧ (v <1 w))
)

is a primitive positive definition of x 6= y. Similarly to above, a case analysis of Sep2 yields
an equivalent expression

∃u, v, w
((

(x <2 v <2 y <2 u <2 w)

∨ (x <2 w <2 u <2 y <2 v)

∨ (u <2 y <2 v <2 x <2 w)

∨ (u <2 w <2 x <2 v <2 y) ∨ (y <2 u <2 w <2 x <2 v)

∨ (v <2 x <2 w <2 y <2 u)

∨ (v <2 u <2 y <2 w <2 x)

∨ (w <2 y <2 u <2 v <2 x)

∨ (w <2 x <2 v <2 u <2 y) ∨ (y <2 w <2 x <2 v <2 u)
)

∧ (x <1 u <1 v <1 w) ∧ (y <1 u)
)

for which the claim is easily verified because x 6= y always holds and for any distinct x, y
there exist u, v, w satisfying the formula.

Choose a relation S from {6=, <2} which is primitively positively definable in B and let
A′2 be the expansion of A2 by S and B′ := A1 ∗ A′2. As S is primitively positively definable
in B, it suffices to show NP-hardness of CSP(B′) instead of CSP(B) = CSP(T1 ∪ T2).
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If S is <2, then A′2 has cross prevention, so the NP-hardness of CSP(B′) follows from
Theorem 1.3. If S is 6=, then we may again apply Theorem 2.6 to A′2 to conclude that the
relation <2, Betw2, Cycl2, or Sep2 is primitively positively definable in A′2. The first case
has already been treated above. In the remaining cases we get NP-hardness of CSP(A′2) and
hence of CSP(B′).

7. Conclusion and Outlook

Our results show that there are two temporal relations, namely Rmix and its dual, with
the property that every first-order expansion of (Q;<) where the weakened Nelson-Oppen
conditions do not apply, i.e., 6= is not independent from their theory, can define one of
these relations primitively positively. We also showed that CSP(Th(Q;Rmix, <) ∪ Th(A)) is
NP-hard for structures A that satisfy the fairly weak assumption of cross prevention and
have a generic combination with (Q;<). These results can be used to prove a complexity
dichotomy for combinations of temporal CSPs: they are either in P or NP-complete. Our
results also motivate the following conjecture, which remains open in general.

Conjecture 7.1. Let A1 and A2 be countably infinite ω-categorical structures without
algebraicity that are not preserved by all permutations and that have the cross prevention
property. If

• CSP(Ai) is in P and Ai has a binary injective polymorphism for both i = 1 and i = 2, or
• Ai has a constant polymorphism for both i = 1 and i = 2,

then CSP(Th(A1) ∪ Th(A2)) is in P. Otherwise, CSP(Th(A1) ∪ Th(A2)) is NP-hard.
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