# LOCATING $\mathfrak{A}x$ , WHERE $\mathfrak{A}$ IS A SUBSPACE OF $\mathcal{B}(H)$

DOUGLAS S. BRIDGES

University of Canterbury, Christchurch, New Zealand *e-mail address*: douglas.bridges@canterbury.ac.nz

ABSTRACT. Given a linear space of operators on a Hilbert space, any vector in the latter determines a subspace of its images under all operators. We discuss, within a Bishop-style constructive framework, conditions under which the projection of the original Hilbert space onto the closure of the image space exists. We derive a general result that leads directly to both the open mapping theorem and our main theorem on the existence of the projection.

# 1. INTRODUCTION

Let H be a real or complex Hilbert space,  $\mathcal{B}(H)$  the space of bounded operators on H, and  $\mathfrak{A}$  a linear subspace of  $\mathcal{B}(H)$ . For each  $x \in H$  write

$$\mathfrak{A}x \equiv \{Ax : A \in \mathfrak{A}\},\$$

and, *if it exists*, denote the projection of H onto the closure  $\overline{\mathfrak{A}x}$  of  $\mathfrak{A}x$  by  $[\mathfrak{A}x]$ . Projections of this type play a very big part in the classical theory of operator algebras, in which context  $\mathfrak{A}$  is normally a subalgebra of  $\mathcal{B}(H)$ ; see, for example, [10, 11, 13, 15]. However, in the constructive<sup>1</sup> setting—the one of this paper—we cannot even guarantee that  $[\mathfrak{A}x]$  exists. Our aim is to give sufficient conditions on  $\mathfrak{A}$  and x under which  $[\mathfrak{A}x]$  exists, or, equivalently, the set  $\mathfrak{A}x$  is located, in the sense that

$$\rho(v,\mathfrak{A}x) \equiv \inf \left\{ \|v - Ax\| : A \in \mathfrak{A} \right\}$$

exists for each  $v \in H$ .

We require some background on operator topologies. Specifically, in addition to the standard uniform topology on  $\mathcal{B}(H)$ , we need

- $\triangleright$  the strong operator topology: the weakest topology on  $\mathcal{B}(H)$  with respect to which the mapping  $T \rightsquigarrow Tx$  is continuous for all  $x \in H$ ;
- ▷ the *weak operator topology:* the weakest topology on  $\mathcal{B}(H)$  with respect to which the mapping  $T \rightsquigarrow \langle Tx, y \rangle$  is continuous for all  $x, y \in H$ .

<sup>&</sup>lt;sup>1</sup>Our constructive setting is that of Bishop [2, 3, 6], in which the mathematics is developed with intuitionistic, not classical, logic, in a suitable set- or type-theoretic framework [1, 12] and with dependent choice permitted.



DOI:10.2168/LMCS-10(2:9)2014

<sup>2012</sup> ACM CCS: [Theory of computation]: Constructive Mathematics.

<sup>2010</sup> Mathematics Subject Classification: 03F60,46S30,47S30.

Key words and phrases: constructive, Hilbert space, space of operators, located.

These topologies are induced, respectively, by the seminorms of the form  $T \rightsquigarrow ||Tx||$  with  $x \in H$ , and  $T \rightsquigarrow |\langle Tx, y \rangle|$  with  $x, y \in H$ . The unit ball<sup>2</sup>

$$\mathcal{B}_1(H) \equiv \{T \in \mathcal{B}(H) : ||T|| \leq 1\}$$

of  $\mathcal{B}(H)$  is classically weak-operator compact, but constructively the most we can say is that it is weak-operator totally bounded (see [4]). The evidence so far suggests that in order to make progress when dealing constructively with a subspace or subalgebra  $\mathfrak{A}$  of  $\mathcal{B}(H)$ , it makes sense to add the weak-operator total boundedness of

$$\mathfrak{A}_1 \equiv \mathfrak{A} \cap \mathcal{B}_1(H)$$

to whatever other hypothesis we are making; in particular, it is known that  $\mathfrak{A}_1$  is located in the strong operator topology—and hence  $\mathfrak{A}_1 x$  is located for each  $x \in H$ —if and only if it is weak-operator totally bounded [7, 14].

Recall that the *metric complement* of a subset S of a metric space X is the set -S of those elements of X that are bounded away from X. When Y is a subspace of X,  $y \in Y$ , and  $S \subset Y$ , we define

$$\rho_Y(y, -S) \equiv \inf \left\{ \rho(y, z) : z \in Y \cap -S \right\}$$

if that infimum exists.

We now state our main result.

**Theorem 1.1.** Let  $\mathfrak{A}$  be a uniformly closed subspace of  $\mathcal{B}(H)$  such that  $\mathfrak{A}_1$  is weak-operator totally bounded, and let x be a point of H such that  $\mathfrak{A}x$  is closed and  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x)$  exists. Then the projection  $[\mathfrak{A}x]$  exists.

Before proving this theorem, we discuss, in Section 2, some general results about the locatedness of sets like  $\mathfrak{A}x$ , and we derive, in Section 3, a generalisation of the open mapping theorem that leads to the proof of Theorem 1.1. Finally, we show, by means of a Brouwerian example, that the existence of  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x)$  cannot be dropped from the hypotheses of our main theorem.

#### 2. Some general locatedness results for $\mathfrak{A}x$

We now prove an elementary, but helpful, result on locatedness in a Hilbert space.

**Proposition 2.1.** Let  $(S_n)_{n \ge 1}$  be a sequence of located, convex subsets of a Hilbert space H such that  $S_1 \subset S_2 \subset \cdots$ , let  $S_{\infty} = \bigcup_{n \ge 1} S_n$ , and let  $x \in H$ . For each n, let  $x_n \in S_n$  satisfy  $||x - x_n|| < \rho(x, S_n) + 2^{-n}$ . Then

$$\rho(x, S_{\infty}) = \inf_{n \ge 1} \rho(x, S_n) = \lim_{n \to \infty} \rho(x, S_n), \qquad (2.1)$$

in the sense that if any of these three numbers exists, then all three do and they are equal. Moreover,  $\rho(x, S_{\infty})$  exists if and only if  $(x_n)_{n \ge 1}$  converges to a limit  $x_{\infty} \in H$ ; in that case,  $\rho(x, S_{\infty}) = ||x - x_{\infty}||$ , and  $||x - y|| > ||x - x_{\infty}||$  for all  $y \in S_{\infty}$  with  $y \ne x_{\infty}$ .

<sup>&</sup>lt;sup>2</sup>Note that it is not constructively provable that every element T of  $\mathcal{B}(H)$  is normed, in the sense that the usual operator norm of T exists. Nevertheless, when we write ' $||T|| \leq 1$ ', we are using a shorthand for ' $||Tx|| \leq ||x||$  for each  $x \in H$ '. Likewise, '||T|| < 1' means that there exists c < 1 such that  $||Tx|| \leq c ||x||$  for each  $x \in H$ ; and '||T|| > 1' means that there exists  $x \in H$  such that ||Tx|| > ||x||.

*Proof.* Suppose that  $\rho(x, S_{\infty})$  exists. Then  $\rho(x, S_{\infty}) \leq \rho(x, S_n)$  for each n. On the other hand, given  $\varepsilon > 0$  we can find  $z \in S_{\infty}$  such that  $||x - z|| < \rho(x, S_{\infty}) + \varepsilon$ . Pick N such that  $z \in S_N$ . Then for all  $n \geq N$ ,

$$\rho(x, S_{\infty}) \leq \rho(x, S_n) \leq \rho(x, S_N) \leq ||x - z|| < \rho(x, S_{\infty}) + \varepsilon.$$

The desired conclusion (2.1) now follows.

Next, observe that (by the parallelogram law in H) if  $m \ge n$ , then

$$\begin{aligned} \|x_m - x_n\|^2 &\leq \|(x - x_m) - (x - x_n)\|^2 \\ &= 2 \|x - x_m\|^2 + 2 \|x - x_n\|^2 - 4 \left\|x - \frac{1}{2} (x_m + x_n)\right\|^2 \\ &\leq 2 \left(\rho (x, S_m) + 2^{-m}\right)^2 + 2 \left(\rho (x, S_n) + 2^{-n}\right)^2 - 4\rho (x, S_m)^2, \end{aligned}$$

since  $\frac{1}{2}(x_m + x_n) \in S_m$ . Thus

$$||x_m - x_n||^2 \leq 2\left(\left(\rho(x, S_m) + 2^{-m}\right)^2 - \rho(x, S_m)^2\right) + 2\left(\left(\rho(x, S_n) + 2^{-n}\right)^2 - \rho(x, S_m)^2\right).$$
(2.2)

If  $\rho(x, S_{\infty})$  exists, then, by the first part of the proof,  $\rho(x, S_n) \to \rho(x, S_{\infty})$  as  $n \to \infty$ . It follows from this and (2.2) that  $||x_m - x_n||^2 \to 0$  as  $m, n \to \infty$ ; whence  $(x_n)_{n \ge 1}$  is a Cauchy sequence in H and therefore converges to a limit  $x_{\infty} \in \overline{S_{\infty}}$ . Then

$$\rho(x, S_{\infty}) = \rho(x, S_{\infty}) \leq ||x - x_{\infty}||$$
  
= 
$$\lim_{n \to \infty} ||x - x_{n}||$$
  
$$\leq \lim_{n \to \infty} (\rho(x, S_{n}) + 2^{-n}) = \rho(x, S_{\infty})$$

Thus  $\rho(x, S_{\infty}) = ||x - x_{\infty}||.$ 

Conversely, suppose that  $x_{\infty} = \lim_{n \to \infty} x_n$  exists. Let  $0 < \alpha < \beta$  and  $\varepsilon = \frac{1}{3} (\beta - \alpha)$ . Pick N such that  $2^{-N} < \varepsilon$  and  $||x_{\infty} - x_n|| < \varepsilon$  for all  $n \ge N$ . Either  $||x - x_{\infty}|| > \alpha + 2\varepsilon$  or  $||x - x_{\infty}|| < \beta$ . In the first case, for all  $n \ge N$ ,

$$\rho(x, S_n) > ||x - x_n|| - 2^{-n} 
\geqslant ||x - x_\infty|| - ||x_\infty - x_n|| - \varepsilon 
> (\alpha + 2\varepsilon) - \varepsilon - \varepsilon = \alpha.$$

In the other case, there exists  $\nu > N$  such that  $||x - x_{\nu}|| < \beta$ ; we then have

$$\rho\left(x, S_{\nu}\right) \leqslant \left\|x - x_{\nu}\right\| < \beta$$

It follows from this and the constructive least-upper-bound principle ([6], Theorem 2.1.18) that

 $\inf \{ \rho(x, S_n) : n \ge 1 \}$ exists; whence, by (2.1),  $d \equiv \rho(x, S_{\infty})$  exists.

Finally, suppose that  $x_{\infty}$  exists, and consider any  $y \in S_{\infty}$  with  $y \neq x_{\infty}$ . We have

$$0 < ||y - x_{\infty}||^{2} = ||y - x - (x_{\infty} - x)||^{2}$$
  
=  $2 ||y - x||^{2} + 2 ||x_{\infty} - x||^{2} - 4 \left\| \frac{y + x_{\infty}}{2} - x \right\|^{2}$   
=  $2 \left( ||y - x||^{2} - d^{2} \right) + 2 \left( ||x_{\infty} - x||^{2} - d^{2} \right) = 2 \left( ||y - x||^{2} - d^{2} \right),$   
| > d.

so ||x - y|| > d.

For each positive integer n we write

$$\mathfrak{A}_n \equiv n\mathfrak{A}_1 = \{ nA : A \in \mathfrak{A}_1 \}.$$

If  $\mathfrak{A}_1$  is weak-operator totally bounded and hence strong-operator located, then  $\mathfrak{A}_n$  has those two properties as well.

Our interest in Proposition 2.1 stems from this:

**Corollary 2.2.** Let  $\mathfrak{A}$  be a linear subspace of  $\mathcal{B}(H)$  with  $\mathfrak{A}_1$  weak-operator totally bounded, and let  $x, y \in H$ . For each n, let  $y_n \in \mathfrak{A}_n$  satisfy  $||y - y_n|| < \rho(x, \mathfrak{A}_n x) + 2^{-n}$ . Then

$$\rho\left(y,\mathfrak{A}x\right)=\inf_{n\geqslant1}\rho(y,\mathfrak{A}_{n}x)=\lim_{n\rightarrow\infty}\rho\left(y,\mathfrak{A}_{n}x\right).$$

Moreover,  $\rho(y, \mathfrak{A}x)$  exists if and only if  $(y_n)_{n \ge 1}$  converges to a limit  $y_\infty \in H$ ; in which case,  $\rho(y, \mathfrak{A}x) = \|y - y_\infty\|$ , and  $\|y - Ax\| > \|y - y_\infty\|$  for each  $A \in \mathfrak{A}$  such that  $Ax \neq y_\infty$ .

One case of this corollary arises when the sequence  $(\rho(y, \mathfrak{A}_n x))_{n\geq 1}$  stabilises:

**Proposition 2.3.** Let  $\mathfrak{A}$  be a linear subspace of  $\mathcal{B}(H)$  such that  $\mathfrak{A}_1$  is weak-operator totally bounded. Let  $x, y \in H$ , and suppose that for some positive integer N,  $\rho(y, \mathfrak{A}_N x) = \rho(y, \mathfrak{A}_{N+1}x)$ . Then  $\rho(y, \mathfrak{A}x)$  exists and equals  $\rho(y, \mathfrak{A}_N x)$ .

*Proof.* By Theorem 4.3.1 of [6], there exists a unique  $z \in \overline{\mathfrak{A}_N x}$  such that  $\rho(y, \mathfrak{A}_N x) = ||y - z||$ . We prove that y - z is orthogonal to  $\mathfrak{A}x$ . Let  $A \in \mathfrak{A}$ , and consider  $\lambda \in \mathbb{C}$  so small that  $\lambda A \in \mathfrak{A}_1$ . Since,

$$z - \lambda A x \in \overline{\mathfrak{A}_{N+1} x},$$

we have

$$\begin{array}{ll} \langle y - z - \lambda Ax, y - z - \lambda Ax \rangle & \geqslant & \rho \left( y, \mathfrak{A}_{N+1} x \right)^2 \\ & = & \rho \left( y, \mathfrak{A}_N x \right)^2 = \langle y - z, y - z \rangle \end{array}$$

This yields

 $|\lambda|^2 ||Ax||^2 + 2\operatorname{Re}\left(\lambda \left\langle y - z, Ax\right\rangle\right) \ge 0.$ 

Suppose that  $\operatorname{Re} \langle y - z, Ax \rangle \neq 0$ . Then by taking a sufficiently small real  $\lambda$  with

 $\lambda \operatorname{Re} \langle y - z, Ax \rangle < 0,$ 

we obtain a contradiction. Hence  $\operatorname{Re} \langle y - z, Ax \rangle = 0$ . Likewise,  $\operatorname{Im} \langle y - z, Ax \rangle = 0$ . Thus  $\langle y - z, Ax \rangle = 0$ . Since  $A \in \mathfrak{A}$  is arbitrary, we conclude that y - z is orthogonal to  $\mathfrak{A}x$  and hence to  $\overline{\mathfrak{A}x}$ . It is well known that this implies that z is the unique closest point to y in the closed linear subspace  $\overline{\mathfrak{A}x}$ . Since  $\mathfrak{A}x$  is dense in  $\overline{\mathfrak{A}x}$ , it readily follows that  $\rho(y,\mathfrak{A}x) = \rho(y,\overline{\mathfrak{A}x}) = ||y - z||$ .

The final result in this section will be used in the proof of our main theorem.

**Proposition 2.4.** Let  $\mathfrak{A}$  be a linear subspace of  $\mathcal{B}(H)$  with weak-operator totally bounded unit ball, and let  $x \in H$ . Suppose that there exists r > 0 such that

$$\mathfrak{A}_1 x \supset B_{\mathfrak{A}_x}(0,r) \equiv \mathfrak{A}_x \cap B(0,r).$$

Then  $\mathfrak{A}x$  is located in H; in fact, for each  $y \in H$ , there exists a positive integer N such that  $\rho(y,\mathfrak{A}x) = \rho(y,\mathfrak{A}_Nx)$ .

*Proof.* Fixing  $y \in H$ , compute a positive integer  $N > 2 \|y\|/r$ . Let  $A \in \mathfrak{A}$ , and suppose that

$$\|y - Ax\| < \rho\left(y, \mathfrak{A}_N x\right).$$

We have either ||Ax|| < Nr or ||Ax|| > 2 ||y||. In the first case,  $N^{-1}Ax \in B_{\mathfrak{A}x}(0,r)$ , so there exists  $B \in \mathfrak{A}_1$  with  $N^{-1}Ax = Bx$  and therefore Ax = NBx. But  $NB \in \mathfrak{A}_N$ , so

$$\|y - Ax\| = \|y - NBx\| \ge \rho\left(y, \mathfrak{A}_N x\right),$$

a contradiction. In the case  $||Ax|| \ge Nr > 2 ||y||$ , we have

$$\|y - Ax\| \ge \|Ax\| - \|y\| > \|y\| \ge \rho\left(y, \mathfrak{A}_N x\right),$$

another contradiction. We conclude that  $||y - Ax|| \ge \rho(y, \mathfrak{A}_N x)$  for each  $A \in \mathfrak{A}$ . On the other hand, given  $\varepsilon > 0$ , we can find  $A \in \mathfrak{A}_N$  such that  $||y - Ax|| < \rho(y, \mathfrak{A}_N x) + \varepsilon$ . It now follows that  $\rho(y, \mathfrak{A}_X)$  exists and equals  $\rho(y, \mathfrak{A}_N x)$ .

## 3. Generalising the open mapping theorem

The key to our main result on the existence of projections of the form  $[\mathfrak{A}x]$  is a generalisation of the open mapping theorem from functional analysis ([6], Theorem 6.6.4). Before giving that generalisation, we note a proposition and a lemma.

**Proposition 3.1.** If C is a balanced, convex subset of a normed space X, then  $V \equiv \bigcup_{n \ge 1} nC$ 

is a linear subspace of X.

*Proof.* Let  $x \in V$  and  $\alpha \in \mathbb{C}$ . Pick a positive integer n and an element c of C such that x = nc. If  $\alpha \neq 0$ , then since C is balanced,  $|\alpha|^{-1} \alpha c \in C$ , so

$$\alpha x = \alpha nc = |\alpha| \, n \, |\alpha|^{-1} \, \alpha c \in |\alpha| \, nC \subset (1+|\alpha|) \, nC.$$

In the general case, we can apply what we have just proved to show that

 $(1 + \alpha) x \in (1 + |1 + \alpha|) nC \subset (2 + |\alpha|) nC.$ 

Now, since C is balanced,

 $-x = n (-c) \in nC \subset (2 + |\alpha|)nC.$ 

Hence, by the convexity of  $(2 + |\alpha|)nC$ ,

$$\alpha x = 2 \frac{(1+\alpha)x - x}{2} \in 2(2+|\alpha|)nC.$$

Taking N as any integer >  $2(2 + |\alpha|)n$ , we now see that  $\alpha x \in NC \subset V$ . In view of the foregoing and the fact that  $(nC)_{n\geq 1}$  is an ascending sequence of sets, if x' also belongs to V

we can take N large enough to ensure that  $\alpha x$  and x' both belong to NC. Picking  $c, c' \in C$  such that  $\alpha x = Nc$  and x' = Nc', we obtain

$$\alpha x + x' = 2N\left(\frac{c+c'}{2}\right) \in 2NC,$$

so  $\alpha x + x' \in V$ .

We call a bounded subset C of a Banach space X superconvex if for each sequence  $(x_n)_{n\geq 1}$  in C and each sequence  $(\lambda_n)_{n\geq 1}$  of nonnegative numbers such that  $\sum_{n=1}^{\infty} \lambda_n$  converges to 1 and the series  $\sum_{n=1}^{\infty} \lambda_n x_n$  converges, we have  $\sum_{n=1}^{\infty} \lambda_n x_n \in C$ . In that case, C is clearly convex.

**Lemma 3.2.** Let C be a located, bounded, balanced, and superconvex subset of a Banach space X, such that  $X = \bigcup_{n \ge 1} nC$ . Let  $y \in X$  and r > ||y||. Then there exists  $\xi \in 2C$  such that if  $y \ne \xi$ , then  $\rho(z, C) > 0$  for some z with ||z|| < r.

Proof. Either  $\rho(y,C) > 0$  and we take z = y, or else, as we suppose,  $\rho(y,C) < r/2$ . Choosing  $x_1 \in 2C$  such that  $||y - \frac{1}{2}x_1|| < r/2$  and therefore  $||2y - x_1|| < r$ , set  $\lambda_1 = 0$ . Then either  $\rho(2y - x_1, C) > 0$  or  $\rho(2y - x_1, C) < r/2$ . In the first case, set  $\lambda_k = 1$  and  $x_k = 0$  for all  $k \ge 2$ . In the second case, pick  $x_2 \in 2C$  such that  $||2y - x_1 - \frac{1}{2}x_2|| < r/2$ and therefore  $||2^2y - 2x_1 - x_2|| < r$ , and set  $\lambda_2 = 0$ . Carrying on in this way, we construct a sequence  $(x_n)_{n\ge 1}$  in 2C, and an increasing binary sequence  $(\lambda_n)_{n\ge 1}$  with the following properties.

• If  $\lambda_n = 0$ , then

$$\rho\left(2^{n-1}y - \sum_{i=1}^{n} 2^{n-i-1}x_i, C\right) < \frac{r}{2}$$

and

$$\left\| 2^n y - \sum_{i=1}^n 2^{n-i} x_i \right\| < r.$$

• If  $\lambda_n = 1 - \lambda_{n-1}$ , then

$$\rho\left(2^{n-1}y - \sum_{i=1}^{n} 2^{n-i-1}x_i, C\right) > 0$$

and  $x_k = 0$  for all  $k \ge n$ .

Compute  $\alpha > 0$  such that  $||x|| < \alpha$  for all  $x \in 2C$ . Then the series  $\sum_{i=1}^{\infty} 2^{-i}x_i$  converges, by comparison with  $|\alpha| \sum_{i=1}^{\infty} 2^{-i}$ , to a sum  $\xi$  in the Banach space X. Since  $\sum_{i=1}^{\infty} 2^{-i} = 1$  and C is superconvex, we see that

$$\sum_{i=1}^{\infty} 2^{-i} x_i = 2 \sum_{i=1}^{\infty} 2^{-i} \left(\frac{1}{2} x_i\right) \in 2C.$$

If  $y \neq \xi$ , then there exists N such that

$$\left\|y - \sum_{i=1}^{N} 2^{-i} x_i\right\| > 2^{-N} r$$

and therefore

$$\left\|2^N y - \sum_{i=1}^N 2^{N-i} x_i\right\| > r.$$

It follows that we cannot have  $\lambda_N = 0$ , so  $\lambda_N = 1$  and therefore there exists  $\nu \leq N$  such that  $\lambda_{\nu} = 1 - \lambda_{\nu-1}$ . Setting

$$z \equiv 2^{\nu-1}y - \sum_{i=1}^{\nu-1} 2^{\nu-i-1}x_i$$

we see that  $\rho(z, C) > 0$  and ||z|| < r, as required.

We now prove our generalisation of the open mapping theorem.

**Theorem 3.3.** Let X be a Banach space, and C a located, bounded, balanced, and superconvex subset of X such that  $\rho(0, -C)$  exists and  $X = \bigcup_{n \ge 1} nC$ . Then there exists r > 0 such

that  $B(0,r) \subset C$ .

*Proof.* Consider the identity

$$X = \bigcup_{n \ge 1} \overline{nC}.$$

By Theorem 6.6.1 of [6] (see also [8]), there exists N such that the interior of  $\overline{NC}$  is inhabited. Thus there exist  $y_0 \in NC$  and R > 0 such that  $B(y_0, R) \subset \overline{NC}$ . Writing  $y_1 = N^{-1}y_0$  and  $r = (2N)^{-1}R$ , we obtain  $B(y_1, 2r) \subset \overline{C}$ . It follows from Lemma 6.6.3 of [6] that  $B(0, 2r) \subset \overline{C}$ . Now consider any  $y \in B(0, 2r)$ . By Lemma 3.2, there exists  $\xi \in 2C$ such that if  $y \neq \xi$ , then there exists  $z \in B(0, 2r)$  with  $\rho(z, C) > 0$ . Since  $B(0, 2r) \subset \overline{C}$ , this is absurd. Hence  $y = \xi \in 2C$ . It follows that  $B(0, 2r) \subset 2C$  and hence that  $B(0, r) \subset C$ .

Note that in Lemma 3.2 and Theorem 3.3 we can replace the superconvexity of C by these two properties: C is convex, and for each sequence  $(x_n)_{n\geq 1}$  in C, if  $\sum_{n=1}^{\infty} 2^{-n} x_n$  converges in H, then its sum belongs to C.

We now derive two corollaries of Theorem 3.3.

**Corollary 3.4** (The open mapping theorem ([6], Theorem 6.6.4)<sup>3</sup>). Let X, Y be Banach spaces, and T a sequentially continuous linear mapping of X onto Y such that  $T\left(\overline{B(0,1)}\right)$  is located and  $\rho\left(0, -T\left(\overline{B(0,1)}\right)\right)$  exists. Then there exists r > 0 such that  $B(0,r) \subset T\left(\overline{B(0,1)}\right)$ .

*Proof.* In view of Theorem 3.3, it will suffice to prove that  $C \equiv T\left(\overline{B(0,1)}\right)$  is superconvex. But if  $(x_n)_{n\geq 1}$  is a sequence in  $\overline{B(0,1)}$  and  $(\lambda_n)_{n\geq 1}$  is a sequence of nonnegative numbers such that  $\sum_{n=1}^{\infty} \lambda_n = 1$ , then  $\|\lambda_n x_n\| \leq \lambda_n$  for each n, so  $\sum_{n=1}^{\infty} \lambda_n x_n$  converges in X; moreover,

$$\left\|\sum_{n=1}^{\infty}\lambda_n x_n\right\| \leqslant \sum_{n=1}^{\infty}\lambda_n = 1,$$

<sup>&</sup>lt;sup>3</sup>This is but one version of the open mapping theorem; for another, see [5].

so, by the sequential continuity of T,

$$T\left(\sum_{n=1}^{\infty}\lambda_n x_n\right) \in C.$$

Thus C is superconvex.

Theorem 3.3 also leads to the *proof of Theorem 1.1*:

*Proof.* Taking  $C \equiv \mathfrak{A}_1 x$ , we know that C is located (since  $\mathfrak{A}_1$  is weak-operator totally bounded and hence, by [7, 14], strong-operator located), as well as bounded and balanced. To prove that C is superconvex, consider a sequence  $(A_n)_{n\geq 1}$  in  $\mathfrak{A}_1$ , and a sequence  $(\lambda_n)_{n\geq 1}$  of nonnegative numbers such that  $\sum_{n=1}^{\infty} \lambda_n$  converges to 1. For  $k \geq j$  we have

$$\left\|\sum_{n=j}^k \lambda_n A_n\right\| \leqslant \sum_{n=j}^k \lambda_n,$$

so  $\sum_{n=1}^{\infty} \lambda_n A_n$  converges uniformly to an element A of  $\mathcal{B}_1(H)$ . Since  $\mathfrak{A}$  is uniformly closed,  $A \in \mathfrak{A}_1$ , so  $\sum_{n=1}^{\infty} \lambda_n A_n x = Ax \in \mathfrak{A}_1 x$ . Thus C is superconvex. We can now apply Theorem 3.3, to produce r > 0 such that  $B_{\mathfrak{A}x}(0,r) \subset C$ . The locatedness of  $\mathfrak{A}x$ , and the consequent existence of the projection  $[\mathfrak{A}x]$ , now follow from Proposition 2.4.

We now discuss further the requirement, in Theorem 1.1, that  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x)$  exist, where  $\mathfrak{A}_1$  is weak-operator totally bounded. We begin by giving conditions under which that requirement is satisfied.

If  $\mathfrak{A}x$  has positive, finite dimension—in which case it is both closed and located in H—then  $\mathfrak{A}x - \mathfrak{A}_1 x$  is inhabited, so Proposition (1.5) of [9] can be applied to show that  $\mathfrak{A}x - \mathfrak{A}_1 x$  is located in  $\mathfrak{A}x$ . In particular,  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1 x)$  exists. On the other hand, if P is a projection in  $\mathcal{B}(H)$  and

$$\mathfrak{A} \equiv \{PTP : T \in \mathcal{B}(H)\},\$$

then  $\mathfrak{A}$  can be identified with  $\mathcal{B}(P(H))$ , so  $\mathfrak{A}_1$  is weak-operator totally bounded. Moreover, if  $x \neq 0$ , then  $\mathfrak{A}x = P(H)$  and so is both closed and located,  $\mathfrak{A}_1x = \overline{B}(0, ||Px||) \cap P(H)$ , and  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x) = ||Px||$ .

We end with a Brouwerian example showing that we cannot drop the existence of  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x)$  from the hypotheses of Theorem 1.1. Consider the case where  $H = \mathbf{R} \times \mathbf{R}$ , and let  $\mathfrak{A}$  be the linear subspace (actually an algebra) of  $\mathcal{B}(H)$  comprising all matrices of the form

$$T_{a,b} \equiv \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right)$$

with  $a, b \in \mathbf{R}$ . It is easy to show that  $\mathfrak{A}$  is uniformly closed: if  $(a_n), (b_n)$  are sequences in  $\mathbf{R}$  such that  $(T_{a_n,b_n})_{n\geq 1}$  converges uniformly to an element  $T \equiv \begin{pmatrix} a_{\infty} & p \\ q & b_{\infty} \end{pmatrix}$ , then

$$a_n = T_{a_n, b_n} \begin{pmatrix} 1 \\ 0 \end{pmatrix} \to T \begin{pmatrix} 1 \\ 0 \end{pmatrix} = a_{\infty},$$

Likewise,  $b_n \to b_\infty$ , p = 0, and q = 0. Hence  $T = T_{a_\infty, b_\infty} \in \mathfrak{A}$ .

Now, if (x, y) is in the unit ball of H, then

$$\left\| T_{a,b} \begin{pmatrix} x \\ y \end{pmatrix} \right\|^{2} = \left\| \begin{pmatrix} ax \\ by \end{pmatrix} \right\|^{2} = a^{2}x^{2} + b^{2}y^{2}$$
$$= a^{2}(x^{2} + y^{2}) + (b^{2} - a^{2})y^{2}$$
$$= a^{2} + (b^{2} - a^{2})y^{2}.$$

We see from this that if  $a^2 \ge b^2$ , then  $||T_{a,b}||^2 \le a^2$ ; moreover,  $T_{a,b}(1,0) = a$ , so  $||T_{a,b}||^2 = a^2$ . If  $a^2 < b^2$ , then a similar argument shows that  $||T_{a,b}||^2 = b^2$ . It now follows that  $||T_{a,b}||$  exists and equals max  $\{|a|, |b|\}$ . Also, since, relative to the uniform topology on  $\mathcal{B}(H)$ ,  $\mathfrak{A}_1$  is homeomorphic to the totally bounded subset

$$\{(a,b): \max\{|a|,|b|\} \le 1\}$$

of  $\mathbf{R}^2$ , it is uniformly, and hence weak-operator, totally bounded.

Consider the vector  $\xi \equiv (1, c)$ , where  $c \in \mathbf{R}$ . If c = 0, then  $\mathfrak{A}\xi = \mathbf{R} \times \{0\}$ , the projection of H on  $\mathfrak{A}\xi$  is just the projection on the *x*-axis, and  $\rho((0, 1), \mathfrak{A}\xi) = 1$ . If  $c \neq 0$ , then

$$\mathfrak{A}\xi = \{(a,cb): a, b \in \mathbf{R}\} = \mathbf{R} imes \mathbf{R}$$

the projection of H on  $\mathfrak{A}\xi$  is just the identity projection I, and  $\rho((0,1),\mathfrak{A}\xi) = 0$ . Suppose, then, that the projection P of H on  $\mathfrak{A}\xi$  exists. Then either  $\rho((0,1),\mathfrak{A}\xi) > 0$  or  $\rho((0,1),\mathfrak{A}\xi) < 1$ . In the first case, c = 0; in the second,  $c \neq 0$ . Thus if  $[\mathfrak{A}x]$  exists for each  $x \in H$ , then we can prove that

$$\forall_{x \in \mathbf{R}} \left( x = 0 \lor x \neq 0 \right).$$

a statement constructively equivalent to the essentially nonconstructive omniscience principle **LPO**:

For each binary sequence  $(a_n)_{n \ge 1}$ , either  $a_n = 0$  for all n or else there exists n such that  $a_n = 1$ .

It follows from this and our Theorem 1.1 that if  $\rho_{\mathfrak{A}x}(0, -\mathfrak{A}_1x)$  exists for each  $x \in H$ , then we can derive **LPO**.

#### Acknowledgement

This research was partially done when the author was a visiting fellow at the Isaac Newton Institute for the Mathematical Sciences, in the programme *Semantics & Syntax: A Legacy* of Alan Turing. The author thanks the referees for helpful comments that improved the presentation of the paper.

## References

- P. Aczel and M. Rathjen: Notes on Constructive Set Theory, Report No. 40, Institut Mittag-Leffler, Royal Swedish Academy of Sciences, 2001.
- [2] E. Bishop: Foundations of Constructive Analysis, McGraw-Hill, New York, 1967.
- [3] E. Bishop and D.S. Bridges: Constructive Analysis, Grundlehren der Math. Wiss. 279, Springer Verlag, Heidelberg, 1985.
- [4] D.S. Bridges: 'On weak operator compactness of the unit ball of L(H)', Zeit. math. Logik Grundlagen Math. 24, 493–494, 1978.
- [5] D.S. Bridges, H. Ishihara: 'A definitive constructive open mapping theorem?', Math. Logic Quarterly 44, 545–552, 1998.

#### DOUGLAS S. BRIDGES

- [6] D.S. Bridges and L.S. Vîţă: Techniques of Constructive Analysis, Universitext, Springer Verlag, Heidelberg, 2006.
- [7] D.S. Bridges, H. Ishihara, L.S. Vîţă: 'Computing infima on convex sets, with applications in Hilbert space', Proc. Amer. Math. Soc. 132(9), 2723–2732, 2004.
- [8] D.S. Bridges, H. Ishihara, L.S. Vîţă: 'A new constructive version of Baire's Theorem', Hokkaido Math. Journal 35(1), 107–118, 2006.
- [9] D.S. Bridges, A. Calder, W. Julian, R. Mines, and F. Richman: 'Locating metric complements in ℝ<sup>n</sup>', in *Constructive Mathematics* (F. Richman, ed.), Springer Lecture Notes in Math. 873, 241–249, 1981.
- [10] J. Dixmier: Les algèbres d'opérateurs dans l'espace hilbertien: algèbres de von Neumann, Gauthier-Villars, Paris, 1981.
- [11] R.V. Kadison and J.R. Ringrose: Fundamentals of the Theory of Operator Algebras, Academic Press, New York, 1983 (Vol 1) and 1988 (Vol 2).
- [12] P. Martin-Löf: 'An intuitionistic theory of types', in *Twenty-five Years of Constructive Type Theory* (G. Sambin, J. Smith, eds), 127–172, Oxford Logic Guides **36**, Clarendon Press, Oxford, 1998.
- [13]S. Sakai: C\*-algebras and W\*-algebras, Springer Verlag, Heidelberg, 1971.
- [14] B. Spitters: 'Constructive results on operator algebras', J. Univ. Comp. Sci. 11(12), 2096–2113, 2005.
- [15] D.M. Topping: Lectures on von Neumann Algebras, van Nostrand Reinhold, London 1971.