
Logical Methods in Computer Science
Volume 18, Issue 2, 2022, pp. 14:1–14:81
https://lmcs.episciences.org/

Submitted Oct. 20, 2018
Published Jun. 02, 2022

WHEN CAN WE ANSWER QUERIES

USING RESULT-BOUNDED DATA INTERFACES?

ANTOINE AMARILLI a AND MICHAEL BENEDIKT b

a LTCI, Télécom Paris, Institut polytechnique de Paris, FR
e-mail address: antoine.amarilli@telecom-paris.fr

b Department of Computer Science, Oxford University, Parks Rd, Oxford OX1 3QD, UK
e-mail address: michael.benedikt@cs.ox.ac.uk

Abstract. We consider answering queries on data available through access methods, that
provide lookup access to the tuples matching a given binding. Such interfaces are common
on the Web; further, they often have bounds on how many results they can return, e.g.,
because of pagination or rate limits. We thus study result-bounded methods, which may
return only a limited number of tuples. We study how to decide if a query is answerable
using result-bounded methods, i.e., how to compute a plan that returns all answers to
the query using the methods, assuming that the underlying data satisfies some integrity
constraints. We first show how to reduce answerability to a query containment problem
with constraints. Second, we show “schema simplification” theorems describing when and
how result-bounded services can be used. Finally, we use these theorems to give decidability
and complexity results about answerability for common constraint classes.

1. Introduction

Web services expose programmatic interfaces to data. Many of these services can be modeled
as an access method : given a set of arguments for some attributes of a relation, the method
returns all matching tuples for the relation.

Example 1.1. Consider a Web service that exposes university employee information. The
schema has a relation Prof(id ,name, salary) and an access method pr on this relation: the
input to pr is the id of a professor, and an access to this method returns the name and
salary of the professor. The schema also has a relation Udirectory(id , address, phone), and
an access method ud: it has no input and returns the id , address , and phone of all university
employees.

Our goal is to answer queries using such services. In the setting of Example 1.1, the
user queries are posed on the relations Prof and Udirectory, and we wish to answer them
using the methods pr and ud. To do so, we can exploit integrity constraints that the data
is known to satisfy: for instance, the referential constraint τ that says that the id of every
tuple in Prof is also in Udirectory.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(2:14)2022
© A. Amarilli and M. Benedikt
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

14:2 A. Amarilli and M. Benedikt Vol. 18:2

Example 1.2. Consider Q1(n) : ∃i Prof(i, n, 10000), the query that asks for the names of
professors with salary 10000. If we assume the integrity constraint τ , we can implement
Q1 as the following plan: first access ud to get the set of all ids, and then access pr with
each id to obtain the salary, filtering the results to return only the names with salary 10000.
This plan reformulates Q1 over the access methods: it is equivalent to Q1 on all instances
satisfying τ , and it only uses pr and ud to access Prof and Udirectory.

Prior work (e.g., [DLN07, BtCT16]) has formalized this reformulation task as an an-
swerability problem: given a schema with access methods and integrity constraints, and
given a query, determine if we can answer the query using the methods. The query has to
be answered in a complete way, i.e., without missing any results. This prior work has led
to implementations (e.g., [BLT14, BLT15, BLT16]) that can determine how to evaluate a
conjunctive query using a collection of Web services, by generating a plan that makes calls
to the services.

However, all these works assume that when we access a Web service, we always obtain
all tuples that match the access. This is not realistic: to avoid wasting resources and
bandwidth, virtually all Web services impose a limit on how many results they will return.
For instance, the ChEBI service (chemical entities of biological interest, see [BLT16]) limits
the output of lookup methods to 5000 entries, while IMDb’s web interfaces impose a limit
of 10000 [IMD17]. With some services, we can request more results beyond the limit, e.g.,
using pagination or continuation tokens, but there is often a rate limitation on how many
requests can be made [Fac17, Git17, Twi17], which also limits the total number of obtainable
results. Thus, for many Web services, beyond a certain number of results, we cannot assume
that all matching tuples are returned. In this work, we introduce result-bounded methods to
reason on these services.

Example 1.3. The ud method in Example 1.1 may have a result bound, e.g., it may return
at most 100 entries. If this is the case, then the plan of Example 1.2 is not equivalent to Q1

as it may miss some result tuples.

Result-bounded methods make it very challenging to reformulate queries. Indeed, they
are nondeterministic: if the number of results is more than the result bound, then the Web
service only returns a subset of results, usually according to unknown criteria. For this
reason, it is not even clear whether result-bounded methods can be useful at all to answer
queries in a complete way. However, this may be the case:

Example 1.4. Consider the schema of Example 1.1 and assume that ud has a result bound
of 100 as in Example 1.3. Consider the query Q2 : ∃i a p Udirectory(i, a, p) asking if there is
some university employee. We can answer Q2 with a plan that accesses the ud method and
returns true if the output is non-empty. It is not a problem that ud may omit some result
tuples, because we only want to know if it returns something. This gives a first intuition:
result-bounded methods are useful to check for the existence of matching tuples.

Further, result-bounded methods can also help under integrity constraints such as keys
or functional dependencies:

Example 1.5. Consider the schema of Example 1.1 and the access method ud2 on Udirectory
that takes an id as input and returns the address and phone number of tuples with this id .
Assume that ud2 has a result bound of 1, i.e., returns at most one answer when given an
id . Further assume the functional dependency φ: each employee id has exactly one address

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:3

(but possibly many phone numbers). Consider the query Q3 asking for the address of the
employee with id 12345. We can answer Q3 by calling ud2 with 12345 and projecting onto
the address field. Thanks to φ, we know that the result will contain the employee’s address,
even though only one of the phone numbers will be returned. This gives a second intuition:
result-bounded methods are useful when there is a functional dependency that guarantees
that some projection of the output is complete.

In this paper, we study how and when we can use result-bounded methods to reformulate
queries and obtain complete answers, formalizing in particular the intuition of Examples 1.4
and 1.5. We then show decidability and complexity results for the answerability problem. We
focus on two common classes of integrity constraints on databases: inclusion dependencies
(IDs), as in Example 1.4, and functional dependencies (FDs), as in Example 1.5. But we
also show results for more expressive constraints: see Table 1 for a summary.

The first step of our study (Section 4) is to reduce the answerability problem to query
containment under constraints. Such a reduction is well-known in the context of reformulating
queries over views [NSV10], and of answering queries with access methods without result
bounds [BtCLT16]. But the nondeterminism of result-bounded methods means that we
cannot apply these results directly. We nevertheless show that this reduction technique can
still be applied in the presence of result bounds. This reduction does not suffice to solve
the problem, because the resulting query containment problem involves complex cardinality
constraints, so it does not immediately lead to decidability results.

Our second step (Section 5) is to show schema simplification results, which explain
why some of the result bounds can be ignored for the answerability problem. These results
characterize how result-bounded methods are useful: they capture and generalize the
examples above. For instance, we show that for constraints consisting of IDs, result-bounded
methods are only useful as an existence check as in Example 1.4. We also show that, for FD
constraints, result-bounded methods are only useful to access the functionally-determined
part of the output, as in Example 1.5. The proofs utilize a technique of blowing up models, i.e.,
we enlarge them to increase the number of outputs of an access, without violating constraints
or changing query answers. The simplest version of this technique is to show limitations on
which queries can be answered with result bounds in the presence of constraints in first-order
logic without equality (Theorem 7.3). This result has some broad similarity to classical finite
model theory results on limitations of first-order logic. We will show that the blowing-up
method can yield similar limitations even in the presence of equality.

Third, in Section 6, we use the simplification results to deduce that answerability is
decidable for these constraint classes, and show tight complexity bounds: we show NP-
completeness for constraints consisting of FDs, and EXPTIME-completeness for IDs. We
refine the latter result to show that answerability is NP-complete for bounded-width IDs,
which export only a constant number of variables. We prove this using ideas of Johnson and
Klug [JK84], along with a linearization technique, extending ideas introduced in [GMP14]:
we show how the constraints used to reason about answerability can be “simulated” with
restricted inclusion dependencies, and that analyzing this simulation gives finer complexity
bounds.

In Section 7, we study more expressive constraint classes, beyond IDs and FDs. We do
so using a weaker form of simplification, called choice simplification, which replaces all result
bounds by 1: this intuitively implies that the number of results does not matter. We show
that it suffices to consider the choice simplification for a huge class of constraints, including
all TGDs, and also constraints combining FDs and IDs. In Section 8, we use this technique

14:4 A. Amarilli and M. Benedikt Vol. 18:2

Table 1: Simplifiability and complexity results for monotone answerability

Fragment Simplification Complexity

IDs Existence-check (Thm 5.2) EXPTIME-complete (Thm 6.3)
Bounded-width IDs Existence-check (see above) NP-complete (Thm 6.4)
FDs FD (Thm 5.5) NP-complete (Thm 6.2)
FDs and UIDs Choice (Thm 7.4) NP-hard (see above) and in 2EXPTIME (Thm 8.2)
Equality-free FO Choice (Thm 7.3) Undecidable (Proposition 9.2)
Frontier-guarded TGDs Choice (see above) 2EXPTIME-complete (Thm 8.1)

to show that decidability of answerability holds much more broadly: in particular it holds
for a wide range of classes where query containment is decidable. We conclude the paper by
giving some limits to schema simplification and decidability of answerability (Section 9),
followed by conclusions (Section 10). In particular, we explain in the conclusions how our
results on answerability extend to the practically relevant problem of extracting a plan in
the case where one exists.

This article is based on the conference paper [AB18a]. In addition to providing full
proofs for the major results of [AB18a], in the appendix to this work we give a number of
supplementary results, showing the generality of the methods. We do not include all results
claimed in the conference paper. In particular, the conference paper claims results also for
the finite variant of the answerability problem with result bounds. While we believe these
results hold, the proofs in the submission are flawed, and thus we make no such claims in
this work, dealing only with the unrestricted variant.

2. Related Work

Our paper relates to a line of work about finding plans to answer queries using access
methods. The initial line of work considered finding equivalent “executable rewritings” —
conjunctive queries where the atoms are ordered in a way compatible with the access patterns.
This was studied first without integrity constraints [LC01a, Li03], and then with disjunctive
TGD constraints [DLN07]. Later [BtCT16, BtCLT16] formulated the problem of finding a
plan that answers the query over the access patterns, distinguishing two notions of plans
with access methods: one with arbitrary relational operators in middleware and another
without the difference operator. They studied the problem of getting plans of both types
in the presence of integrity constraints: following [DLN07], they reduced the search for
executable rewritings to query containment under constraints. Further, [BtCT16, BtCLT16]
also related the reduction to a semantic notion of determinacy, originating from the work of
Nash, Segoufin, and Vianu [NSV10] in the context of views. Our paper extends the reduction
to query containment in the presence of result bounds, relying heavily on the techniques of
[DLN07, NSV10, BtCT16, BtCLT16].

Non-determinism in query languages has been studied in other contexts [AV91, ASV90].
However, the topic of this work, namely, using non-deterministic Web services to implement
deterministic queries, has not been studied. Result bounds are reminiscent of cardinality
constraints, for which the answerability problem has been studied [FGC+15]. However, the
two are different: whereas cardinality constraints restrict the underlying data, result bounds
concern the access methods to the data, and makes them non-deterministic: this has not
been studied in the past. In fact, surprisingly, our schema simplification results (in Sections 5

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:5

and 7) imply that answerability with result bounds can be decided without reasoning about
cardinality constraints at all.

To study our new setting with result-bounded methods, we introduce several specific
techniques to reduce to a decidable query containment problem, e.g., determinacy notions
for non-deterministic services and the technique of “blowing up models”. The additional
technical tools needed to bound the complexity of our problems revolve around analysis of
the chase. While many components of this analysis are specific to the constraints produced
by our problem, our work includes a linearization method, which we believe is of interest
in other settings. Linearization is a technique from [GMP14], which shows that certain
entailment problems can be reduced to entailment of queries from linear TGDs. We refine
this to show that in certain cases we can reduce to entailments involving a restricted class of
linear TGDs, where more specialized bounds [JK84] can be applied.

3. Preliminaries

Data and queries. We consider a relational signature S that consists of a set of relations
with an associated arity (a positive integer) and of a finite set of constants. The positions of
a relation R of S are 1 . . . n where n is the arity of R. An instance of R is a set of n-tuples
(finite or infinite), and an instance I of S consists of instances for each relation of S, along
with a mapping from the constants of the signature to the active domain Adom(I) of I, i.e.,
the set of all the values that occur in facts of I. Note that this means that two signature
constants can be interpreted by the same element. We can equivalently see I as a set of
facts R(a1 . . . an) for each tuple (a1 . . . an) in the instance of each relation R, along with the
mapping of constants. A subinstance I ′ of I is an instance that contains a subset of the
facts of I, and I is then a superinstance of I ′.

We will study conjunctive queries (CQs), which are logical expressions of the form
∃x1 . . . xk (A1 ∧ · · · ∧Am), where the Ai are relational atoms of the form R(t1 . . . tn), with R
being a relation of arity n and t1 . . . tn being either variables from x1 . . . xk or constants. A
CQ is Boolean if it has no free variables. A Boolean CQ Q holds in an instance I exactly
when there is a homomorphism of Q to I: a mapping h from the variables and constants
of Q to Adom(I) which is the identity on constants and which ensures that, for every atom
R(x1 . . . xn) in Q, the atom R(h(x1) . . . h(xn)) is a fact of I. We let Q(I) be the output of
Q on I, defined in the usual way: if Q is Boolean, the output is true if the query holds and
false otherwise. A union of conjunctive queries (UCQ) is a disjunction of CQs.

Integrity constraints. An integrity constraint is a restriction on instances: that is, a
function mapping every instance of a given schema to a Boolean. When we say that
an instance satisfies a constraint, we just mean that the function evaluates to true. As
concrete syntax for constraints we use fragments of first-order logic (FO), with the active-
domain semantics, and disallowing constants. The active-domain semantics can be enforced
syntactically, e.g., by restricting first-order logic formulas to always quantify over elements
that appear in some relation. In the few cases in this paper where we talk about FO integrity
constraints, we will always mean a constraint in such a restricted fragment. With such
a restriction, the truth value of an FO integrity constraint on an instance is well-defined.
For most of our results we focus on tuple-generating dependencies (TGDs) and functional
dependencies (FDs), which we now review.

14:6 A. Amarilli and M. Benedikt Vol. 18:2

A tuple-generating dependency (TGD) is an FO sentence τ of the form: ∀~x (φ(~x) →
∃~y ψ(~x, ~y)) where φ and ψ are conjunctions of relational atoms: φ is the body of τ while ψ
is the head. For brevity, in the sequel, we will omit outermost universal quantifications in
TGDs. The exported variables of τ are the variables of ~x which occur in the head. A full
TGD is one with no existential quantifiers in the head. A guarded TGD (GTGD) is a TGD
where φ is of the form A(~x)∧φ′(~x) where A is a relational atom (called the guard) containing
all free variables of φ′, while a frontier-guarded TGD (FGTGD) is one where there is a
conjunct A of φ containing all the exported free variables. An inclusion dependency (ID)
is a GTGD where both φ and ψ consist of a single atom with no repeated variables. The
width of an ID is the number of exported variables, and an ID is unary (written UID) if it
has width 1. For example, R(x, y)→ ∃z w S(z, y, w) is a UID.

A functional dependency (FD) is an FO sentence φ written as ∀~x ~y (R(x1 . . . xn) ∧
R(y1 . . . yn) ∧

(∧
i∈D xi = yi

)
→ xj = yj), with D ⊆ {1 . . . n} and j ∈ {1 . . . n}, Intuitively,

φ asserts that position j is determined by the positions of D, i.e., when two R-facts match
on the positions of D, they must match on position j as well. We write φ as D → j for
brevity. The positions in D are the determinant of φ and j the determined position of φ.

Query and access model. We model a collection of Web services as a service schema Sch,
which we simply call a schema. It consists of:

(1) a relational signature S;
(2) a set of integrity constraints Σ given as FO sentences; and
(3) a set of access methods (or simply methods).

Each access method mt is associated with a relation R and a subset of positions of R called
the input positions of mt. The other positions of R are called output positions of mt.

In this work, we allow each access method to have an optional result bound. We study
two kinds of result bounds. Result upper bounds assert that mt returns at most k matching
tuples for some k ∈ N. Result lower bounds assert that, for some k ∈ N, the method mt
returns all matching tuples if there are no more than k of them, and otherwise returns at
least k of the matching tuples. We call mt a result-bounded method associated to k ∈ N if it
has both a result lower bound and a result upper bound for k. We say that mt has no result
bound if it has neither a result lower bound nor a result upper bound. In the schemas that
we will consider, we will assume that every access method is either result-bounded or has no
result bound; but we will quickly show a technical result asserting that it is sufficient to
consider result lower bounds.

An access on an instance I is a method mt on a relation R with a binding AccBind for I:
the binding is a mapping from the input positions of mt to values in Adom(I). The matching
tuples M of the access (mt,AccBind) are the tuples for relation R in I that match AccBind on
the input positions of R, and an output of the access is a subset J ⊆M . We will sometimes
also refer to the matching facts of the access, i.e., R(~t) where ~t is a matching tuple. If the
method has no result bound, then there is only one valid output to the access, namely, the
output J := M that contains all matching tuples of I. If there is a result bound k on mt,
then we define the notion of a valid output to the access as any subset J ⊆M such that:

(i) J has size at most k;
(ii) for any j ≤ k, if I has ≥ j matching tuples, then J has size ≥ j. Formally, if |M | ≥ j

then |J | ≥ j.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:7

If there is a result lower bound of k on mt, then a valid output is any subset J ⊆ M
satisfying point (ii) above, and similarly for a result upper bound.

We give specific names to two kinds of methods. A method is input-free if it has no
input positions. A method is Boolean if all positions are input positions. Note that accessing
a Boolean method with a binding AccBind just checks if AccBind is in the relation associated
to the method (and result bounds have no effect).

Plans. We use plans to describe programs that use the access methods, formalizing them
using the terminology of [BtCT16, BtCLT16]. In the body of the paper we will deal with
monotone plans, which are called this way because they define transformations that are
monotone as the set of facts in an input instance grows. In the appendix we will extend our
study to so-called RA plans, which define transformations that are not necessarily monotone.
RA plans and their relationship to monotone plans are described in Appendix D.

The monotone relational algebra operators are:

• the product operator (×), taking as input two relation instances of arities m and n and
returning a relation instance of arity m+ n;
• the union operator (∪), taking as input two relation instances of the same arity m and

returning a relation instance of arity m;
• the projection operators πA, where A is a finite set of positions, taking as input a relation

instance of some fixed arity m and returning the instance containing, for each m-tuple ~t
in the input, the |A|-tuple formed from restricting ~t to positions in A.
• the selection operator (σc), taking as input a relation of some arity m and returning a

relation instance of the same arity m, where c is an equality or inequality comparing two
positions 1 ≤ i ≤ m or comparing a position with a constant.

The semantics of these operators are standard [AHV95]. A monotone relational algebra
expression is a term built up by composing these operators. Monotone relational algebra
expressions define the same class of queries as positive first-order logic — that is, first-order
logic built up from relational atoms and inequalities using the connectives ∧,∨ and existential
quantification — under the active-domain semantics.

A monotone plan PL is a sequence of commands that produce temporary tables. There
are two types of commands:

• Query middleware commands, of the form T := E, with T a temporary table and E a
monotone relational algebra expression over the temporary tables produced by previous
commands.
• Access commands, written T ⇐OutMap mt ⇐InMap E, where E is a monotone relational

algebra expression over previously-produced temporary tables, InMap is an input mapping
from the output attributes of E to the input positions of mt, mt is a method on some
relation R, OutMap is an output mapping from the positions of R to those of T , and T is
a temporary table. We often omit the mappings for brevity.

The output table T0 of PL is indicated by a special command Return T0 at the end, with
T0 being a temporary table.

We must now define the semantics of PL on an instance I. Because of the non-
determinism of result-bounded methods, in this work we will do so relative to an access
selection for Sch on I, i.e., a function σ mapping each access (mt,AccBind) on I to a set of
facts J := σ(mt,AccBind) that match the access. We say that the access selection is valid if
it maps every access to a valid output: intuitively, the access selection describes which valid

14:8 A. Amarilli and M. Benedikt Vol. 18:2

output is chosen when an access to a result-bounded method matches more tuples than the
bound. Note that the definition implies that performing the same access twice must return
the same result; however, all our results still hold without this assumption (see Appendix A).

For every valid access selection σ, we can now define the semantics of each command of PL
for σ by considering them in order. For an access command T ⇐OutMap mt⇐InMap E in PL,

we evaluate E to get a collection C of tuples. For each tuple ~t of C, we use InMap to turn it
into a binding AccBind, and we perform the access on mt to obtain J~t := σ(mt,AccBind).
We then take the union

⋃
~t∈C J~t of all outputs, rename it according to OutMap, and write it

in T . For a middleware query command T := E, we evaluate E and write the result in T .
The output of PL on σ is then the set of tuples that are written to the output table T0.

The possible outputs of PL on I are the outputs that can be obtained with some valid
access selection σ. Intuitively, when we evaluate PL, we can obtain any of these outputs,
depending on which valid access selection σ is used.

Example 3.1. The plan of Example 1.4 is as follows:

T ⇐ ud⇐ ∅; T0 := π∅T ; Return T0;

The first command runs the relational algebra expression E = ∅ returning the empty set,
giving a trivial binding for ud. The result of accessing ud is stored in a temporary table T .
The second command projects T to the empty set of attributes, and the third command
returns the result. For every instance I, the plan has only one possible output (no matter the
access selection), describing if Udirectory is empty in I. We will say that the plan answers
the query Q2 of Example 1.4.

Answerability. Let Sch be a schema consisting of a relational signature, integrity con-
straints, and access methods, and let Q be a CQ over the relational signature of Sch. A
monotone plan PL answers Q under Sch if the following holds: for all instances I satisfying
the constraints, PL on I has exactly one possible output, which is the query output Q(I). In
other words, this is the standard definition of answerability, requiring that the output of PL
on I is equal to Q(I), but we have extended it to our setting of result-bounded methods by
requiring that this holds for every valid access selection σ. Of course, PL can have a single
possible output (and answer Q) even if some intermediate command of PL has multiple
possible outputs.

We say that Q is monotonically answerable under schema Sch if there is a monotone
plan that answers it. Monotone answerability generalizes notions of reformulation that have
been previously studied. In particular, in the absence of constraints and result bounds, it
reduces to the notion of a query having an executable rewriting with respect to access methods,
studied in work on access-restricted querying [LC01a, Li03]. In the setting where the limited
interfaces simply expose views, monotone answerability corresponds to the well-known notion
of UCQ rewriting with respect to views [LMSS95].

Query containment and chase proofs. We will reduce answerability to the standard
problem of query containment under constraints. Query Q is contained in query Q′ relative
to constraints Σ if, in any instance that satisfies Σ, the tuples returned by Q are a subset of
the tuples returned by Q′. We write Q ⊆Σ Q′ to denote this relationship.

In the case where Σ consists of dependencies, query containment under constraints can
be solved by the well-known method of searching for a chase proof [FKMP05]. We now
review this notion.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:9

Such a proof starts with an instance called the canonical database of Q and denoted
CanonDB(Q): it consists of facts for each atom of Q, and its elements are the variables and
constants of Q. The proof then proceeds by firing dependencies, as we explain next.

A homomorphism τ from the body of a dependency δ into an instance I0 is called a
trigger for δ. A chase step with dependency δ and trigger τ on I0 transforms I0 to a new
instance in the following way. If δ is a TGD, the result of the chase step on τ for δ in I0 is
the superinstance I1 of I0 obtained by adding new facts corresponding to an extension of τ
to the head of δ, using fresh elements to instantiate the existentially quantified variables of
the head: we denote these elements as nulls as well. The remaining elements that occur in
these new facts will be said to be exported in the chase step. If δ is an FD with xi = xj in
the head, then a chase step yields I1 which is the result of identifying τ(xi) and τ(xj) in I0.
A chase sequence for Σ is a sequence of chase steps with dependencies of Σ, with the output
of each step being the input of the next. We can thus associate each such sequence with a
sequence of instances I0,

We will be particularly interested in sequences that form a chase proof of Q ⊆Σ Q′,
where Q and Q′ have the same free variables ~x. Recall that for a query with free variables,
the free variables become elements within the canonical database of the query. A chase
proof of Q ⊆Σ Q′ is a chase sequence where we start by the instance I0 = CanonDB(Q),
which has a homomorphism from Q to I0 sending each free variable of ~x to itself, and we
must finish with an instance which has a homomorphism from Q′, sending each free variable
of ~x to itself.

Chase proofs give a sound and complete method for deciding containment under depen-
dencies:

Proposition 3.2 [FKMP05]. For any CQs Q and Q′ and for any collection of dependencies
Σ, the containment Q ⊆Σ Q′ holds if and only if there is a chase proof that witnesses the
containment.

In particular, when Σ is empty, we obtain the usual characterization for the containment
Q ⊆ Q′ without constraints: it holds if and only if there is a homomorphism from Q′ to Q
which is the identity on free variables.

The variant of Proposition 3.2 holds also for chase proofs based on so-called restricted
chase sequences, which we now define. A trigger τ for a dependency δ is active in an
instance I if it cannot be extended to a homomorphism from the head of δ to I. In other
words, an active trigger τ witnesses the fact that δ does not hold in I. A restricted chase
sequence is one in which all chase steps have active triggers.

If all restricted chase sequences starting with a given initial instance I0 are finite, we
say that the restricted chase with Σ terminates on that instance. In this case, we define the
restricted chase of I0 with Σ as the result of iteratively applying all active triggers according
to some arbitrary order. When I0 = CanonDB(Q) we will talk about the restricted chase
of Q.

When the phenomenon above occurs for each finite initial instance I0, we say that Σ
has terminating chase. If Σ has terminating chase we can decide if Q ⊆Σ Q′ by computing
the chase of Q with Σ and then searching for a homomorphism of Q′ into the chase.

Even when the chase does not terminate, we define the chase of I0 with Σ as the infinite
fixpoint of applying chase steps following some arbitrary order which is fair, i.e., ensuring
that every active trigger will eventually be fired. We similarly define the restricted chase
of I0 with Σ in the same way but with restricted chase steps. We can still use the chase

14:10 A. Amarilli and M. Benedikt Vol. 18:2

and restricted chase to reason about query containment, even though it is an infinite object
that cannot generally be materialized. The result is implicit in [FKMP05]; see [One13] for a
more detailed exposition.

Proposition 3.3. For any CQs Q and Q′ and for any collection of dependencies Σ, the
containment Q ⊆Σ Q′ holds if and only if there is a homomorphism from Q′ to the chase
of I0 = CanonDB(Q) with Σ, with the homomorphism being the identity on free variables.
The same holds for the restricted chase.

Certain answer problems and TGD implication problems via the chase. We say
that a set of first-order sentences λ entails a first-order sentence ρ, written λ |= ρ, if every
instance satisfying λ also satisfies ρ. Note that a query containment Q ⊆Σ Q′ for Boolean
queries Q and Q′ is a special case of an entailment, of the form Q ∧ Σ |= Q′.

We will also study another restricted kind of entailment problem, of the form:∧
i≤n

Ai ∧ Σ |= Q

where Σ is a set consisting of TGDs and FDs, each Ai is a fact, and Q is a CQ. This is
the problem of certain answers [FKMP05] under dependencies for CQs, and we will also
use it when discussing the implication of some facts from other facts and constraints in
Section 6.4. We can consider a modification of the definition of chase proof to solve this
problem: this is a chase sequence where we fix the initial instance to be {A1 . . . An}, rather
than the canonical database of Q. When Σ only contains TGDs, there are well-known
reductions between the query containment problem and the certain answers problem, and in
particular the analog of Proposition 3.2 holds for certain answer problems: the entailment
holds iff there is a chase proof witnessing it [FKMP05]. Based on these equivalences, we
freely use known upper and lower complexity bounds stated on the certain answer problem
(e.g., from [CGK08, BLMS11]) and apply them to query containment under constraints.

Another special case of entailment is entailment of a TGD τ by a set of TGDs Σ. This
problem can be reduced to the query containment problem: we take the body of τ and see if
it is contained in the head of τ relative to Σ. Thus chase proofs also give a complete method
for deciding these entailments.

Note that the reader familiar with the treatment of chase steps involving FDs will
find our discussion a bit simplified relative to standard accounts (e.g., [AHV95]). In other
accounts there is the possibility that a chase step “fails”, but in our setting — e.g., due to
our treatment on constants and the restriction on their use in constraints — we will not
need to consider this.

A set S of elements in an instance is guarded if there is a fact of the instance that
contains all these elements. We call such an element a guard for S. We note that if τ is a
trigger for a guarded TGD δ, then the image of τ must be guarded.

Equivalent formalisms for monotone plans. Monotone plans have a number of other
presentations. For instance, if there is only one access per relation, they are equivalent to
executable UCQs which just annotate each atom of a UCQ with an access method. The
semantics is just to execute the method corresponding to each atom in the order that the
atoms are given, accumulating all the bindings. Executable queries were the first formalism
to implement queries with access methods [Ull89, LC00, LC01b, NL04b, NL04a]. They
were considered only in the case of CQs where there is a single access method, without

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:11

result bounds, for each relation symbol. The equivalence with monotone plans is proved in
[BtCLT16], and extends easily to the presence of multiple access per methods, and to the
presence of result bounds with any of the semantics we consider in this work.

Example 3.4. Let us consider the plan mentioned in Example 1.2. In our monotone plan
syntax it would be written as

T ⇐ ud⇐ ∅; T0 ⇐ pr⇐ T ; T1 := πnameσsalary=10000T0; Return T1

As an executable CQ, this would be expressed simply as

Udirectory(id),Prof(id ,name, 10000)

Variations of answerability. So far, we have defined monotone answerability. An alter-
native notion is RA answerability, defined using RA plans that allow arbitrary relational
algebra expressions in commands. We think this notion is less natural for CQs and for the
class of constraints that we consider. Indeed, CQs are monotone: if facts are added to an
instance, the output of a CQ cannot decrease. Thus the bulk of prior work on implementing
CQs over restricted interfaces, both in theory [LMSS95, DLN07, LC01a, Li03, RPAS20b]
and in practice [ICDK14, DPT06, RPAS20a], has focused on monotone implementations,
often phrased in terms of the executable query syntax mentioned above. In fact, even in the
setting of views, it was initially assumed that if a CQ can be answered at all, it must have
a monotone plan [SV05, LMSS95]. Clever counterexamples to this fact were only found
much later [NSV10]. In the body of the paper, we follow the earlier tradition and we focus
exclusively on monotone plans. Nevertheless, many of our results extend to answerability
with RA plans (see Appendix D). For instance, we can sometimes show that monotone
answerability and RA answerability coincide. We discuss the status of monotone vs relational
algebra plans further in Section 10.

4. Reducing to Query Containment

We start our study of the monotone answerability problem by reducing it to query containment
under constraints, defined in the previous section. We explain in this section how this
reduction is done. It extends the approach of [DLN07, BtCT16, BtCLT16] to result bounds,
and follows the connection between answerability and determinacy notions of [NSV10,
BtCLT16]. To design this reduction, we will need to show that monotone answerability is
equivalent to a notion of access monotonic-determinacy, already studied in the literature for
access methods without result bounds, which we extend to our setting with result bounds.
This characterization (Theorem 4.3) will be used many times in the sequel.

4.1. Access Monotone Determinacy and Equivalence to Monotone Rewritability.
The query containment problem corresponding to monotone answerability will capture the
idea that if an instance I1 satisfies a query Q and another instance I2 has more “accessible
data” than I1, then I2 should satisfy Q as well. Here the accessible data means the data
that can be retrieved by iteratively performing accesses. The motivation is that if we have
a monotone plan and the accessible data increases, then the output of the plan can only
increase. We will first define accessible data via the notion of accessible part. We use this to
formalize the previous idea as access monotonic-determinacy, and as we claimed we show

14:12 A. Amarilli and M. Benedikt Vol. 18:2

that it is equivalent to monotone answerability (Theorem 4.3). Using access monotonic-
determinacy we show that we can simplify the result bounds of arbitrary schemas, and
restrict to result lower bounds throughout this work. We close the section by showing how
to rephrase access monotonic-determinacy with result lower bounds as query containment
under constraints.

Accessible parts. We first formalize the notion of “accessible data”. Given a schema Sch
with methods that may have result lower bounds and also result upper bounds, along with
an instance I, an accessible part of I is any subinstance obtained by iteratively making
accesses until we reach a fixpoint. Formally, we define an accessible part by choosing an
access selection σ which is valid for the upper and lower bounds and inductively defining
sets of facts AccParti(σ, I) and sets of values accessiblei(σ, I) by:

AccPart0(σ, I) := ∅ and accessible0(σ, I) := ∅

AccParti+1(σ, I) :=
⋃

mt method,
AccBind binding with values in accessiblei(σ,I)

σ(mt,AccBind)

accessiblei+1(σ, I) := Adom(AccParti+1(σ, I))

These equations define by mutual induction the set of values (accessible) that we can retrieve
by iterating accesses and the set of facts (AccPart) that we can retrieve using those values.

The accessible part under σ, written AccPart(σ, I), is then defined as
⋃
i AccParti(σ, I).

As the equations are monotone, this fixpoint is reached after finitely many iterations if I
is finite, or as the union of all finite iterations if I is infinite. When there are no result
bounds, there is only one valid access selection σ, so only one accessible part: it intuitively
corresponds to the data that can be accessed using the methods. In the presence of result
bounds, there can be many accessible parts, depending on σ, and thus we refer to “an
accessible part of instance I” to mean an accessible part for some selection function.

Access monotonic-determinacy. We now formalize the idea that a query Q is “monotone
under accessible parts”. Let Σ be the integrity constraints of Sch. We call Q access
monotonically-determined in Sch (or AMonDet, for short), if for any two instances I1, I2

satisfying Σ, if there is an accessible part of I1 that is a subset of an accessible part of I2,
then Q(I1) ⊆ Q(I2). Note that when there are no result bounds, there is a unique accessible
part of I1 and of I2, and AMonDet says that when the accessible part grows, then Q grows.

In the sequel, it will be more convenient to use an alternative definition of AMonDet,
based on the notion of access-valid subinstances. A subinstance IAccessed of I1 is access-valid
in I1 for Sch if, for any access (mt,AccBind) performed with a method mt of Sch and with a
binding AccBind whose values are in IAccessed, there is a set J of matching tuples in IAccessed
such that J is a valid output to the access (mt,AccBind) in I1. In other words, for any access
performed on IAccessed, we can choose an output in IAccessed which is also a valid output to the
access in I1. We can use this notion to rephrase the definition of AMonDet to talk about a
common subinstance of I1 and I2 that is access-valid:

Proposition 4.1. For any schema Sch with arbitrary constraints Σ and methods that can
have result lower bounds and result upper bounds, a CQ Q is AMonDet if and only if the
following implication holds: for any two instances I1, I2 satisfying Σ, if I1 and I2 have a
common subinstance IAccessed that is access-valid in I1, then Q(I1) ⊆ Q(I2).

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:13

To show this, it suffices to show that the two definitions of “having more accessible data”
agree. Proposition 4.1 follows immediately from the following proposition:

Proposition 4.2. The following are equivalent:

(i) I1 and I2 have a common subinstance IAccessed that is access-valid in I1.
(ii) There are A1 ⊆ A2 such that A1 is an accessible part for I1 and A2 is an accessible

part for I2.

Proof. Suppose I1 and I2 have a common subinstance IAccessed that is access-valid in I1. Since
IAccessed is access-valid in I1 there is an access selection σ1 which maps any access performed
with values of IAccessed to some set of matching tuples in IAccessed, with σ1 valid in I1. We can
extend σ1 to be valid in I1 by choosing tuples arbitrarily for accesses with bindings not in
IAccessed. We then extend σ1 to an access selection σ2 which returns a superset of the tuples
returned by σ1 for accesses with values of IAccessed, and returns an arbitrary set of tuples
from I2 otherwise, such that this output to the access is valid in I2. We only need to modify
σ1 when the full set of matching tuples of an access in I1 is below a method’s lower bound,
but there are more matching tuples in I2: in this case we just add enough matching tuples
from I2 to achieve the upper bound, or add all the matching tuples in I2 if the number is
still within the method’s upper bound. This ensures that AccPart(σ1, I1) ⊆ AccPart(σ2, I2),
so that (i) implies (ii).

Conversely, assuming point (ii), let σ1 and σ2 be the access selections used to define
the accessible parts A1 and A2, so that AccPart(σ1, I1) ⊆ AccPart(σ2, I2). Let IAccessed :=
AccPart(σ1, I1), and let us show that IAccessed is a common subinstance of I1 and I2 that
is access-valid in I1. By definition, we know that IAccessed is a subinstance of I1, and by
assumption we have IAccessed ⊆ A2 ⊆ I2, so indeed IAccessed is a common subinstance of I1 and
I2. Now, to show that it is access-valid in I1, consider any access (mt,AccBind) with values
in IAccessed. We know that there is i such that AccBind is in the domain of AccParti(σ1, I1) —
that is in accessiblei(I1). So by definition of the fixpoint process and of the access selection σ1

there is a valid output that is a subset of the facts within AccParti+1(σ1, I1), hence a subset
of the facts within IAccessed. Thus, IAccessed is access-valid. This shows the converse implication,
and concludes the proof.

The alternative definition of AMonDet in Proposition 4.1 is more convenient, because it
only deals with a subinstance of I1 and not with accessible parts. Thus, we will use this
characterization of monotone answerability in the rest of this paper. Now, the usefulness
of AMonDet is justified by the following result:

Theorem 4.3. For any CQ Q and schema Sch containing only constraints in active-domain
first-order logic, with access methods that may have result upper and lower bounds, the
following are equivalent:

(1) Q is monotonically answerable w.r.t. Sch.
(2) Q is AMonDet over Sch.

Without result bounds, this equivalence of monotone answerability and access monotonic-
determinacy is proven in [BtCT16, BtCLT16], using a variant of Craig’s interpolation theorem.
Theorem 4.3 shows that the equivalence extends to schemas with result bounds.

We now begin the proof of Theorem 4.3, which will use Proposition 4.1. We first prove
the “easy direction”:

14:14 A. Amarilli and M. Benedikt Vol. 18:2

Proposition 4.4. Assume that our schema has arbitrary constraints along with methods
that may have both upper and lower bounds. If a CQ Q has a (monotone) plan PL that
answers it w.r.t. Sch, then Q is AMonDet over Sch.

Proof. We use the definition of AMonDet given in Proposition 4.1. Assume that there are
two instances I1, I2 satisfying the constraints of Sch and that there is a common subinstance
IAccessed that is access-valid in I1. Let us show that Q(I1) ⊆ Q(I2). As IAccessed is access-valid,
let σ1 be a valid access selection for IAccessed: for any access with values in IAccessed, the access
selection σ1 returns an output which is valid in IAccessed. We extend σ1 to a valid access
selection for I2 as in the proof of Proposition 4.1: for accesses in IAccessed, the access selection σ2

returns a superset of σ1, which is possible because IAccessed ⊆ I2, and for other accesses it
returns some valid subset of tuples of I2.

We argue that for each temporary table of PL, its value when evaluated on I1 with σ1,
is contained in its value when evaluated on I2 with σ2. We prove this by induction on PL.
As the plan is monotone, the property is preserved by query middleware commands, so
inductively it suffices to look at an access command T ⇐ mt⇐ E with mt an access method
on some relation R. Let E1 be the value of E when evaluated on I1 with σ1, and let E2 be
the value when evaluated on I2 with σ2. Then by the monotonicity of the query E and the
induction hypothesis, we have E1 ⊆ E2. Now, given a tuple ~t in E1, let M1

~t
be the set of

tuples selected by σ1 for the access with mt using ~t in I1. Similarly let M2
~t

be the set selected

by σ2 in I2. By construction of σ2, we have M1
~t
⊆ M2

~t
, and thus

⋃
~t∈E1

M1
~t
⊆
⋃
~t∈E1

M2
~t

,
which completes the induction.

Thanks to our induction proof, we know that the output of PL on I1 with σ1 is a subset
of the output of PL on I2 with σ2. As we have assumed that PL answers Q on Sch, this
means that Q(I1) ⊆ Q(I2), which is what we wanted to show.

To prove the other direction of Theorem 4.3, we first recall the result that corresponds
to Theorem 4.3 in the case without result upper and lower bounds:

Theorem 4.5 [BtCLT16, BtCT16]. For any CQ Q and schema Sch (with no result bounds)
whose constraints Σ are expressible in active-domain first-order logic, the following are
equivalent:

(1) Q has a monotone plan that answers it over Sch.
(2) Q is AMonDet over Sch.

The theorem above holds even for more general relational algebra queries, but we will
not require this generality in this work. Thus, for schemas without result-bounded methods,
the existence of a monotone plan is the same as AMonDet, and both can be expressed as
a query containment problem. It is further shown in [BtCT16] that a monotone plan can
be extracted from any proof of the query containment for AMonDet. This reduction to
query containment is what we will now extend to the setting with result-bounded methods.
Specifically, we will lift the above result to the setting with result-bounded methods via a
simple construction that allows us to rewrite away the result-bounded methods by expressing
them in the constraints: we call this axiomatizing the result-bounded methods.

Replacing result bounds on methods with additional constraints. Given a schema
Sch with constraints and access methods, possibly with result upper and lower bounds,
we will define an auxiliary schema AxiomRB(Sch) without result bounds. The schema
AxiomRB(Sch) includes the relational signature Sch, and for every method mt with result

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:15

bound k on relation R we also have a new relation Rmt whose arity agrees with that of R.
Informally, Rmt stores the tuples returned by the access selection for mt. The constraints
include all the constraints of Sch (on the original relation names). In addition, for every
method mt with input positions i1 . . . im we have the following constraints, which we call
axioms:

• An axiom stating that Rmt is a subset of R.
• If mt has a result upper bound of k, we have an axiom stating that for any binding of the

input positions, Rmt has at most k distinct matching tuples.
• If mt has a lower bound of k then for each 1 ≤ j ≤ k we have a result lower bound axiom

stating that, for any values ci1 . . . cim , if R contains at least j matching tuples (i.e., tuples
~c that extend ci1 . . . cim), then Rmt contains at least j such tuples.

In this schema we adjust the access methods of the original schema, removing any access
method mt with a result upper or lower bound over R, and in its place adding an access
method with no result bound over Rmt.

Given a query Q over Sch, we can consider it as a query over AxiomRB(Sch) instances
by simply ignoring the additional relations.

We claim that, in considering Q over AxiomRB(Sch) rather than Sch, we do not change
monotone answerability.

Proposition 4.6. Let Sch be a schema with active-domain first order constraints, result
upper bounds and result lower bounds. For any CQ Q over Sch, there is a monotone plan
that answers Q over Sch iff there is a monotone plan that answers Q over AxiomRB(Sch).

In other words, we can axiomatize result upper and lower bounds, at the cost of including
new constraints.

Proof. Suppose that there is a monotone plan PL over Sch that answers Q. Let PL′ be
formed from PL by replacing every access with method mt on relation R with an access
to Rmt with the corresponding method. We claim that PL′ answers Q over AxiomRB(Sch).
Indeed, given an instance I ′ for AxiomRB(Sch), we can drop the relations Rmt to get an
instance I for Q, and use the relations Rmt to define a valid access selection σ for each
method of Sch, and we can show that PL evaluated with σ over I gives the same output as
PL′ over I. Since the former evaluates to Q(I), so must the latter.

Conversely, suppose that there is a monotone plan PL′ that answersQ over AxiomRB(Sch).
Construct PL from PL′ by replacing accesses to Rmt with accesses to R. We claim that PL
answers Q over Sch. To show this, consider an instance I for Sch, and a particular valid
access selection σ, and let us show that the evaluation of PL on I following σ correctly
answers Q. We build an instance I ′ of AxiomRB(Sch) by copying I and interpreting each Rmt

as follows: for each tuple ~t such that R(~t) holds in I, project ~t on the input positions i1 . . . im
of mt, and include all of the outputs of this access according to σ in Rmt. As the outputs of
accesses according to σ must be valid, I ′ must satisfy the constraints of AxiomRB(Sch). We
define a valid access selection σ′ from σ so that every access on Rmt returns the output of
the corresponding access on R according to σ. Since PL′ answers Q, we know that evaluating
PL′ on I ′ with σ′ yields the output Q(I ′) of Q on I ′. Now, the definition of σ′ ensures that
the accesses made by PL′ on I ′ under σ′ are exactly the same as those made by PL on I
under σ, and that the outputs of these accesses are the same. Thus PL evaluated on I
under σ gives the same result as PL′ does on I ′ under σ′, namely, Q(I ′). Now, Q only uses
the original relations of Sch, so the definition of I ′ clearly implies that Q(I ′) = Q(I), so

14:16 A. Amarilli and M. Benedikt Vol. 18:2

indeed the evaluation of PL on I under σ returns Q(I). As this holds for any valid access
selection σ, we have shown that PL answers Q over Sch, the desired result.

The equivalence of a schema Sch with result bounds and its variant AxiomRB(Sch) easily
extends to AMonDet.

Proposition 4.7. For any CQ Q over Sch, Q is AMonDet over AxiomRB(Sch) if and only
if Q is AMonDet over Sch.

Proof. For the forward direction, assume Q that is AMonDet over AxiomRB(Sch), and let
us show that Q is AMonDet over Sch. We use the characterization of AMonDet in terms of
access-valid subinstances given in Proposition 4.1. Let I1 and I2 be instances satisfying the
constraints of Sch, and let IAccessed be a common subinstance of I1 and I2 which is access-valid
in I1 for Sch. Let σ1 be a valid access selection for IAccessed. As in the proof of Proposition 4.1,
we can extend it to an access selection σ2 for I2 that ensures that every access with σ2

returns a superset of the tuples obtained with σ1. We now extend I1 into an instance I ′1
for AxiomRB(Sch) by interpreting each Rmt as the union of the outputs given by σ1 over
every possible access with mt on IAccessed, as in the proof of Proposition 4.6. We define I ′2 from
I2 and σ2 in the same way. As the access outputs given by σ1 and σ2 must be valid, we know
that I ′1 and I ′2 satisfy the new constraints of AxiomRB(Sch), and clearly they still satisfy
the constraints of Sch. Now extend IAccessed to I ′Accessed by adding all Rmt-facts of I ′1 for all mt.
Clearly I ′Accessed is a subinstance of I ′1. It is access-valid because IAccessed was access-valid. It is
a subinstance of I ′2 because IAccessed is a subinstance of I ′2 and because the Rmt-facts in I ′1
also occur in I ′2 by construction of σ2. Thus, because Q is AMonDet over AxiomRB(Sch), we
know that Q(I ′1) ⊆ Q(I ′2). Now, as Q only uses the relations in Sch, we have Q(I1) = Q(I ′1)
and Q(I2) = Q′(I ′2), so we have shown that Q(I1) ⊆ Q(I2), concluding the forward direction.

Conversely, suppose Q is AMonDet over Sch and consider instances I ′1 and I ′2 for
AxiomRB(Sch) with valid access selections σ′1 and σ′2 giving accessible parts A′1 ⊆ A′2. We
create an instance I1 for Sch from I ′1 by dropping the relations Rmt, and similarly create
I2 from I ′2. Clearly both satisfy the constraints of Sch. We modify σ′1 to obtain an access
selection σ1 for I1: for every access on I1 with a method mt, the output is that of the
corresponding access with σ′1 on Rmt. We do the same to build σ2 from σ′2. By the additional
axioms of AxiomRB(Sch), it is clear that these access selections are valid. That is, that they
return valid outputs to any access. And letting A1 and A2 be the corresponding accessible
parts of I1 and I2, it is clear that A1 ⊆ A2. Thus, because Q is AMonDet over Sch, we
know that Q(I1) ⊆ Q(I2), and again we have Q(I1) = Q(I ′1) and Q(I2) = Q(I ′2). So we have
Q(I ′1) ⊆ Q(I ′2), which concludes the proof.

Putting together Proposition 4.6, Proposition 4.7 and Theorem 4.5, we have completed
the proof of Theorem 4.3.

4.2. Elimination of result upper bounds. The characterization of monotone answer-
ability in terms of AMonDet allows us to prove a key simplification in the analysis of result
bounds. Recall that a result bound of k declares both an upper bound of k on the number
of returned results, and a lower bound on them: for all j ≤ k, if there are j matches, then j
must be returned. We can show that the upper bound makes no difference for monotone
answerability. Formally, for a schema Sch with integrity constraints and access methods,
some of which may be result-bounded, we define the schema ElimUB(Sch). It has the same
vocabulary, constraints, and access methods as in Sch. For each access method mt in Sch

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:17

with result bound of k, mt has instead a result lower bound of k in ElimUB(Sch), i.e., mt
does not impose the upper bound. We can then show:

Proposition 4.8. Let Sch be a schema with arbitrary constraints and access methods which
may be result-bounded. A CQ Q is monotonically answerable in Sch if and only if it is
monotonically answerable in ElimUB(Sch).

Proof. We show the result for AMonDet instead of monotone answerability, thanks to
Theorem 4.3, and use Proposition 4.1. Consider arbitrary instances I1 and I2 that satisfy the
constraints, and let us show that any common subinstance IAccessed of I1 and I2 is access-valid
in I1 for Sch iff it is access-valid in I1 for ElimUB(Sch): this implies the claimed result.

In the forward direction, if IAccessed is access-valid in I1 for Sch, then clearly it is access-
valid in I1 for ElimUB(Sch), as any output of an access on IAccessed which is valid in I1 for Sch
is also valid for ElimUB(Sch).

In the backward direction, assume IAccessed is access-valid in I1 for ElimUB(Sch), and
consider an access (mt,AccBind) with values of IAccessed. If mt has no result lower bound, then
there is only one possible output for the access, and it is also valid for Sch. Likewise, if mt
has a result lower bound of k and there are ≤ k matching tuples for the access, then the
definition of a result lower bound ensures that there is only one possible output, which is
again valid for Sch. Finally, if there are > k matching tuples for the access, we let J be
a set of tuples in IAccessed which is is a valid output to the access in ElimUB(Sch), and take
any subset J ′ of J with k tuples; it is clearly a valid output to the access for Sch. This
establishes the backward direction, concluding the proof.

Thanks to this, in our study of monotone answerability in the rest of the paper, we only
consider result lower bounds.

4.3. Reducing to query containment. Now that we have reduced our monotone answer-
ability problem to AMonDet, and eliminated result upper bounds, we explain how to restate
AMonDet as a query containment problem, which was our original goal in this section. To
do so, we will expand the relational signature. We let accessible be a new unary relation,
and for each relation R of the original signature, we introduce two copies RAccessed and R′

with the same arity as R. Letting Σ be the integrity constraints in the original schema, we
let Σ′ be formed by replacing every relation R with R′. For any CQ Q, we define Q′ from Q
in the same way. Intuitively, R and R′ represent the interpretations of the relation R in I1

and I2; RAccessed represents the interpretation of R in IAccessed; and accessible represents the
active domain of IAccessed.

The AMonDet containment for Q and Sch is then the CQ containment Q ⊆Γ Q′ for
constraints Γ that we will define shortly. Intuitively, Γ will include the original constraints
Σ, and the analogue Σ′ of Σ on the relations R′, to enforce that I1 and I2 both satisfy Σ.
Further, Γ will include additional constraints called accessibility axioms. These axioms will
enforce that IAccessed is access-valid in I1, i.e., that any access performed with values for IAccessed
returns a valid output which is in IAccessed; and enforce that IAccessed is a common subinstance
of I1 and I2.

Formally, Γ includes the original constraints Σ, the constraints Σ′ on the relations R′,
and the following accessibility axioms:

14:18 A. Amarilli and M. Benedikt Vol. 18:2

• For each method mt that is not result-bounded, letting R be the relation accessed by mt:(∧
i

accessible(xi)
)
∧R(~x, ~y)→ RAccessed(~x, ~y)

where ~x denotes the input positions of mt in R.
• For each method mt with a result lower bound of k, letting R be the relation accessed

by mt, for all j ≤ k:(∧
i

accessible(xi)
)
∧ ∃≥j~y R(~x, ~y)→ ∃≥j~z RAccessed(~x, ~z)

where ~x denotes the input positions of mt in R. Note that we write ∃≥j~y φ(~x, ~y) for a
subformula φ to mean that there exist at least j different values of ~y such that φ(~x, ~y)
holds.
• For every relation R of the original signature:

RAccessed(~w)→ R(~w) ∧R′(~w) ∧
∧
i

accessible(wi).

The AMonDet containment above simply formalizes the definition of AMonDet, via
Proposition 4.1. The first two accessibility axioms enforce that IAccessed is access-valid in I1:
for non-result-bounded methods, accesses to a method mt on a relation R return all the
results, while for result-bounded methods it respects the lower bounds. The last accessibility
axiom enforces that IAccessed is a common subinstance of I1 and I2 and that accessible includes
the active domain of IAccessed. Hence, from the definitions and from Theorem 4.3 and
Proposition 4.1, we have:

Proposition 4.9. Let Q be a CQ, and let Sch be a schema with constraints expressible in
active-domain first-order logic and with access methods that may have result upper and lower
bounds. Then the following are equivalent:

• Q is monotonically answerable with respect to Sch.
• Q is AMonDet over Sch.
• The AMonDet containment for Q and Sch holds.

Proof. We know by Theorem 4.3 that the first two points are equivalent, and we can further
rephrase them using Proposition 4.1: Q is monotonically answerable iff whenever two
instances I1, I2 satisfying Σ have a common subinstance IAccessed which is access-valid in I1,
then we have Q(I1) ⊆ Q(I2). Assuming this, let us show that the query containment holds.
Fix an instance J satisfying Γ. We let I1 consist of the facts of J over the relations in the
original schema, and I2 consist of the facts R′(~c) for each fact R(~c) of J . Clearly I1 and I2

satisfy Σ. We consider the instance IAccessed containing facts R(~c) for all facts RAccessed(~c) in J .
The last class of axioms for Γ guarantee that this is a common subinstance of I1 and I2,
while the first two sets of axioms guarantee that IAccessed is access-valid in I1. We conclude
that Q(I1) ⊆ Q(I2), and this implies that the containment of Q in Q′ holds in J .

In the other direction we assume the query containment holds, and consider I1, I2 with
the required IAccessed. Build an instance J by defining the relations R from I1, relations R′

from I2, and relations RAccessed from IAccessed. We can verify that J satisfies Γ, and the query
containment gives Q(J) ⊆ Q′(J). Tracing back through the definitions this tells us that
Q(I1) ⊆ Q(I2).

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:19

Note that, for a schema without result bounds, the accessibility axioms above can all
be rewritten as follows (as in [BtCT16, BtCLT16]): for each method mt, letting R be the
relation accessed by mt and ~x be the input positions of mt in R, we simply have the axiom:(∧

i

accessible(xi)
)
∧R(~x, ~y)→ R′(~x, ~y) ∧

∧
i

accessible(yi).

Example 4.10. Let us apply the reduction above to the schema of Example 1.1 with the
result bound of 100 from Example 1.3. We see that monotone answerability of a CQ Q is
equivalent to Q ⊆Γ Q

′, for Γ containing:

• the referential constraint from Udirectory into Prof and from Udirectory′ into Prof ′;
• accessible(i) ∧ Prof(i, n, s)→ ProfAccessed(i, n, s);
• the following, for all 1 ≤ j ≤ 100: ∃~y1 · · · ~yj(

∧
1≤p<q≤j ~yp 6= ~yq ∧ Udirectory(~yp)) →

∃~z1 · · · ~zj(
∧

1≤p<q≤j ~zp 6= ~zq ∧ UdirectoryAccessed(~zp));

• ProfAccessed(~w)→ Prof(~w) ∧ Prof ′(~w) ∧
∧
i accessible(wi) and similarly for Udirectory.

Note that the constraint in the third item is quite complex; it contains inequalities and also
disjunction, since we write ~y 6= ~z to abbreviate a disjunction

∨
i≤|~y| yi 6= zi. This makes

it challenging to decide if Q ⊆Γ Q′ holds. Hence, our goal in the next section will be to
simplify result bounds to avoid such complex constraints.

Bottom line: monotone answerability and query containment. The results in this
section have allowed us to reduce the analysis of monotone answerability to a problem
concerning containment of queries with integrity constraints. We will rely on this equivalence
throughout the remainder of the paper, in that all of our results on expressiveness and
complexity will go through transformations and analysis of the corresponding containment
for AMonDet. Note that since we allow constants that may be equal to one another in our
analysis, it will always be possible to reduce the setting for non-Boolean queries to that for
Boolean queries: we simply consider the free variables as constants. With this in mind, we
will state all of our results for non-Boolean CQs, but in the proofs will assume the Boolean
case, relying on this trivial reduction.

5. Simplifying result bounds with IDs and FDs

The results in Section 4 allow us to reduce the monotone answerability problem to a
query containment problem. However, for result bounds greater than 1, the containment
problem involves complex cardinality constraints, as illustrated in Example 4.10, and thus
we cannot apply standard results or algorithms on query containment under constraints to
get decidability “out of the box”. There is also little hope to establish the decidability of
query containment for the precise constraints that we define. Hence, to address this difficulty,
we study how to simplify result-bounded schemas, i.e., change or remove the result bounds.
We do so in this section, with simplification results of the following form: if we can find a
plan for a query on a result-bounded schema, then we can find a plan in a simplification of
the schema, i.e., a schema with simpler result bounds or no result bounds at all.

These simplification results have two benefits. First, they give insight about the use
of result bounds, following the examples in the introduction. For instance, our results will
show that for most of the common classes of constraints used in databases, the actual

14:20 A. Amarilli and M. Benedikt Vol. 18:2

numbers in the result bounds never matter for answerability. Secondly, they help us to
obtain decidability of the monotone answerability problem.

Existence-check simplification. The simplest way to use result-bounded methods is to
check if some tuples exist, as in Example 1.4. We will formalize this as the existence-check
simplification, where we replace result-bounded methods by Boolean methods that can only
do such existence checks.

Given a schema Sch with result-bounded methods, its existence-check simplification
Sch† is formed as follows:

• The signature of Sch† is that of Sch plus some new relations: for each result-bounded
method mt, letting R be the relation accessed by mt, we add a relation Rmt whose arity is
the number of input positions of mt.
• The integrity constraints of Sch† are those of Sch plus, for each result-bounded method
mt of Sch, two new ID constraints:

R(~x, ~y)→ Rmt(~x)

Rmt(~x)→ ∃~y R(~x, ~y)

where ~x denotes the input positions of mt in R.
• The methods of Sch† are the methods of Sch that have no result bounds, plus one new

Boolean method mt† on each new relation Rmt, that has no result bounds either.

Example 5.1. Recall the schema Sch of Examples 1.1 and 1.5. It featured a relation
Prof(id ,name, salary) with an access method pr having input id to obtain information about
a professor; and featured a relation Udirectory(id , address, phone) with an access method
ud2 taking an id as input and returning the address and phone number of tuples with this
id . We assumed a result bound of 1 on ud2, and assumed the functional dependency φ: each
employee id has exactly one address (but possibly many phone numbers).

The existence-check simplification of Sch has a signature with relations Udirectory, Prof,
and a new relation Udirectoryud2 of arity 1. It has two access methods without result bounds:
the method pr on Prof like in Sch, and a Boolean method ud′2 on Udirectoryud2 . Its constraints
are those of Sch, plus the following IDs:

Udirectory(i, a, p)→ Udirectoryud2(i)

Udirectoryud2(i)→ ∃a p Udirectory(i, a, p)

Clearly, every plan that uses the existence-check simplification Sch† of a schema Sch
can be converted into a plan using Sch, by replacing the accesses on the Boolean method
of Rmt to non-deterministic accesses with mt, and only checking whether the result of these
accesses is empty. We want to understand when the converse is true. That is, when a plan
on Sch can be converted to a plan on Sch†. For instance, recalling the plan of Example 1.4
that tests whether Udirectory is empty simply by accessing ud2, we could implement it in the
existence-check simplification of this schema. More generally, we want to identify schemas
Sch for which any CQ having a monotone plan over Sch has a plan on the existence-check
simplification Sch†. We say that Sch is existence-check simplifiable when this holds: this
intuitively means that “result-bounded methods of Sch are only useful for existence checks”.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:21

Showing existence-check simplifiability. We first show that this notion of existence-
check simplifiability holds for schemas like Example 1.2 whose constraints consist of inclusion
dependencies:

Theorem 5.2. Let Sch be a schema whose constraints are IDs, and let Q be a CQ that is
monotonically answerable in Sch. Then Q is monotonically answerable in the existence-check
simplification of Sch.

This existence-check simplifiability result implies in particular that for schemas with IDs,
monotone answerability is decidable even with result bounds. This is because the existence-
check simplification of the schema features only IDs and no result bounds, so the query
containment problem for AMonDet only features guarded TGDs, which implies decidability.
We will show a finer complexity bound in the next section.

To prove Theorem 5.2, we show that if Q is not AMonDet in the existence-check
simplification Sch† of Sch, then it cannot be AMonDet in Sch. This suffices to prove the
contrapositive of the result, because AMonDet is equivalent to monotone answerability
(Theorem 4.3). As in all of our results concerning entailment problems like AMonDet, in the
proof for simplicity we will assume the query Q is Boolean. The general case is handled by
simply considering free variables as additional constants.

Let us show, for a Boolean query Q, that Q not being AMonDet in Sch† implies that
it is not AMonDet in Sch. To do so, we introduce a general method of blowing up models
that we will reuse in all subsequent simplifiability results. We assume that AMonDet does
not hold in the simplification Sch†, and consider a counterexample to AMonDet for Sch†:

two instances I†1, I
†
2 both satisfying the schema constraints, such that I†1 satisfies Q while I†2

satisfies ¬Q, and I†1 and I†2 have a common subinstance I†Accessed which is access-valid in I†1.
We use them to build a counterexample to AMonDet for the original schema Sch: we will

always do so by adding more facts to I†1 and I†2 and then restricting to the relations of Sch.
We formalize the sufficiency of such a construction in the following lemma, whose proof is
immediate, and which we state in full generality as we will use it in multiple places:

Lemma 5.3. Let Sch and Sch† be schemas and Q a CQ on the common relations of Sch

and Sch† such that Q is not AMonDet in Sch†. Suppose that for some counterexample I†1, I
†
2

to AMonDet for Q in Sch† we can construct instances I1 and I2 over Sch, satisfying the
constraints of Sch, which have a common subinstance IAccessed that is access-valid in I1 for Sch,

such that I2 has a homomorphism to I†2, and such that the restriction of I†1 to the relations
of Sch is a subinstance of I1. Then Q is not AMonDet in Sch.

Proof. The instances I1 and I2 satisfy the constraints of Sch and they have a common
subinstance which is access-valid in I1 for Sch. Recall that, by definition of a counterexample,

I†1 satisfies Q and I†2 does not. Now, instance I1 satisfies Q, because I†1 does and Q only
mentions the relations of Sch, and I2 does not satisfy Q, because it has a homomorphism

to I†2 which does not. Hence, I1, I2 is a counterexample showing that Q is not AMonDet
in Sch.

Using this lemma, we can now prove Theorem 5.2:

Proof. We use the equivalence between AMonDet and monotone plans given by Theorem 4.3,
and we prove the contrapositive of the theorem, using Lemma 5.3. Let Sch be the original
schema and Sch† be the existence-check simplification. Notice that the query Q is indeed

14:22 A. Amarilli and M. Benedikt Vol. 18:2

posed on the common relations of Sch and Sch†, i.e., it does not involve the Rmt relations

added in Sch†. To use Lemma 5.3, suppose that we have a counterexample (I†1, I
†
2) to

AMonDet for Q and the simplification Sch†, i.e., the instances I†1 and I†2 satisfy the constraints

Σ† of Sch†, the instance I†1 satisfies Q and the instance I†2 violates Q, and I†1 and I†2 have a

common subinstance I†Accessed that is access-valid in I†1. We will show how to “blow up” each
instance to I1 and I2 which have a common subinstance which is access-valid in I1, i.e.,
we must ensure that each access to a method with a result bound in I1 returns either no
tuples or more tuples than the bound. In the blowup process we will preserve the constraints
Σ† and the properties of the Ii with respect to the CQ Q. Intuitively, the blowup process

will consider all accesses that can be performed with the common subinstance I†Accessed, and
instantiate infinitely many witnesses to serve as answers for these accesses. We will then
repair the instances by applying chase steps so that they satisfy the constraints again.

We now explain formally how I1 and I2 are formed. The first step is “obliviously chasing
with the existence-check constraints”: for any existence-check constraint δ of the form

∀x1 . . . xm Rmt(~x)→ ∃y1 . . . yn R(~x, ~y)

and any homomorphism h of the variables x1 . . . xm to I†Accessed, we extend the mapping by
choosing infinitely many fresh witnesses for y1 . . . yn, naming the jth value for yi in some
canonical way depending on (h(x1), . . . h(xm), δ, j, i), and creating the corresponding facts.
We use the term “obliviously chasing” to emphasize that the trigger may not be active. We

let I∗Accessed be I†Accessed extended with these facts.
The second step is “chasing with the original constraints”. Recall the definition of “the

chase” in Section 3. Specifically, we let IAccessed be the chase of I∗Accessed by Σ.

We now construct I1 := I†1 ∪ IAccessed and similarly define I2 := I†2 ∪ IAccessed. We also
remove all facts from I1, I2, and IAccessed where the underlying relation is not in Sch.

We now show correctness. First observe that the restriction of I†1 to the relations of Sch
is a subinstance of I1, so that I1 still satisfies Q. Further, we argue that for all p ∈ {1, 2},
the instance Ip satisfies Σ. As Σ consists only of IDs, its triggers consist of single facts, so it

suffices to check this on I†p and on IAccessed separately. For IAccessed, we know that it satisfies Σ

by definition of the chase. For I†p, we know it satisfied Σ† (before the last step of removing
the facts not on relations of Sch), so it satisfies Σ.

We must now justify that I2 has a homomorphism h to I†2, which will imply that it still

does not satisfy Q. We first define h to be the identity on I†2. It then suffices to define h as a

homomorphism from IAccessed to I†2 which is the identity on I†Accessed, because IAccessed∩I†2 = I†Accessed.

We next define h on I∗Accessed \ I
†
Accessed. Consider a fact F = R(~a) of I∗Accessed \ I

†
Accessed created by

obliviously chasing a trigger on an existence-check constraint δ on I†Accessed. Let F ′ = S(~b)

be the fact of I†Accessed in the image of the trigger: that is, the fact that matches the body

of δ. We know that δ holds in I†2 and thus there is some fact F ′′ := R(~c) in I†2 that serves
as a witness for this. Writing Arity(R) to denote the arity of R, we define h(ai) for each
1 ≤ i ≤ Arity(R) as h(ai) := ci. In this way, the image of the fact F under h is F ′′.

We argue that this is consistent with the stipulation that h is the identity on I†Accessed.

This is because whenever ai ∈ Adom(I†Accessed), ai was not a fresh element when firing the
trigger that created F . So ci was not fresh either and must have been the same element, i.e.,
ci = ai.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:23

Further, we claim that all these assignments are consistent across the facts of I∗Accessed \
I†Accessed because all elements of I∗Accessed \ I

†
Accessed which do not occur in Adom(I†Accessed) occur at

exactly one position in one fact of I∗Accessed \ I
†
Accessed.

We now define h on facts of IAccessed \ I∗Accessed inductively by extending it on the new
elements introduced throughout the chase. Whenever we create a fact F = R(~a) in IAccessed
for a trigger τ mapping to F ′ = S(~b) for an ID δ in IAccessed, we explain how to extend h to the

nulls introduced in F . Consider the fact h(F ′) = S(h(~b)) in I†2. The body of δ also matches

this fact, and as I†2 satisfies Σ† there must be a fact F ′′ = R(~c) in I†2 which extends this

match to the head of δ, since δ holds in I†2. For the elements ai that are not nulls created
when firing τ , the image h(ai) of ai by h is already defined, and more precisely we must

have h(ai) = ci, by the same reasoning as when we defined h on I∗Accessed \ I
†
Accessed. Now, for

the ai’s that are nulls, noting that all of them are distinct, we simply set h(ai) := ci. This
ensures that h(F) = F ′′, so F has a homomorphic image. Hence, performing this process
inductively indeed creates a homomorphism.

This concludes the proof of the fact that there is a homomorphism from I2 to I†2.
It remains to justify that the common subinstance IAccessed in I1 and I2 is access-valid

in I1. Consider one access in I1 performed with some method mt of a relation R, with a
binding AccBind of values in IAccessed, and let us show that we can define a valid output to
this access in IAccessed. It is clear by definition of IAccessed that, if some value of AccBind is not

in the domain of I†Accessed, it must be a null introduced in the chase to create IAccessed, in the
first or in the second step. In this case the only possible matching facts in I1 are the facts

containing such a null, i.e., the facts in IAccessed \ I†Accessed, so these facts are all in IAccessed and
there is nothing to show as they can all be returned.

We thus focus on the case when all values of AccBind are in I†Accessed. If mt is not a

result-bounded access, then we can simply use the fact that I†Accessed is access-valid in I†1 to

know that all matching tuples in I†1 were in I†Accessed, so the matching tuples in I1 must be

in I†Accessed ∪ (I1 \ I†1), hence in IAccessed. If mt is a result-bounded access, then consider the
access on mt† with the same binding. Either this access returns nothing or it tells us that

there is a fact Rmt containing the values of AccBind. In the first case, as I†Accessed is access-valid

in I†1, we know that I†1 contains no matching tuple, hence the constraints of Sch† imply

that I†1 does not contain any R-fact which matches AccBind in the input positions of mt.

This means that any matching tuple in I1 for the access on mt must be in I1 \ I†1, so they are
in IAccessed and we can define a valid output to the access in IAccessed. This covers the first case.

In the second case, the Rmt-fact of I†1 implies by construction that I∗Accessed, hence IAccessed,
contains infinitely many suitable facts matching the access. Letting k be the result bound
of mt, we choose k facts among those, and obtain a valid output to the access with AccBind
on mt in I1. Hence, we have shown that IAccessed is access-valid in I1.

Hence, we have shown the conditions of Lemma 5.3. Using this lemma, we have
completed the proof of Theorem 5.2.

FD simplification. When our constraints include functional dependencies, we can hope
for another kind of simplification, generalizing the idea of Example 1.5: an FD can force
the output of a result-bounded method to be deterministic on a projection of the output
positions. We will define the FD simplification to formalize this intuition.

14:24 A. Amarilli and M. Benedikt Vol. 18:2

Given a set of constraints Σ, a relation R that occurs in Σ, and a subset P of the
positions of R, we write DetBy(R,P) for the set of positions determined by P , i.e., the set of
positions i of R such that Σ implies the FD P → i. In particular, we have P ⊆ DetBy(R,P).
For any access method mt, letting R be the relation that it accesses, we let DetBy(mt)
denote DetBy(R,P) where P is the set of input positions of mt. Given a schema Sch with

result-bounded methods, we can now define its FD simplification Sch† as follows:

• The signature of Sch† is that of Sch plus some new relations: for each result-bounded
method mt, letting R be the relation accessed by mt, we add a relation Rmt whose arity is
|DetBy(mt)|.
• The integrity constraints of Sch† are those of Sch plus, for each result-bounded method mt

of Sch, two new ID constraints:

R(~x, ~y, ~z)→ Rmt(~x, ~y)

Rmt(~x, ~y)→ ∃~z R(~x, ~y, ~z)

where ~x denotes the input positions of mt and ~y denotes the other positions of DetBy(mt).
• The methods of Sch† are the methods of Sch that have no result bounds, plus the following:

for each result-bounded method mt on relation R in Sch, a method mt† on Rmt that has
no result bounds and whose input positions are the positions of Rmt corresponding to
input positions of mt.

Note that the FD simplification is the same as the existence-check simplification when
the integrity constraints Σ do not imply any FD. Further observe that, even though the
methods of Sch† have no result bounds, any access to a new method mt† of Sch† is guaranteed
to return at most one result. This is thanks to the FD on the corresponding relation R, and
thanks to the constraints that relate Rmt and R.

Example 5.4. Recall the schema Sch of Example 1.5 and the FD φ on Udirectory. In the FD
simplification of Sch, we add a relation Udirectoryud2(id , address), we replace ud2 by a method
ud2 on Udirectoryud2 whose input attribute is id , and we add the IDs Udirectory(i, a, p) →
Udirectoryud2(i, a) and Udirectoryud2(i, a) → ∃p Udirectory(i, a, p). The method ud′2 has no
result bound, but the IDs above and the FD φ ensure that it always returns at most one
result.

The point of the FD simplification is that it has no result-bounded methods, so that,
like for the existence-check simplification, the query containment problem for the schema of
the simplification will not use any complex cardinality constraints. This is in contrast to the
query containment problem obtained in Example 4.10.

A schema Sch is FD simplifiable if every CQ having a monotone plan over Sch has one
over the FD simplification of Sch. As for existence-check, if a schema is FD simplifiable, we
can decide monotone answerability by reducing to the same problem in a schema without
result bounds.

We use a variant of our “blowup process” to show that schemas with only FD constraints
are FD simplifiable:

Theorem 5.5. Let Sch be a schema whose constraints are FDs, and let Q be a CQ that is
monotonically answerable in Sch. Then Q is monotonically answerable in the FD simplifica-
tion Sch† of Sch.

Proof. We will again show the contrapositive of the statement. Assume that we have a

counterexample I†1, I
†
2 to AMonDet for Sch†, with Q holding in I†1, with Q not holding in I†2,

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:25

and with I†1 and I†2 having a common subinstance I†Accessed that is access-valid in I†1 under Sch†.
We will upgrade these to I1, I2, IAccessed having the same property for Sch, by blowing up

accesses one after the other. To do so, we initially set I1 to be the restriction of I†1 to the

relations of Sch, i.e., all relations but the Rmt relations. We define I2 from I†2 and IAccessed
from I†Accessed in the same way. We fix some valid access selection σ1 for I†1 that always returns

tuples from I†Accessed when performing accesses with values of I†Accessed. We consider all possible
accesses in parallel, performing for each access a process described just below.

We consider all the (non-result-bounded) access methods mt† introduced in Sch† — not

including the access methods mt of Sch† which are simply those without result bounds in Sch.
Given such an mt†, we write mt for the corresponding (result-bounded) access method in Sch.
We call mt† (and also mt) non-dangerous if the input positions of mt determine all positions
of the accessed relation. Equivalently, DetBy(mt) contains all positions of R. Or again

equivalently, Rmt and R†mt have the same arity. We call mt and mt† dangerous otherwise.
The blowup process we provide for each access will differ depending on whether the method
is dangerous or non-dangerous.

First, we handle the non-dangerous methods, and simply copy in IAccessed the results of
accesses on these methods. Consider every non-dangerous method mt† of Sch†. We again
write mt the corresponding method in Sch and use R to denote the relation of the access. We

consider every possible access (mt†,AccBind) on I†1 with values in I†Accessed such that one tuple
(and, by the FDs, exactly one tuple) is returned. The IDs from Rmt to R imply there is an

R-fact with exactly the same elements in I†1 and I†2. We then add this one fact to IAccessed.
We do this for all the non-dangerous methods and accesses using these methods.

Second, we blow up the dangerous methods, which is the complicated step of the
construction. Consider every dangerous method mt† of Sch†. Write mt for the method
in Sch corresponding to mt† and R for the relation of mt. Consider every possible access

(mt†,AccBind) on I†1 with values in I†Accessed. There are two possibilities: either this access

returns nothing, or, by the FDs of Sch and the constraints introduced in Sch†, it returns

exactly one tuple, which must be in I†Accessed because I†Accessed is access-valid in I†1.
In the first case, we do nothing. Intuitively, we know that there are no matching

tuples in I†1. Now, considering the ID constraint in the FD simplification that goes from R

to Rmt, we infer that there is no R-fact in I†1 whose projection to the input positions of mt
matches AccBind. Thus we will have no problem building a valid answer to this access.

In the second case, consider the fact M ′1 that was returned, following the access selection

σ1 in response to the access (mt†,AccBind). Recall that there is an ID constraint in Sch†

that goes from Rmt to R. This constraint allows us to infer from the existence of M ′1 that

there must be some witnessing facts in I†1 and in I†2, namely, R-facts whose projection to
DetBy(mt) matches M ′1. In this case, we perform a modification that we refer to as blowing
up the access. Specifically, let X be the positions of R that are not in DetBy(mt). By our
assumption that mt† is dangerous, X is nonempty. Construct infinitely many R-facts with
all positions in DetBy(mt) agreeing with M ′1, and with all positions in X filled using fresh

values that are different from each other and from other values in I†1 ∪ I
†
2. We add these

duplicate facts to I1, to I2, and to IAccessed.

Performing this process for all accesses in I†Accessed on all dangerous access methods that
return a tuple, we have finished the definition of I1, I2, and IAccessed.

14:26 A. Amarilli and M. Benedikt Vol. 18:2

Having completed our construction, we now check that the conditions are satisfied.

It is clear that the restriction of I†1 to the relations of Sch is a subset of I1. We see that
IAccessed ⊆ I1 and IAccessed ⊆ I2, because these two last inclusions are true initially and all tuples
added to IAccessed are also added to I1 and I2, or in the case of non-dangerous accesses are

already present in I†1 and I†2. Further, I2 has a homomorphism back to I†2: we can define it

as the identity on I†2, and as mapping the fresh elements of every duplicate tuple of I2 \ I†2 to

a witnessing fact in I†2. This only collapses fresh values of Adom(I2) to values of Adom(I†2),

and is the identity on constants of I†2.
We must justify that I1 and I2 still satisfy the FD constraints of Sch. This is true

because, whenever we add a set of duplicate facts to I1 and I2, each fact in the set contains
fresh values at the positions of the set X, and must match the witnessing facts already

present in I†1 and I†2 at the other positions. Hence, if adding such a duplicate fact violated
an FD, the left-hand-side of the FD could not contain a position in X, as elements at
these positions are fresh. So the left-hand-side would be contained in DetBy(mt). Thus the
right-hand-side would also be contained in DetBy(mt), because DetBy(mt) is closed under
the FDs. We conclude that if adding the new fact violated an FD, then the witnessing facts

also did, breaking the assumption that I†1 and I†2 satisfied the FDs before.
We must now show that IAccessed is access-valid in I1.
To do so, consider a method mt of Sch and binding AccBind. If AccBind contains values

from Adom(IAccessed) \ Adom(I†Accessed), then we know that these values occur only in tuples

from IAccessed \ I†Accessed. Thus matching tuples in I1 are all in IAccessed and there is nothing to

show. Hence, we focus on the case where AccBind consists of values of Adom(I†Accessed).
We first focus on the subcase where mt is not result-bounded. In this subcase, when

performing the same access (mt†,AccBind) in I†1, the valid access selection σ1 that we fixed

returns all matching tuples in I†1, and these tuples must be part of I†Accessed because I†Accessed
is access-valid. Considering all matching tuples for the access (mt,AccBind) in the larger

structure I1, we see they are of two kinds. There are those that were already present in I†1,

which are in I†Accessed because as we explained it is access-valid, so so they are in IAccessed. The

second kind are those that were added in I1 \ I†1, and they were added to IAccessed as well. So
in both cases all matching tuples in I1 are in IAccessed.

Now, if mt is result-bounded but not dangerous, then performing the access (mt†,AccBind)

on Rmt in I†1 either returned a single matching tuple or no tuples. If it returned no matching
tuple, then the ID from R to Rmt implies that there was no matching tuple to the access

(mt†,AccBind) in I†1, hence there is still none in I1 except potentially those of IAccessed \ I†Accessed.
So IAccessed can be used to construct a valid response. If there is a matching tuple, then the

ID from Rmt to R implies that there is a matching tuple for the access (mt†,AccBind) in I†1,
which we added to IAccessed at the end of the construction. So the matching tuple is in IAccessed
and it is still a valid response to the access (mt,AccBind) in I1 (recall that the FDs imply
that this single tuple is the only possible matching tuple).

We can thus focus on the case where mt is result-bounded and dangerous. In this case,
when we considered the access (mt,AccBind) in the blow-up process above for mt, either we
blew up the access or we did not. If we did not, then we know that there were no matching

tuples in I†1 for the access, and the ID from R to Rmt implies that I†1 contains no matching
tuple for the access (mt†,AccBind), so all matching tuples to the access (mt,AccBind) in I1

are in IAccessed. If we did blow the access up, then we know that IAccessed contains infinitely

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:27

many matching tuples to the access that we can use as a valid response to the access in I1.
Thus, IAccessed is indeed access-valid.

Thus, Lemma 5.3 implies that Q is not AMonDet in Sch, concluding the proof of
Theorem 5.5.

6. Decidability of Monotone Answerability
using Existence check and FD simplification

Thus far we have seen a general way to reduce monotone answerability problems with result
bounds to query containment problems (Section 4). We have also seen schema simplification
results for both FDs and IDs, which give us insight into how result-bounded methods can
be used (Section 5). We now show that for these two classes of constraints, the reduction to
containment and simplification results combine to give decidability results, along with tight
complexity bounds.

6.1. Decidability for FDs. We first consider schemas whose constraints consist of FDs.
We start with an analysis of monotone answerability in the case without result bounds:

Proposition 6.1. We can decide whether a CQ is monotonically answerable with respect to
a schema without result bounds whose constraints are FDs. The problem is NP-complete.

Proof. The lower bound already holds without result bounds or constraints [Li03], so it
suffices to show the upper bound. We know that, by Theorem 4.3 and Proposition 4.9, the
problem reduces to the AMonDet query containment problem Q ⊆Γ Q

′ for Sch. As Sch has
no result bounds, we can define Γ using the rewriting of the accessibility axioms given after
Proposition 4.9. The constraints Γ thus consist of FDs and of full TGDs of the form:(∧

i

accessible(xi)
)
∧R(~x, ~y)→ R′(~x, ~y) ∧

∧
i

accessible(yi).

Since this is a query containment problem with FDs and TGDs, by Proposition 3.2 it
can be solved by computing the chase. As the TGDs are full, we know that we do not create
fresh values when computing the chase. Further, because there are no TGD constraints with
primed relations in their body, once accessible does not change, the entire chase process has
terminated. Besides, when adding values to accessible we must reach a fixpoint in linearly
many chase steps since accessible is unary. Thus the chase with Γ terminates in linearly
many steps. Thus, we can decide containment by checking in NP whether Q′ holds on the
chase result, concluding the proof.

We now return to the situation with result bounds. We know that schemas with FDs are
FD simplifiable. From this we get a reduction to query containment with no result bounds,
but introducing new axioms. We can show that the additional axioms involving Rmt and R
do not harm chase termination, so that AMonDet is decidable; in fact, it is NP-complete,
i.e., no harder than CQ evaluation:

Theorem 6.2. We can decide whether a CQ is monotonically answerable with respect to a
schema with result bounds whose constraints are FDs. The problem is NP-complete.

Proof. By Theorem 5.5 it suffices to deal with the FD simplification, meaning that we can
reduce to a schema of the following form:

14:28 A. Amarilli and M. Benedikt Vol. 18:2

• The signature of Sch† is that of Sch plus some new relations: for each result-bounded
method mt, letting R be the relation accessed by mt, we add a relation Rmt whose arity is
|DetBy(mt)|.
• The integrity constraints of Sch† are those of Sch plus, for each result-bounded method mt

of Sch, two new ID constraints:

R(~x, ~y, ~z)→ Rmt(~x, ~y)

Rmt(~x, ~y)→ ∃~z R(~x, ~y, ~z)

where ~x denotes the input positions of mt and ~y denotes the other positions of DetBy(mt).
• The methods of Sch† are the methods of Sch that have no result bounds, plus the following:

for each result-bounded method mt on relation R in Sch, a method mt† on Rmt that has
no result bounds and whose input positions are the positions of Rmt corresponding to
input positions of mt.

By Proposition 4.9, we then reduce AMonDet to query containment. The resulting query
containment problem involves two copies of the constraints above, on primed and unprimed
copies of the schema, along with accessibility axioms for each access method (including the
new methods Rmt). We can observe a few obvious simplifications of these constraints, when
working with the restricted chase:

• The “unprimed method-to-regular constraint”, Rmt(~x, ~y)→ ∃~z R(~x, ~y, ~z) will never fire,

since a fact Rmt(~a,~b) is always generated by a corresponding fact R(~a,~b,~c).
• When firing a constraint of the form τ : R′(~x, ~y, ~z) → R′mt(~x, ~y) to create a fact F2 =

R′mt(~a,
~b) from a fact F1 = R′(~a,~b,~c), the fact F2 will not be a trigger for any rule firing.

Indeed, the only rule applicable to a R′mt-fact is the reverse constraint R′mt(~x, ~y) →
∃~z R′(~x, ~y, ~z), for which F1 witnesses that F2 is not an active trigger. What is more, the
R′mt-facts created by constraints of the form τ cannot help make the query true, as the
query does not mention relations of the form R′mt. For this reason, we can disregard
unprimed method-to-regular constraints without changing the query containment problem.

So the constraints that remain in addition to the FDs are:

• The ID constraints R(~x, ~y, ~z)→ Rmt(~x, ~y) where ~x denotes the input positions of mt and
~y denotes the other positions of DetBy(mt);
• For every access method mt on a relation S, the accessibility axioms which are of the form

(
∧
i accessible(xi)) ∧ S(~x)→ SAccessed(~x) and SAccessed(~w)→ S(~w) ∧ S′(~w) ∧

∧
i accessible(wi).

Note that S may be one of the original relations, or one of the relations Rmt, depending
on whether mt originally had result bounds or not.
• The ID constraints R′mt(~x, ~y)→ ∃z R′(~x, ~y, ~z), where ~x denotes the input positions of mt

and ~y denotes the other positions of DetBy(mt).

The only non-full TGDs in these constraints are those of the last bullet point: these
are the only rules that create new values, and these values will never propagate back to the
unprimed relations. Further, whenever a primed fact F is created containing a null using
such a rule, the only further chase steps that can apply to F are FDs, and these will only
merge elements in F . Thus the chase will terminate in polynomially many steps as in the
proof of Proposition 6.1, which establishes the NP upper bound and concludes the proof of
Theorem 6.2.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:29

6.2. Decidability for IDs. Next we consider schemas whose constraints consist of IDs. As
we already mentioned, Theorem 5.2 implies decidability for such schemas. We now give the
precise complexity bound:

Theorem 6.3. We can decide whether a CQ is monotonically answerable with respect to a
schema with result bounds whose constraints are IDs. Further, the problem is EXPTIME-
complete.

Proof. Hardness already holds without result bounds [BBB13], so we focus on the upper
bound. By Theorem 5.2, we can equivalently replace the schema Sch with its existence-check
simplification Sch†, and Sch† does not have result bounds. Further, it is easy to see that
Sch† consists only of IDs, namely, those of Sch plus the IDs added in the simplification.
Note that the resulting query containment problem only involves guarded TGDs, and thus
we can conclude that the problem is in 2EXPTIME from [CGLP11]. However, we can do
better: [BBB13] showed that the monotone answerability problem for schemas where the
constraints are IDs is in EXPTIME, and thus we conclude the proof.

6.3. Complexity for Bounded-Width IDs and Special Properties of the Query
Containment for Access Methods. Up until now we have seen a reduction of answer-
ability to query answering. We can see that the query answering problem involves adding
auxiliary constraints — the “transfer” axioms that capture properties of an access — and
these are of a very special form. Our goal now is to illustrate how the restricted shape of
these axioms can be used to get lower complexity bounds, compared to what we can get by
appealing to coarser classes like guarded or frontier-guarded TGDs.

We illustrate this in an important case for IDs, those whose width — the number of
exported variables, i.e., of variables shared between the body and the head — is bounded
by a constant. Recall that this includes in particular UIDs, which have width 1. For
bounded-width IDs, it was shown by Johnson and Klug [JK84] that query containment
under constraints is NP-complete. This result showed that the width parameter plays an
important role in lowering the complexity of the containment problem. A natural question
is whether the same holds for monotone answerability. We accordingly conclude the section
by showing the following, which is new even in the setting without result bounds:

Theorem 6.4. It is NP-complete to decide whether a CQ is monotonically answerable with
respect to a schema with result bounds whose constraints are bounded-width IDs.

To show this result, we will again use the fact that IDs are existence-check simplifiable
(Theorem 5.2). Using Proposition 4.9 we reduce to a query containment problem with
guarded TGDs. But this is not enough to get an NP bound. The reason is that the query
containment problem includes accessibility axioms, which are not IDs. So we cannot hope
to conclude directly using [JK84].

The rest of this section will be devoted to the proof of Theorem 6.4. As mentioned
above, this will require a finer-grained analysis of the query containment problem produced
from our reduction. In fact, we will note a particular property of these containment problems
that can be exploited: they involve constraints that are IDs and GTGDs that are “close to
IDs”: involving only guards and a fixed set of relations, specifically, the accessible relation.
Our results give evidence that looking at other parameters in query answering problems for
tame classes of dependencies can yield new insights, despite the wealth of results already
present in this area [CGL12, GMP14].

14:30 A. Amarilli and M. Benedikt Vol. 18:2

We begin with the case without result bounds, and then extend to support result bounds.

Proving Theorem 6.4 without result bounds. In the absence of result bounds, recall
that the AMonDet query containment problem Q ⊆Γ Q′ can be expressed as follows: Γ
contains the bounded-width IDs Σ of the schema, their primed copy Σ′, and for each access
method mt accessing relation R with input positions ~x there is an accessibility axiom:(∧

i

accessible(xi)
)
∧R(~x, ~y)→ R′(~x, ~y) ∧

∧
i

accessible(yi).

For each method mt, we can rewrite the accessibility axiom above by splitting its head, and
obtain the following pair of axioms, where the truncated accessibility axioms only create the
accessible facts (hence the name), and the transfer axioms create the primed facts:

• (Truncated Accessibility): (
∧
i accessible(xi)) ∧R(~x, ~y)→

∧
i accessible(yi).

• (Transfer): (
∧
i accessible(xi)) ∧R(~x, ~y)→ R′(~x, ~y).

We let ∆ be the set of the truncated accessibility axioms and transfer axioms that we
obtain for all the methods mt.

The constraints of ∆ are TGDs but not IDs. However, we will take advantage of their
structure to linearize ∆ together with Σ, i.e., construct a set ΣLin of IDs that “simulate”
the chase by Σ and ∆. To define ΣLin formally, we will change the signature. Let S be the
signature of the relations used in Σ, not including the special unary relation accessible used
in ∆; and let w ∈ N be the constant bound on the width of the IDs in Σ. We expand S to
the signature SLin as follows. For each relation R of arity n in S, we consider each subset P
of the positions of R of size at most w. For each such subset P , we add a relation RP of
arity n to SLin. Intuitively, an RP -fact denotes an R-fact where the elements in the positions
of P are accessible.

Remember that our goal is to linearize Σ and ∆ to a set of IDs ΣLin which emulates the
chase by Σ and ∆. If we could ensure that ΣLin has bounded width, we could then conclude
using the result of [JK84]. We will not be able to enforce this, but ΣLin will instead satisfy a
notion of bounded semi-width that we now define.

The basic position graph of a set of TGDs Σ is the directed graph whose nodes are the
positions of relations in Σ with an edge from position i of a relation T to position j of a
relation U if and only if the following is true: there is a dependency δ ∈ Σ whose body
contains an atom A using relation T , whose head atom A′ uses relation U , and with an
exported variable x that occurs at position i of A and at position j of A′.

We say that ΣLin has semi-width bounded by w if it can be decomposed as ΣLin =
ΣLin

1 ∪ΣLin
2 where ΣLin

1 has width bounded by w and the basic position graph of ΣLin
2 is acyclic.

The bound on the semi-width of ΣLin then implies an NP bound on query containment,
thanks to the following easy generalization of the result of Johnson and Klug [JK84]:

Proposition 6.5. For any fixed w ∈ N, there is an NP algorithm for containment under
IDs of semi-width at most w.

This is proven by a slight modification of Johnson and Klug’s argument, so we defer it
to Appendix C. Having defined semi-width, we can now state our linearization result:

Proposition 6.6. For any fixed w ∈ N, given a set Σ of IDs of width w and a set ∆ of
truncated accessibility and transfer axioms, and given a set of facts I0, we can compute in
PTIME a set of IDs ΣLin of semi-width w and a set of facts ILin0 satisfying the following:

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:31

for any Boolean CQ Q∗ over the primed signature using constants from I0 and existentially
quantified variables, Q∗ is entailed from I0, Σ, and ∆ iff Q∗ is entailed from ILin0 and ΣLin.

The proof of this proposition is our main technical challenge, and it is deferred to
Section 6.4. The special form of the constraints is crucial in getting an efficient linearization
that leads to linear TGDs of small semi-width.

These two results allow us to decide in NP whether the query containment for AMonDet
holds. Indeed, first rewrite I0 := CanonDB(Q), along with Σ and ∆ to obtain ILin0 and ΣLin,
using Proposition 6.6. Then, recalling that ΣLin has semi-width w, let ΓBounded consist of the
primed copy Σ′ of the constraints, along with the IDs of ΣLin that have width ≤ w; and let
ΓAcyclic consist of the rules of ΣLin that do not have width bounded by w. By assumption,

these rules have an acyclic position graph. It is clear that ΓLin := ΓBounded ∪ ΓAcyclic also has
semi-width w. Now, the following is clear:

Claim 6.7. Let the instance ILin0 and constraints ΓLin be defined from I0 and Γ as above.
Then Q is AMonDet with respect to Sch if and only if the chase of ILin0 by ΓLin satisfies Q′.

Proof. We know that AMonDet is equivalent to the containment Q ⊆Γ Q
′ with Γ = Σ∪Σ′∪∆.

This in turn is equivalent to the existence of a chase proof of Q′ starting with I0 using chase
steps from Γ. Thus what we need to show is how to convert such a chase proof to a chase
proof of Q′ starting from ILin0 using steps of ΓLin, and vice versa.

We start with the converse direction. It is easy to see that any chase proof of Q′

formed from ILin0 using ΓLin can be converted to a chase proof from I0 using Γ. Indeed,
Proposition 6.6 ensures that any Boolean CQ over the primed signature that is derivable
in ILin0 using ΣLin can be derived in I0 using Σ and ∆. And the Boolean CQs that are
derivable using ΓLin are those that can be derived by first applying chase steps using ΣLin to
produce some set S of primed facts, and then applying chase steps involving constraints
of Σ′ to the facts of S. By converting S to a Boolean CQ we see that we can derive a
homomorphic image of S using Σ and ∆. Thus all Boolean CQs that can be obtained
from ILin0 using ΓLin can also be obtained using Σ, ∆, and Σ′.

For the forward direction we consider a chase proof of Q′ formed from I0 using Γ: that
is, using Σ, Σ′, and ∆. We will show how to obtain a chase proof of Q′ from ILin0 using steps
of ΓLin. We observe that in our input chase proof we can assume that we first fire rules
of Σ ∪∆ to get a set S of primed facts, and then fire rules of Σ′ to get I ′ containing all the
facts of the chase proof. Now, from Proposition 6.6 we know that a homomorphic image SLin

of the facts of S can all be derived from ILin0 using ΓLin. As ΓLin contains Σ′, we can also
derive a homomorphic image of the facts of I ′ from SLin, and thus derive homomorphic
images of the facts in the chase proof of Q′. This justifies that Q′ is also entailed by ILin0

and ΓLin, concluding the proof.

Claim 6.7 implies that to solve the AMonDet problem, it suffices determine whether the
set of primed facts corresponding to Q′ can be derived from ILin0 by applying chase steps
with ΓLin. This in turn can be determined using Proposition 6.5. This concludes the proof
of Theorem 6.4 in the case without result bounds.

Proving Theorem 6.4 with result bounds. We now conclude the proof of Theorem 6.4
by handling the case with result bounds. This will require only slight changes to the prior
argument. By Theorem 5.2, for any schema Sch whose constraints Σ are IDs, we can
reduce the monotone answerability problem to the same problem for the existence-check

14:32 A. Amarilli and M. Benedikt Vol. 18:2

simplification Sch† with no result bounds, by replacing each result-bounded method mt
on a relation R with a non-result-bounded access method mt† on a new relation Rmt, and
expanding Σ to a larger set of constraints Σ†, adding new constraints that capture the
semantics of the “existence-check views” Rmt:

• (Relation-to-view): R(~x, ~y)→ Rmt(~x);
• (View-to-relation): Rmt(~x)→ ∃~y R(~x, ~y).

Note that these IDs do not have bounded width, hence we cannot simply reduce to the case
without result bounds that we have just proved. We will explain how to adapt the proof to
handle these IDs, namely, linearizing using Proposition 6.6 to IDs of bounded semi-width.

Let us consider the query containment problem for the monotone answerability problem
of Σ†. This problem is of the form Q ⊆Γ Q

′, where Γ contains Σ†, its copy (Σ†)′, and the
accessibility axioms. These axioms can again be rephrased. For each access method mt on a
relation R, letting ~x denote the input positions of mt, we have the following two axioms:

• (Truncated Accessibility): (
∧
i accessible(xi)) ∧R(~x, ~y)→

∧
i accessible(yi);

• (Transfer): (
∧
i accessible(xi)) ∧R(~x, ~y)→ R′(~x, ~y).

In the above two items the relation R can be any of the relations of Σ†, including relations
of the original signature and relations of the form Rmt. For relations in the original schema,
mt is an access method of Sch that did not have a result bound. For the new relations,
mt is a method of the form mt† introduced in the existence-check simplification Sch† for a
result-bounded method of Sch, so mt† has no output positions: this means that, in this case,
the (Truncated Accessibility) axiom is vacuous and the (Transfer) axiom further simplifies
to:

(Simpler Transfer):
(∧

i

accessible(xi)
)
∧Rmt(~x)→ R′mt(~x).

We first observe that in Γ we do not need to include the view-to-relation constraints of Σ†:
facts over Rmt can only be formed from the corresponding R-fact with the relation-to-view
constraint, so triggers of the view-to-relation constraints will never be active in the chase,
and we know that we can decide Q ⊆Γ Q

′ by looking at restricted chase sequences — i.e.,
where non-active triggers are never fired — hence removing view-to-relation constraints
makes no difference. Similarly, we do not need to include the relation-to-view constraints
of (Σ†)′. These rules could fire to produce a new R′mt-fact, but such a fact could only trigger
the corresponding view-to-relation constraint of (Σ†)′, resulting in a state of the chase that
has a homomorphism to the one before the firing of the relation-to-view constraint. Thus
such firings can not lead to new matches. Thus, Γ consists now of Σ, of Σ′, of (Truncated
Accessibility) and (Transfer) axioms for each method mt having no result bound in Sch, and
for each method mt with a result bound in Sch we have a relation-to-view constraint from R
to Rmt that comes from Σ†, a view-to-relation constraint from R′mt to R′ that comes from
(Σ†)′, and a (Simpler Transfer) axiom.

We next note that we can normalize chase proofs with Γ so that the relation-to-view
constraints are applied only prior to (Simpler Transfer). Thus, for each result-bounded
method mt of Sch, we can merge the relation-to-view rule from R to Rmt, the (Simpler
Transfer) axiom from Rmt to R′mt, and the view-to-relation rules from R′mt to R′, into an
axiom of the following form, where ~x denotes the input positions of mt:

(Result-bounded Fact Transfer)
(∧

i

accessible(xi) ∧R(~x, ~y)
)
→ ∃~z R′(~x, ~z).

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:33

To summarize, the resulting axioms consist of:

• The original constraints Σ of the schema;
• Their primed copy Σ′;
• The (Truncated Accessibility) and (Transfer) axioms for each access method without

result bounds;
• The (Result-bounded Fact Transfer) axioms for access methods with result bounds.

In other words, the only difference with the setting without result bounds is the last bullet
point corresponding to (Result-bounded Fact Transfer).

We will now need an extension of the linearization result, Proposition 6.6, to handle
these additional constraints:

Proposition 6.8. For any fixed w ∈ N, given a set Σ of IDs of width w and a set ∆ of
truncated accessibility, transfer, and Result-bounded fact transfer axioms, and given a set of
facts I0, we can compute in PTIME a set of IDs ΣLin of semi-width w and a set of facts ILin0

satisfying the following: for any Boolean CQ Q∗ over the primed signature using constants
from I0 and existentially quantified variables, Q∗ is entailed from I0, Σ, and ∆ iff Q∗ is
entailed from ILin0 and ΣLin.

The proof of this will be a variation of the argument for Proposition 6.6. It will be
explained at the end of Section 6.4.

Thus we follow the same route as before: linearization, noting that the special form
of our constraints results in linear constraints of bounded semi-width. This completes the
proof of Theorem 6.4 in the case with result bounds.

6.4. Proof of the Linearization Results (Proposition 6.6 and 6.8). We now turn
to the missing element in the proof of Theorem 6.4, which are our linearization results,
Proposition 6.6 and its analog for result-bounded methods, Proposition 6.8.

We first give the intuition on how our linearization works. In the tree-like chase for
guarded TGDs, we have steps that create new nodes, and also propagation steps, that
replicate facts across tree nodes. An intermediate goal will be to show that for guarded
TGDs we can get a similar chase where we do not need to propagate across tree nodes. This
will be the shortcut chase, defined later, where we only grow the tree and fire full rules at a
given node, with no propagation. Note that the point of the shortcut chase is not to actually
perform or construct it, but to reason about it. Once we have defined the shortcut chase
and shown it is complete, it will be easy to perform linearization. The shortcut chase will
make use of full GTGDs that we derive from our original set of GTGDs. The saturation
process that creates these GTGDs will be a first step.

First we will review the notion of tree-structured chase proof that is well-known for
guarded TGDs [CGL12], and show that we can further enforce the downward-free property,
where facts only propagate back from a child to its ancestors in the tree. This is a step
towards simplifying propagation in the chase. Second we will need to define a more general
notion of truncated accessibility axioms, and give a PTIME algorithm for generating the
ones that are small enough: this will give us the full GTGDs that we will need. Finally we
present shortcut chase proofs, where these dependencies are fired in an even more specific
order, and show that this definition of the chase is still complete. Lastly we use these tools
to prove Proposition 6.6.

14:34 A. Amarilli and M. Benedikt Vol. 18:2

Tree-like chase proofs and the downward-free property. As a step towards our
linearization result, we now present a general result about chase proofs with single-headed
GTGDs, i.e., GTGDs having a single atom in the head. This will be applicable in particular
to our analysis of the chase with IDs and candidate truncated accessibility axioms.

For any chase sequence I0 . . . In using single-headed GTGDs, we can associate a tree-like
chase sequence, i.e., a sequence T0 . . . Tn′ of chase trees. A chase tree Ti in such a sequence
consists of a tree structure with a function FactsOfi that maps each node of Ti to a collection
of facts. Each Ti is associated to the instance formed by unioning all the facts in its nodes,
i.e., the union of FactsOfi(v) across all nodes v. Further, if v is not the root, there is a fact
F in FactsOfi(v), the birth fact of v, which serves as a guard for the elements in the facts
of FactsOfi(v). This fact F for the node v will never change throughout the sequence, so we
denote it by BirthFact(v).

In a tree-like chase sequence T0 . . . Tk′ , consecutive chase trees will be linked by two
kinds of steps. First, there will be chase steps, which add a fact to the tree, possibly in
a new node. If Ti+1 is produced from Ti by a chase step, this will correspond to a valid
chase step for the two corresponding instances. Second, a step from Ti to Ti+1 can be a
propagation step, which does not change the underlying instance, but just copies facts from
one node to another, i.e., it modifies FactsOf while maintaining the other components. Both
steps are described in detail below.

For the case of chase steps, when we perform a chase step to transform Ti to Ti+1, we
will always require it to be tree-friendly, i.e., we require that the image of the trigger lies in
FactsOfi(v) for some node v. When a chase step fires a trigger for a GTGD τ to create a
fact F , we choose one such node v in which the image lies. If τ is not full, then we extend
the sequence to Ti+1 by adding to Ti a new node v′ as a child of v, setting BirthFact(v′) := F ,
and setting FactsOfi+1(v′) to be F along with any facts in v that are guarded by F —
these facts are forward propagated from v′ to v. If τ is full, then we extend the sequence
by defining Ti+1 := Ti but changing the function FactsOfi+1. We set FactsOfi+1(v) to be
FactsOfi(v) ∪ {F} to create the new fact.

For the case of propagation steps, such a step can only take place if the preceding step
was a chase step with a full GTGD τ . Letting F = R(~c) be the newly created fact, we
consider the set B~c of all nodes that contain a guard for ~c. Our process ensures that B~c will
form a connected subtree of the chase tree Ti, and it contains the node v in which the chase
step was performed. We choose a subset B′ of B~c, and propagate the new fact to all these
nodes: for every node v′ ∈ B′, we add F to FactsOfi+1(v′).

Note that, unlike forward propagation, propagation steps allow us to propagate a fact
upwards (from descendants to ancestors) as well as downwards (from descendant to ancestor).
Further, it is optional, i.e., we can choose not to propagate.

It is clear that every tree-like chase sequence T0 . . . Tn′ induces a chase sequence in the
usual sense of instances I0 . . . In: propagation steps in the Ti do not result in any change to
the instance, thus n may be less than n′. We say that such a sequence is a tree-like chase
proof of some entailment if the resulting sequence I0 . . . In is, and in addition T0 consists
of only a single node with FactsOf0(r) = I0. Note that any chase proof with single-headed
GTGDs can be made into a tree-like chase proof: we can always choose to propagate facts
everywhere they are guarded, and then the restriction to tree-friendly chase steps is without
loss of generality.

An example is given in Figure 1, and explained in more detail in Example 6.9 just
below. Note that as the chase proceeds, we only add nodes to the chase tree and add facts

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:35

to existing nodes. In other words, given a tree node v associated to some instance Ii in a
chase proof, v will exist at each later stage Ij , but may have additional facts.

We will be particularly interested in the case of proofs with IDs and candidate derived
truncated accessibility axioms. In this case the full TGDs include the full IDs, as well as the
candidate derived truncated accessibility axioms, which generate new accessibility facts.

Example 6.9. We use an example from [Kap19]. We consider the initial instance I0 =
{R(c, d)} and a set of single-headed GTGDs Σ

R(x1, x2)→ ∃y S(x1, y), R(x1, x2)→ ∃y T (x1, x2, y),

T (x1, x2, x3)→ ∃y U(x1, x2, y), U(x1, x2, x3)→ P (x2),

T (x1, x2, x3) ∧ P (x2)→M(x1), S(x1, x2) ∧M(x1)→ ∃y N(x1, y),

the sequence

I0 = {R(c, d)}, I1 = I0 ∪ {S(c, d1)}, I2 = I1 ∪ {T (c, d, d2)}, I3 = I2 ∪ {U(c, d, d3)},
I4 = I3 ∪ {P (d)}, I5 = I4 ∪ {M(c)}, I6 = I5 ∪ {N(c, d4)}

is a chase sequence for I0 and Σ. A corresponding tree-like chase sequence T0, . . . , T8 is
depicted in Figure 1.

R(c, d)

T0 R(c, d)

S(c, d1)

T1

R(c, d)

S(c, d1) T (c, d, d2)

T2
R(c, d)

S(c, d1) T (c, d, d2)

U(c, d, d3)

T3 R(c, d)

S(c, d1) T (c, d, d2)

U(c, d, d3), P (d)

T4

R(c, d), P (d)

S(c, d1) T (c, d, d2), P (d)

U(c, d, d3), P (d)

T5 R(c, d), P (d)

S(c, d1) T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d)

T6 R(c, d), P (d),M(c)

S(c, d1),M(c) T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d),M(c)

T7

R(c, d), P (d),M(c)

S(c, d1),M(c)

N(c, d4),M(c)

T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d),M(c)

T8

Figure 1: Tree-like chase for Example 6.9.

The representation is the following. When we have performed a chase step with a
non-full GTGD (e.g., from T0 to T1), the new created node is represented in red, and the
node containing the image of the trigger (its parent node) has a blue border. When such a
step performs forward propagation of facts (e.g., from T7 to T8), the forward propagated
fact are written in blue in the parent node, and in red in the newly created node. When we
have performed a chase step with a full GTGD (e.g., from T3 to T4), the node containing

14:36 A. Amarilli and M. Benedikt Vol. 18:2

the image of the trigger again has a blue border, and the new fact (created in the same
node) is in red. When we have performed a propagation step (e.g., from T4 to T5), the fact
being propagated is written in blue in the node from where we propagate it — namely, the
node where it was created in the previous step by a full chase step, and is written in red in
the nodes where it is propagated. Note that, in these examples, propagation steps always
propagate new facts everywhere they are guarded.

Our linearization result will rely on the fact that chase proofs can be normalized to
ensure that the propagation of facts in propagation steps only happens in the “upwards”
direction, that is, towards the root of the tree. Note that this does not affect the propagation
of facts to child nodes when firing a chase step with a non-full GTGD.

Definition 6.10 (Downward-free chase sequence). We say that a tree-like chase sequence
T0 . . . Tn with single-headed GTGDs is downward -free if propagation steps always propagate
a fact F to ancestors of the node where it is created. A downward-free chase proof of an
entailment is just a downward-free chase sequence that is a chase proof.

Example 6.11. We continue with Example 6.9, taken from [Kap19]. The chase depicted
in Figure 1 is not downward-free. Indeed, the propagation step from T6 to T7 propagates
the fact M(c) to the left child of the rood, which is not an ancestor of the node where it
was created. However, if we do not propagate it to this node, we can no longer perform the
chase step from T7 to T8 to create N(c, d4).

Instead, we can redo steps in the chase to make it downward-free. We design a tree-like
chase sequence T ′0, . . . , T10′ , with Ti = T ′i for all 0 ≤ i ≤ 6. We depict T ′5 = T5, T ′6 = T6, and
T ′7, . . . , T

′
10 in Figure 2.

R(c, d), P (d)

S(c, d1) T (c, d, d2), P (d)

U(c, d, d3), P (d)

T ′5 R(c, d), P (d)

S(c, d1) T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d)

T ′6 R(c, d), P (d),M(c)

S(c, d1) T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d)

T ′7

R(c, d), P (d),M(c)

S(c, d1) T (c, d, d2), P (d),M(c)

U(c, d, d3), P (d) U(c, d, d4), P (d),M(c)

T ′8 R(c, d), P (d),M(c)

T (c, d, d2), P (d),M(c)S(c, d1)

U(c, d, d3), P (d) U(c, d, d4), P (d),M(c)

S(c, d5),M(c)

T ′9

R(c, d), P (d),M(c)

T (c, d, d2), P (d),M(c)S(c, d1)

U(c, d, d3), P (d) U(c, d, d4), P (d),M(c)

S(c, d5),M(c)

N(c, d6)

T ′10

Figure 2: Modification of the chase from Figure 1 to obtain a downward-free chase.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:37

One can think of downward-free chase sequences as a chase version which is more similar
to the chase with linear TGDs, because it is never useful to propagate facts when chasing
with such TGDs — further chase steps cannot use the propagated fact to fire a rule. Another
advantage of downward-free proofs is that if we follow the evolution of a subtree of some
node v within a proof, what we see happening in that subtree is a self-contained proof of
all facts derived in the subtree, using only the initial facts of v. Indeed, the chase steps
performed afterwards outside of the subtree will never modify the contents of the subtree.

Proposition 6.12. Let T0 . . . Tj be a downward-free chase proof. Assume that, in moving
to Ti, we perform a chase step that creates a node v. Let T ′i . . . T

′
m be the tree-like chase

sequence obtained from Ti . . . Tj by restricting to the subtree rooted at v in Ti . . . Tj, eliminating
duplicate consecutive chase trees. Then T ′i . . . T

′
m is a downward-free chase proof of the facts

of T ′m from the facts FactsOfi(v) of v in Ti.

Proof. Note that T ′i consists of a single node containing the facts of v in Ti. By the definition
of the downward-free chase, the triggers in all chase steps within Ti . . . Tj used only facts
that were generated within the subtree of v earlier in the same sequence in a node in the
subtree of v. Thus, by an immediate induction on m− i, all these steps can also be triggered
in T ′i . . . T

′
m. So T ′i . . . T

′
m is indeed a chase sequence proving the required facts, and it is

downward-free because the original sequence was.

This is a variation of Corollary 3.1.5 of [Kap19]. Similar statements appear in our earlier
work [AB18b].

We now show the key claim that we can always restrict to downward-free chase sequences:

Theorem 6.13. For every tree-like chase sequence using single-headed GTGDs T0 . . . Tn,
there is a downward-free tree-like chase sequence T0 = T0, . . . Tm such that there is a
homomorphism h from the instance of Tn to the instance of Tm with h(c) = c for any values
c in the domain of the instance of T0.

In particular, if we have a chase proof of a UCQ Q from an instance I0 using GTGDs
Σ, then we have downward-free proof of Q, starting from T0 consisting of a single node
containing I0, applying chase steps via Σ. The proof is based on the idea in Figure 2. It
is inspired by the conference version of this paper, and by Proposition 3.1.6 in [Kap19]. It
is presented in Appendix B. Note that, in this downward-free chase, we may need to fire
triggers that are not active.

We emphasize that the downward-free chase is never used as an algorithm to get better
complexity bounds directly. We will only use it to justify steps in our linearization process.

Generalized truncated accessibility axioms and saturation. Having presented the
downward-free chase, we return to the proof of our first linearization result (Proposition 6.6).
Recall that this result applies to constraints formed of IDs Σ of width w and a set ∆ of
truncated accessibility and transfer axioms. Recall that a transfer axiom is of the form:(∧

i

accessible(xi)
)
∧R(~x, ~y)→ R′(~x, ~y).

In the first step towards linearization, we will perform a construction that enlarges the
truncated accessibility axioms to certain TGDs that have a similar shape, which we call

14:38 A. Amarilli and M. Benedikt Vol. 18:2

candidate derived truncated accessibility axioms. By this we mean any TGD of the following
form: (∧

i∈P
accessible(xi)

)
∧R(~x)→ accessible(xj)

where R is a relation and P is a subset of the positions of R. Notice that the axioms of the
form (Truncated Accessibility) defined earlier can indeed be rewritten to be of this form:
the only difference from their original form is that we have rewritten them further to ensure
that the head always contains a single accessibility fact.

Intuitively, such an axiom tells us that, when a subset of the elements of an R-fact are
accessible, then another element of the fact becomes accessible (by performing an access).
We will start by considering what we call the original truncated accessibility axioms: these
are simply the (Truncated Accessibility) axioms in the set ∆, which are in the form above,
i.e., with a single accessible fact in the head. For these axioms, the set P is the set of
input positions of some method mt on R. We will also study candidate derived truncated
accessibility axioms that are not necessarily given in ∆, but which are semantically entailed
by the original truncated accessibility axioms in ∆ and by the constraints in Σ. By entailment,
we always mean the semantic notion discussed in Section 3, i.e., entailments witnessed by a
chase proof starting with facts in the body of the dependency, concluding with an instance
having a suitable homomorphism from the head of the dependency. The candidate derived
truncated accessibility axioms that are entailed are simply called the derived truncated
accessibility axioms.

There can be exponentially many derived truncated accessibility axioms, but we will not
need to compute all of them: it will suffice to compute those of small breadth. Formally, the
breadth of a candidate derived truncated accessibility axiom is the size of P . Note that the
number of possible candidate derived truncated accessibility axioms of breadth b is at most
r · ab+1, where r is the number of relations in the signature and a is the maximal arity of a
relation. We show that we can efficiently compute the derived truncated accessibility axioms
of a given breadth, by introducing a truncated accessibility axiom saturation algorithm.

The algorithm iteratively builds up a set O of triples (R, p̄, j) with p̄ a set of positions
of R of size at most w and j a position of R. Each such triple represents the following
candidate derived truncated accessibility axiom of breadth ≤ w:(∧

i∈p̄
accessible(xi)

)
∧R(~x)→ accessible(xj).

The first step of the algorithm is to set O := {(R, p̄, j) | j ∈ p̄}, representing trivial
axioms. The algorithm then repeats the steps below:

• (ID): If we have an ID ∀~x R(~x)→ ∃~y S(~z), where xj1 , . . . , xjm′ , xj (with m′ + 1 ≤ w) are
exported variables that appear respectively in positions k1 . . . km′ , k within the head atom
S(~z), and if we have (S, {k1 . . . km′}, k) ∈ O, then we add the tuple (R, {j1 . . . jm′}, j)
to O.

The intuition for the (ID) step is that derived truncated accessibility axioms that hold
on the target relation S can be “propagated upwards” to R, i.e., if an accessible fact is
created using the S-fact, then the same creation can happen using the R-fact.
• (Transitivity): If there exists a relation R, a set of positions p̄ of R, and a set of positions
{t1 . . . tm} of R with m ≤ w such that we have (R, p̄, ti) ∈ O for all 1 ≤ i ≤ m, and we
have (R, r̄, t′) ∈ O with r̄ ⊆ p̄ ∪ {t1 . . . tm}, then we add (R, p̄, t′) to O.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:39

The intuition for (Transitivity) is that we add triples that result from the natural
entailment relation on triples, provided that the number of intermediate values that are
projected away is not more than w.
• (Access): If we have a method mt on R with input positions j1 . . . jm and a set p̄ of at

most w positions such that (R, p̄, ji) ∈ O for all 1 ≤ i ≤ m, then we add (R, p̄, j) to O for
all j between 1 and the arity of R.

To understand (Access), notice that we cannot add triples corresponding to all access
methods, since the number of inputs to an access method might be above the breadth
bound. Thus (Access) is actually a special kind of transitivity calculation that adds triples
of low breadth that can result from composing derived truncated accessibility axioms with
an access method.

We continue the algorithm until we reach a fixpoint.
Note that the maximal number of triples produced is r · aw+1, with r the number of

relations in the schema and a the maximal arity of a relation. Thus a fixpoint must be
reached in this number of steps. Thus, for fixed w, it is clear that the algorithm runs in
polynomial time in Σ and in the set of access methods.

We will show that this algorithm correctly computes all derived truncated accessibility
axioms satisfying the breadth bound:

Proposition 6.14. For any fixed w ∈ N, given as input a set of IDs of width w and a
set of access methods, the truncated accessibility saturation algorithm computes all derived
truncated accessibility axioms of breadth at most w.

Our proof of Proposition 6.14 is where we use the downward-free chase defined earlier.

Proof. For one direction, it is straightforward to see that all rules obtained by this process
are in fact derived truncated accessibility axioms. Conversely, we claim that, for all derived
truncated accessibility axioms of breadth ≤ w

accessible(xs1) ∧ . . . ∧ accessible(xsl) ∧R(~x)→ accessible(xi),

the corresponding triple (R, {s1 . . . sl}, i) is added to O. We write p̄ = {s1 . . . sl}; note that
|p̄| ≤ w.

Remember that, by the completeness of the chase (see Section 3) this semantic entailment
is always witnessed by a chase proof, and remember by Theorem 6.13 that we can assume
without loss of generality that it is a downward-free tree-like chase proof. We prove the claim
by induction on the length of a downward-free tree-like chase proof of the fact accessible(ci)
from I0 = {R(~c)}∪{accessible(cj) | j ∈ p̄). Here I0 is the canonical database of the left-hand
side of the implication, where we have used ~c for the variables to emphasize that they are
being treated as elements of the canonical database.

If the proof is trivial, i.e., the fact accessible(ci) is one of the accessible(csj), then clearly
(R, p̄, i) ∈ O by the initialization of O. If it is non-trivial then some accessibility axiom
provided the final firing to produce accessible(ci), and we can fix a guard atom F and
accessibility facts F1 . . . Fl that were hypotheses of the chase step. If F is the fact R(~c),
then each Fj is of the form accessible(ctj) for some index tj and by induction we have
(R, p̄, tj) ∈ O for each i. Now by (Access) we deduce that (R, p̄, i) ∈ O.

Otherwise, the guard F is the birth fact of some non-root tree node v. Consider the

child v′ of the root node which is an ancestor of v; potentially v′ = v. Let S(~d) be the birth
fact of v′; we know that v′ was created by firing an ID δ on the root node. Let q̄ be the

subset of positions j ∈ {1, . . . , |~d |} for which the fact accessible(dj) was propagated from

14:40 A. Amarilli and M. Benedikt Vol. 18:2

the root node when v′ was created. This propagation witnesses that, in the ID δ, each
position in q̄ in the head atom contains an exported variable, i.e., a variable that also occurs
in the body: we call this an exported head position. We denote by r̄ the corresponding set
of exported body positions, i.e., the positions in the body atom of δ contains an exported
variable. By definition |r̄| = |q̄|, and further |q̄| ≤ w. For each j ∈ q̄, letting j′ be the index
of r̄ such that cj′ = dj , we know that the chase up to the creation of v′ provided a strictly
shorter downward-free tree-like chase proof of accessible(cj′) from I0. Thus, by the induction
hypothesis, we have (R, p̄, j′) ∈ O for each j′ ∈ r̄.

As v and the root node both contain the value ci, the fact S(~d) must also contain this
value. Let i′ be an index such that di′ = ci. By the downward-free property and Proposi-
tion 6.12, we know that the chase within the subtree of v′ provides a proof of accessible(di′)

from S(~d) conjoined with accessible(dj) for j ∈ q̄. Again, this is a strictly shorter downward-
free tree-like chase proof, so by induction hypothesis we have that (S, q̄, i′) ∈ O. We know
that the positions of q̄ are exported head positions of δ, and we know that i′ is also an
exported head position head position because ci appears in v. Thus, we know by the (ID)
axiom that (R, r̄, i) ∈ O. Now, putting this together with the conclusion of the previous
paragraph, we conclude using the (Transitivity) axiom that (R, p̄, i) ∈ O.

Thus we have shown that we can compute in PTIME the implication closure of truncated
accessibility axioms of bounded breadth under bounded-width IDs.

Shortcut chase and completeness. We know from Theorem 6.13 that for any set of
single-headed GTGDs we can do a downward-free chase, where propagation of facts is
restricted to be descendant-to-ancestor. We used this in the context of the GTGDs generated
from answerability problems with bounded-depth IDs, to justify a saturation algorithm in
which certain derived TGDs are added. With this in place, we are now ready to simplify
the chase process further, arriving at a tree-like chase process that does no propagation
at all : the chase only grows the tree structure and adds facts within a node of the tree.
Instead of applying chase steps with truncated accessibility axioms, which would have
required propagation to ancestors, we will show that we can create the same facts by firing
derived axioms of small breadth in a “greedy fashion”. To connect this to our final goal of
linearization, we note that in doing a tree-like chase with linear TGDs, we do not need to
propagate facts at all, since no rule bodies care about multiple facts. Thus a tree-like chase
without propagation is bringing us closer to our goal of a chase with linear TGDs.

Recall that Σ consists of IDs of width w and that we have a set ∆ of truncated accessibility
axioms (and transfer axioms, which we do not consider at this stage). Remember that we
can use Proposition 6.14 on Σ and ∆ to compute in PTIME the set of all derived truncated
accessibility axioms of breadth at most w, which we denote by ∆+.

A shortcut chase proof on an initial instance I0 with Σ and ∆ will be a variation of
the notion of tree-like chase proof defined earlier, but specific to IDs and derived truncated
accessibility axioms. A shortcut chase proof will alternate between two kinds of steps:

• ID-steps, where we fire an ID on a trigger τ to generate a fact F : we put F in a new
node n which is a child of the node n′ containing the fact of τ ; and we copy in n all facts
of the form accessible(c) that held in n′ about any element c that was exported when
firing τ .

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:41

R(c) R(c) R(c) R(c) R(c)

...

A(c, d1 . . . dn) A(c, d1 . . . dn),
accessible(c)

A(c, d1 . . . dn),
accessible(c),
accessible(d1)

A(c, d1 . . . dn),
accessible(c),
accessible(d1),
. . .
accessible(dn)

Saturation step Saturation step

R(c) R(c),
accessible(c)

R(c),
accessible(c)

R(c),
accessible(c)

A(c, d1 . . . dn),
accessible(c)

A(c, d1 . . . dn),
accessible(c),
accessible(d1),
. . .
accessible(dn)

Figure 3: A chase proof (top), and a corresponding shortcut chase proof (bottom) with
saturation steps indicated

• Breadth-bounded saturation steps, where we consider a newly-created node n and apply
all derived truncated accessibility axioms of breadth at most w on that node, i.e., those
of ∆+, until we reach a fixpoint and there are no more violations of these axioms on n.

We continue this process until a fixpoint is reached. Any stage in the proof is thus
associated with a tree structure, as in tree-like chase proofs. Each node in the tree corresponds
to the application of an ID, which created the birth fact for the node; and each node may
additionally contain accessibility facts in addition to the birth fact. The name “shortcut”
intuitively indicates that we shortcut certain derivations that could have been performed by
moving up and down in the chase tree: instead, we apply a derived truncated accessibility
axiom. Figure 3 illustrates the notion.

We show that this process correctly generates everything that the usual chase would
generate:

Lemma 6.15. Let Σ be a set of IDs of width w and ∆ a set of truncated accessibility axioms.
Let I0 be a set of facts, and I be produced from I0 as the final instance in a chase proof
using Σ and ∆. Let ∆+ be, as above, the set of derived truncated accessibility axioms of
breadth at most w. Lastly, let I+

0 be the set of facts entailed by I0 and ∆+.
Then there is ISC produced by a shortcut chase proof based on Σ and ∆, from initial

instance I+
0 , and a homomorphism from I to ISC which is the identity on I0.

To prove this lemma, we start with an observation about the closure properties of
shortcut chase proofs.

Lemma 6.16. Let I+
0 be an initial instance closed under ∆+, and suppose that a shortcut

chase proof on I+
0 with Σ and ∆ has a breadth-bounded saturation step on node n producing

a fact accessible(a). Then a is not in Adom(I+
0), and n was created by the ID-step where a

is generated.

14:42 A. Amarilli and M. Benedikt Vol. 18:2

Proof. Let I− be the instance just before the breadth-bounded saturation step generating
accessible(a). First, notice that the breadth-bounded saturation step in question must apply
to a node which is not the root, as I+

0 is closed under ∆+ so no new accessible facts can be
created at the root node. Thus, it applies to a node n1 created at an ID-step. Let τ be the
ID that we fired in this step, n0 be the node on which we fired τ . Let E be the birth fact
of n0, recalling that this is the sole fact over a relation other than accessible holding in the
node. Let F be the birth fact of the node n1. It suffices to show that E does not contain
the element a, as a will then have been introduced in the ID-step that creates node n1, in
particular it is not in Adom(I+

0) because n1 is not the root node.
To show this that E does not contain a, let us assume by contradiction that it does.

Let R be the relation of E, p̄ be the positions of E containing the elements which occur in
F and for which the relation accessible holds in I−. Let j be the position of a in E. By
considering the subtree rooted at the node n0, which contains E, we see that a shortcut
chase proof starting with the fact E and with the elements at positions p̄ being accessible
would also derive that the element at position j is accessible: it would do so with an ID-step
firing τ to create a child node, and doing the same breadth-bounded saturation step on
that node as the one that creates accessible(a) in I−. Reusing the triple notation from the
saturation algorithm, this implies that (R, p̄, j) is a derived truncated accessibility axiom.
But then this axiom should have been fired in the breadth-bounded saturation step just
after the node n0 was created, contradicting the assumption that accessible(a) is created at
node n1. Hence, the fact E cannot contain a, which concludes the proof.

We now are ready to finish the proof of Lemma 6.15, which shows completeness of the
shortcut chase:

Proof. The instance I is produced from I0 as the final instance If of a chase proof I1 . . . If
using Σ and ∆. We can extend this sequence to an infinite one I1 . . . If . . . in which every
trigger of Σ ∪∆ in some instance is eventually fired. Thus letting I∞ denote the union of
these instances, we have I∞ satisfies Σ ∪∆ and I0 embeds as a subinstance of I∞. Likewise,
we can continue the shortcut chase process indefinitely, letting ISC∞ be the resulting facts. It
suffices to show that ISC∞ satisfies the constraints of Σ and ∆. Indeed, by universality of the
chase [FKMP05], we would then know that there is a homomorphism from I∞ into ISC∞ that
is the identity on I0. The same function clearly serves as a homomorphism from I into ISC∞ ,
as required by the lemma.

It is clear, thanks to the ID-steps, that ISC∞ satisfies the constraints of Σ. We claim
that ISC∞ also satisfies the constraints of ∆. Assume by contradiction that there is an active
trigger in ISC∞ for an axiom of ∆, with facts

(∧
accessible(cmj)

)
∧R(~c), whose firing would

have produced fact accessible(ci). Consider the node n where R(~c) occurs in the shortcut
chase proof.

We first observe that n cannot be the root node corresponding to I+
0 . Indeed, let us

assume that it is. Then, the facts accessible(cmj) used in the firing are facts about elements

of I+
0 , and Lemma 6.16 implies that they cannot have been generated in a breadth-bounded

saturation step. So they must already be in I+
0 . But I+

0 then contains all the facts required
to fire the active trigger, contradicting the fact that I+

0 is closed under the axioms of ∆.
Thus, n is not the root node.

Now, if the node n is not the root, then consider each fact accessible(cmj) in the trigger of

the firing. Let us show that n contains all these facts. If accessible(cmj) is a fact of I+
0 , then

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:43

it has been propagated from the root node to n, so it is in n. Otherwise, accessible(cmj) was
created by firing some breath-bounded saturation step. By Lemma 6.16, the node nj where
this step was fired is the node where cmj is generated. Now, as the node n contains cmj , it
must be a descendant of the node nj where cmj is generated. Now, as the fact accessible(cmj)
was created in nj , it must have been propagated downwards until we created node n, so it
must also be in n. Hence, in all cases, the node n contained all the facts required to fire the
active trigger, so the trigger should have been fired at the breadth-bounded saturation step
at n. This again yields a contradiction.

We conclude that in fact there cannot be an active trigger in ISC∞ , so ISC∞ satisfies the
constraints of ∆, concluding the proof.

Concluding the proof of Proposition 6.6. Recall that our goal in Proposition 6.6 is
to simulate the chase with bounded-width IDs Σ and truncated accessibility and transfer
axioms ∆. We will now present our definition of the set of IDs ΣLin that will do so. Thanks
to what precedes (Lemma 6.15), we know that it suffices to simulate the shortcut chase, and
conversely it is obvious that the shortcut chase is sound in the sense that any shortcut chase
step could be replaced in a derivation of a CQ by a sequence of ordinary chase steps.

We let ∆+ be the set of derived truncated accessibility axioms of breadth ≤ w calculated
using the truncated accessibility saturation algorithm on Σ and ∆, including the axioms
already present in ∆. To define the linearized axioms, we first need some notation. For
a relation R, a subset P of the positions of R, and a position j of R, we will say that P
transfers j if ∆+ contains the following derived truncated accessibility axiom:(∧

i∈P
accessible(xi)

)
∧R(~x)→ accessible(xj).

Reusing the triple notation from the saturation algorithm, this axiom corresponds to the
triple (R,P, j).

We now define ΣLin. Recall that it is defined over the signature SLin where we added
a relation RP for every relation R and subset P of positions of size at most w, intuitively
standing for an R-fact where the elements at position P are accessible. The rules of ΣLin are:

• (Lifted Transfer): Consider each relation R, and subset P of positions of R of size at
most w. Let P ′ be the set of positions transferred by P . If P ′ contains the set of input
positions of some access method on R, then we add the full ID:

RP (~x)→ R′(~x).

• (Lift): Consider each ID δ of Σ,

R(~u)→ ∃~z S(~z, ~u).

For every subset P of positions of R of size at most w, we let P ′ be the set of positions
transferred by P . We let P ′′ be the intersection of P ′ with the positions of R that carry
an exported variable in the atom R(~u) within the body of δ. Finally, we let P ′′′ be the
subset of the exported positions in the head of δ that corresponds to P ′′. Then we add
the dependency:

RP (~u)→ ∃~z SP ′′′(~z, ~u).

We also need to define the instance ILin0 from I0, to account for the effect of Σ and
∆ when we start the chase. We recall that S denotes the signature of the schema, the
constraints of Σ are expressed on S, and the constraints Σ′ are expressed on a primed

14:44 A. Amarilli and M. Benedikt Vol. 18:2

copy S ′ of S. Lastly, recall that ∆ consists of truncated accessibility axioms and transfer
axioms that are expressed on S, S ′, and the unary relation accessible. Given a CQ Q, let
I0 := CanonDB(Q) be its canonical database, and let ILin0 be formed by adding atoms to I0

as follows.

• Apply all of the truncated accessibility axioms of ∆+ to I0 to obtain I+
0 .

• Initialize ILin0 := I+
0 . Now, consider every relation R of the signature S, and every fact

R(a1 . . . an) of I ′0. Let P be the set of the i ∈ {1 . . . n} such that accessible(ai) holds
in I+

0 . For every P ′ ⊆ P of size at most w, add to ILin0 the fact RP ′(a1 . . . an). Further, if
accessible(ai) holds for each 1 ≤ i ≤ n, then add the fact R′(a1 . . . an) to ILin0 .

It is now easy to see that ΣLin and ILin0 satisfy the required conditions: for every Boolean
CQ over the primed facts I derived using a chase proof from I0 with Σ and ∆, we can
derive the same CQ from ILin0 via a chase proof with ΣLin. Indeed, applying chase steps with
the (Lift) rules creates a tree of facts that corresponds to a shortcut chase proof, up to an
I0-preserving isomorphism: when we create an RP -fact, the P subscript denotes exactly the
set of positions of the new facts that contain exported elements that are accessible. Further,
the full (Lifted Transfer) rules create a primed copy of these facts exactly when they can be
transferred by applying some method. As for the converse direction, it is clear that applying
chase steps with ΣLin on ILin0 only generates primed facts that correspond to what would be
generated by the shortcut chase, so that whenever we derive a Boolean CQ over the primed
facts then we generate a match of the same CQ, up to an I0-preserving isomorphism, in the
shortcut chase. This justifies that the CQ is also entailed from I0 by applying chase steps
with Σ and ∆, first to create the facts of ILin0 , and then to derive the CQ.

The only thing left to do is to notice that ΣLin has bounded semi-width, but this is
because the rules (Lift) have bounded width and the rules (Lifted Transfer) clearly have an
acyclic position graph. This concludes the proof of Proposition 6.6.

Handling Result-bounded Fact Transfer axioms and the proof of Proposition 6.8.
Recall that to prove Theorem 6.4 in the case with result bounds, we need only to prove the
corresponding linearization result, Proposition 6.8, which extends Proposition 6.6.

In the presence of result bounds, the reduction to query containment additionally created
axioms called (Result-bounded Fact Transfer), of the following form:(∧

i

accessible(xi)
)
∧R(~x, ~y)→ ∃~z R′(~x, ~z).

We can extend the proof of Proposition 6.6 to prove Proposition 6.8. Our result on
restricting to downward-free chase proofs, Theorem 6.13, can be used as-is, because it is
stated for single-headed GTGDs. The truncated accessibility saturation algorithm proved in
Proposition 6.14 can also be used as-is, as it only considers the truncated accessibility axioms.
We can then define the shortcut chase as before, and its completeness result Lemma 6.15,
again because this only considers IDs and truncated accessibility axioms. Now, we only
change the last step of the proof of Proposition 6.6 and change our definition of the IDs
ΣLin by adding the following rules to our rewriting:

• (Lifted Result-bounded Fact Transfer): For each relation R and subset P of positions of R
of size at most w containing all input positions of some access method mt on R with a
result bound, we add the ID:

RP (~x, ~y)→ ∃~z R′(~x, ~z)

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:45

where ~x denotes the input positions of mt.

It is clear that adding these axioms, and using them when defining I+
0 from I0 in the

definition of ILin0 above, ensures that the same primed facts are generated as in the shortcut
chase, and the resulting axioms still have bounded semi-width: the (Lifted Result-bounded
Fact Transfer) axioms are grouped in the acyclic part together with the (Lifted Transfer)
axioms, and they still have an acyclic position graph. Hence, this establishes Proposition 6.8,
which was all we needed to conclude the proof of Theorem 6.4 in the case with result bounds.

7. Schema simplification for expressive constraints

We have presented in Section 5 the two kinds of simplifications anticipated in the introduction:
existence-check simplification (using result-bounded methods to check for the existence of
tuples, as in Example 1.4); and FD simplification (using them to retrieve functionally
determined information, as in Example 1.5). A natural question is then to understand
whether these simplifications capture all the ways in which result-bounded methods can be
useful, for integrity constraints expressed in more general constraint languages. It turns out
that this is not the case when we move even slightly beyond IDs:

Example 7.1. Consider a schema Sch with TGD constraints T (y) ∧ S(x) → T (x) and
T (y) → ∃x S(x). We have an input-free access method mtS on S with result bound 1
and a Boolean access method mtT on T . Consider the query Q = ∃y T (y). Note that the
constraints imply that Q is equivalent to ∃x T (x) ∧ S(x).

The following monotone plan answers Q:

T1 ⇐ mtS ⇐ ∅; T2 ⇐ mtT ⇐ T1; T3 := π∅T2; Return T3;

That is, we access S and return true if the result is in T .
On the other hand, consider the existence-check simplification Sch† of Sch. It has an

existence-check method on S, but we can only test if S is non-empty, giving no indication
whether Q holds. So Q is not answerable in Sch†. The same holds for the FD simplification
of Sch, because Sch implies no FDs, so the FD simplification and existence-check simplification
are the same.

Thus, existence-check simplification and FD simplification no longer suffice for more
expressive constraints. In this section, we introduce a new notion of simplification, called
choice simplification. We will show that it allows us to simplify schemas with very general
constraint classes, in particular TGDs as in Example 7.1. In the next section, we will
combine this simplification with our query containment reduction (Proposition 4.9) to show
decidability of monotone answerability for much more expressive constraints. Intuitively,
choice simplification changes the value of all result bounds, replacing them by one; this
means that the number of tuples returned by result-bounded methods is not important,
provided that we obtain at least one if some exist. We formalize the definition in this
section, and show choice simplifiability for two constraint classes: equality-free first-order
logic (which includes in particular TGDs), and UIDs and FDs. We study the decidability
and complexity consequences of these results in the next section.

14:46 A. Amarilli and M. Benedikt Vol. 18:2

Choice simplification. Given a schema Sch with result-bounded methods, its choice
simplification Sch† is defined by keeping the relations and constraints of Sch, but changing
every result-bounded method to have bound 1. That is, every result-bounded method of Sch†

returns ∅ if there are no matching tuples for the access, and otherwise selects and returns
one matching tuple. We call Sch choice simplifiable if any CQ having a monotone plan
over Sch has one over Sch†. This implies that the value of the result bounds never matters.

Choice simplifiability is weaker than existence-check or FD simplifiability, in the sense
that existence-check simplifiability or FD simplifiability imply choice simplifiability. Still,
choice simplifiability has a dramatic impact on the resulting query containment problem:

Example 7.2. Recall the schema Sch in Example 1.1 and its näıve axiomatization in
Example 4.10. As Sch is choice simplifiable, we can axiomatize its choice simplification instead,
and the problematic axiom in the third bullet item becomes a simple ID: Udirectory(~y)→
∃~z UdirectoryAccessed(~z).

Showing choice simplifiability. We now give a result showing that choice simplification
holds for a huge class of constraints: all first-order constraints that do not involve equality.
This result implies, for instance, that choice simplification holds for integrity constraints
expressed as TGDs:

Theorem 7.3. Let Sch be a schema with constraints in equality-free first-order logic (e.g.,
TGDs), and let Q be a CQ that is monotonically answerable in Sch. Then Q is monotonically
answerable in the choice simplification of Sch.

Proof. We will again use the equivalence between monotone answerability and AMonDet,
and use the “blowing-up” construction of Lemma 5.3. Note that, this time, the schema

of Sch and Sch† is the same, so we simply need to show that I†1 is a subinstance of I1 for
each p ∈ {1, 2}.

Consider a counterexample I†1, I
†
2 to AMonDet for Q in the choice simplification: we

know that I†1 satisfies Q, that I†2 violates Q, that I†1 and I†2 satisfy the equality-free first

order constraints of Sch, and that I†1 and I†2 have a common subinstance I†Accessed which is

access-valid in I†1 in the choice simplification of Sch. We will expand them to I1 and I2 that
have a common subinstance which is access-valid in I1 for Sch.

For each element a in the domain of I†1, introduce infinitely many fresh elements aj

for j ∈ N>0, and identify a0 := a. Now, define I1 := Blowup(I†1), where Blowup(I†1) is the

instance with facts {R(ai11 . . . a
in
n) | R(~a) ∈ I†1,~i ∈ Nn}. Define I2 from I†2 in the same way;

it clearly has a homomorphism to I†2.

We will now show correctness of this construction. We claim that I†1 and I1 agree
on all equality-free first-order constraints, which we show using a variant of the standard
Ehrenfeucht-Fräıssé game without equality [CDJ96]. In this game there are pebbles on both
structures. The play proceeds by Spoiler placing a new pebble on some element in one
structure, and Duplicator must respond by placing a pebble with the same name in the
other structure. Duplicator loses if the mapping given by the pebbles does not preserve all
relations of the signature. If Duplicator has a strategy that never loses, then one can show
by induction that the two structures agree on all equality-free first-order sentences.

Duplicator’s strategy will maintain the following invariants:

(1) if a pebble is on some element aj ∈ I1, then the corresponding pebble in I†1 is on a;

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:47

(2) if a pebble is on some element a in I†1, then the corresponding pebble in I1 is on some
element aj for j ∈ N.

These invariants will guarantee that the strategy is winning. Duplicator’s response to a
move by Spoiler in I1 is determined by the strategy above. In response to a move by Spoiler

placing a pebble on an element b in I†1, Duplicator places the corresponding pebble on b0

in I1.
Clearly the same claim can be shown for I†2 and I2. In particular this shows that I†1 still

satisfies Q and I†2 still violates Q.

All that remains is to construct the common subinstance. Let IAccessed := Blowup(I†Accessed).

As I†Accessed is a common subinstance of I†1 and I†2, clearly IAccessed is a common subinstance

of I1 and I2. To see why IAccessed is access-valid in I†1, given an input tuple in IAccessed, let ~t be

the corresponding tuple in I†Accessed. If ~t has no matching tuples in I†1, then clearly the same is

true in I1. If ~t has at least one matching tuple ~u in I†1, then such a tuple exists in I†Accessed
because it is access-valid in I†1, and hence sufficiently many copies exist in IAccessed to satisfy
the original result bounds, so that we can find a valid output for the access in IAccessed. Hence
IAccessed is access-valid in I1, which completes the proof.

Choice simplifiability with UIDs and FDs. The previous result does not cover FDs.
However, we can also show a choice simplifiability result for FDs, and also add UIDs, i.e.,
IDs that only export a single element:

Theorem 7.4. Let Sch be a schema whose constraints are UIDs and arbitrary FDs, and Q
be a CQ that is monotonically answerable in Sch. Then Q is monotonically answerable in
the choice simplification of Sch.

Our high-level strategy to prove Theorem 7.4 is to use a “progressive” variant of the
process of Lemma 5.3, a variant where we “correct” one access at a time. Remember
that Lemma 5.3 said that, if a counterexample to AMonDet in Sch† can be expanded to a
counterexample in Sch, then Q being AMonDet in Sch implies the same in Sch†. The next
lemma makes a weaker hypothesis: it assumes that for any counterexample in Sch†, for
any choice of access (mt,AccBind), we can expand to a counterexample in Sch† in which we
have corrected this access, i.e., there is an output to (mt,AccBind) which is valid for Sch.
We must ensure that correcting an access does not break the accesses that we previously
corrected: specifically, we must ensure that every access that previously had a valid output
for Sch still has such an output after we expand. Let us formally define the process:

Definition 7.5. Let Sch be a schema and Sch† be its choice simplification, and let Σ be a
set of constraints.

Consider two instances I†1, I
†
2 that satisfy Σ, and a common subinstance I†Accessed which is

access-valid in I†1 for Sch†. Let (mt,AccBind) be an access in I†Accessed
A single-access blowup of I†1, I

†
2 and I†Accessed for (mt,AccBind) is a pair of instances I1, I2

that satisfy Σ, such that I1 is a superinstance of I†1, I2 has a homomorphism to I†2, I1 and

I2 have a common subinstance IAccessed which is access-valid in I1 for Sch†, and we have:

(1) IAccessed is a superinstance of I†Accessed;
(2) there is an output to the access mt,AccBind in IAccessed which is valid in I1 for Sch;

14:48 A. Amarilli and M. Benedikt Vol. 18:2

(3) for any access in I†Accessed having an output in I†Accessed which is valid for Sch in I†1, there is
an output to this access in IAccessed which is valid for Sch in I1;

(4) for any access in IAccessed which is not an access in I†Accessed, there is an output in IAccessed
which is valid for Sch in I1.

We will now state a lemma making an assumption that we can repair the counterexample
from Sch† to Sch by working one access at a time, using single-access blow-ups as above.
We show that this is sufficient to reach the same conclusion as with Lemma 5.3:

Lemma 7.6. Let Sch be a schema, Sch† be its choice simplification, and Σ be a set of
constraints.

Assume that, for any CQ Q which is not AMonDet in Sch†, for any counterexample

I†1, I
†
2 of AMonDet for Q and Sch† with a common subinstance I†Accessed which is access-valid

in I†1 for Sch†, for any access mt,AccBind in I†Accessed, we can construct a single-access blowup

of I†1, I
†
2 and I†Accessed for (mt,AccBind).

Then any CQ which is AMonDet in Sch is also AMonDet in Sch†.

Proof. As in some of our prior arguments, we will prove the contrapositive. Let Q be a

query which is not AMonDet in Sch†, and let I†1, I
†
2 be a counterexample, with I†Accessed the

common subinstance of I†1 and I†2 which is access-valid in I†1 for Sch†.

Enumerate the accesses in I†Accessed as a sequence (mt1,AccBind1), . . . , (mtn,AccBindn), . . .:

by the definition of I†Accessed, all of them have an output in I†Accessed which is valid in I†1 for

Sch†, but initially we do not assume that any of these outputs are valid for Sch as well. We

then build an infinite sequence (I†1, I
†
2) = (I1

1 , I
1
2), . . . , (In1 , I

n
2), . . . with the corresponding

common subinstances I†Accessed = I1
Accessed, . . . , I

n
Accessed, . . ., with each IiAccessed being a common

subinstance of Ii1 and Ii2 which is access-valid in Ii1, by performing the single-access blowup
in succession to (mt1,AccBind1), . . . , (mtn,AccBindn), In particular, note that whenever
(mti,AccBindi) already has an output in IiAccessed which is valid in Ii1 for Sch, then we can

simply take Ii+1
1 , Ii+1

2 , Ii+1
Accessed to be respectively equal to Ii1, I

i
2, I

i
Accessed, without even having

to rely on the hypothesis of the lemma.
It is now obvious by induction that, for all i ∈ N, Ii1 and Ii2 satisfy the constraints

Σ, we have I1 ⊆ Ii1 so Ii1 satisfies Q, we have that Ii2 has a homomorphism to I2 so Ii2
does not satisfy Q, and IiAccessed is a common subinstance of Ii1 and Ii2 which is access-valid

in Ii1 for Sch†, where the accesses (mt1,AccBind1), . . . , (mti,AccBindi) additionally have an
output in IiAccessed which is valid in Ii1 for Sch, and where all the accesses in IiAccessed which
are not accesses of IAccessed also have an output in IiAccessed which is valid in Ii1 for Sch. Hence,
considering the infinite result (I∞1 , I∞2), I∞Accessed of this process, we know that all accesses
in I∞Accessed have an output in I∞Accessed which is valid in I∞1 for Sch. Thus I∞Accessed is actually a
common subinstance of I∞1 and I∞2 , and I∞Accessed is access-valid in I∞1 for Sch. So I∞1 , I∞2 is
a counterexample to AMonDet of Q in Sch, which concludes the proof.

Thanks to Lemma 7.6, we can now prove Theorem 7.4 by arguing that we can correct
each individual access. The rest of the section is devoted to this argument.

Proof of Theorem 7.4. Let Sch be the schema, let Sch† be its choice simplification, and let
Σ be the set of constraints.

We explain how we perform the single-access blowup, to fulfil the requirements of

Lemma 7.6. Let Q be a CQ and assume that it is not AMonDet in Sch†, and let I†1, I
†
2,

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:49

be a counterexample to AMonDet, with I†Accessed being a common subinstance of I†1 and I†2
which is access-valid in I†1 for Sch†. Let (mt,AccBind) be an access on some relation R

in I†Accessed: we know that there is an output to the access in I†Accessed which is valid for Sch†

in I†1, but this output is not necessarily valid for Sch, i.e., the output may be returning only
one tuple whereas the result bound in the original schema is higher. Our goal is to build

a superinstance I1 of I†1 and I2 of I†2 such that I2 homomorphically maps to I†2. We want
both I1 and I2 to satisfy Σ, and want I1 and I2 to have a common subinstance IAccessed which
is access-valid in I1, where AccBind now has an output which is valid for Sch (i.e., not only
for the choice simplification), all new accesses (the ones using new elements) also have an
output which is valid for Sch, and no other accesses are affected. At a high level, we will
do the same blow-up as in the proof of Theorem 5.5, except that we will need to chase
afterwards to make the UIDs true. Even before this chasing phase, the presentation of the
blow-up is also a bit different relative to the proof of Theorem 5.5, for two main reasons.
First, we are working with the choice simplification in the present proof, so there are no new
relations Rmt. Second, we are blowing up one access after another in the present proof, so
we will not discuss “dangerous” and “non-dangerous” methods, instead we will focus on the
single access (mt,AccBind) that we are blowing up.

First observe that, if there are no matching tuples in I†1 for the access (mt,AccBind),

then the empty set is already an output in I†Accessed to the access which is valid in I†1 for Sch so

there is nothing to do, i.e., we can just take I1 := I†1, I2 := I†2, and IAccessed := I†Accessed. Further,

note that if there is only one matching tuple in I†1 for the access, as I†Accessed is access-valid

for the choice simplification, then this tuple is necessarily in I†Accessed also, so again there is
nothing to do. Hence, it suffices to study the case where there is strictly more than one

matching tuple in I†1 for the access (mt,AccBind); as I†Accessed is access-valid for Sch†, then it

contains at least one of these tuples, say ~t1, and as I†Accessed ⊆ I†2, then I†2 also contains ~t1. Let
~t2 be a second matching tuple in I†1 which is different from ~t1. Let C be the non-empty set

of positions of R where ~t1 and ~t2 disagree. Note that, since I†1 satisfies the constraints, the
constraints cannot imply an FD from the complement of C to a position j ∈ C, as otherwise
~t1 and ~t2 would witness that I†1 violates this FD. Note also that C cannot include input
positions of mt. In fact, in the terminology of the proof of Theorem 5.5, C witnesses that
mt is dangerous.

We form an infinite collection of facts R(~oi) where ~oi is constructed from ~t1 by replacing
the values at positions in C by fresh values. In particular we choose values distinct from
those in other positions in R and in other ~oj ’s. Let N := {R(~o1), . . . R(~on), . . .}. We claim

that I†1 ∪N does not violate any FD implied by the schema. The argument is similar to that
of the proof of Theorem 5.5. Let us proceed by contradiction and assume that there is a

violation of a FD φ. The violation F1, F2 must involve some new fact R(~oi), as I†1 on its own
satisfies the constraints. We know that the left-hand-side of φ cannot include a position of C,
as all elements in the new facts R(~oi) at these positions are fresh. Hence, the left-hand-side
of φ is included in the complement of C, but recall that we argued above that then the
right-hand-side of φ cannot be in C. Hence, both the left-hand-side and right-hand-side of φ
are in the complement of C. But on this set of positions the facts of the violation F1 and F2

agree with the existing fact ~t1 and ~t2 of I†1, a contradiction. So we know that I†1 ∪N does

not violate the FDs. The same argument shows that I†2 ∪N does not violate the FDs.

14:50 A. Amarilli and M. Benedikt Vol. 18:2

R(a, b)

R(a, b′)

S(b, c)

I†1

R(a, b1)

S(b1, c1)

· · ·

~t1

~t2

R(a, b2)

S(b2, c2)

· · ·

· · · · · ·R(a, bn)

S(bn, cn)

· · ·

N

W

Figure 4: Illustration of the blow-up process of Theorem 7.4, where relation R has an access
on its first position, we blow up on the access to R with value a, and there is
(among other dependencies) an ID R(x, y)→ ∃z S(y, z)

So far, the argument was essentially the same as in the proof of Theorem 5.5, but now
we explain the additional chasing phase. This is analogous to the chasing done in the proof
of Theorem 5.2, but we define it differently to avoid introducing FD violations. Formally,
let W be the infinite fixpoint of applying restricted chase steps to N with the UIDs, but
ignoring triggers whose exported element occurs in ~t1. The process is illustrated in Figure 4.

We have argued that I†1 ∪N and I†2 ∪N satisfy the FDs. We want to show that both the

UIDs and FDs hold in I†1 ∪W and I†2 ∪W . The key argument to use for this is that every

element which is both in the domain of I†1 and N and which occurs at a certain position (R, i)

in N must also occur at position (R, i) in I†1, and likewise for I†2, namely:

Claim 7.7. Let ΣID be a set of UIDs and let ΣFD be a set of FDs. Let I and N be instances,
and let J := Adom(I) ∩ Adom(N). Assume that I satisfies ΣFD ∪ ΣID, that I ∪N satisfies
ΣFD, and that whenever a ∈ J occurs at a position (R, i) in N , then it also occurs at (R, i)
in I. Let W denote the restricted chase of N by ΣID where we do not fire any triggers which
map the exported variable to an element of J . Then I ∪W satisfies ΣID ∪ ΣFD.

Proof. Let us first notice that we have Adom(W) ∩ Adom(I) = J . Indeed, it is a superset
of Adom(N) ∩ Adom(I) so contains J , and all new domain elements in W are fresh by
definition of the chase. What is more, we also notice that the facts of W \N never contain
elements of Adom(I). This is because all triggers fired when constructing W must have
exported elements not in J , hence not in Adom(I) by what precedes.

Now, we show that I ∪W satisfies ΣID. Consider a trigger τ for a UID δ and let us show
that it is not active. The range of τ is either in I or in W . In the first case, as I satisfies
ΣID, the trigger τ for δ cannot be active. So consider the second case and assume τ were
not active. Then it must map the exported variable to an element of J , i.e., it is a trigger
which we did not fire in W . Let R(~a) be the fact of W in the image of τ . This fact must be
a fact of N , because as we argued the facts of W \N do not contain elements of J . Let ai
be the image of the exported variable in ~a, with ai ∈ J . Hence, ai occurs at position (R, i)

in N , so by our assumption on N it also occurs at position (R, i) in I. Let R(~b) be a fact

of I such that bi = ai. As I satisfies ΣID, for the match of the body of δ to R(~b) there is
a corresponding fact F in I extending the match to the head of δ. But F also serves as a

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:51

witness in I ∪W for the match of the body of δ, so τ is not active, a contradiction. Hence,
we have shown satisfaction of ΣID.

We now show that I ∪W satisfies ΣFD. We begin by arguing that W satisfies ΣFD. This
is because N satisfies ΣFD. Now, every time the chase adds a fact F to W , all elements of F
are fresh except one (the exported element), and that element did not occur at the position
at which it occurs in F , since otherwise the other fact where it did occur would witness
that the trigger fired was not active. Thus, F cannot be part of an FD violation. Hence,
by induction, W satisfies ΣFD. Now, assume by way of contradiction that there is an FD
violation {F, F ′} in I ∪W . As I and W satisfy ΣFD in isolation, it must be the case that
one fact of the violation is in I and one is in W : without loss of generality, assume that we
have F ∈ I and F ′ ∈W . We cannot have F ′ in N because we know that I ∪N satisfies ΣFD,
so we must have F ′ ∈ N \W . But as we argued, facts in N \W do not contain elements
of Adom(I), so F and F ′ cannot constitute an FD violation as they are on disjoint elements.
This establishes that I ∪W satisfies ΣFD and concludes the proof.

We return to the proof of Theorem 7.4. Recall that W is the result of applying restricted
chase steps to N with the UIDs without firing triggers whose exported element occurs in ~t1.

Construct I1 := I†1 ∪W , I2 := I†2 ∪W , and IAccessed := I†Accessed ∪W . By Claim 7.7, we know
that I1 and I2 satisfy the constraints.

Let us then conclude our proof of Theorem 7.4 via the process of Lemma 7.6. We show

the first conditions on I1, I2, and I†Accessed stated in Definition 7.5:

• We clearly have I†1 ⊆ I1.
• We have just shown that I1 and I2 satisfy the constraints.

• We now argue that I2 has a homomorphism to I†2. This argument is reminiscent of the

proof of Theorem 5.2. We first define the homomorphism from I†2 ∪N to I†2 by mapping I†2
to itself, and mapping the fresh elements of N so that the facts of N are mapped to R(~t1).
This is possible because each fresh element in N occurs at only one position. It is clear
that this is a homomorphism. We then extend this homomorphism inductively on each

fact created in W in the following way. Whenever a fact S(~b) is created by firing an active
trigger R(~a) for a UID R(~x)→ S(~y) where xp = yq is the exported variable (so we have

ap = bq), consider the fact R(h(~a)) of I†2 (with h defined on ~a by induction hypothesis).

As I†2 satisfies Σ, we can find a fact S(~c) with cq = h(ap), so we can define h(~b) to be ~c,
and this is consistent with the existing image of ap.
• Clearly IAccessed is a common subinstance of I1 and I2 by construction. We now show

that IAccessed is access-valid for I1 and Sch†. Let (mt′,AccBind′) be an access in IAccessed.
We first consider the case when the range of the binding AccBind′ includes an element

of Adom(IAccessed)\Adom(I†Accessed), namely, an element of Adom(W)\Adom(I†1). In this case,
all matching facts must be facts of W . Thus, if mt′ has no result bound then all matching
facts to be returned are in IAccessed, and if mt′ is result-bounded then any choice of a tuple
from W ⊆ IAccessed (or no tuples, if this set is empty) is an output to the access which is

valid for the choice simplification Sch†. The second case is when AccBind′ only involves

elements of Adom(I†Accessed). Then (mt′,AccBind′) is actually an access on I†Accessed. As I†Accessed
is access-valid in I†1, let U be a (possibly empty) output to the access from I†Accessed which

is valid in I†1 for Sch†. Some tuples of W , say U ′, may also be matching tuples to the
access (mt′,AccBind′) in I1. Now, if mt′ has no result bound, then all matching facts to be

returned are in U ∪ U ′ and hence in I†Accessed. And if mt′ is result-bounded, then any choice

14:52 A. Amarilli and M. Benedikt Vol. 18:2

of a tuple in U ∪ U ′ (or no tuple, if U ∪ U ′ is empty) gives an output to the access which

is in IAccessed and is valid for Sch†. Hence, it is indeed the case that IAccessed is access-valid
for I1 and Sch†.

We now show the four additional conditions of Definition 7.5:

(1) It is clear by definition that IAccessed ⊇ I†Accessed.
(2) We must show that the access (mt,AccBind) is valid for Sch in IAccessed. Indeed, there are

now infinitely many matching tuples in IAccessed, namely, those of N . Thus this access is

valid for Sch in I†1: we can choose as many tuples as the value of the bound to obtain an

output which is valid in I†1.

(3) We must verify that, for any access (mt′,AccBind′) of I†Accessed that has an output which

is valid in I†1 for Sch, we can construct such an output in IAccessed which is valid in I1

for Sch. The argument is the same as in the second case of the fourth bullet point above:

from the valid output to the access (mt′,AccBind′) in I†1 for Sch, we construct a valid
output to (mt′,AccBind′) in I1 for Sch.

(4) Let us consider any access in IAccessed which is not an access in I†Accessed. The binding for
this access must include some element of Adom(W), so its matching tuples must be
in W , which are all in IAccessed. Hence, by construction any such accesses are valid for Sch.

This concludes the proof of Theorem 7.4 using Lemma 7.6, correcting each access according
to the above process.

8. Decidability using Choice Simplification

In this section, we present the consequences of the choice simplifiability results of the previous
section, in terms of decidability for expressive constraint languages.

Decidable equality-free constraints. Theorem 7.3 implies that monotone answerability
is decidable for a wide variety of schemas. The approach applies to constraints that do
not involve equality and have decidable query containment. We state here one complexity
result for the class of frontier-guarded TGDs (FGTGDs): recall that these are TGDs whose
body contains a single atom including all exported variables. The same approach applies to
extensions of FGTGDs with disjunction and negation [BMMP16, BCS15].

Theorem 8.1. We can decide whether a CQ is monotonically answerable with respect to
a schema with result bounds whose constraints are FGTGDs. The problem is 2EXPTIME-
complete.

Proof. Hardness holds because of a reduction from query containment with FGTGDs (see,
e.g., Prop. 3.16 in [BtCLT16]), already in the absence of result bounds, so we focus on
2EXPTIME-membership. By Theorem 7.3 we can assume that all result bounds are one,
and by Proposition 4.8 we can replace the schema with the relaxed version that contains
only result lower bounds. Now, a result lower bound of 1 can be expressed as an ID
as was illustrated in Example 7.2. Thus, Proposition 4.9 allows us to reduce monotone
answerability to a query containment problem with additional FGTGDs, and this is decidable
in 2EXPTIME (see, e.g., [BGO10]).

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:53

Complexity with UIDs and FDs. We now turn to constraints that consist of UIDs and
FDs, and use the choice simplifiability result of Theorem 7.4 to derive complexity results for
monotone answerability with result-bounded access methods:

Theorem 8.2. We can decide monotone answerability with respect to a schema with result
bounds whose constraints are UIDs and FDs. The problem is in 2EXPTIME.

Compared to Theorem 6.4, this result restricts to UIDs rather than IDs, and has a
higher complexity, but it allows FD constraints. To the best of our knowledge, this result is
new even in the setting without result bounds.

Proof. By choice simplifiability (Theorem 7.4) we can assume that all result bounds are one.
By Proposition 4.9 we can reduce to a query containment problem Q ⊆Γ Q

′. The constraints
Γ include Σ, its copy Σ′, and accessibility axioms:

• (
∧
i accessible(xi)) ∧ R(~x, ~y) → RAccessed(~x, ~y) for each non-result-bounded method mt ac-

cessing relation R and having input positions ~x;
• (
∧
i accessible(xi)) ∧ ∃~y R(~x, ~y) → ∃~z RAccessed(~x, ~z) for each result-bounded method mt

accessing relation R and having input positions ~x;
• RAccessed(~w)→ R(~w) ∧R′(~w) ∧

∧
i accessible(wi) for each relation R.

Note that Γ includes FDs and non-unary IDs; containment for these in general is
undecidable [Mit83]. To show decidability, we will explain how to rewrite these axioms in a
way that makes Γ separable [CLR03]. That is, we will be able to drop the FDs of Σ and Σ′

without impacting containment. First, by inlining RAccessed, we can rewrite the above axioms
as follows:

• for each non-result-bounded method mt accessing relation R with input positions ~x, the
axiom (

∧
i accessible(xi)) ∧R(~x, ~y)→ R′(~x, ~y) ∧

∧
i accessible(yi)

• for each result-bounded method mt accessing relation R with input positions ~x, the axiom
(
∧
i accessible(xi)) ∧R(~x, ~y)→ ∃~z [R(~x, ~z) ∧R′(~x, ~z) ∧

∧
i accessible(zi)]

We then modify the second type of axiom so that, in addition to the variables ~x at input
positions of mt in R, the axioms also export all variables at positions DetBy(mt) of R that
are determined by the input positions. In other words, the second bullet point becomes:

• for each result-bounded method mt accessing relation R with ~x the variables at positions
of DetBy(mt), (

∧
i accessible(xi)) ∧R(~x, ~y)→ ∃~z [R(~x, ~z) ∧R′(~x, ~z) ∧

∧
i accessible(zi)].

This rewriting does not impact the soundness of the chase, as each chase step with a rewritten
axiom can be mimicked by a step with an original axiom followed by FD applications.

Let us now argue that we can indeed drop the FDs of Σ and Σ′. That is, let us show
that we never create a violation of an FD of Σ and Σ′ in restricted chase proofs with the
rewritten constraints. To argue this, it suffices to consider restricted chase proofs where we
first fire the constraints in Σ, then the accessibility axioms as rewritten above, and last the
constraints in Σ′. Indeed, at each of these three steps, we never create any new triggers for
a preceding step. So let us show that these steps never introduce FD violations.

To show that the first steps do not introduce violations, remember that the restricted
chase with UIDs can never introduce FD violations, because we only fire active triggers —
this argument was spelled out at the end of the proof of Claim 7.7. The same reasoning
shows that the third step cannot create FD violations either.

For the second step, assume by contradiction that firing the rewritten axioms creates an
FD violation, and consider the first FD violation that is created. Either the violation is on a

14:54 A. Amarilli and M. Benedikt Vol. 18:2

primed relation, or it is on an unprimed relation. If it is on a primed relation, it consists of

a first fact F ′1 = R′(~c, ~d), and of a second fact F ′2 = R′(~f,~g) which was just generated by

firing an axiom on some fact F2 = R(~f,~h). The accessibility axiom may be associated with

an access method that is not result-bounded, in which case ~g and ~h are empty tuples; or it
may relate to a result-bounded access method, in which case all values in ~g are fresh. As we
are only at the second step, we have not fired any dependencies from Σ′ yet, so F ′1 must

also have been generated by firing an axiom on some fact F1 = R(~c,~e), and again ~d is either
empty or only consists of fresh values. Now, we know that the determinant of the violated

FD must be within the intersection of the positions of ~c and of ~f , because it cannot contain
fresh values in any of the two facts F ′1 and F ′2. Hence, by the modification that we did on
the axioms, the determined position of the violated FD must also be within the intersection

of the positions of ~c and of ~f . This means that F1 and F2 are already a violation of the FD,
which means that F ′1, F

′
2 was not the first violation, a contradiction.

Now, if the violation is on an unprimed relation, it consists of a first fact F ′1 = R(~c, ~d),

and of a second fact F ′2 = R(~f,~g) which was just generated by an axiom for a result-bounded

access method. In this case, let F2 = R(~f,~h) be the fact on which the axiom was fired.
Because the elements of ~g are fresh, the determinant of the violated FD must be within

positions of ~f . Now, the positions of ~f are exactly those positions determined by the
input positions of the method, so the determined position of the violated FD must also be

within positions of ~f . This means that F ′1 and F2 are already a violation of the FD, again
contradicting that F1 and F2 were the first violation.

Thus, let ΓSep denote the rewritten constraints without the FDs. We have shown that
monotone answerability is equivalent to Q ⊆ΓSep Q′. As ΓSep contains only GTGDs, we can
infer decidability in 2EXPTIME using [CGK08], which concludes the proof of Theorem 8.2.

9. General First-Order Constraints

We have shown that, for many expressive constraint classes, the value of result bounds does not
matter, and monotone answerability is decidable. A natural question is then to understand
what happens with schema simplification and decidability for general FO constraints that
may include the equality symbol. In this case, we find that choice simplifiability no longer
holds:

Example 9.1. Consider a schema Sch with two relations P and U of arity 1. There is
an input-free method mtP on P with result bound 5, and an input-free method mtU on U
with no result bound. The first-order constraints Σ say that P has exactly 7 tuples, and
if one of the tuples is in U , then 4 of these tuples must be in U . Consider the query
Q : ∃x P (x)∧U(x). The query is monotonically answerable on Sch: the plan simply accesses
P with mtP , intersects the result with U using mtU , and projects to return true or false
depending on whether the intersection is empty or not. Thanks to Σ, this will always return
the correct result.

In the choice simplification Sch† of Sch, all we can do is access mtU , returning all of U ,
and access mtP , returning a single tuple. If this tuple is not in U , we have no information
on whether or not Q holds. Hence, we can easily see that Q is not answerable on Sch†.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:55

The fact that simplification results fail does not immediately imply that monotone an-
swerability problems are undecidable. However, we show that if we move to constraints where
containment is undecidable, then the monotone answerability problem is also undecidable,
even in cases such as equality-free FO which are choice simplifiable:

Proposition 9.2. It is undecidable to check if a conjunctive query Q is monotonically
answerable with respect to equality-free FO constraints.

This result is true even without result bounds, and follows from results in [BtCLT16]:
we give a self-contained argument here. Satisfiability for equality-free first-order constraints
is undecidable [AHV95]. We will reduce from this to show undecidability of monotone
answerability:

Proof. Assume that we are given an instance of a satisfiability problem consisting of equality-
free first-order constraints Σ. We produce from this an instance of the monotone answerability
problem where the schema has no access methods and has constraints Σ, and we have a
CQ Q consisting of a single 0-ary relation A not mentioned in Σ.

We claim that this gives a reduction from unsatisfiability to monotone answerability, and
thus shows that the latter problem is undecidable for equality-free first-order constraints.

If Σ is unsatisfiable, then vacuously any plan answers Q: since answerability is a
condition where we quantify over all instances satisfying the constraints, this is vacuously
true when the constraints are unsatisfiable because we are quantifying over the empty set.

Conversely, if there is some instance I satisfying Σ, then we let I1 be formed from I by
setting A to be true and I2 be formed by setting A to be false. I1 and I2 both satisfy Σ
and have the same accessible part, so they form a counterexample to AMonDet. Thus, there
cannot be any monotone plan for Q. This establishes the correctness of our reduction, and
concludes the proof of Proposition 9.2.

The same undecidability result holds for other constraint languages where query con-
tainment is undecidable, such as general TGDs.

10. Summary and Conclusion

We formalized the problem of answering queries in a complete way by accessing Web
services that only return a bounded number of answers to each access, assuming integrity
constraints on the data. We showed how to reduce this to a standard reasoning problem,
query containment with constraints. We have further shown simplification results for many
classes of constraints, limiting the ways in which a query can be answered using result-
bounded plans, thus simplifying the corresponding query containment problem. By coupling
these results with an analysis of query containment, we have derived complexity bounds for
monotone answerability under several classes of constraints. Table 1 on p. 4 summarizes
which simplifiability result holds for each constraint class, as well as the decidability and
complexity results.

In our study of the answerability problem, we have have also introduced refinements of
technical tools which we hope could be useful in a wider context. One example is the blowing-
up method that we use in schema simplification results. Our results on bounded-width
dependencies show that we can exploit the special form of query containments produced by
answerability problems with access method – namely, they are guarded TGDs where the “side
atoms” have a fixed signature. This leads us to a finer-grained analysis of the complexity of

14:56 A. Amarilli and M. Benedikt Vol. 18:2

guarded TGDs, tracking how a fixed side signature allows us to refine prior query answering
techniques — like the linearization approach of [GMP14] and the tree-shrinking argument of
[JK84]. The paper demonstrates how these model-theoretic and query-rewriting techniques
can be applied to questions about answerability with access methods, a setting quite different
from prior motivations. We believe the rewriting techniques in particular can be pushed
to provide broader results on entailment with guarded TGDs, based on the distinction
between the guard signature and the “side signature”: for some attempts in this direction,
see Appendix G of [AB18b].

We now discuss limitations and open questions.

Complexity and expressiveness gaps. Note that for the case of FDs and UIDs, the
complexity bounds are not tight. The conference version sketches an approach to show that
monotone answerability for this class is in EXPTIME, with details given in [AB18b]. We do
not provide a full presentation of this in this work.

We leave open the complexity of monotone answerability with result bounds for some
important cases: full TGDs, and more generally weakly-acyclic TGDs. Our choice approx-
imation result applies here, but we do not know how to analyze the chase even for the
simplified containment problem.

On the expressiveness side, we also leave open the question of whether choice simplifia-
bility holds for general FDs and IDs; that is, not restricting to UIDs. We also leave open the
question of whether UIDs and FDs, or even IDs and FDs, can be shown to be FD simplifiable

Note that all of our results forbid the use of constants in constraints. In particular, our
definition of constraint classes like guarded TGDs forbids constants, differing in this respect
from some prior presentations of these classes. We believe all of the results in the paper still
hold in the presence of constants with roughly the same proofs, but we have not verified this.

Monotone vs general plans. We have restricted to monotone plans throughout the paper.
As explained in Appendix D, the reduction to query containment still applies to plans that
can use negation. Our schema simplification results also extend easily to answerability with
such plans, but lead to a more involved query containment problem. Hence, we do not know
how to show decidability of the answerability problem for UIDs and FDs with such plans.

In the case where constraints are dependencies, it is difficult to construct examples of
CQs that require non-monotone plans. This suggests that the impact of considering richer
plans is not large. But this is only anecdotal; and in addition, the situation is completely
different with more general constraints — e.g., with disjunction and negation — where
dealing with general plans is obviously critical.

Finite vs unrestricted equivalence. We have defined answerability by requiring that the
query and the plan agree on all instances, finite and infinite. An alternative is to consider
equivalence over finite instances only. We say that a plan PL finitely answers Q, if for
any finite instance I satisfying the integrity constraints of PL, the only possible output
of PLs is Q(I). Both finite and unrestricted answerability have been studied in past work
on access methods in the absence of result bounds [BtCT16, BtCLT16], just as finite and
unrestricted variants of other static analysis problems (e.g., query containment) have long
been investigated in database theory (e.g., [JK84]). The unrestricted variants usually provide
a cleaner theory and better algorithms, but the finite versions can be more precise.

In the presence of result bounds, we know nothing about the finite variants. Our analysis
of the corresponding query containment problems can be extended to the finite variant of

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:57

containment. But a major question is whether the reductions to query containment from
Section 4 still hold in the finite case. The conference version of this paper [AB18a] claimed
that these reductions could be extended, but the argument was found to be flawed in the
review process for the present paper. Thus the issue is left as an open question for further
work.

Practical impact. Our results provide a very comprehensive analysis of when there is an
algorithm for answering queries in the presence of result bounds. But there is a question
of how to interpret the “bottom line” of these results. For our expressiveness results, we
feel it is reasonable to consider them as negative. Example 9.1 shows that in the presence
of complex constraints, result-bounded methods can be useful for answering queries in
extremely non-obvious ways. In contrast, our simplification results show that for many
common constraint classes, result-bounded methods can be useful only in limited ways. In
particular, we show that this limitation holds for many of the classes where we have decision
procedures for the query answering problem. This limitation is related to the fact that our
notion of answerability — the usual one considered for access methods and for views — is
difficult to achieve for queries that intrinsically rely on result bounds. More relaxed notions
have been explored in recent work [RPS20], but only in very restricted settings. In the
setting of result bounds, weaker notions of answerability are an important topic for future
investigation.

Answering vs answerability. In this paper we have focused only on the decision problem
related to answerability — does there exists a plan that answers the query. But we did
not deal with how to obtain the plans. Exactly the same complexity bounds apply to the
plan-construction problem as to the decision problem in each case we consider. Indeed, in
this work we have reduced the answerability question to a query containment question, and
we then analyzed the complexity of determining whether there is a proof witnessing the
containment resulting from the reduction. In the case where the constraints are dependencies,
the corresponding proofs are just chase sequences. The temporary tables will store the state
of the chase after each proof step. And there is a simple linear-time algorithm to extract a
plan from a chase proof of the corresponding containment. In the case where there are no
result bounds, the method is given in [BtCT16, BtCLT16]. In the plan we produce an access
command for every firing of an accessibility axiom in the proof. When our existence-check
or FD simplifiability results apply — for example the case of IDs given in Theorem 5.2
and FDs in Theorem 5.5 – we can eliminate result bounds completely, and then use these
algorithms out of the box. But in the presence of results bounds, these algorithms generalize
in the obvious way. When we fire an accessibility axiom that corresponds to a result-limited
method, we generate an access command in the same way as in the absence of bounds. Note
that for languages with disjunction, constructing a plan is more complex. Instead of a chase
proof, one needs a tableau proof, and instead of the straightforward algorithm given in
Chapter 4 of [BtCLT16], one uses interpolation. Still the algorithms are linear in the size of
the proof, and extend to result-bounds. So again there is no distinction in the complexity
between answerability and plan generation.

Acknowledgments. The work was funded by EPSRC grants PDQ (EP/M005852/1), ED3

(EP/N014359/1), and DBOnto (EP/L012138/1). We are grateful to the journal reviewers
for a multitude of helpful comments, and in particularly for noticing some significant flaws
in the arguments of the conference version [AB18a].

14:58 A. Amarilli and M. Benedikt Vol. 18:2

References

[AB18a] Antoine Amarilli and Michael Benedikt. When can we answer queries using result-bounded data
interfaces? In PODS, 2018. doi:10.1145/3196959.3196965.

[AB18b] Antoine Amarilli and Michael Benedikt. When can we answer queries using result-bounded data
interfaces?, 2018. Complete version including proofs. https://arxiv.org/abs/1706.07936v2.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases. Addison-Wesley,
1995. URL: http://webdam.inria.fr/Alice/.

[ASV90] Serge Abiteboul, Eric Simon, and Victor Vianu. Non-deterministic languages to express deter-
ministic transformations. In PODS, 1990. doi:10.1145/298514.298575.

[AV91] Serge Abiteboul and Victor Vianu. Non-determinism in logic-based languages. Ann. Math.
Artif. Intell., 3(2-4), 1991. URL: https://abiteboul.com/gemoReports/AbiteboulVianu91.pdf,
doi:10.1007/BF01530924.

[BBB13] Vince Bárány, Michael Benedikt, and Pierre Bourhis. Access patterns and integrity constraints
revisited. In ICDT, 2013. URL: http://openproceedings.org/2013/conf/icdt/BaranyBB13.

pdf, doi:10.1145/2448496.2448522.
[BCS15] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. Journal of the ACM, 62(3),

2015. URL: http://www.lsv.fr/Publis/PAPERS/PDF/BCS-jacm15.pdf, doi:10.1145/2701414.
[BGO10] Vince Bárány, Georg Gottlob, and Martin Otto. Querying the guarded fragment. In LICS, 2010.

URL: http://arxiv.org/pdf/1309.5822, doi:10.1109/LICS.2010.26.
[BLMS11] Jean-François Baget, Michel Leclère, Marie-Laure Mugnier, and Eric Salvat. On rules with

existential variables: Walking the decidability line. Artificial Intelligence, 175(9-10), 2011. doi:
10.1016/j.artint.2011.03.002.

[BLT14] Michael Benedikt, Julien Leblay, and Efi Tsamoura. PDQ: Proof-driven query answering over
Web-based data. In VLDB, 2014. URL: http://www.vldb.org/2014/program/papers/demo/

p1029-benedikt.pdf, doi:10.14778/2733004.2733028.
[BLT15] Michael Benedikt, Julien Leblay, and Efi Tsamoura. Querying with access patterns and integrity

constraints. In VLDB, 2015. URL: http://www.vldb.org/pvldb/vol8/p690-benedikt.pdf, doi:
10.14778/2735703.2735708.

[BLT16] Michael Benedikt, Rodrigo Lopez-Serrano, and Efthymia Tsamoura. Biological Web services:
Integration, optimization, and reasoning. In BAI, 2016. URL: http://ceur-ws.org/Vol-1718/
paper3.pdf.

[BMMP16] Pierre Bourhis, Marco Manna, Michael Morak, and Andreas Pieris. Guarded-based disjunc-
tive tuple-generating dependencies. TODS, 41(4), 2016. URL: https://www.pure.ed.ac.uk/ws/
files/28293747/TODS_16_2.pdf, doi:10.1145/2976736.

[BtCLT16] Michael Benedikt, Balden ten Cate, Julien Leblay, and Efthymia Tsamoura. Generating plans
from proofs: the interpolation-based approach to query reformulation. Morgan Claypool, 2016.
doi:10.2200/S00703ED1V01Y201602DTM043.

[BtCT16] Michael Benedikt, Balder ten Cate, and Efi Tsamoura. Generating plans from proofs. In TODS,
2016. URL: http://www.cs.ox.ac.uk/projects/pdq/share/tods.pdf, doi:10.1145/2847523.

[CDJ96] Enrique Casanovas, Pilar Dellunde, and Ramon Jansana. On elementary equivalence for equality-
free logic. Notre Dame Journal of Formal Logic, 37(3), 1996. doi:10.1305/ndjfl/1039886524.

[CGK08] Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query answering
under expressive relational constraints. In KR, 2008. URL: https://www.aaai.org/Library/KR/
2008/kr08-008.php.

[CGL12] Andrea Cal̀ı, Georg Gottlob, and Thomas Lukasiewicz. A general Datalog-based framework
for tractable query answering over ontologies. Journal of Web Semantics, 14, 2012. URL:
https://ora.ox.ac.uk/objects/uuid:4d606da7-6a00-4e98-8670-3441cacc7f6c/download_

file?safe_filename=rr1021.pdf&file_format=application%2Fpdf&type_of_work=Report,
doi:10.1016/j.websem.2012.03.001.

[CGLP11] Andrea Cal̀ı, Georg Gottlob, Thomas Lukasiewicz, and Andreas Pieris. A logi-
cal toolbox for ontological reasoning. SIGMOD Record, 40(3), 2011. URL: https:

//sigmodrecord.org/publications/sigmodRecord/1109/03.principles.cali.pdf,
doi:10.1145/2070736.2070738.

[CLR03] Andrea Cal̀ı, Domenico Lembo, and Riccardo Rosati. On the decidability and complexity of
query answering over inconsistent and incomplete databases. In PODS, 2003. URL: http:

https://doi.org/10.1145/3196959.3196965
https://arxiv.org/abs/1706.07936v2
http://webdam.inria.fr/Alice/
https://doi.org/10.1145/298514.298575
https://abiteboul.com/gemoReports/AbiteboulVianu91.pdf
https://doi.org/10.1007/BF01530924
http://openproceedings.org/2013/conf/icdt/BaranyBB13.pdf
http://openproceedings.org/2013/conf/icdt/BaranyBB13.pdf
https://doi.org/10.1145/2448496.2448522
http://www.lsv.fr/Publis/PAPERS/PDF/BCS-jacm15.pdf
https://doi.org/10.1145/2701414
http://arxiv.org/pdf/1309.5822
https://doi.org/10.1109/LICS.2010.26
https://doi.org/10.1016/j.artint.2011.03.002
https://doi.org/10.1016/j.artint.2011.03.002
http://www.vldb.org/2014/program/papers/demo/p1029-benedikt.pdf
http://www.vldb.org/2014/program/papers/demo/p1029-benedikt.pdf
https://doi.org/10.14778/2733004.2733028
http://www.vldb.org/pvldb/vol8/p690-benedikt.pdf
https://doi.org/10.14778/2735703.2735708
https://doi.org/10.14778/2735703.2735708
http://ceur-ws.org/Vol-1718/paper3.pdf
http://ceur-ws.org/Vol-1718/paper3.pdf
https://www.pure.ed.ac.uk/ws/files/28293747/TODS_16_2.pdf
https://www.pure.ed.ac.uk/ws/files/28293747/TODS_16_2.pdf
https://doi.org/10.1145/2976736
https://doi.org/10.2200/S00703ED1V01Y201602DTM043
http://www.cs.ox.ac.uk/projects/pdq/share/tods.pdf
https://doi.org/10.1145/2847523
https://doi.org/10.1305/ndjfl/1039886524
https://www.aaai.org/Library/KR/2008/kr08-008.php
https://www.aaai.org/Library/KR/2008/kr08-008.php
https://ora.ox.ac.uk/objects/uuid:4d606da7-6a00-4e98-8670-3441cacc7f6c/download_file?safe_filename=rr1021.pdf&file_format=application%2Fpdf&type_of_work=Report
https://ora.ox.ac.uk/objects/uuid:4d606da7-6a00-4e98-8670-3441cacc7f6c/download_file?safe_filename=rr1021.pdf&file_format=application%2Fpdf&type_of_work=Report
https://doi.org/10.1016/j.websem.2012.03.001
https://sigmodrecord.org/publications/sigmodRecord/1109/03.principles.cali.pdf
https://sigmodrecord.org/publications/sigmodRecord/1109/03.principles.cali.pdf
https://doi.org/10.1145/2070736.2070738
http://www.dis.uniroma1.it/~rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:59

//www.dis.uniroma1.it/~rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf, doi:10.

1145/773153.773179.
[DLN07] Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using views with access

patterns under integrity constraints. TCS, 371(3), 2007. doi:10.1016/j.tcs.2006.11.008.
[DPT06] Alin Deutsch, Lucian Popa, and Val Tannen. Query reformulation with constraints. SIGMOD

Record, 35(1), 2006. URL: https://repository.upenn.edu/cgi/viewcontent.cgi?article=

1693&context=cis_papers, doi:10.1145/1121995.1122010.
[Fac17] Facebook. Rate Limiting - Graph API, 2017. https://developers.facebook.com/docs/

graph-api/advanced/rate-limiting/.
[FGC+15] Wenfei Fan, Floris Geerts, Yang Cao, Ting Deng, and Ping Lu. Querying big data by accessing

small data. In PODS, 2015. URL: https://www.pure.ed.ac.uk/ws/files/19939236/pods15.
pdf, doi:10.1145/2745754.2745771.

[FKMP05] Ronald Fagin, Phokion G. Kolaitis, Renee J. Miller, and Lucian Popa. Data exchange: Semantics
and query answering. TCS, 336(1), 2005. doi:10.1016/j.tcs.2004.10.033.

[Git17] Github. Rate Limit, 2017. https://developer.github.com/v3/rate_limit/.
[GMP14] Georg Gottlob, Marco Manna, and Andreas Pieris. Polynomial combined rewritings for existential

rules. In KR, 2014. URL: https://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973.
[ICDK14] Ioana Ileana, Bogdan Cautis, Alin Deutsch, and Yannis Katsis. Complete yet practical search for

minimal query reformulations under constraints. In SIGMOD, 2014. URL: https://hal.inria.
fr/hal-01086494/file/mod618-ileana.pdf, doi:10.1145/2588555.2593683.

[IMD17] IMDb. IMDb API, 2017.
[JK84] David S. Johnson and Anthony C. Klug. Testing containment of conjunctive queries under

functional and inclusion dependencies. JCSS, 28(1), 1984. doi:10.1016/0022-0000(84)90081-3.
[Kap19] Kevin Kappelmann. Decision procedures for guarded logics, 2019. URL: https://arxiv.org/

abs/1911.03679.
[LC00] Chen Li and Edward Chang. Query planning with limited source capabilities. In ICDE, 2000.

URL: https://www.ics.uci.edu/~chenli/pub/ICDE2000-qplsc.pdf, doi:10.1109/ICDE.2000.
839440.

[LC01a] Chen Li and Edward Chang. Answering queries with useful bindings. TODS, 26(3), 2001. URL:
http://www.ics.uci.edu/~chenli/pub/TODS2001.pdf, doi:10.1145/502030.502032.

[LC01b] Chen Li and Edward Chang. On answering queries in the presence of limited access patterns.
In ICDT, 2001. URL: https://www.ics.uci.edu/~chenli/pub/ICDT2001-aqbp.pdf, doi:10.

1007/3-540-44503-X_15.
[Li03] Chen Li. Computing complete answers to queries in the presence of limited access patterns.

VLDB Journal, 12(3), 2003. URL: https://www.ics.uci.edu/~chenli/pub/TR-compbp.ps, doi:
10.1007/s00778-002-0085-6.

[LMSS95] Alon Y. Levy, Alberto O. Mendelzon, Yehoshua Sagiv, and Divesh Srivastava. Answering queries
using views. In PODS, 1995. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.55.8665&rep=rep1&type=pdf, doi:10.1145/212433.220198.

[Mit83] John C. Mitchell. The implication problem for functional and inclusion dependencies. Information
and Control, 56(3), 1983. doi:10.1016/S0019-9958(83)80002-3.

[NL04a] Alan Nash and Bertram Ludäscher. Processing first-order queries under limited access patterns.
In PODS, 2004. URL: http://users.sdsc.edu/~ludaesch/Paper/nash-ludaescher.pdf, doi:
10.1145/1055558.1055601.

[NL04b] Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries with negation
under limited access patterns. In EDBT, 2004. URL: http://users.sdsc.edu/~ludaesch/Paper/
preliminary-version-edbt04.pdf, doi:10.1007/978-3-540-24741-8_25.

[NSV10] Alan Nash, Luc Segoufin, and Victor Vianu. Views and queries: Determinacy and rewriting. TODS,
35(3), 2010. URL: http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/views.pdf,
doi:10.1145/1806907.1806913.

[One13] Adrian Onet. The chase procedure and its applications in data exchange. In Data Exchange
Intregation and Streams, 2013. doi:10.4230/DFU.Vol5.10452.1.

[RPAS20a] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian M. Suchanek. Computing and
illustrating query rewritings on path views with binding patterns. In CIKM, 2020. URL:

http://www.dis.uniroma1.it/~rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf
http://www.dis.uniroma1.it/~rosati/publications/Cali-Lembo-Rosati-PODS-03.pdf
https://doi.org/10.1145/773153.773179
https://doi.org/10.1145/773153.773179
https://doi.org/10.1016/j.tcs.2006.11.008
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1693&context=cis_papers
https://repository.upenn.edu/cgi/viewcontent.cgi?article=1693&context=cis_papers
https://doi.org/10.1145/1121995.1122010
https://developers.facebook.com/docs/graph-api/advanced/rate-limiting/
https://developers.facebook.com/docs/graph-api/advanced/rate-limiting/
https://www.pure.ed.ac.uk/ws/files/19939236/pods15.pdf
https://www.pure.ed.ac.uk/ws/files/19939236/pods15.pdf
https://doi.org/10.1145/2745754.2745771
https://doi.org/10.1016/j.tcs.2004.10.033
https://developer.github.com/v3/rate_limit/
https://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7973
https://hal.inria.fr/hal-01086494/file/mod618-ileana.pdf
https://hal.inria.fr/hal-01086494/file/mod618-ileana.pdf
https://doi.org/10.1145/2588555.2593683
https://doi.org/10.1016/0022-0000(84)90081-3
https://arxiv.org/abs/1911.03679
https://arxiv.org/abs/1911.03679
https://www.ics.uci.edu/~chenli/pub/ICDE2000-qplsc.pdf
https://doi.org/10.1109/ICDE.2000.839440
https://doi.org/10.1109/ICDE.2000.839440
http://www.ics.uci.edu/~chenli/pub/TODS2001.pdf
https://doi.org/10.1145/502030.502032
https://www.ics.uci.edu/~chenli/pub/ICDT2001-aqbp.pdf
https://doi.org/10.1007/3-540-44503-X_15
https://doi.org/10.1007/3-540-44503-X_15
https://www.ics.uci.edu/~chenli/pub/TR-compbp.ps
https://doi.org/10.1007/s00778-002-0085-6
https://doi.org/10.1007/s00778-002-0085-6
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.8665&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.55.8665&rep=rep1&type=pdf
https://doi.org/10.1145/212433.220198
https://doi.org/10.1016/S0019-9958(83)80002-3
http://users.sdsc.edu/~ludaesch/Paper/nash-ludaescher.pdf
https://doi.org/10.1145/1055558.1055601
https://doi.org/10.1145/1055558.1055601
http://users.sdsc.edu/~ludaesch/Paper/preliminary-version-edbt04.pdf
http://users.sdsc.edu/~ludaesch/Paper/preliminary-version-edbt04.pdf
https://doi.org/10.1007/978-3-540-24741-8_25
http://www.lsv.ens-cachan.fr/~segoufin/Papers/Mypapers/views.pdf
https://doi.org/10.1145/1806907.1806913
https://doi.org/10.4230/DFU.Vol5.10452.1

14:60 A. Amarilli and M. Benedikt Vol. 18:2

https://hal-imt.archives-ouvertes.fr/hal-03108517/file/cikm-2020-demo.pdf, doi:10.

1145/3340531.3417431.
[RPAS20b] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian M. Suchanek. Equivalent rewrit-

ings on path views with binding patterns. In ISWC, 2020. URL: https://preprints.2020.

eswc-conferences.org/121230402.pdf, doi:10.1007/978-3-030-49461-2_26.
[RPS20] Julien Romero, Nicoleta Preda, and Fabian M. Suchanek. Query rewriting on path views without

integrity constraints. In DataMod@CIKM, 2020. URL: https://arxiv.org/abs/2010.03527,
doi:10.1007/978-3-030-70650-0_10.

[SV05] Luc Segoufin and Victor Vianu. Views and queries: determinacy and rewriting. In
PODS, 2005. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.352&
rep=rep1&type=pdf, doi:10.1145/1065167.1065174.

[Twi17] Twitter. API Rate Limits, 2017. https://dev.twitter.com/rest/public/rate-limiting.
[Ull89] Jeffrey D. Ullman. Principles of Database and Knowledge-Base Systems, V2. Comp. Sci. Press,

1989.

Appendix A. Alternative Semantics for Plans

In the body of the paper we defined a semantics for plans using valid access selections, which
assumed that multiple accesses with a result-bounded method always return the same output.
We also claimed that all our results held without this assumption. We now formally define
the alternative semantics where this assumption does not hold, and show that indeed the
choice of semantics makes no difference. In this appendix, we will call idempotent semantics
the one that we use in the main body of the paper, and non-idempotent semantics the one
that we now define.

Intuitively, the idempotent semantics assumes that the access selection function is chosen
for the entire plan, so that all calls with the same input to the same access method return
the same output. The non-idempotent semantics makes no such assumption, and can choose
a different valid access selection for each access. In both cases, the semantics is a function
taking an instance I for the input schema and the input tables of the plan, and returning as
output a set of possible outputs for each output table of the plan.

Formally, given a schema Sch and instance I, an access selection is a function mapping
each access on I to an output of the access, as defined in the body of the paper, and it is
valid if every output returned by the access selection is a valid output for the corresponding
access. Given a plan, a multi-selection assignment associates a valid access selection to each
access command in the plan. An idempotent multi-selection assignment is one that always
assigns the same selection to a given method mt, even if it occurs in multiple commands.
Given a multi-selection assignment F for plan PL, we can associate to each instance I an
assignment mapping each variable in the plan to an instance of a relation, by induction
on the number of commands. For an access command T ⇐OutMap mt⇐InMap E the output
is obtained by first evaluating E to get a collection of tuples. We then use the selection
function that F associates with this command to get a set of results for each tuple, and
put the union of the results into T . The semantics of middleware query commands is the
usual semantics for relational algebra. The semantics of concatenation of commands is now
defined via induction. The output of the plan under the function F is the value assigned to
the output variable.

The difference between the output of a plan under the idempotent semantics and the
output under the non-idempotent semantics relates to which assignments we consider. For
the idempotent semantics, given I, the possible outputs are those that are returned by

https://hal-imt.archives-ouvertes.fr/hal-03108517/file/cikm-2020-demo.pdf
https://doi.org/10.1145/3340531.3417431
https://doi.org/10.1145/3340531.3417431
https://preprints.2020.eswc-conferences.org/121230402.pdf
https://preprints.2020.eswc-conferences.org/121230402.pdf
https://doi.org/10.1007/978-3-030-49461-2_26
https://arxiv.org/abs/2010.03527
https://doi.org/10.1007/978-3-030-70650-0_10
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.352&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.87.352&rep=rep1&type=pdf
https://doi.org/10.1145/1065167.1065174
https://dev.twitter.com/rest/public/rate-limiting

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:61

any idempotent multi-selection assignment. For the non-idempotent semantics the possible
outputs are those that are returned by any multi-selection assignment at all.

Example A.1. Consider a schema with a input-free access method mt with result bound 5
on relation R. Let PL be the plan that accesses mt twice and then determines whether the
intersection of the results is non-empty:

T1 ⇐ mt⇐ ∅; T2 ⇐ mt⇐ ∅; T0 := π∅(T1 ∩ T2); Return T0.

As T1 and T2 are identical under the idempotent semantics, PL just tests if R is non-empty.
Under the non-idempotent semantics, PL is non-deterministic, since it can return empty or
non-empty when R contains at least 10 tuples.

Note that, in both semantics, when we use multiple access methods on the same relation,
there is no requirement that an access selection be “consistent”: if an instance I includes a
fact R(a, b) and we have result-bounded access methods mt1 on the first position of R and
mt2 on the second position of R, then an access to mt1 on a might return (a, b) even if an
access to mt2 on b does not return (a, b). This captures the typical situation where distinct
access methods use unrelated criteria to determine which tuples to return.

It is clear that if a query that has a plan that answers it under the non-idempotent se-
mantics, then the same plan works under the idempotent semantics. Conversely, Example A.1
shows that that a given plan may answer a query under the idempotent semantics, while it
does not answer any query under the non-idempotent semantics. However, if a query Q has
some plan that answers it under the idempotent semantics, we can show that it also does
under the non-idempotent semantics. We formally state this as follows, recalling that an
RA plan is a plan using the full relational algebra (as introduced in the preliminaries):

Proposition A.2. For any CQ Q over schema Sch, there is a monotone plan that answers Q
under the idempotent semantics with respect to Sch iff there is a monotone plan that answers Q
under the non-idempotent semantics. Likewise, there is an RA plan that answers Q under
the idempotent semantics with respect to Sch iff there is an RA plan that answers Q under
the non-idempotent semantics.

We first give the argument for RA plans (i.e., non-monotone plans, which allow arbitrary
relational algebra expressions). If there is a plan PL that answers Q under the non-idempotent
semantics, then clearly PL also answers Q under the idempotent semantics, because there
are less possible outputs.

In the other direction, suppose PL answers Q under the idempotent semantics. Let
cached(PL) be the function that executes PL, but whenever it encounters an access mt on a
binding AccBind that has already been performed in a previous command, it uses the values
output by the prior command rather than making a new access, i.e., it uses “cached values”.
Executing cached(PL) under the non-idempotent semantics gives exactly the same outputs
as executing PL under the idempotent semantics, because cached(PL) never performs the
same access twice. Further we can implement cached(PL) as an RA plan PL′: for each access
command T ⇐ mt⇐ E in PL, we pre-process it in PL′ by removing from the output of E
any tuples previously accessed in mt, using a middleware query command with the relational
difference operator. We then perform an access to mt with the remaining tuples, cache the
output for further accesses, and post-process the output with a middleware query command
to add back the output tuples cached from previous accesses. Thus PL′ answers Q under
the idempotent semantics as required.

14:62 A. Amarilli and M. Benedikt Vol. 18:2

Let us now give the argument for monotone plans (i.e., USPJ-plans), which are the
plans used throughout the body of the paper. Of course the forward direction is proven
in the same way, so we focus on the backward direction. Contrary to plans that can use
negation, we can no longer avoid making accesses that were previously performed, because
we can no longer remove input tuples that we do not wish to query. However, we can still
cache the output of each access, and union it back when performing further accesses.

Let PL be a plan that answers Q under the idempotent semantics. We use Proposition 4.8
about the elimination of result upper bounds to assume without loss of generality that PL
answers the query Q on the schema ElimUB(Sch), where all result bounds of Sch are replaced
with result lower bounds only.

We define the plan PL′ from PL, where access commands are modified in the following
way: whenever we perform an access for a method mt in an access command i, we cache the
input of access command i in a special intermediate table Inpmt,i and its output in another
table Outmt,i, and then we add to the output of access command i the result of unioning,
over all previously performed accesses with mt for j < i, the set of tuples in Outmt,j whose
restriction to the input positions lie within Inpmt,i ∩ Inpmt,j . This can be implemented using
the relational join and project operators. Informally, whenever we perform an access with
a set of input tuples, we add to its output the previous outputs of the accesses with the
same tuples on the same methods earlier in the plan. This can be implemented using USPJ
operators. For each table defined on the left-hand side of an access or middleware command
in PL, we define its corresponding table as the table in PL′ where the same result is defined:
for middleware commands, the correspondence is obvious because they are not changed
from PL to PL′; for access commands, the corresponding table is the one where we have
performed the postprocessing to incorporate the previous tuple results.

We now make the following claim:

Claim A.3. Every possible output of PL′ in the non-idempotent semantics is a subset of a
possible output of PL in the idempotent semantics, and is a superset of a possible output
of PL in the idempotent semantics.

This suffices to establish that PL′ answers the query Q in the non-idempotent semantics,
because, as PL answers Q in the idempotent semantics, its only possible output on an
instance I in the idempotent semantics is Q(I), so Claim A.3 implies that the only possible
output of PL′ on I is also Q(I), so PL′ answers Q under the non-idempotent semantics,
concluding the proof. So it suffices to prove Claim A.3. We now do so:

Proof. Letting O be a result of PL′ under the non-idempotent semantics on an instance I,
and letting σ1 . . . σn be the choice of valid access selections used for each access command
of PL′ to obtain O, we first show that O is a superset of a possible output of PL in the
idempotent semantics, and then show that O is a subset of a possible output of PL in the
idempotent semantics.

To show the first inclusion, let us first consider the access selection σ− on I defined in
the following way: for each access binding AccBind on a method mt, letting σi be the access
selection for the first access command of PL where the access on AccBind is performed on mt,
we define σ−(mt,AccBind) := σi(mt,AccBind); if the access is never performed, define σ
according to one of the σi (chosen arbitrarily). We see that σ− is a valid access selection
for I, because each σi is a valid access selection for i, and for each access σ− returns the
output of one of the σi, which is valid. Now, by induction on the length of the plan, it is
clear that for every table in the execution of PL on I with σ−, its contents are a subset of the

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:63

contents of the corresponding table in the execution of PL′ on I with σ1 . . . σn. Indeed, the
base case is trivial. The induction case for middleware commands follows from monotonicity
of the USPJ operators. The induction case on access commands will follow because we
perform an access with a subset of bindings. For each binding AccBind, if this is the first
time we perform the access for this method on AccBind, we obtain the same output in PL as
in PL′. And if this is not the first time, in PL we obtain the output as we did the first time,
and in PL′ we still obtain it because we retrieve it from the cached copy. The conclusion
of the induction is that the output of PL on I under σ− is a subset of the output O of PL′

on I under σ1 . . . σn.
Let us now show the second inclusion by considering the access selection σ+ on I

defined in the following way: for each access binding AccBind and method mt, we define
σ+(mt,AccBind) :=

⋃
1≤i≤n σi(mt,AccBind). That is, σ+ returns all outputs that are re-

turned in the execution of PL′ on I in the non-idempotent semantics with σ1 . . . σn. This
is a valid access selection, because for each access and binding it returns a superset of a
valid output, so we are still obeying the result lower bounds, and there are no result upper
bounds because we we are working with the schema ElimUB(Sch) where result upper bounds
have been eliminated. Now, by induction on the length of the plan, analogously to the case
above, we see that for every table in the execution of PL on I with σ+, its contents are
a superset of that of the corresponding table in the execution of PL′ on I with σ1 . . . σn:
the induction case is because each access on a binding in PL′ cannot return more than the
outputs of this access in all the σi, and this is the output obtained with σ+. So we have
shown that O is a subset of a possible output of PL, and that it is a superset of a possible
output of PL, concluding the proof of the claim.

This concludes the proof of Proposition A.2.

Appendix B. Proof of Theorem 6.13:
completeness of the downward-free chase

Recall the statement:

For every tree-like chase sequence using single-headed GTGDs T0 . . . Tn, there is a
downward-free tree-like chase sequence T0 = T0, . . . Tm such that there is a homomorphism
h from the instance of Tn to the instance of Tm with h(c) = c for any values c in the domain
of the instance of T0.

Proof. We prove the result by induction on n, calling hn the homomorphism produced for n.
We will ensure inductively that our homomorphism hn preserves the tree structure of Tn.
That is, there is additionally an injective homomorphism hT

n from the underlying tree of Tn
to the underlying tree of Tm such that for each node v of Tn and each fact G ∈ FactsOfn(v),
the node hT

n (v) contains the image fact of G obtained by mapping the elements of the fact
following hn.

For the base case n = 0, we simply set T0 := T0, take m = n = 0, and let both hn and
hT
n be the identity.

For the inductive case, there are two possibilities. The first possibility is that we
performed a chase step when going from Tn−1 to Tn to fire a trigger ρ at a node v to
create a fact F , then we simply take the image hn−1(ρ) of ρ by the homomorphism in the

14:64 A. Amarilli and M. Benedikt Vol. 18:2

node hT
n−1(v) and fire it there, creating the fact hn−1(F) that we can use to extend the

homomorphism.
The second possibility is the interesting one: we have performed a propagation step to

go from Tn−1 to Tn, and we must explain how to “mimic” it in Tm while only performing
upward propagation. To simplify the argument, letting F be the fact that was just created
in Tn−1 in a node v and is propagated in Tn, we assume that the propagation from Tn−1 to Tn
propagates F to all nodes that have a guard for its elements: this is the most challenging
case.

We first perform the upward propagation in Tm, that is, we consider the ancestors of v
having a guard of the elements of F is propagated in Tn, take their image by hT

n−1, and

propagate F := hn−1(F) to these ancestors. Let p be the highest such ancestor in Tm.
The key idea is now that we “mimic” downwards propagation by simply re-creating

all the descendants of Tm, which will “automatically” propagate the fact F to them. More
precisely, consider U the set of all domain elements that occur in strict descendants of p but
do not occur in p, fix U ′ a disjoint set of fresh element names of the same cardinality, and
fix a bijection h which maps U to U ′ and is the identity on the other elements of Tm. Now,
consider the sequence T0, . . . , Tm obtained thus far, which by induction does not contain any
downwards propagation. Now, re-play that sequence but replacing the elements of U by U ′.
More formally, all triggers and all created facts are mapped through h. In particular, the
non-full chase steps that created the children of p will now create fresh child nodes, where
the elements of U have been replaced by elements of U ′, further non-full chase steps on
these children will continue creating a copy of their subtree, and full chase steps happening
in their subtrees as well as upwards propagations are performed in the same way as in the
original sequence. (Chase steps that create facts with no element of U are unchanged by
the transformation, and doing them again recreates a fact that already exists, which has no
effect.)

After this process, we have extended T0, . . . , Tm by a sequence Tm+1, . . . , Tm′ , and Tm′

is a superinstance of Tm which differs in that every child of p now exists in two copies, one
featuring elements of U and the other one featuring the corresponding elements of U ′, these
two copies being the roots of subtrees between which h is an isomorphism. Overall, the
homomorphism h maps Tm to Tm′ by mapping each original subtree to its copy. Let us call
hT the corresponding injective homomorphism at the level of tree nodes. We can compose
hm and hT

m with h and hT respectively to obtain well-defined homomorphisms hm′ and
hT
m′ . Now, to show that they are suitable, the only point to verify is that we have correctly

propagated the new fact, i.e., for all nodes v′ of Tn where F is guarded, the node hT
m′ indeed

contains F .
To understand why, notice that when we perform the sequence Tm+1, . . . , Tm′ , the node p

contains the new fact F that we wished to downwards propagate. Hence, while we created
the new subtrees, F was added to every new child node whenever it was guarded by the
elements of that node. Thus, F now exists in each node of the new subtrees where it is
guarded. This establishes that the chase sequence T0, . . . , Tm′ and the homomorphisms hm′

and hT
m′ satisfy the conditions. This shows the inductive case, and concludes the inductive

proof, establishing the result.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:65

Appendix C. Proof of the Semi-Width Result (Proposition 6.5)

In this appendix, we prove the NP bound on containment for bounded semi-width IDs, i.e.,
Proposition 6.5. Recall its statement:

For any fixed w ∈ N, there is an NP algorithm for containment under IDs of
semi-width at most w.

To prove the result, let Σ be the collection of IDs, and consider a chase sequence based
on the canonical database I0 := CanonDB(Q) of the conjunctive query Q. Recall the notion
of a tree-like chase proof from the body of the paper (after Proposition 6.14). This is a
sequence of labelled trees — the chase trees of the proof — one for each instance in the
chase sequence, where the tree associated with I0 consists of a single root node. In the
case where the constraints are all IDs, we will modify the tree structure in this definition
slightly, creating a new node even when firing full rules. We do not perform propagation
of facts, which will never be needed for IDs. Thus the chase will have non-root nodes nF
in one-to-one correspondence with generated facts F . If performing a chase step on fact F
produces fact F ′ in the sequence, then the node nF ′ is a child of the node nF .

Consider nodes n and n′ in a chase tree within some tree-like chase proof, with n a
strict ancestor of n′. We say n and n′ are far apart if there are distinct generated facts F1

and F2 such that:

• the node n1 corresponding to F1 and the node n2 corresponding to F2 are both ancestors
of n′ and descendants of n,;
• n1 is an ancestor of n2;
• F1 and F2 were generated by the same rule of Σ; and
• the equalities between values in positions within F1 are exactly the same as the equalities

within F2, and any values occurring in both F1 and F2 occur in the same positions within
F2 as they do in F1.

If such an n and n′ are not far apart, we say that they are near.
A match of Q in the chase tree is a mapping from the variables of Q to the elements of

the chase tree which is a homomorphism, i.e., it also maps every atom of Q to a fact in the
chase tree. Given a match h of Q in the chase tree, its augmented image is the closure of its
image under least common ancestors, including by convention the root node. If Q has size
k then this has size ≤ 2k + 1. For nodes n and n′ in the augmented image, we call n the
image parent of n′ if n is the lowest ancestor of n′ in the augmented image.

Lemma C.1. If Q has a match h in the final instance of a tree-like chase proof, where the
final instance has chase tree T , then there is another tree-like chase proof with final tree T ′,
and a match h′ with the property that if n is the image parent of n′ then n and n′ are near.

Proof. We prove that given such an h and T , we can construct an h′ and T ′ such that we
decrease the sum of the depths of the violations.

If n is far apart from n′, then there are witnesses F1 and F2 to this, corresponding to
nodes n1 and n2 respectively. Informally, we will “pull up” the homomorphism by replacing
witnesses below F2 with witnesses below F1. Formally, we create T ′ by first removing each
step of the chase proof that generates a node that is a descendent of n1. Letting T1 be the
nodes in T that do not lie below n1, we will add nodes and the associated proof steps to T ′.
Let C2 be the chase steps in T that generate a node below n2, ordered as in T , and let T2 be
the nodes produced by these steps. We then add chase steps in T ′ for each chase step in C2.
More precisely, we expand T ′ by an induction on prefixes of C2, building T ′ and a partial

14:66 A. Amarilli and M. Benedikt Vol. 18:2

function m from the domains of facts in {n2} ∪ T2 into the domain of facts associated to n1

and its descendants in T ′. The invariant is that m preserves each fact of T generated by the
chase steps in C2 we have processed thus far in the induction, and that m is the identity on
any values in F1. We initialize the induction by mapping the elements associated to n1 to
elements associated to n2. Our assumptions on n1 and n2 suffice to guarantee that we can
perform such a mapping satisfying the invariant. For the inductive case, suppose the next
chase step s in C2 uses ID δ, firing on the fact associated to vi in T , producing node vi+1.
Then we perform a step s′ using δ and the fact associated to m(vi) in T ′. If δ was a full ID
we do not modify m, while if it is a non-full ID we extend m to map the generated elements
of s to the corresponding elements of s′. We can thus form h′ by revising h(x) when h(x)
lies below n1, setting h′(x) to m(h(x)). Note that there could not have been any elements
in the augmented image of h in T that hang off the path between n1 and n2, since n and n′

were assumed to be adjacent in the augmented image.
In moving from T and h to T ′ and h′ we reduce the sum of the depths of nodes in

the image, while no new violations are created, since the image-parent relationships are
preserved.

Call a match h of Q in the chase tight if it has the property given in the lemma above.
The depth of the match is the depth of the lowest node in its image. The next observation,
also due to Johnson and Klug, is that when the width is bounded, tight matches can not
occur far down in the tree:

Lemma C.2. If Σ is a set of IDs of width w and the schema has arity bounded by m, then
any tight match of size k has all of its nodes at depth at most k · |Σ| ·mw+1 · 2w.

Proof. We claim that the length of the path between a match element h(x) and its image
parent h(x′) must be at most ∆ := |Σ| ·mw+1 · 2w. At most w values from h(x′) are present
in any fact on the path, and thus the number of configurations that can occur is at most
mw+1. Further, we multiply by a factor of |Σ| because we are accounting for the last rule
used. We also multiply by a factor of 2w to account for the possible equality patterns among
the values in the positions of the fact that do not contain a null. Thus after ∆ steps there
will be two elements which repeat both the rule and the configuration of the values, which
would contradict tightness. Since the augmented image contains the root, this implies the
bound above.

Johnson and Klug’s result follows from combining the previous two lemmas:

Proposition C.3 [JK84]. For any fixed w ∈ N, there is an NP algorithm for query contain-
ment under IDs of width at most w.

Proof. We know it suffices to determine whether there is a match in a chase proof, and the
previous lemmas tell us that the portion of a chase proof required to find a match is not
large. We thus guess a tree-like chase proof where the tree consists of k branches of depth at
most k · |Σ| ·mw+1 · 2w, along with a match in them, verifying the validity of the branches
according to the rules of Σ.

We now give the extension of this argument for bounded semi-width. Recall from the
body that a collection of IDs Σ has semi-width bounded by w if it can be decomposed
as Σ = Σ1 ∪ Σ2 where Σ1 has width bounded by w and the basic position graph of Σ2 is
acyclic. An easy modification of Proposition C.3 now completes the proof of our semi-width
result (Proposition 6.5):

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:67

Proof. We revisit the argument of Lemma C.2, claiming a bound with an extra factor of
|Σ| in it. As in that argument, it suffices to show that, considering the extended image of a
tight match of Q in a chase proof, then the distance between any node n′ of the extended
image and its closest ancestor n is bounded, i.e., it must be at most |Σ|2 ·mw+1 · 2w. Indeed,
as soon as we apply a rule of Σ1 along the path, at most w values are exported, and so the
remaining path is bounded as before. Since Σ2 has an acyclic basic position graph, a value
in n can propagate for at most |Σ2| steps when using rules of Σ2 only. Thus after at most
|Σ2| edges in a path we will either have no values propagated (if we used only rules from Σ2)
or at most w values (if we used a rule from Σ1). In particular, we cannot have a gap of more
than |Σ2| · |Σ| ·mw+1 · 2w in a tight match.

Appendix D. Generalization of Results to RA Plans

In the body of the paper we dealt with monotone answerability. A relational algebra plan or
just RA plan is defined as with a monotone plan, but in addition to the monotone relational
algebra expressions we also allow as an operator a relational difference operator \, which
takes as input instances of two relations with the same arity. It is known that the queries
defined by relational algebra are the same as those defined by first-order logic with the
active-domain semantics [AHV95]. As we mentioned in the body of the paper, there are
monotone queries that can be expressed using an RA plan, but not with a monotone plan.
In the setting of views, this surprising fact, which contradicted prior claims in the literature
(e.g., [SV05]), was uncovered in [NSV10]. These counterexamples notwithstanding, the bulk
of the work in the literature on querying with access patterns has focused on monotone
plans.

At the end of Section 3 and in Section 10, we claimed that many of the results in the
paper, including the reduction to query containment and the schema simplification results,
generalize in the “obvious way” to answerability where general relational algebra expressions
are allowed. In addition, the results on complexity for monotone answerability that are
shown in the body extend to answerability with RA plans, with one exception. The exception
is that we do not have a decidability result for UIDs and FDs analogous to Theorem 8.2,
because the containment problem is more complex.

We explain in the rest of the appendix how to adapt our results in the unrestricted
setting from monotone answerability to RA answerability. In the specific case of IDs, we
will show (Proposition D.8) that RA answerability and monotone answerability coincide.
This generalizes a result known for views, and extends it to the setting with result bounds.

D.1. Variant of Reduction Results for RA Answerability. We first formally define
the analog of AMonDet for the notion of RA answerability that we study in this appendix. In
the absence of result bounds, this corresponds to the notion of access-determinacy [BtCLT16,
BtCT16], which states that two instances with the same accessible part must agree on the
query result. Here we generalize this to the setting with result bounds, where the accessible
instance is not uniquely defined.

Given a schema Sch with constraints and methods which may have result lower bounds
as well as result upper bounds, a query Q is said to be access-determined if for any two
instances I1, I2 satisfying the constraints of Sch, if there is a valid access selection σ1 for

14:68 A. Amarilli and M. Benedikt Vol. 18:2

I1 and a valid access selection σ2 for I2 such that AccPart(σ1, I1) = AccPart(σ2, I2), then
Q(I1) = Q(I2).

We will now show that access-determinacy is equivalent to query containment, as with
access monotonic determinacy. We will stick to the setting where Q is a CQ, for consistency
with the body of the paper. This restriction will also be essential in the core results on
expressiveness, decidability, and complexity to come. However, the results in this subsection,
concerning reduction to query containment, hold also for a query Q in relational algebra.

As we did with AMonDet, it will be convenient to give an alternative definition of
access-determinacy that talks only about a subinstance of a single instance.

For a schema Sch a common subinstance IAccessed of I1 and I2 is jointly access-valid if,
for any access performed with a method of Sch in IAccessed, there is a set of matching tuples
in IAccessed which is a valid output to the access in I1 and in I2. In other words, there is an
access selection σ for IAccessed whose outputs are valid in I1 and in I2.

We now claim the analogue of Proposition 4.1, namely:

Proposition D.1. For any schema Sch with arbitrary constraints Σ and methods which
may have result lower bounds and result upper bounds, a CQ Q is access-determined if and
only if the following implication holds: for any two instances I1, I2 satisfying Σ, if I1 and I2

have a common subinstance IAccessed that is jointly access-valid, then Q(I1) = Q(I2).

This result gives the alternative definition of access-determinacy that we will use in our
proofs. Proposition D.1 follows immediately from the following proposition (the analogue of
Proposition 4.2):

Proposition D.2. Again assume a schema with arbitrary constraints along with methods
that may have result lower and upper bounds. The following are equivalent:

(i) I1 and I2 have a common subinstance IAccessed that is jointly access-valid.
(ii) There is a common accessible part A of I1 and for I2.

Proof. Suppose I1 and I2 have a common subinstance IAccessed that is jointly access-valid.
This means that we can define an access selection σ that takes any access performed with
values of IAccessed and a method of Sch, and maps it to a set of matching tuples in IAccessed
that is valid in I1 and in I2. We can see that σ can be used as a valid access selection in I1

and I2 by extending it to return an arbitrary valid output to accesses in I1 that are not
accesses in IAccessed, and likewise to accesses in I2 that are not accesses in IAccessed; we then have
AccPart(σ, I1) = AccPart(σ, I2) so we can define the accessible part A accordingly, noting
that we have A ⊆ IAccessed. Thus the first item implies the second.

Conversely, suppose that I1 and I2 have a common accessible part A, and let σ1 and σ2 be
the witnessing valid access selections for I1 and I2, i.e., A = AccPart(σ1, I1) = AccPart(σ2, I2).
Let IAccessed := A, and let us show that IAccessed is a common subinstance of I1 and I2 that is
jointly access-valid. By definition we have IAccessed ⊆ I1 and IAccessed ⊆ I2. Now, to show that
it is jointly access-valid in I1 and I2, consider any access AccBind,mt with values in IAccessed.
We know that there is i such that AccBind is in AccParti(σ1, I1), therefore by definition
of the fixpoint process and of the access selection σ1 there is a valid output to the access
in AccParti+1(σ1, I1), hence in IAccessed. Thus we can choose an output in IAccessed which is
valid in I1. But this output must also be in AccPart(σ2, I2), and thus it is valid in I2 as well.
Thus, IAccessed is jointly access-valid. This shows the converse implication and concludes the
proof.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:69

The following analogue of Proposition 4.4 motivates these two equivalent definitions of
access-determinacy, showing that either one is equivalent to the existence of an RA-plan
that answers Q:

Proposition D.3. Again assume a schema with arbitrary constraints, along with methods
that may have result upper bounds and result lower bounds. If a CQ Q has an RA plan PL
that answers it w.r.t. Sch, then Q is access-determined over Sch.

Proof. Assume that Q has an RA plan PL that answers it. Using Proposition D.1, consider
two instances I1 and I2 satisfying the constraints of Sch, and having a common subinstance
IAccessed that is jointly access-valid. Let us show that Q(I1) = Q(I2). Let σ be a valid
access selection for IAccessed, and extend it to a valid access selection σ1 for I1 and σ2 for I2.
Specifically, accesses with a binding in IAccessed on σ1 and σ2 return the same result as σ,
which by definition is valid in I1 and I2 in addition to being valid in IAccessed. Further, accesses
with a binding using values from Adom(I1) \Adom(IAccessed) for σ1 return some valid response
for σ1, and likewise for σ2.

Now, a simple induction shows that the intermediate tables produced by a plan using
σ1 on I1, using σ2 on I2, and using σ on IAccessed, must be the same, and must all consist of
values from Adom(IAccessed).

Now, as PL answers Q, we know that the output of Q on I1 is equal to that of Q on I2.
This concludes the proof.

Analogously to Theorem 4.3, we can show that access-determinacy is equivalent to RA
answerability. The proof starts the same way as that of Theorem 4.3, noting that in the
absence of result bounds, this equivalence was shown in prior work:

Theorem D.4 [BtCLT16, BtCT16]. For any CQ Q and schema Sch (with no result bounds)
whose constraints Σ are expressible in active-domain first-order logic, the following are
equivalent:

(1) Q has an RA plan that answers it over Sch.
(2) Q is access-determined over Sch.

The extension to result bounds is shown using the same reduction as for Theorem 4.3,
by just “axiomatizing” the result bounds as additional constraints (by a direct analogue of
Proposition 4.6). This gives the immediate generalization of Theorem D.4 to schemas that
may include result bounds:

Theorem D.5. For any CQ Q and schema Sch whose constraints Σ are expressible in
active-domain first-order logic, where methods may have result upper and result lower bounds,
the following are equivalent:

(1) Q has an RA plan that answers it over Sch.
(2) Q is access-determined over Sch.

Hence, we have shown the analogue of Theorem 4.3 for the setting of RA answerability
and RA plans studied in this appendix.

Elimination of result upper bounds for RA plans. As with monotone answerability,
it suffices to consider only result lower bounds. Recall that ElimUB(Sch) is the schema
obtained from Sch by removing result upper bounds and keeping only result lower bounds.
We have:

14:70 A. Amarilli and M. Benedikt Vol. 18:2

Proposition D.6. Let Sch be a schema with arbitrary constraints and access methods which
may have result lower bounds and result upper bounds. A query Q is RA answerable in Sch
if and only if it is RA answerable in ElimUB(Sch).

Proof. The proof follows that of Proposition 4.8. We show the result for access-determinacy
instead of RA answerability, thanks to Theorem D.5, and we use Proposition D.1. Consider
arbitrary instances I1 and I2 that satisfy the constraints, and let us show that any common
subinstance IAccessed of I1 and I2 is jointly access-valid for Sch iff it is jointly access-valid
for ElimUB(Sch): this implies the claimed result.

In the forward direction, if IAccessed is jointly access-valid for Sch, then clearly it is jointly
access-valid for ElimUB(Sch), as any output of an access on IAccessed which is valid in I1 and
in I2 for Sch is also valid for ElimUB(Sch).

In the backward direction, assume IAccessed is jointly access-valid for ElimUB(Sch), and
consider an access (mt,AccBind) with values from IAccessed. If mt has no result lower bound,
then there is only one possible output for the access, and it is valid also for Sch. Likewise,
if mt has a result lower bound of k and there are ≤ k matching tuples for the access in I1

or in I2, then the definition of a result lower bound ensures that there is only one possible
output which is valid for ElimUB(Sch) in I1 and I2, and it is again valid for Sch. Finally, if
there are > k matching tuples for the access, we let J be a set of tuples in IAccessed which is is
a valid output to the access in I1 and I2 for ElimUB(Sch), and take any subset J ′ of J with
k tuples; it is clearly a valid output to the access for Sch in I1 and I2. This establishes the
backward direction, concluding the proof.

Based on this, from now on we will assume only result lower bounds in our schema.

Reduction to query containment. Since access-determinacy can be expresses as a query
containment, in Theorem D.5 we already established an reduction of RA answerability to
query containment. We will spell out what these axioms look like, focusing in the case where
we have only result lower bounds. This is sufficient for our purposes by Proposition D.6.
The constraints will be a more “more symmetrical” version of the axioms we saw in the case
of access monotone determinacy.

Recall that accessible is a fresh unary relation, intuitively used to describe which elements
are accessible. Given a schema Sch with constraints and access methods with result bounds,
the access-determinacy containment for Q and Sch is the CQ containment Q ⊆Γ Q

′ where the
constraints Γ are defined as follows: they include the original constraints Σ, the constraints
Σ′ on the relations R′, and the following axioms (with implicit universal quantification):

• For each method mt that is not result-bounded, letting R be the relation accessed by mt:(∧
i

accessible(xi)
)
∧ R(~x, ~y)→RAccessed(~x, ~y)(∧

i

accessible(xi)
)
∧R′(~x, ~y)→RAccessed(~x, ~y)

where ~x denotes the input positions of mt in R and i ranges over these positions.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:71

• For each method mt with a result lower bound of k, letting R be the relation accessed
by mt, for all j ≤ k:(∧

i

accessible(xi)
)
∧ ∃≥j~y R(~x, ~y)→∃≥j~z RAccessed(~x, ~z)(∧

i

accessible(xi)
)
∧ ∃≥j~y R′(~x, ~y)→∃≥j~z RAccessed(~x, ~z)

where ~x denotes the input positions of mt in R.
• For every relation R of the original signature:

RAccessed(~w)→ R(~w) ∧R′(~w) ∧
∧
i

accessible(wi).

The intuition, like for AMonDet containment, is that the constraints Γ are axiomatizing
the definition of access-determinacy, i.e., enforcing that IAccessed is jointly access-valid. The
only difference from the AMonDet containment is that the additional constraints are now
symmetric in the two signatures, primed and unprimed. The analogue of Proposition 4.9
then follows immediately from Theorem D.5 and the definition of access-determinacy:

Proposition D.7. Let Q be a CQ, and let Sch be a schema with constraints expressible in
active-domain first-order logic and with access methods that may have result upper and lower
bounds. Then the following are equivalent:

• Q has an RA plan that answers it over Sch.
• Q is access-determined over Sch.
• The containment corresponding to access-determinacy holds.

Based on this reduction, all of our arguments about answerability with RA-plans can
deal with the semantic notion of access-determinacy and the corresponding entailments, and
we will always make use of this in what follows. Also following the convention in the body
of the paper, in reasoning about access-determinacy and these entailments, we can restrict
to the case of Boolean CQs, since non-Boolean CQs can be considered Boolean CQs with
additional constants. We perform this restriction in proofs by default in the remainder of
this section.

D.2. Full Answerability and Monotone Answerability. We show that there is no
difference between full answerability and monotone answerability when constraints consist
of IDs only. This is a generalization of an observation that is known for views (see, e.g.,
Proposition 2.15 in [BtCLT16]):

Proposition D.8. Let Sch be a schema with access methods and constraints Σ consisting
of inclusion dependencies, and Q be a CQ that is access-determined. Then Q is AMonDet.

Proof. We know by Propositions 4.8 and D.6 that we can work with ElimUB(Sch) which has
only result lower bounds, so we do so throughout this proof. Towards proving AMonDet,
assume by way of contradiction that we have:

• instances I1 and I2 satisfying Σ;
• an accessible part A1 of I1 with valid access selection σ1, and an accessible part A2 of I2

with valid access selection σ2;
• A1 ⊆ A2;
• Q holding in I1 but not in I2.

14:72 A. Amarilli and M. Benedikt Vol. 18:2

We first modify I2 and A2 to I+
2 and A+

2 by replacing each element that is in I1 but not
in A1 by a copy that is not in I1; we modify the access selection from σ2 to σ+

2 accordingly.
Since I+

2 is isomorphic to I2, it is clearly true that the access selection σ+
2 is valid in I+

2 ,
that A+

2 is the accessible part of I+
2 corresponding to σ+

2 , that I+
2 satisfies Σ and that Q

fails in I+
2 . Further we still have A1 ⊆ A+

2 by construction. What we have ensured at this
step is that values of I+

2 that are in I1 must be in A1.
Consider now I+

1 := I1 ∪ I+
2 . It is clear that Q holds in I+

1 , and I+
1 also satisfies Σ

because IDs are preserved under taking unions. We will show that I+
1 and I+

2 have a common
accessible part A+

2 , which will contradict the assumption that Q is access-determined.
Towards this goal, define an access selection σ+

1 on I+
1 as follows:

• For any access (mt,AccBind) made with a binding where all values are in A1, we let
σ+

1 (mt,AccBind) := σ1(mt,AccBind) ∪ σ+
2 (mt,AccBind): note that all returned tuples are

in A+
2 , because the second member of the union is contained in A+

2 , while the first is
contained in A1 which is a subset of A+

2 .
• For any access (mt,AccBind) made with a binding where all values are in A+

2 and some
value is not in A1, we let σ+

1 (mt,AccBind) := σ+
2 (mt,AccBind): again all tuples returned

here are in A+
2 .

• For any access (mt,AccBind) made with a binding where some value is not in A+
2 , we

choose an arbitrary set of tuples of I+
1 to form a valid output.

We claim that σ+
1 is a valid access selection and that performing the fixpoint process with

this access selection yields A+
2 as an accessible part of I+

1 . To show this, first notice that
performing the fixpoint process with σ+

2 indeed returns A+
2 : all facts of A+

2 are returned
because this was already the case in I+

2 , and no other facts are returned because it is clear
by induction that the fixpoint will only consider bindings in A+

2 , so that the choices made in
the third point of the list above have no impact on the accessible part that we obtain.

So it suffices to show that σ+
1 is valid, i.e., that for any access (mt,AccBind) with a

binding AccBind in A+
2 , the access selection σ+

1 returns a set of tuples which is a valid output
to the access. For the first point in the list, we know that the selected tuples are the union of
a valid result to the access in I1 and of a valid result to the access in I+

2 , so it is clear that it
consists only of matching tuples in I+

1 . We then argue that it is valid by distinguishing two
cases. If mt is not result-bounded, then the output is clearly valid, because it contains all
matching tuples of I1 and all matching tuples of I+

2 , hence all matching tuples of I+
1 . Now

suppose mt has a result lower bound of k. Suppose that for j ≤ k there are ≥ j matching
tuples in I+

1 . We will show that the output of the access contains ≥ j tuples. There are two
sub-cases. The first sub-case is when there are ≥ j matching tuples in I1. In this sub-case
we can conclude because σ1(mt,AccBind) must return ≥ j tuples. The second sub-case is
when there are < j matching tuples in I1. In this sub-case, σ1(mt,AccBind) must return all
of them, so these matching tuples are all in A1. Hence they are all in A+

2 because A1 ⊆ A+
2 .

Thus the returned tuples are in I+
2 . Thus, in the second sub-case, all matching tuples in I+

1

for the access are actually in I+
2 , so we conclude because σ+

2 (mt,AccBind) must return ≥ j
tuples. This shows that the outputs of accesses defined in the first point are valid.

For accesses corresponding to the second point in the list, by the construction used to
create I+

2 from I2, we know that the value in AccBind which is not in A1 cannot be in I1

either. Thus all matching tuples of the access are in I+
2 . So we conclude because σ+

2 is a
valid access selection of I+

2 . For accesses corresponding to the third point, the output is

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:73

always valid by definition. Hence, we have established that σ+
1 is valid, and that it yields

A+
2 as an accessible part of I+

1 .
We have thus shown that I+

1 and I+
2 both have A+

2 as an accessible part. Since Q holds
in I+

1 , by access-determinacy Q holds in I2, and this contradicts our initial assumption,
concluding the proof.

From Proposition D.8 we immediately see that in the case where the constraints consist
of IDs only, all the results about monotone answerability with result bounds transfer to
answerability. This includes simplification results and complexity bounds.

D.3. Blowup for RA Answerability. We now explain how the method of “blowing up
counterexamples” introduced in the body extends to work with access-determinacy. We
consider a counterexample to access-determinacy in the simplification (intuitively a pair
of instances that satisfy the constraints and have a common subinstance that is jointly
access-valid but one satisfy the query and one does not), and we show that we can blow it
up to a counterexample to access-determinacy in the original schema. As we did in the body,
we stick to Boolean CQs in all of our arguments — the results extend to the non-Boolean
case by the usual method of changing free variables to constants. Formally, a counterexample

to access-determinacy for a Boolean CQ Q and a schema Sch† is a pair of instances I†1, I
†
2

both satisfying the schema constraints, such that I†1 satisfies Q while I†2 satisfies ¬Q, and I†1
and I†2 have a common subinstance I†Accessed that is jointly access-valid.

It is clear that, whenever there is a counterexample to access-determinacy for schema Sch
and query Q, then Q is not access-determined w.r.t. Sch. We now state the blowup lemma
that we use. It is the direct analogue of Lemma 5.3, and the intuition is similar: we will
obtain our counterexample for Sch by “blowing up” a counterexample to access-determinacy
for Sch†. Here is the formal statement:

Lemma D.9. Let Sch and Sch† be schemas and Q a Boolean CQ on the common relations
of Sch and Sch† such that Q is not access-determined in Sch†. Suppose that for some

counterexample I†1, I
†
2 to access-determinacy for Q in Sch† we can construct instances I1 and

I2 that satisfy the constraints of Sch, that have a common subinstance I†Accessed that is jointly

access-valid for Sch, such that I2 has a homomorphism to I†2, and the restriction of I†1 to the
relations of Sch is a subinstance of I1. Then Q is not access-determined in Sch.

Proof. We prove the contrapositive of the claim. Let Q be a query which is not access-

determined in Sch†, and let {I†1, I
†
2} be a counterexample. Using the hypothesis, we construct

I1 and I2. It suffices to observe that they are a counterexample to access-determinacy for Q
and Sch, which we show. First, they satisfy the constraints of Sch and have a common

subinstance which is jointly access-valid. Second, as I†1 satisfies Q, as all relations used

in Q are on Sch, and as the restriction of I†1 is a subset of I1, we know that I1 satisfies Q.

Finally, since I†2 does not satisfy Q and I2 has a homomorphism to I†2, we know that I2 does
not satisfy Q. Hence, I1, I2 is a counterexample to access-determinacy of Q in Sch, which
concludes the proof.

14:74 A. Amarilli and M. Benedikt Vol. 18:2

D.4. Choice Simplifiability for RA answerability. Recall that the choice simplification
of a result-bounded schema is obtained by changing every result-bounded method to have
bound 1. We say that a schema Sch is choice simplifiable for RA plans if any CQ that
has an RA plan over Sch has one over its choice simplification. The following result is the
counterpart to Theorem 7.3:

Theorem D.10. Let Sch be a schema with constraints in equality-free first-order logic
(e.g., TGDs), and let Q be a CQ that is access-determined w.r.t. Sch. Then Q is also

access-determined in the choice simplification Sch† of Sch.

The proof follows that of Theorem 7.3 with no surprises, using Lemma D.9.

Proof. We fix a counterexample I†1, I
†
2 to access-determinacy in Sch†: we know that I†1

satisfies the query, I†2 violates the query, I†1 and I†2 satisfy the equality-free first order

constraints of Sch, and I†1 and I†2 have a common subinstance I†Accessed which is jointly access-

valid for Sch†. We expand I†1 and I†2 to I1 and I2 that have a common subinstance that is
jointly access-valid for Sch, to conclude using Lemma D.9. Our construction is identical to

the blow-up used in Theorem 7.3: for each element a in the domain of I†1, introduce infinitely

many fresh elements aj for j ∈ N>0, and identify a0 := a. Now, define I1 := Blowup(I†1),

where Blowup(I†1) is the instance with facts {R(ai11 . . . a
in
n) | R(~a) ∈ I†1,~i ∈ Nn}. Define I2

from I†2 in the same way.

The proof of Theorem 7.3 already showed that I†1 and I1 agree on all equality-free

first-order constraints, that I†1 still satisfies the query, and I†2 still violates the query. All that
remains is to construct a common subinstance that is jointly access-valid for Sch. We do

this as in the proof of Theorem 7.3, setting IAccessed := Blowup(I†Accessed). To show that IAccessed
is jointly access-valid, consider any access (mt,AccBind) with values from IAccessed. If there

are no matching tuples in I†1 and in I†2, then there are no matching tuples in I1 and I2 either.

Otherwise, there must be some matching tuple in I†Accessed because it is jointly access-valid

in I†1 and I†2 for Sch†. Hence, sufficiently many copies exist in IAccessed to satisfy the original
result bounds, so we can find a valid response to the access in IAccessed. Hence, IAccessed is indeed
jointly access-valid, which completes the proof.

As with choice simplification for AMonDet, this result can be applied immediately to
TGDs. In particular, if we consider frontier-guarded TGDs, the above result says that we
can assume any result bounds are 1, and thus the query containment problem produced by
Proposition D.7 will involve only frontier-guarded TGDs. We thus get the following analog
of Theorem 8.1:

Theorem D.11. We can decide whether a CQ is RA answerable with respect to a schema
with result bounds whose constraints are frontier-guarded TGDs. The problem is 2EXPTIME-
complete.

D.5. FD Simplifiability for RA plans. We now turn to FD simplification. Recall that
the FD simplification of a result-bounded schema is intuitively defined by adding an auxiliary
relation Rmt for every result-bounded method mt, relating it with inclusion dependencies to
the relation R accessed by mt, and replacing mt by a non-result-bounded method on Rmt.
The new method makes it possible to retrieve the values for the output positions that are

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:75

determined by the input positions of mt according to the FDs. The formal definition is given
in Section 5. A schema is FD simplifiable for RA plans if every CQ having a plan over the
schema has an RA plan in its FD simplification.

We now show that schemas whose constraints consist only of FDs are FD simplifiable,
which is the analogue of Theorem 5.5:

Theorem D.12. Let Sch be a schema whose constraints are FDs, and let Q be a CQ that
is RA answerable in Sch. Then Q is RA answerable in the FD simplification Sch† of Sch.

Proof. We use Lemma D.9 and assume that we have a counterexample I†1, I
†
2 to determinacy

for Sch†, with Q holding in I†1, with Q not holding in I†2, and with I†1 and I†2 having a

common subinstance I†Accessed which is jointly access-valid in I†1 and I†2 for Sch†. We will
upgrade these to I1, I2, IAccessed having the same property for Sch, by blowing up accesses

one after the other. We fix a valid access selection σ for I†Accessed which returns outputs for

accesses that are valid in I†1 and in I†2.
We construct I1, I2 and IAccessed exactly as in the proof of Theorem 5.5 with the access

selection σ, performing the same blowing up process (recall that it distinguished between
the “dangerous” and the “non-dangerous” methods). The only point to show is that IAccessed
is jointly access-valid in I1. To do so, we distinguish several possibilities, again following

the distinction in that proof. If AccBind contains values from Adom(IAccessed) \ Adom(I†Accessed),
then all matching tuples in either I1 or I2 are in IAccessed and there is nothing to show. If the
method used is not result-bounded, then the matching tuples in I1 and I2 are either tuples

of I†1 and I†2 that were already in I†Accessed, or tuples added to I1 and I2 that were added to
IAccessed as well. If the method is dangerous, then one possibility is that the corresponding

access on I†Accessed according to σ either returned no tuples, in which case there are no matching

tuples in I1 and I2 and all potential matching tuples are in IAccessed \ I†Accessed. Or the access
returned precisely one tuple, which was added to IAccessed.

For the case of an access with a result-bounded and dangerous method, there are again
two cases. If we did not blow up the access, then σ did not return a result, and there were

no matching tuples in I†1 or I†2 for the access, so all potential matching tuples in I1 or I2 are
in IAccessed. If we did blow up the access, then we know by construction that IAccessed contains
infinitely many tuples, from which we can construct a response which is valid both in I1

and I2. This concludes the proof using Lemma D.9.

D.6. Complexity of RA answerability for FDs. In Theorem 6.2 we showed that mono-
tone answerability with FDs was decidable in the lowest possible complexity, i.e., NP.

The argument involved first showing FD simplifiability, which allowed us to eliminate
result bounds at the cost of adding additional IDs. We then simplified the resulting rules to
ensure that the chase would terminate. This relied on the fact that the axioms for AMonDet
would include rules going from R to R′, but not vice versa. Hence, the argument does not
generalize for the rules that axiomatize RA plans.

However, we can repair the argument at the cost of adding an additional assumption.
A schema Sch with access methods is single method per relation, abbreviated SMPR, if for
every relation there is at most one access method. This assumption was made in many
works on access methods [LC01a, Li03], although we do not make it by default elsewhere in
this work. We can then show the following analogue of Theorem 6.2 with this additional
assumption:

14:76 A. Amarilli and M. Benedikt Vol. 18:2

Theorem D.13. We can decide whether a CQ Q is RA answerable with respect to an SMPR
schema with result bounds whose constraints are FDs. The problem is NP-complete.

We will actually show something stronger: for SMPR schemas with constraints consisting
of FDs only, there is no difference between full answerability and monotone answerability.
Given Theorem 6.2, this immediately implies Theorem D.13.

Proposition D.14. Let Sch be a schema with access methods satisfying SMPR and con-
straints Σ consisting of functional dependencies, and Q be a CQ that is access-determined.
Then Q is AMonDet.

Proof. We know from Theorem D.12 that the schema is FD simplifiable, so we can eliminate
result bounds as follows. Recall that DetBy(mt) denotes the positions of the relation of mt
that are determined by the input positions of mt according to the FDs. Recall the form of
the FD simplification:

• The signature of Sch† is that of Sch plus some new relations: for each result-bounded
method mt, letting R be the relation accessed by mt, we add a relation Rmt whose arity is
|DetBy(mt)|.
• The integrity constraints of Sch† are those of Sch plus, for each result-bounded method mt

of Sch, two new ID constraints:

R(~x, ~y, ~z)→ Rmt(~x, ~y)

Rmt(~x, ~y)→ ∃~z R(~x, ~y, ~z)

where ~x denotes the input positions of mt and ~y denotes the other positions of DetBy(mt).
• The methods of Sch† are the methods of Sch that have no result bounds, plus the following:

for each result-bounded method mt on relation R in Sch, a method mt† on Rmt that has
no result bounds and whose input positions are the positions of Rmt corresponding to
input positions of mt.

By Proposition D.7 we know that Q is access-determined exactly when Q ⊆Γ Q
′, where

Γ contains two copies of the above schema and also axioms of the following form for each
access method mt:

• (Forward): (∧
i

accessible(xi)
)
∧ S(~x, ~y)→

(∧
i

accessible(yi)
)
∧ S′(~x, ~y).

• (Backward):(∧
i

accessible(xi)
)
∧ S′(~x, ~y)→

(∧
i

accessible(yi)
)
∧ S(~x, ~y).

where ~x denotes the input positions of mt. Note that S may be one of the original relations,
or one of the relations Rmt produced by the transformation above, depending on whether
mt originally had result bounds or not.

We now show that chase proofs with Γ must in fact be very simple under the SMPR
assumption:

Claim D.15. Assuming our schema is SMPR, consider any chase sequence for Γ. Then:

• Rules of the form Rmt(~x, ~y)→ ∃~z R(~x, ~y, ~z) will never fire.
• Rules of the form R′(~x, ~y, ~z)→ R′mt(~x, ~y) will never fire.
• FDs will never fire (assuming they were satisfied on the initial instance).

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:77

• (Backward) axioms will never fire.

Note that the last item suffices to conclude that Proposition D.14 holds, since a proof
of access-determinacy in which (Backward) axioms never fire is a proof of AMonDet. So
it suffices to prove the claim. We do so by induction on the length of a chase proof. We

consider the first item. Consider a fact Rmt(~c, ~d). Since the (Backward) axioms never fire

(fourth point of the induction), the fact must have been produced from a fact R(~c, ~d,~e).
Hence the axiom can not fire on this fact, because we only fire active triggers.

We move to the second item, considering a fact R′(~c, ~d,~e). By SMPR and the inductive
assumption that FDs do not fire, this fact can only have been produced via applying a

(Backward) axiom to a fact of the form R′mt(~c,
~d). Since inductively we know that such rules

doe not fire, this completes the inductive step.
Turning to the third item, we first consider a potential violation of an FD D → r on

an unprimed relation R. This consists of facts R(~c) and R(~d) agreeing on positions in D
and disagreeing on position r. As the initial instance is always assumed to satisfy the FDs,
these facts are not in the initial instance. But they could not have been otherwise produced,
as we know by induction (first and fourth points) that none of the rules with an unprimed
relation R in their head will fire. Now let us turn to facts that are potential violations of
the primed copies of the FDs, for some relation R′. The existence of the violation implies
that there is an access method on the corresponding relation R in the original schema, since
otherwise there could be no relation R′mt, and such a violation could not have occurred. By
the SMPR assumption there is exactly one such method.

We first consider the case where this access method has result bounds. We know that
the facts in the violation must have been produced by the rule going from R′mt to R′ (noting
that in this case the Forward rule creates R′mt-facts, not R′-facts). Let us write the facts of

the violation as R′(~c1, ~d1, ~e1) and R′(~c2, ~d2, ~e2). Assume that R′(~c2, ~d2, ~e2) was the latter of
the two facts to be created, then ~e2 would have been chosen fresh. Hence the violation must

occur within the positions corresponding to ~c1, ~d1 and ~c2, ~d2. But by induction (third point),

and by the SMPR assumption, these facts must have been created from facts R′mt(~c1, ~d1)

and R′mt(~c2, ~d2) where mt is the only access method on R, and in turn these must have been

created from facts Rmt(~c1, ~d1) and Rmt(~c2, ~d2). These last must (again, by induction, using

the third and fourth points) have been created from facts R(~c1, ~d1, ~f1) and R(~c1, ~d1, ~g1). But
then we have an earlier violation of the FDs on these two facts, which is a contradiction.

We now consider the second case, where the access method on R has no result bounds
in the original schema. In this case there is no relation R′mt and the facts of the violation
must have been produced by applying the Forward rule, which can only apply to the relation
R. But then the R-facts used to create them must themselves be an earlier violation of the
corresponding FD on R, which is again a contradiction. Hence, we have shown the third
item.

Turning to the last item, there are two kinds of Backward rules to consider. First, the
ones involving a primed relation R′ and the original relation R, where there is an access
method without result bounds on R in the original schema. Secondly, the ones involving a
primed relation R′mt and the unprimed relation Rmt where there is an access method with
result bounds on R in the original schema. For the first kind of axiom, any R′-fact can only
have been created from an R-fact using the Forward axioms, and so the Backward axiom

cannot fire. For the second kind of axiom, we show the claim by considering a fact R′mt(~c,
~d).

14:78 A. Amarilli and M. Benedikt Vol. 18:2

Using the second point of the induction, it can only have been generated by a fact Rmt(~c, ~d),
and thus (Backward) could not fire, which establishes the desired result.

Without SMPR, we can still argue that RA answerability is decidable, and show a singly
exponential complexity upper bound:

Theorem D.16. For general schemas with access methods and constraints Σ consisting of
FDs, RA answerability is decidable in EXPTIME.

Proof. We consider the query containment problem for RA answerability obtained after
eliminating result bounds, and let Γ be the corresponding constraints as in Proposition D.14.

Instead of claiming that neither the FDs nor the backward axioms will fire, as in the case
of SMPR, we argue only that the FDs will not fire. From this it follows that the constraints
consist only of IDs and accessibility axioms, leading to an EXPTIME complexity upper
bound: one can apply the EXPTIME complexity result without result bounds from [BBB13].

We consider a chase proof with Γ, and claim, for each relation R and each result-bounded
method mt on R, the following invariant:

• Every Rmt-fact and every R′mt-fact is a projection of some R-fact or some R′-fact.
• All the FDs are satisfied in the chase instance, and further for any relation R, the relation
R ∪ R′ satisfies any FDs on relation R, That is: for any FD D → r on relation R, we
cannot have an R-fact and an R′-fact that agree on positions in D and disagree on some
position in r.

The second item of the invariant implies that the FDs do not fire, which as we have argued
is sufficient to conclude our complexity bound.

The invariant is initially true, by assumption that FDs are satisfied on the initial
instance. When firing an R-to-Rmt axiom or an R′-to-R′mt axiom, the first item is preserved
by definition, and the second is trivially preserved since there are no FDs on Rmt or R′mt.

When firing an accessibility axiom, either forward or backward, again the first and the
second item are clearly preserved.

Now, consider the firing of an Rmt-to-R axiom. The first item is trivially preserved, so
we must only show the second.

Consider the fact Rmt(a1 . . . am) and the generated fact F = R(a1 . . . am, b1 . . . bn)
created by the rule firing. Assume that F is part of an FD violation with some other fact
F ′ which is of the form R(a′1 . . . a

′
m, b

′
1 . . . b

′
m) or R′(a′1 . . . a

′
m, b

′
1 . . . b

′
m).

We know that the left-hand-side of the FD cannot contain any of the positions of the bi,
because they are fresh nulls. Hence, the left-hand-side of the FD is included in the positions
of a1 . . . am. But now, by definition of the FD simplification, the right-hand-side of the FD
cannot correspond to one of the b1 . . . bn, since otherwise that position would have been
included in Rmt. So the right-hand-side is also one of the positions of a1 . . . am, and in
particular we must have ai 6= a′i for some 1 ≤ i ≤ m in the right-hand-side of the FD.

Now we use the first item of the inductive invariant on the fact Rmt(a1 . . . am): there
was already a fact F ′′, either an R or R′-fact, with tuple of values (a1 . . . am, b

′′
1 . . . b

′′
m). As

there is 1 ≤ i ≤ m such that a′i 6= ai, the tuples of values of F ′ and F ′′ must be different.
But now, as F and F ′ are an FD violation on the positions a1 . . . am, then F ′ and F ′′ are
seen to also witness an FD violation in R∪R′ that existed before the firing. This contradicts
the first point of the invariant, so we conclude that the second item is preserved when firing
an Rmt-to-R axiom.

When firing R′mt-to-R′ rules, the symmetric argument applies.

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:79

This completes the proof of the invariant, and concludes the proof of Theorem D.16.

D.7. Choice Simplifiability for RA plans with UIDs and FDs. We last turn to the
adaptation of our choice simplifiability result for UIDs and FDs (Theorem 7.4). Here is the
statement for the case of RA plans:

Theorem D.17. Let schema Sch have constraints given by UIDs and arbitrary FDs, and
Q be a CQ that is access-determined w.r.t. Sch. Then Q is also access-determined in the
choice simplification of Sch.

We will proceed in a similar fashion to Theorem 7.4, i.e., fixing one access at a time.
Here is the analogue of the single-access blowup (Definition 7.5), where we simply replace
the access-valid subinstance by a jointly access-valid subinstance:

Definition D.18. Let Sch be a schema and Sch† be its choice simplification, and let Σ be
a set of constraints.

Consider two instances I†1, I
†
2 that satisfy Σ, and a common subinstance I†Accessed which is

jointly access-valid in I†1 and I†2 for Sch†. Let (mt,AccBind) be an access in I†Accessed
A single-access RA blowup of I†1, I

†
2 and I†Accessed for (mt,AccBind) is a pair of instances

I1, I2 that satisfy Σ, such that I1 is a superinstance of I†1, I2 has a homomorphism to I†2, I1

and I2 have a common subinstance IAccessed which is jointly access-valid in I1 and I2 for Sch†,
and the following hold:

(1) IAccessed is a superinstance of I†Accessed;
(2) there is an output to the access mt,AccBind in IAccessed which is valid in I1 for Sch;

(3) for any access in I†Accessed having an output in I†Accessed which is valid for Sch in I†1, there is
an output to this access in IAccessed which is valid for Sch in I1;

(4) for any access in IAccessed which is not an access in I†Accessed, there is an output in IAccessed
which is valid for Sch in I1;

We use the following blowup lemma as an analogue of Lemma 7.6:

Lemma D.19. Let Sch be a schema and Sch† be its choice simplification, and let Σ be the
set of constraints.

Assume that, for any CQ Q not access-determined in Sch†, for any counterexample I†1, I
†
2

of access-determinacy for Q and Sch† with a common subinstance I†Accessed jointly access-valid

in I†1 and I†2 for Sch†, for any access mt,AccBind in I†Accessed,, we can construct a single-access

RA blowup of I†1, I
†
2 and I†Accessed for (mt,AccBind).

Then any CQ which is access-determined in Sch is also access-determined in Sch†.

The proof of this lemma is exactly like that of Lemma 7.6.
We are now ready to prove Theorem D.17 using the process of Lemma D.19. We proceed

similarly to the proof of Theorem 7.4.

Proof. Let Sch be the schema, let Sch† be its choice simplification, and let Σ be the set

of constraints. Let Q be a CQ which is not access-determined in Sch†, let I†1, I
†
2 be a

counterexample to access-determinacy, and let I†Accessed be a common subinstance of I†1 and I†2
for Sch† which is jointly access-valid in I†1 and I†2 for Sch†. Let (mt,AccBind) be an access

on relation R in I†Accessed: we know that this access has an output which is valid for Sch†,

14:80 A. Amarilli and M. Benedikt Vol. 18:2

but it does not necessarily have one which is valid for Sch. Our proof is to follow the

single-access RA blowup process and build superinstances I1, I2, and IAccessed of I†1, I†2, and

I†Accessed respectively, which satisfy the conditions.

As in the proof of Theorem D.17, if there are no matching tuples in I†1 for the

access (mt,AccBind), then there are no matching tuples in I†Accessed either, so the access
(mt,AccBind) already has a valid output for Sch and there is nothing to do. The same holds

if there are no matching tuples in I†2. Now, if there is exactly one matching tuple in I†1 and

exactly one matching tuple in I†2, as I†Accessed is jointly access-valid for Sch†, it necessarily

contains these matching tuples, so that, as I†Accessed ⊆ I†1 and I†Accessed ⊆ I†2, the matching tuple

in I†1 and I†2 is the same, and again there is nothing to do: the access (mt,AccBind) already
has a valid output for Sch.

Hence, the only interesting case is when there is a matching tuple to the access in I†1
and in I†2, and there is more than one matching tuple in one of the two. As I†1 and I†2 play a
symmetric role in the hypotheses of Lemma D.19, we assume without loss of generality that

it is I†1 which has multiple matching tuples for the access.

As I†Accessed is access-valid in I†1 for Sch†, we know that I†Accessed contains at least one of

these tuples, say ~t1. As IAccessed ⊆ I†2, then I†2 also contains ~t1. As in the proof of Theorem 7.4,

we take ~t2 a different matching tuple in I†1, let C be the non-empty set of positions where ~t1
and ~t2 disagree, and observe that there is no FD implied from the complement of C to a
position of C.

We define W as in the proof of Theorem 7.4, and construct I1 := I†1∪W and I2 := I†2∪W
as in that proof. We show that (I1, I2) is a counterexample to determinacy for Q and Sch†:

• We know by Claim 7.7 that I1 and I2 satisfy the UIDs and the FDs of Σ.

• We clearly have I†1 ⊆ I1.

• The homomorphism from I2 to I†2 is defined as in the proof of Theorem 7.4.

• We define IAccessed := I†Accessed∪W a common subinstance of I1 and I2 and we must show that
IAccessed is jointly access-valid in I1 and I2 for Sch†. We do this as in the proof of Theorem 7.4.

First, for accesses that include an element of Adom(IAccessed) \ Adom(I†Accessed), the matching

tuples are all in W so they are in IAccessed. Second, for accesses on Adom(I†Accessed), the

matching tuples include the result U of this access in I†Accessed, which was valid in I†1 and I†2,
and possible additional matching tuples U ′ from W which are in IAccessed, and these are
the only possible matching tuples. Thus, we can construct a valid output to this access
for Sch† from U and U ′.

What remains to be able to use Lemma D.19 is to show the four additional conditions:

(1) It is immediate that IAccessed ⊇ I†Accessed.
(2) The access (mt,AccBind) has an output in IAccessed which is valid for Sch in I1 and I2. This

is established as in the proof of Theorem 7.4: there are now infinitely many matching
tuples for the access in I1 and I2, so we can choose as many as we want in W to obtain
an output in IAccessed which is valid for Sch in I1 and I2.

(3) For every access of I†Accessed that has an output which is valid for Sch in I†1 in I†2, then we
can construct such an output in IAccessed which is valid for Sch in I1 and I2. This is similar

to the fourth bullet point above. From the output U to the access in I†Accessed which is

Vol. 18:2 WHEN CAN WE ANSWER QUERIES USING RESULT-BOUNDED DATA INTERFACES? 14:81

Table 2: Summary of results on simplifiability and complexity of RA answerability

Fragment Simplification Complexity

IDs Existence-check (Thm 5.2, Prop. D.8) EXPTIME-complete (Thm 6.3, Prop. D.8)
Bounded-width IDs Existence-check (see above) NP-complete (Thm 6.4, Prop D.8)
FDs FD (Thm D.12) In EXPTIME (Thm D.16)
FDs under SMPR FD (see above) NP-complete (Thm D.13)
FDs and UIDs Choice (Thm D.17) Open
Equality-free FO Choice (Thm D.10) Undecidable (same proof as Prop 9.2)
Frontier-guarded TGDs Choice (see above) 2EXPTIME-complete (Thm D.11)

valid for I†1 and I†2, we construct an output to the access in IAccessed which is valid for I1

and I2, using the tuples of U and the matching tuples in W .

(4) All accesses of IAccessed which are not accesses of I†Accessed have an output which is valid
for Sch in I1 and I2. As before, such accesses must include an element of W , so by the
fourth bullet point all matching tuples are in W , so they are all in IAccessed.

Hence, we have explained how to fix the access (mt,AccBind), so we can conclude using
Lemma D.19 that we obtain a counterexample to access-determinacy of Q in Sch by fixing
all accesses. This concludes the proof.

D.8. Summary of Extensions to Answerability with RA plans. Table 2 summarizes
the expressiveness and complexity results for RA plans. There are two differences with the
corresponding table for monotone answerability (Table 1 in the body):

• For RA plans, while we know that choice simplifiability holds with FDs and UIDs, we do
not know whether answerability is decidable. Indeed, in the monotone case, when proving
Theorem 8.2, we had used a separability argument to show that FDs could be ignored
for FDs and UIDs (see the proof of Theorem 8.2 in Section 8). We do not have such an
argument for answerability with RA plans.
• For RA plans, our tight complexity bound for answerability with FDs in isolation holds

only under the SMPR assumption; see Appendix D.6 for details.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	2. Related Work
	3. Preliminaries
	4. Reducing to Query Containment
	4.1. Access Monotone Determinacy and Equivalence to Monotone Rewritability
	4.2. Elimination of result upper bounds
	4.3. Reducing to query containment

	5. Simplifying result bounds with IDs and FDs
	6. Decidability of Monotone Answerability using Existence check and FD simplification
	6.1. Decidability for FDs
	6.2. Decidability for IDs
	6.3. Complexity for Bounded-Width IDs and Special Properties of the Query Containment for Access Methods
	6.4. Proof of the Linearization Results (Proposition 6.6 and 6.8)

	7. Schema simplification for expressive constraints
	8. Decidability using Choice Simplification
	9. General First-Order Constraints
	10. Summary and Conclusion
	References
	Appendix A. Alternative Semantics for Plans
	Appendix B. Proof of Theorem 6.13: completeness of the downward-free chase
	Appendix C. Proof of the Semi-Width Result (Proposition 6.5)
	Appendix D. Generalization of Results to RA Plans
	D.1. Variant of Reduction Results for RA Answerability
	D.2. Full Answerability and Monotone Answerability
	D.3. Blowup for RA Answerability
	D.4. Choice Simplifiability for RA answerability
	D.5. FD Simplifiability for RA plans
	D.6. Complexity of RA answerability for FDs
	D.7. Choice Simplifiability for RA plans with UIDs and FDs
	D.8. Summary of Extensions to Answerability with RA plans

