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Abstract. We present a terminating tableau calculus for graded hybrid logic with global
modalities, reflexivity, transitivity and role hierarchies. Termination of the system is
achieved through pattern-based blocking. Previous approaches to related logics all rely
on chain-based blocking. Besides being conceptually simple and suitable for efficient im-
plementation, the pattern-based approach gives us a NExpTime complexity bound for the
decision procedure.

1. Introduction

Graded modal logic [12] is a powerful generalization of basic modal logic. Most promi-
nently, graded modalities are used in description logics, rich modal languages tailored for
knowledge representation that have a wide range of practical applications [3]. Graded modal
logic allows to constrain the number of accessible states satisfying a certain property. So,
the modal formula ♦np is true in a state x if x has at least n + 1 successors satisfying p.
Analogously to ordinary modal logic, graded modal logic can be extended by nominals [1].
The resulting language, graded hybrid logic, can be extended further by adding global
modalities [13], which allow to specify properties that are to hold in all states.

Role hierarchies were first studied by Horrocks [16] in the context of description logics.
Using inclusion assertions of the form r ⊑ r′, one can specify that the role (relation) r is
contained in the role r′. Role hierarchies are of particular interest when considered together
with transitivity assertions for roles [30, 4]. The description logic SHOQ [18] combines the
expressive means provided by nominals, graded modalities, role hierarchies and transitive
roles.

We present a terminating tableau calculus for graded multimodal logic extended by
nominals, global modalities, reflexive and transitive roles, and role hierarchies. The modal
language under consideration in the present work is equivalent to SHOQ extended by
reflexive roles and a universal role, both extensions also being known from SROIQ [17].
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The most important difference of our approach to existing calculi for SHOQ and
stronger logics [18, 19, 17] is the technique used to achieve termination of the tableau con-
struction. The established tableau algorithms all rely on modifications of Kripke’s chain-
based blocking technique [27]. Chain-based blocking assumes a precedence order on the
nominals (also known as nodes or prefixes) of a tableau branch, and prevents processing of
nominals that are subsumed by preceding nominals. In the simplest case, the precedence
order is chosen to be the ancestor relation among nominals (ancestor blocking). In general,
however, it may be any order that contains the ancestor relation (anywhere blocking [2, 28]).
Ancestor blocking gives an exponential bound on the length of ancestor chains, resulting in
a double exponential bound on the size of tableau branches. Depending on the choice of the
precedence order, anywhere blocking can lower this bound to a single exponential. However,
the size bound on tableau branches does not seem to translate easily to a complexity bound
for the decision procedures in [18, 19, 17] ([18, 19] show a 2-NExpTime bound, while [17]
leaves complexity open). We feel that the main difficulty in obtaining better complexity
bounds is the algorithms being non-cumulative.

A tableau system is called cumulative if its rules never update or delete formulas. In
contrast to most systems in the literature, calculi devised for description logics are often not
cumulative. By giving up cumulativity, it is possible to obtain a more direct correspondence
between tableau branches and the candidate models they represent. So, for instance, a non-
cumulative calculus may merge several nominals into one if the nominals are found to be
semantically equivalent. In this way, one can achieve that every state of a candidate model
is represented by exactly one nominal. This close correspondence is intuitive and may
simplify model existence arguments. At the same time, non-cumulative rules are typically
more complex than their cumulative counterparts, which may complicate the presentation of
a calculus. More importantly, cumulative systems are usually more amenable to termination
and complexity analysis. The problem with non-cumulative systems is that rules that can
update or delete formulas may potentially undo earlier changes made to a tableau branch.
For instance, consider two tableau branches Γ and ∆, where ∆ is obtained from Γ by some
sequence of tableau rule applications. In a non-cumulative calculus, it is conceivable that by
applying some rule to ∆, we may obtain Γ again. Clearly, such a calculus is non-terminating
even if the size of tableau branches can be bounded. Often, termination of non-cumulative
calculi can only be achieved if rule application follows some fixed strategy [5, 19, 17]. And
even then, size bounds on tableau branches do not immediately yield time complexity
bounds. To construct a branch of size n, a non-cumulative system may need significantly
more than n rule applications. Cumulative calculi, on the other hand, are guaranteed to
enlarge the branch by at least one formula in every step. Therefore, a size bound on tableau
branches can immediately be interpreted as an upper bound on the non-deterministic time
complexity of the decision procedure.

Unlike [18, 19, 17], our calculus is cumulative. Cumulativity of the calculus in the
presence of nominals is achieved following [24] by representing equality constraints via an
equivalence relation on nominals. Termination of our system is achieved through pattern-
based blocking [23, 24]. Pattern-based blocking is conceptually simpler than chain-based
techniques in that it does not need an order on the nominals, and seems promising as
it comes to efficient implementation [15]. Pattern-based blocking provides an exponential
bound on the size of tableau branches and on the number of tableau rule applications
for a single branch. Thus it limits the complexity of the associated decision procedure to
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NExpTime. To deal with graded modalities, we extend the blocking conditions in [23, 24],
preserving the exponential size bound on tableau branches.

It is worth noting that, despite of the close interplay between pattern-based blocking
and abstract representation of state equality in the present work, the two techniques should
be seen as independent and applicable in isolation from each other. In fact, pattern-based
blocking was introduced in [23] for a non-cumulative system where equality was treated
by means of a substitution operation on branches. Also, in previous work [24], we show
how abstract treatment of equality can be combined with chain-based blocking to obtain
cumulative, terminating tableau calculi for hybrid logic with converse modalities and the
difference modality.

We begin by presenting a calculus for graded hybrid logic with global modalities. We
argue that the blocking conditions used in [23, 24] are insufficient in the presence of graded
modalities. We extend pattern-based blocking to account for the increased expressive power
and argue the completeness and termination of the resulting calculus. In the second part of
the paper, we extend our calculus further by allowing reflexivity, transitivity and inclusion
assertions. It turns out that in the presence of inclusion assertions, the blocking condition
used for the basic calculus needs to be extended once again.

2. Graded Hybrid Logic with Global Modalities and Role Inclusion

Following [22, 24], we represent modal logic in simple type theory (see, e.g., [10, 9]).
This way we can make use of a rich syntactic and semantic framework and modal logic
does not appear as an isolated formal system. We start with two base types B and S. The
interpretation of B is fixed and consists of two truth values. The interpretation of S is a
nonempty set whose elements are called worlds or states. Given two types σ and τ , the
functional type στ is interpreted as the set of all total functions from the interpretation of
σ to the interpretation of τ . We write σ1σ2σ3 for σ1(σ2σ3).

We assume a countable set of names, which we partition into a countable set of variables
and a set of constants. We employ three kinds of variables: Nominal variables x, y, z of
type S, propositional variables p, q of type SB, and role variables r of type SSB. Nominal
variables are called nominals for short, and role variables are called roles. We assume there
are infinitely many nominals. We use the logical constants

⊥,⊤ : B ¬ : BB ∨,∧,→ : BBB
.
= : SSB ∃,∀ : (SB)B

Terms are defined as usual. We write st for applications, λx.s for abstractions, and s1s2s3
for (s1s2)s3. We also use infix notation, e.g., s ∧ t for (∧)st.

Terms of type B are called formulas. We employ some common notational conventions:
∃x.s for ∃(λx.s), ∀x.s for ∀(λx.s), and x 6

.
=y for ¬(x

.
=y). Given a set X of nominals, we

use the following abbreviation:

DX :=
∧

x,y∈X
x 6=y

x 6
.
=y

We use the following constants:

⊑ : (SSB)(SSB)B r1 ⊑ r2 = ∀xy.r1xy → r2xy

R : (SSB)B Rr = ∀x.rxx

T : (SSB)B Tr = ∀xyz.rxy ∧ ryz → rxz
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To the right of each constant is an equation defining its semantics. We call formulas of
the form r ⊑ r′ (role) inclusion assertions. Formulas Rr and Tr are called reflexivity and
transitivity assertions, respectively.

We write ∃nX.s for ∃x1 . . . xn.s if |X| = n and X = {x1, . . . , xn}. The modal constants
are then defined as follows:

¬̇ : (SB)SB ¬̇px = ¬(px)

∧̇ : (SB)(SB)SB (p ∧̇ q)x = px ∧ qx

∨̇ : (SB)(SB)SB (p ∨̇ q)x = px ∨ qx

〈 〉n : (SSB)(SB)SB 〈r〉npx = ∃n+1Y.DY ∧ (
∧

y∈Y rxy ∧ py)

[ ]n : (SSB)(SB)SB [r]npx = ∀n+1Y. (
∧

y∈Y rxy) ∧DY →
∨

y∈Y py

En : (SB)SB Enpx = ∃n+1Y.DY ∧
∧

y∈Y py

An : (SB)SB Anpx = ∀n+1Y.DY →
∨

y∈Y py

˙ : SSB ẋy = x
.
=y

where n ≥ 0 in all equations

The semantics of boxes and diamonds is defined following [11, 31, 29]. Intuitively, it can be
described as follows:

Enp: There are at least n+ 1 states satisfying p.
Anp: All states but possibly n exceptions satisfy p.
〈r〉np: There are at least n+ 1 r-successors satisfying p.
[r]np: All r-successors but possibly n exceptions satisfy p.

In accordance with the usual modal intuition, “formulas” of modal logic are seen as pred-
icates of type SB denoting sets of states. They can be represented as modal expressions
according to the following grammar:

t ::= p | ẋ | ¬̇t | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

As with the propositional connectives, we use infix notation for ∧̇ and ∨̇. Unlike with
the propositional connectives, we assume the application of modal operators to have a higher
precedence than regular functional application. So, for instance, we write ¬̇〈r〉2ẏ ∨̇ p x for
((¬̇(〈r〉2(ẏ))) ∨̇ p)x.

An interpretation is a function I mapping B to the set {0, 1}, S to a non-empty set, a
functional type στ to the set of all total functions from Iσ to Iτ , and every name x : σ to
an element of Iσ (i.e., Ix ∈ Iσ) such that the logical constants get their usual meaning:

I⊥ = 0 and I⊤ = 1 (I¬)a = 1 ⇐⇒ a = 0

(I∧)ab = 1 ⇐⇒ a = 1 and b = 1 (I∨)ab = 1 ⇐⇒ a = 1 or b = 1

(I →)ab = 1 ⇐⇒ a = 0 or b = 1 (I
.
=)ab = 1 ⇐⇒ a = b

(I∃)f = 1 ⇐⇒ fa = 1 for some a ∈ IS (I∀)f = 1 ⇐⇒ fa = 1 for all a ∈ IS

If I is an interpretation, x : σ is a variable, and a ∈ Iσ, then Ix
a denotes the interpretation

that agrees everywhere with I but possibly on x where it yields a. Every interpretation I
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can be extended to a function Î that maps every term s : σ to an element of Iσ such that:

Îx = Ix

Î(st) = (Îs)(Ît)

Î(λx.s) = {(a, Îx
as) | a ∈ Iσ} if x : σ

Since Î is uniquely determined by I, in the following we write Is for Îs for convenience.
A modal interpretation is an interpretation that, in addition, satisfies the above equations
defining the constants ⊑, R, T , ¬̇, ∧̇, ∨̇, 〈 〉n, [ ]n, E, A, ˙ . If Is = 1, we say that I satisfies
s, or that I is a model of s. A modal interpretation I satisfies a set Γ of formulas (I
is a model of Γ) if I satisfies every formula in Γ. A formula (a set of formulas) is called
satisfiable if it has a model.

3. Graded Hybrid Logic with Global Modalities

We begin with a tableau calculus for the restricted language without inclusion, reflex-
ivity or transitivity assertions.

3.1. Branches. For the sake of simplicity, we define our tableau calculus on negation nor-
mal expressions, i.e., terms of the form:

t ::= p | ¬̇p | ẋ | ¬̇ẋ | t ∧̇ t | t ∨̇ t | 〈r〉nt | [r]nt | Ent | Ant

A branch Γ is a finite set of formulas s of the form

s ::= tx | rxy | x
.
=y | x 6

.
=y | ⊥

where t is a negation-normal modal expression of the above form. Formulas of the form
rxy are called accessibility formulas or edges. We use the formula ⊥ to explicitly mark
unsatisfiable branches. We call a branch Γ closed if ⊥ ∈ Γ. Otherwise, Γ is called open.
The branch consisting of the initial formula (or formulas) to be tested for satisfiability is
called the initial branch.

Let Γ be a branch. With ∼Γ we denote the least equivalence relation ∼ on nominals
such that x ∼ y for every equation x

.
=y ∈ Γ. Let R(x, y) denote a term of the form x

.
=y,

x 6
.
=y, or rxy. We define the equational closure Γ̃ of a branch Γ as

Γ̃ := Γ ∪ {tx | t modal expression ∧ ∃x′ : x′ ∼Γ x ∧ tx′ ∈ Γ}

∪ {R(x, y) | ∃x′, y′ : x′ ∼Γ x ∧ y′ ∼Γ y ∧ R(x′, y′) ∈ Γ}

Note that for all nominals x and y, x ∼Γ y holds if and only if x
.
=y ∈ Γ̃. Since Γ̃ only

contains nominals, modal expressions and roles that already occur on Γ, Γ̃ clearly is finite
if Γ is finite. Reasoning with respect to Γ̃ can be implemented efficiently using disjoint-set
forests, as demonstrated in [14, 15].
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3.2. Evidence. The proof of model existence for our calculus proceeds in two stages. Ap-
plied to a satisfiable initial branch, the rules of the calculus (defined in Sect. 3.3) construct
a quasi-evident branch (defined in Sect. 3.4). We show that every quasi-evident branch can
be extended to an evident branch. For evident branches, we show model existence. Intu-
itively, we call a branch evident if it contains a complete syntactic description of a model
of all of its formulas.

We write DΓX as an abbreviation for ∀x, y ∈ X : x 6= y =⇒ x 6
.
=y ∈ Γ̃ ∨ y 6

.
=x ∈ Γ̃. A

branch Γ is called evident if it satisfies all of the following evidence conditions:

(t1 ∧̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∧ t2x ∈ Γ̃

(t1 ∨̇ t2)x ∈ Γ ⇒ t1x ∈ Γ̃ ∨ t2x ∈ Γ̃

〈r〉ntx ∈ Γ ⇒ ∃n+1Y : DΓY ∧ {rxy, ty | y ∈ Y } ⊆ Γ̃

[r]ntx ∈ Γ ⇒ |{y | rxy ∈ Γ̃, ty /∈ Γ̃}/∼Γ
| ≤ n

Entx ∈ Γ ⇒ ∃n+1Y : DΓY ∧ {ty | y ∈ Y } ⊆ Γ̃

Antx ∈ Γ ⇒ |{y | ty /∈ Γ̃}/∼Γ
| ≤ n

ẋy ∈ Γ ⇒ x ∼Γ y

¬̇ẋy ∈ Γ ⇒ x 6∼Γ y

x 6
.
=y ∈ Γ ⇒ x 6∼Γ y

¬px ∈ Γ ⇒ px /∈ Γ̃

A formula s is called evident on Γ if Γ satisfies the right-hand side of the evidence condition
corresponding to s. For instance, (t1 ∧̇ t2)x is evident on Γ if and only if {t1x, t2x} ⊆ Γ̃.

Given a term t, we write N t for the set of nominals that occur in t. The notation is
extended to sets of terms in the natural way: NΓ :=

⋃
{N t | t ∈ Γ}.

Theorem 3.1 (Model Existence). Every evident branch has a finite model.

Proof. Let Γ be an evident branch and let x0 ∈ NΓ. Let ρ be a function from finite
sets of nominals to nominals such that ρX ∈ X whenever X is nonempty. We define the
interpretation I such that:

IS := {ρ{y | y ∼Γ x} |x ∈ NΓ}

Ix := if x ∈ NΓ then ρ{y ∈ NΓ | y ∼Γ x} else Ix0

Ip := {x ∈ IS | px ∈ Γ̃}

Ir := {(x, y) ∈ (IS)2 | rxy ∈ Γ̃}

Intuitively, we construct I by interpreting S as the quotient of the nominals on Γ by ∼Γ,
where each equivalence class is represented by a fixed element of the class selected by ρ.
Nominals on Γ are mapped to their corresponding equivalence classes. All other nominals
are mapped to some arbitrary state. Propositional variables and roles are interpreted as
the smallest sets that are consistent with the respective assertions on Γ. Since Γ is finite
by definition, so is I. Note that in the last two lines of the definition, we interpret the set
notation as a convenient description for the respective characteristic functions.

We now show that, for all s ∈ Γ, I satisfies s by induction on s. Let s ∈ Γ. We proceed
by case analysis.

• s = px. Since Ix ∼Γ x, we have p(Ix) ∈ Γ̃. The claim follows.
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• s = ¬̇px. It suffices to show that I(px) = 0. By the evidence condition for s, px /∈ Γ̃.

Hence p(Ix) /∈ Γ̃. The claim follows.

• s = rxy. Then r(Ix)(Iy) ∈ Γ̃, and hence (Ix,Iy) ∈ Ir.
• s = x

.
=y. It suffices to show that Ix = Iy, which is the case as x ∼Γ y by the definition

of ∼Γ.
• s = x 6

.
=y. By the evidence condition for s, x 6∼Γ y. Hence Ix 6∼Γ Iy. The claim follows.

• s = 〈r〉ntx. By the evidence condition for s, there is a set Y of cardinality n+1 such that

DΓY and for all y ∈ Y , {rxy, ty} ⊆ Γ̃. By the inductive hypothesis for the disequations
required by DΓY , we have |Y/∼Γ

| = |{Iy | y ∈ Y }| = n + 1. By the inductive hypothesis
for the formulas rxy and ty (for all y ∈ Y ), we have (Ix,Iy) ∈ Ir, and I satisfies ty.
The claim follows.

• s = [r]ntx. By the evidence condition for s, |{y | rxy ∈ Γ̃, ty /∈ Γ̃}/∼Γ
| ≤ n. Since

Ix ∼Γ x whenever x ∈ NΓ, we have for all x, y ∈ NΓ: (Ix,Iy) ∈ Ir ⇔ r(Ix)(Iy) ∈
Γ̃ ⇔ rxy ∈ Γ̃. Hence |{y | rxy ∈ Γ̃, ty /∈ Γ̃}/∼Γ

| = |{Iy | (Ix,Iy) ∈ Ir, ty /∈ Γ̃}| ≤ n.

Moreover, by the inductive hypothesis, I satisfies ty whenever ty ∈ Γ̃. The claim follows.

The cases s = (t1 ∨̇ t2)x, s = (t1 ∧̇ t2)x are straightforward. The cases s = ẋy and s = ¬̇ẋy
proceed analogously to s = x

.
=y and, respectively, s = x 6

.
=y, and the cases s = Entx and

s = Antx are analogous but simpler than s = 〈r〉ntx and, respectively, s = [r]ntx.

3.3. Tableau Rules. The tableau rules of our basic calculus T are defined in Fig. 1. In
the rules, we write ∃x ∈ X : Γ(x) for Γ(x1) | . . . | Γ(xn), where X = {x1, . . . , xn} and
Γ(x) is a set of formulas parameterized by x. In case X = ∅, the notation translates to ⊥.
Dually, we write ∀x ∈ X : Γ(x) for Γ(x1), . . . ,Γ(xn) (X = {x1, . . . , xn}). If X = ∅, the
notation stands for the empty set of formulas.

The side condition of R♦ uses the notion of quasi-evidence that we will introduce in
Sect. 3.4. For now, we assume the rule is formulated with the restriction “〈r〉ntx not evident
on Γ”.

Note that for n = 0, the rules R♦ and R� instantiate, modulo obvious simplifications,
to their respective non-graded counterparts:

〈r〉0tx

rxy, ty
y fresh, 〈r〉0tx not quasi-evident on Γ

[r]0tx

ty
rxy ∈ Γ̃

A branch ∆ is called a proper extension of a branch Γ if ∆ ⊇ Γ and ∆̃ ) Γ̃. Note that if ∆
is a proper extension of Γ, in particular it holds ∆ ) Γ. The converse does not hold: Let
Γ := {ẋy, x

.
=z, z

.
=y} and ∆ := Γ ∪ {x

.
=y}. Then ∆ ) Γ but ∆ is not a proper extension

of Γ. We implicitly restrict the applicability of the tableau rules so that a rule R is only
applicable to a formula s ∈ Γ if all of the alternative branches ∆1, . . . ,∆n resulting from
this application are proper extensions of Γ. Moreover, we require that for every i, j with
1 ≤ i < j ≤ n, ∆̃i 6= ∆̃j. Whenever a rule produces several alternative branches whose
equational closure is equal, by the following proposition it suffices to consider only one of
them to preserve soundness.

Proposition 3.2. Let I be a modal interpretation and Γ, ∆ be branches such that Γ̃ = ∆̃.
Then I satisfies Γ if and only if I satisfies ∆.
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R∧̇

(s ∧̇ t)x

sx, tx
R∨̇

(s ∨̇ t)x

sx | tx

R♦

〈r〉ntx

∀y ∈ Y : rxy, ty, ∀z ∈ Y, y 6= z : y 6
.
=z

Y fresh, |Y | = n+ 1, 〈r〉ntx not quasi-evident on Γ

R�

[r]ntx

∃y, z ∈ Y, y 6= z : y
.
=z | ∃y ∈ Y : ty

Y ⊆ {y | rxy ∈ Γ̃}, |Y | = |Y/∼Γ
| = n+ 1

RE

Entx

∀y ∈ Y : ty, ∀z ∈ Y, y 6= z : y 6
.
=z

Y fresh, |Y | = n+ 1, Entx not evident on Γ

RA

Antx

∃y, z ∈ Y, y 6= z : y
.
=z | ∃y ∈ Y : ty

Y ⊆ NΓ, |Y | = |Y/∼Γ
| = n+ 1

RN

ẋy

x
.
=y

RN̄

¬̇ẋy

x 6
.
=y

R⊥
¬̇

¬̇px

⊥
px ∈ Γ̃ R⊥

6
.
=

x 6
.
=y

⊥
x ∼Γ y

Γ is the branch to which a rule is applied.
“Y fresh” stands for Y ∩ NΓ = ∅.

Figure 1: Tableau rules for T

Proposition 3.3 (Soundness). Let ∆1, . . . ,∆n be the branches obtained from a branch Γ
by a rule of T . Then Γ is satisfiable if and only if there is some i ∈ {1, . . . , n} such that
∆i is satisfiable.

Example 3.4. Consider the unsatisfiable formula (〈r〉1p ∧̇[r]1¬̇p)x. Applied to the formula,
our tableau rules produce three closed branches as shown in Fig. 2. All the rule applications
except R� produce exactly one extension. The rule R� applies to the formula [r]1¬̇px and
the set Y = {y, z} producing three extensions. The leftmost branch is closed with R⊥

6
.
=

applied to y 6
.
=z, the other two branches are closed with R⊥

¬̇ applied to the respective two
formulas introduced by the application of R�. Note that without the restriction that the
equational closures of alternative extensions must be different the application of R� would
introduce an additional fourth extension, namely by the equation z

.
=y.

3.4. Control. The restrictions on the applicability of the tableau rules given by the ev-
idence conditions are not sufficient for termination. Consider Γ0 := {A0〈r〉0px}. An
application of RA to Γ0 yields Γ1 := Γ0 ∪ {〈r〉0px}, which can be extended by R♦ to
Γ2 := Γ1 ∪ {rxy, py}. Now RA is applicable again and yields Γ3 := Γ2 ∪ {〈r〉0py}, which in
turn can be extended by R♦, and so ad infinitum.

To obtain a terminating calculus, the rule R♦ needs to be restricted further. We do
so by weakening the notion of evidence for diamond formulas. The weaker notion, called
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(〈r〉1p ∧̇[r]1¬̇p)x

〈r〉1px, [r]1¬̇px R∧̇

rxy, py, rxz, pz, y 6
.
=z R♦

y
.
=z R� ¬̇py R� ¬̇pz R�

⊥ R⊥
6
.
=

⊥ R⊥
¬̇ ⊥ R⊥

¬̇

Figure 2: Tableau derivation for (〈r〉1p ∧̇[r]1¬̇p)x

quasi-evidence, is then used in the side condition of R♦ in place of evidence. As we have
mentioned before, an evident branch contains a complete description of a model of all of its
formulas. A quasi-evident branch will contain only a partial description of such a model.
In particular, quasi-evidence will not require that for every diamond 〈r〉ntx, we have n+ 1
outgoing edges rxy. However, we require that the partial description given by a quasi-
evident branch can always be completed to a full model of the branch by adding edges. So,
in particular, every quasi-evident branch will be satisfiable. In the above example, Γ3 will
turn out to be quasi-evident and hence terminal. And indeed, Γ3 is clearly satisfiable and
can be completed to an evident branch by adding the edge ryy.

While quasi-evidence was introduced in the context of pattern-based blocking, it can
also be made sense of in the context of chain-based blocking. Unlike with pattern-based
blocking, calculi using chain-based blocking usually terminate with branches that are not
quasi-evident, which is due to the presence of “blocked” parts, i.e., parts of the branch that
have at some point been identified as irrelevant for the model construction and so have been
excluded from further processing. The parts that are not blocked form a kernel from which
a model can be constructed. And in many cases, this kernel is precisely what we call a
quasi-evident branch. A concrete example relating chain-based blocking and quasi-evidence
is given in [24].

Our task is now to define a notion of quasi-evidence that is weak enough to guarantee
termination of our calculus but strong enough to preserve completeness in the presence of
graded modalities. The notions of quasi-evidence used in previous work on pattern-based
blocking [23, 24] turn out to be too weak. For instance, intuitively adapting the notion
in [23] would give us the following candidate definition:

A formula 〈r〉msx is quasi-evident on Γ if there are nominals y, z1, . . . , zm+1 such that

{ryz1, sz1, . . . , ryzm+1, szm+1} ⊆ Γ̃ and {[r]nty | [r]ntx ∈ Γ̃} ⊆ Γ̃. (We also say: 〈r〉msx is

quasi-evident if the corresponding pattern {〈r〉ms} ∪ {[r]nt | [r]ntx ∈ Γ̃} is expanded).
With this definition of quasi-evidence, no rule of our calculus would apply to the fol-

lowing branch:

Γ := {ryz, qz, [r]1(p ∧̇ ¬̇p)y, 〈r〉0qx, [r]1(p ∧̇ ¬̇p)x, rxu, ¬̇qu}

As Γ is clearly unsatisfiable, the notion of quasi-evidence needs to be adapted.
Given a branch Γ and a role r, an r-pattern is a set of expressions of the form µs, where

µ ∈ {〈r〉n, [r]n |n ∈ N}. We write P r
Γx for the largest r-pattern P such that P ⊆ {t | tx ∈ Γ̃}.

We call P r
Γx the r-pattern of x on Γ. An r-pattern P is expanded on Γ if there are nominals

x, y such that rxy ∈ Γ̃ and P ⊆ P r
Γx. In this case, we say that the nominal x expands P

on Γ.



10 M. KAMINSKI, S. SCHNEIDER, AND G. SMOLKA

A diamond formula 〈r〉nsx ∈ Γ is quasi-evident on Γ if it is either evident on Γ or x

has no r-successor on Γ (i.e., there is no y such that rxy ∈ Γ̃) and P r
Γx is expanded on Γ.

The rule R♦ can only be applied to diamond formulas that are not quasi-evident.
Note that whenever 〈r〉nsx ∈ Γ is quasi-evident but not evident on Γ, there is a nominal

y that expands P r
Γx on Γ.

We call a branch Γ quasi-evident if it satisfies all of the evidence conditions but the one
for diamond formulas, which we replace by:

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ

Example 3.5. Figure 3 shows a tableau derivation resulting in a quasi-evident branch.
Let us write Γn for the branch obtained in line n of the derivation. Note that P r

Γ3
x =

{〈r〉0p, 〈r〉0q} is expanded on Γ3. The notion of expandedness is such that, once expanded, a
pattern remains expanded on all extensions of the branch. In particular, if P r

Γi
x is expanded

on Γi, then P
r
Γi
x (not, however, P r

Γj
x) will be expanded on Γj for all j ≥ i. Note that the

pattern of a nominal may change over time, i.e., P r
Γi
x and P r

Γj
x may be different if i 6= j.

So, in the example, P r
Γ1
x = ∅ ( P r

Γ3
x. In general, we have P r

Γi
x ⊆ P r

Γj
x whenever i ≤ j.

However, if x ∼Γi
y and x expands P r

Γi
y on Γi, then x will expand P r

Γj
y on Γj for all j ≥ i.

Since P r
Γ5
x = P r

Γ5
y, P r

Γ5
y is expanded on Γ5, and hence both 〈r〉0py and 〈r〉0qy are quasi-

evident on Γ5. The pattern P r′
Γ5
y = {〈r′〉0q} is not expanded on Γ5, so R♦ is applicable to

〈r′〉0qy. On the branch Γ6 resulting from this application, the pattern becomes expanded,

and so does P r′
Γ6
x. The only diamond formula that is not quasi-evident on Γ6 is 〈r〉0qx (since

it is not evident and x has a successor on Γ6). After applying R♦ to 〈r〉0qx, Γ7 contains
only quasi-evident diamond formulas. To make the branch evident, it remains to propagate
the universal constraint 〈r〉0p ∧̇〈r〉0q ∧̇〈r

′〉0q to z and u (steps 8-11). Since this introduces

no new patterns (we have P r
Γ11
z = P r

Γ11
u = P r

Γ11
y = P r

Γ11
x and P r′

Γ11
z = P r′

Γ11
u = P r′

Γ11
x =

P r′

Γ11
y), Γ11 is quasi-evident.

Lemma 3.6. Let Γ be a quasi-evident branch and let 〈r〉nsx ∈ Γ be not evident on Γ. Let

y be a nominal that expands P r
Γx on Γ and let ∆ := Γ ∪ {rxz | ryz ∈ Γ̃}. Then:

(1) ∀z : rxz ∈ ∆̃ ⇐⇒ ryz ∈ Γ̃,
(2) ∀m, t : 〈r〉mt ∈ P r

Γx =⇒ 〈r〉mtx evident on ∆,
(3) 〈r〉nsx evident on ∆,
(4) ∀r′,m, t, z : 〈r′〉mtz evident on Γ =⇒ 〈r′〉mtz evident on ∆,
(5) ∆ quasi-evident.

Proof. We begin with (1). Let z be a nominal. By construction, it holds ryz ∈ Γ̃ ⇒ rxz ∈
∆. The converse implication holds by the fact that 〈r〉nsx is quasi-evident but not evident

on Γ, meaning that x has no r-successor on Γ. It remains to show: rxz ∈ ∆ ⇔ rxz ∈ ∆̃.
The direction from left to right is obvious. For the other direction, assume rxz ∈ ∆̃. Then
there are x′, z′ such that x′ ∼Γ x, z

′ ∼Γ z, and rx
′z′ ∈ ∆. Since x has no r-successor on Γ,

neither does x′. Hence, by the definition of ∆, we must have x′ = x, and so rxz′ ∈ ∆. But
then ryz′ ∈ Γ̃, and consequently ryz ∈ Γ̃. The claim follows by the definition of ∆.

Now to (2). Let 〈r〉mt ∈ P r
Γx. Since P r

Γy ⊇ P r
Γx, in particular it holds 〈r〉mty ∈ Γ̃,

i.e., there is some y′ ∼Γ y such that 〈r〉mty
′ ∈ Γ. By (1), it suffices to show that 〈r〉mty

is evident on Γ. This is the case since 〈r〉mty
′ is quasi-evident on Γ (as Γ is quasi-evident)

and y′ has an r-successor on Γ (as y has one on Γ).
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0. A0(〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)x

1. (〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)x RA

2. (〈r〉0p ∧̇〈r〉0q)x, 〈r〉0px, 〈r〉0qx, 〈r
′〉0qx 2×R∧̇

3. rxy, py R♦

4. (〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)y RA

5. (〈r〉0p ∧̇〈r〉0q)y, 〈r〉0py, 〈r〉0qy, 〈r
′〉0qy 2×R∧̇

6. r′yz, qz R♦

7. rxu, qu R♦

8. (〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)z RA

9. (〈r〉0p ∧̇〈r〉0q)z, 〈r〉0pz, 〈r〉0qz, 〈r
′〉0qz 2×R∧̇

10. (〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)u RA

11. (〈r〉0p ∧̇〈r〉0q)u, 〈r〉0pu, 〈r〉0qu, 〈r
′〉0qu 2×R∧̇

Figure 3: Tableau derivation for A0(〈r〉0p ∧̇〈r〉0q ∧̇〈r
′〉0q)x

Claim (3) immediately follows from (2).
Claim (4) is obvious as the evidence of diamonds on a branch cannot be destroyed by

adding edges.
Now to (5). The only conditions that might in principle be violated on ∆ are the quasi-

evidence condition for diamonds of the form 〈r〉mtz ∈ ∆ where z ∼∆ x, and the evidence
condition for boxes [r]mtz ∈ ∆ where z ∼∆ x.

For diamonds of the above form, the quasi-evidence condition holds by (2).

If [r]mtz ∈ ∆ and z ∼∆ x, it holds [r]mty ∈ Γ̃ since P r
Γy ⊇ P r

Γx = P r
∆x. Hence by (1)

it suffices to show that [r]mty is evident on Γ, which is the case since Γ is quasi-evident.

Theorem 3.7 (Evidence Completion). For every quasi-evident branch Γ there is an evident
branch ∆ such that Γ ⊆ ∆.

Proof. For every branch Γ we define:

ϕΓ := |{〈r〉nsx | 〈r〉nsx ∈ Γ ∧ 〈t〉nsx not evident on Γ}|

Let Γ be quasi-evident. We proceed by induction on ϕΓ. If ϕΓ = 0, then Γ is evident and
we are done. Otherwise, there is a diamond 〈r〉nsx ∈ Γ that is not evident on Γ. Let y be

a nominal that expands P r
Γx on Γ, and let Γ′ := Γ ∪ {rxz | ryz ∈ Γ̃}. By Lemma 3.6(3-5),

Γ′ is quasi-evident and ϕΓ′ < ϕΓ. So, by the inductive hypothesis, there is some evident
branch ∆ such that Γ ⊆ Γ′ ⊆ ∆.

A branch is called maximal if it cannot be extended by any tableau rule.

Theorem 3.8 (Quasi-evidence). Every open and maximal branch in T is quasi-evident.

Proof. Let Γ be an open and maximal branch. Note that we have no evidence or quasi-
evidence conditions for formulas of the form px, rxy or x

.
=y. We show that every s ∈ Γ
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that is not of the form px, rxy or x
.
=y is (quasi-)evident on Γ by case analysis on the shape

of s.

• s = ¬̇px. The claim, px /∈ Γ̃, follows by R⊥
¬̇ (and the assumption that Γ is open and

maximal).
• s = x 6

.
=y. The claim, x 6∼Γ y, follows by R⊥

6
.
=

(and the assumption that Γ is open and

maximal).

• s = ẋy. By RN , x
.
=y ∈ Γ̃ and hence x ∼Γ y.

• s = ¬̇ẋy. By RN̄ , x 6
.
=y ∈ Γ̃. Then there are some x′ and y′ such that x′ ∼Γ x, y

′ ∼Γ y,
and x′ 6

.
=y′ ∈ Γ. By R⊥

6
.
=
, we have x′ 6∼Γ y′ (cf. s = x 6

.
=y). The claim follows by the

transitivity of ∼Γ.
• s = [r]ntx. To show: |{y | rxy ∈ Γ̃, ty /∈ Γ̃}/∼Γ

| ≤ n. This is clearly the case if

|{y | rxy ∈ Γ̃}| ≤ n. Otherwise, it suffices to show that for every Y ⊆ {y | rxy ∈ Γ̃} such

that |Y | = n+ 1, it either holds |Y/∼Γ
| < |Y | or ty ∈ Γ̃ for some y ∈ Y . This follows by

R� since y
.
=z ∈ Γ implies y ∼Γ z for all y, z ∈ Y .

The cases s = (t1 ∨̇ t2)x, s = (t1 ∧̇ t2)x, and s = 〈r〉ntx are immediate by, respectively, R∨̇,
R∧̇, and R♦. The cases s = Entx and s = Antx are proved analogously to s = 〈r〉ntx and,
respectively, s = [r]ntx.

3.5. Termination. We will now show that every tableau derivation is finite. As usual, the
main difficulty is bounding the number of applications of generative rules, in particular of
R♦. The present proof is notably more complex than the proofs in [23, 24] since now, an
application of R♦ does not necessarily expand a new pattern. Hence, we need to combine
the pattern-counting argument from [23, 24] with a bound on the number of non-expanding
applications of R♦.

Since the rules R∨̇, R�, and RA are all finitely branching, by König’s lemma it suffices
to show that the construction of every individual branch terminates. Since tableau rule
application always produces proper extensions of branches, it then suffices to show that the
size (i.e., cardinality) of an individual branch is bounded.

First, we show that the size of a branch Γ is bounded by a function in the number of
nominals on Γ. Then, we show that this number itself is bounded from above, completing
the termination proof.

We write Γ
R
→ ∆ to denote that the branch ∆ is obtained from Γ by the rule R. We

write Γ → ∆ if ∆ is obtained from Γ by a single rule application. We write SΓ for the set of
all modal expressions occurring on Γ, possibly as subterms of other expressions, and Rel Γ
for the set of all roles that occur on Γ.

Crucial for the termination argument is the fact the tableau rules cannot introduce any
modal expressions that do not already occur on the initial branch.

Proposition 3.9. If Γ,∆ are branches such that ∆ is obtained from Γ by any rule of T ,
then S∆ = SΓ.

For every pair of nominals x, y a branch Γ may contain an equation x
.
=y or a disequation

x 6
.
=y. For every pair x, y and every role r, Γ may contain an edge rxy. Moreover, for every

expression s ∈ SΓ, Γ may contain a formula sx. Hence, the size of Γ is bounded by
(2+ |Rel Γ|) · |NΓ|2+ |SΓ| · |NΓ|. By Proposition 3.9, we know that |SΓ| and |Rel Γ| depend
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only on the initial branch. Clearly, |SΓ| and |Rel Γ| are bounded from above by the size of
the input, i.e., the sum of the sizes of the initial formulas.

By the above, it suffices to show that |NΓ| is exponentially bounded in the size of the
input. We do so by giving a bound on the number of applications of R♦ and RE that can
occur in the derivation of a branch, which suffices since R♦ and RE are the only two rules
that can introduce new nominals.

We begin by showing that RE can be applied at most as many times as there are
distinct modal expressions of the form Ens on the initial branch. For this purpose, we
define a function ψE such that ψEΓ := {Ens ∈ SΓ | ∃x ∈ NΓ : Ensx not evident on Γ}.
Since |ψEΓ| is bounded from below by 0, it suffices to show that the number decreases with
every application of RE (and is non-increasing otherwise, which is obvious).

Lemma 3.10. Let s be of the form 〈r〉ntx or Entx. If s is evident on Γ and Γ ⊆ ∆, then
s is evident on ∆.

Proposition 3.11. Γ
RE→ ∆ =⇒ |ψEΓ| > |ψE∆|

Proof. Let Γ
RE→ ∆. By Lemma 3.10, ψEΓ ⊇ ψE∆. Hence it suffices to show that ψEΓ−ψE∆

is non-empty. Let ∆ be obtained from Γ by applying RE to s = Entx. Then, by RE ,
Ent ∈ ψEΓ. On the other hand, s is evident on ∆, and it is easy to see that the evidence
of s implies the evidence of Enty for every y ∈ N∆. Hence Ent /∈ ψE∆.

Now we show that R♦ can be applied at most finitely often in a derivation. Since there
are only finitely many roles, it suffices to show that R♦ can be applied at most finitely often
for each role. Observe that since R♦ is only applicable to diamond formulas that are not
quasi-evident, it holds:

Proposition 3.12. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ, then either

(1) x has an r-successor on Γ, or
(2) P r

Γx is not expanded on Γ.

Let Γ and ∆ be branches such that ∆ is obtained from Γ by applying R♦ to a formula
〈r〉nsx ∈ Γ such that P r

Γx is not expanded on Γ. It is easy to see that P r
∆x must be expanded

on ∆. Let us call such an application of R♦ pattern-expanding.
Let Pat rΓ := P({〈r〉ns ∈ SΓ} ∪ {[r]ns ∈ SΓ}). In other words, Pat rΓ contains all the

possible sets of r-diamonds and r-boxes from SΓ. Since Γ → ∆ implies Γ̃ ⊆ ∆̃, it holds:

Lemma 3.13. Let Γ → ∆ and P ∈ Pat rΓ. If P is expanded on Γ, then P is expanded
on ∆.

So, for each role r the derivation of a branch has at most |Pat rΓ0| pattern-expanding ap-
plications of R♦, where Γ0 is the initial branch. Clearly, |Pat rΓ0| is exponentially bounded
in the size of the input.

Hence, it remains to show that a derivation can contain only finitely many applications
of R♦ assuming that none of the applications is pattern-expanding. We say a nominal x
has a successor on Γ if x has an r-successor on Γ for any role r. A set of nominals X has a
successor on Γ if there is some x ∈ X that has a successor on Γ. We define

ψX
♦ Γ := |{〈r〉ns ∈ SΓ | ∃x ∈ X : 〈r〉nsx not evident on Γ}|
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and
ψ♦Γ :=

∑

X∈NΓ/∼
Γ

X has a successor on Γ

ψX
♦ Γ .

Lemma 3.14. Let X,Y ∈ NΓ/∼Γ
, x ∈ X, y ∈ Y , and let ∆ := Γ ∪ {x

.
=y}. Then

ψX
♦ Γ ≥ ψX∪Y

♦ ∆.

Proposition 3.15. Let Γ → ∆ such that ∆ is obtained from Γ by some rule application
other than a pattern-expanding application of R♦.

(1) If ∆ is obtained from Γ by R♦, then ψ♦Γ > ψ♦∆.
(2) Otherwise, ψ♦Γ ≥ ψ♦∆.

Proof.

(1) Clearly, nominals introduced by R♦ are fresh and hence cannot have any successors
on ∆. Hence ψ♦Γ ≥ ψ♦∆. Therefore, it suffices to find a set X ∈ NΓ/∼Γ

that has a
successor on Γ, a nominal x ∈ X and a formula 〈r〉nsx ∈ Γ that is not evident on Γ but
is evident on ∆.

Assume ∆ is obtained from Γ by R♦ applied to a formula 〈r〉nsx ∈ Γ. Clearly,
〈r〉nsx is not evident on Γ but is evident on ∆. Since the rule application is not
pattern-expanding, x has an r-successor on Γ. Hence there is some X ∈ NΓ/∼Γ

such
that x ∈ X and X has a successor on Γ. The claim follows.

(2) Since cumulativity of tableau construction preserves the evidence of diamond formu-
las (Lemma 3.10), the only interesting rules are those modifying NΓ/∼Γ

. Nominals
introduced by RE are fresh and hence do not have any successors on ∆. Therefore,
the only remaining cases are RN , R� and RA. Clearly, none of the three rules can
increase the cardinality of {X ∈ NΓ/∼Γ

|X has a successor on Γ}. The claim follows
by Lemma 3.14.

This completes the termination proof. Since the cardinalities of the sets Pat rΓ are
exponentially bounded in the size n0 of the input, |ψEΓ| is polynomial in n0, and ψ♦Γ
polynomial in |Γ| and n0, |NΓ| is exponentially bounded in n0. Since |Γ| is polynomial in
|NΓ|, we conclude that |Γ| is at most exponential in n0. By cumulativity, the construction
of Γ terminates in at most exponentially many steps in n0. This suffices to give us a
NExpTime complexity bound for the decision procedure based on the calculus.

4. Adding Reflexivity, Transitivity and Role Inclusion

We now extend T to deal with reflexivity, transitivity and inclusion assertions. As in
related work on description logic [16, 20, 18, 19, 17], we restrict our modal expressions to
contain no graded boxes for roles that have transitive subroles.

We define⊆∗
Γ as the smallest reflexive and transitive relation such that r ⊆∗

Γ r
′ whenever

r ⊑ r′ ∈ Γ. A role r is called simple on a branch Γ (or just simple if Γ is clear from the
context) if there is no r′ such that r′ ⊆∗

Γ r and Tr′ ∈ Γ. Observe that all subroles of a
simple role are in turn simple. Also, since our tableau rules will not introduce new inclusion
assertions, a role r will be simple on a given branch Γ if and only if r is simple on the initial
branch from which Γ is obtained.

Our branches may now contain inclusion, reflexivity and transitivity assertions:

s ::= tx | rxy | x
.
=y | x 6

.
=y | ⊥ | r ⊑ r′ | Rr | Tr
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The modal expressions t in formulas of the form tx are restricted to contain no boxes [r]ns
with n > 0 unless r is simple.

Following the ideas in [16, 18, 19, 17], we introduce the induced transition relation Dr
Γ

to reason about accessibility in the presence of inclusion axioms. Intuitively, x Dr
Γ y means

that in every model of Γ, y is accessible from x via r.

4.1. Extending Evidence. To account for the new types of formulas, we extend the evi-
dence conditions as follows:

r ⊑ r′ ∈ Γ ⇒ ∀x, y ∈ NΓ : rxy ∈ Γ̃ ⇒ r′xy ∈ Γ̃

Rr ∈ Γ ⇒ ∀x ∈ NΓ : rxx ∈ Γ̃

Tr ∈ Γ ⇒ ∀x, y, z ∈ NΓ : rxy ∈ Γ̃ ∧ ryz ∈ Γ̃ ⇒ rxz ∈ Γ̃

It is easy to see that if Γ satisfies the extended evidence conditions, the interpretation I
constructed in the proof of Theorem 3.1 will satisfy the new formulas. Hence, Theorem 3.1
adapts to the extended system.

Theorem 4.1 (Model Existence). Every evident branch has a finite model.

4.2. Pre-evidence. To account for the new evidence conditions, one could imagine the
following rules.

r ⊑ r′, rxy

r′xy

Rr

rxx
x ∈ NΓ

Tr, rxy, ryz

rxz

In the presence of blocking, however, the rules are problematic. In particular, the rule
for reflexivity renders the notion of quasi-evidence that we use for T ineffective to ensure
termination. Once we add a reflexive edge rxx to a branch Γ, x will have an r-successor
on Γ, meaning quasi-evidence will coincide with evidence for all r-diamonds on x. Similarly,
the rule for transitivity is known to be incomplete in the presence of blocking [24].

We solve the problem by defining a weaker notion of evidence, called pre-evidence. To
satisfy the pre-evidence conditions, we do not have to explicitly add reflexive or transitive
edges during tableau construction. We will extend our tableau rules and the notion of
quasi-evidence such that every open and maximal branch in the extended calculus can be
completed to a pre-evident branch, which in turn can be made evident by adding the implicit
edges.

We define the relation ⊲r
Γ as the least relation such that:

rxy ∈ Γ̃ ⇒ x ⊲r
Γ y

r′ ⊑ r ∈ Γ, x ⊲r′
Γ y ⇒ x ⊲r

Γ y

The relation ⊲r
Γ does not account for reflexivity. To do so, we extend it as follows:

Dr
Γ :=

{
⊲r

Γ ∪{(x, y) |x, y ∈ NΓ ∧ x ∼Γ y} if ∃r′ : r′ ⊆∗
Γ r ∧Rr

′ ∈ Γ
⊲r

Γ otherwise
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The pre-evidence conditions are obtained from the evidence conditions by omitting the
conditions for inclusion and reflexivity assertions and replacing the conditions for diamonds,
boxes and transitivity assertions as follows:

〈r〉ntx ∈ Γ ⇒ ∃n+1Y : DΓY ∧ ∀y ∈ Y : x Dr
Γ y ∧ ty ∈ Γ̃

[r]ntx ∈ Γ ⇒ |{y |x Dr
Γ y, ty /∈ Γ̃}/∼Γ

| ≤ n

Tr ∈ Γ ⇒ ∀r′, t, x, y : [r′]0tx ∈ Γ̃ ∧ r ⊆∗
Γ r

′ ∧ x ⊲r
Γ y ⇒ [r]0ty ∈ Γ̃

Note that we do not need pre-evidence conditions for inclusion or reflexivity assertions as
their semantics is taken care of by the way we define the relation x Dr

Γ y. Pre-evidence of
individual formulas is defined analogously to the corresponding notion of evidence.

We now show that every pre-evident branch can be extended to an evident branch. Let
the evidence closure Γ̂ of a branch Γ be defined as the least superset of Γ such that:

x Dr
Γ y ⇒ rxy ∈ Γ̂

Tr ∈ Γ ∧ rxy ∈ Γ̂ ∧ ryz ∈ Γ̂ ⇒ rxz ∈ Γ̂

r ⊑ r′ ∈ Γ ∧ rxy ∈ Γ̂ ⇒ r′xy ∈ Γ̂

Note that, by construction, we have rxy ∈ ˆ̃Γ ⇐⇒ rxy ∈ Γ̂.

Lemma 4.2. Let Γ be a branch and r be simple on Γ. Then x Dr
Γ y ⇐⇒ rxy ∈ Γ̂

Proof. Let r be simple on Γ. The direction from left to right is immediate. The other
direction can be shown by induction on the construction of Γ̂ from Γ.

Lemma 4.3. Let Γ be a branch and let rxy ∈ Γ̂. Then either x Dr
Γ y, or there is some r′

such that {r′ ⊑ r, T r′} ⊆ Γ and

∃n≥2∃x1, . . . , xn : x1 = x ∧ xn = y ∧ ∀1≤i<n : xi ⊲
r′
Γ xi+1 .

Proof. By induction on the construction of Γ̂.

Theorem 4.4 (Evidence Completion). Γ pre-evident =⇒ Γ̂ evident

Proof. It is easy to see that Γ̂ satisfies the evidence conditions for inclusion, reflexivity and
transitivity assertions. The only remaining evidence conditions that may be affected by
adding edges to Γ are the ones for diamonds and boxes. The rest of the evidence conditions
is already satisfied by Γ and hence also holds on Γ̂.

The evidence condition for diamonds holds on Γ̂ since the corresponding pre-evidence
condition holds on Γ and x Dr

Γ y implies rxy ∈ Γ̂ for all nominals x, y and roles r.
It remains to show the evidence condition for boxes. Let [r]nsx ∈ Γ and |{y |x Dr

Γ y,

sy /∈ Γ̃}/∼Γ
| ≤ n. It suffices to show: |{y | rxy ∈ Γ̂, sy /∈ Γ̃}/∼Γ

| ≤ n. We distinguish two
cases. If r is simple, the claim follows by Lemma 4.2. Otherwise, we must have n = 0.
Hence, it suffices to show that we have sy ∈ Γ̃ for every edge rxy ∈ Γ̂. Let rxy ∈ Γ̂. Then,
by Lemma 4.3, two cases are possible. Either x Dr

Γ y, in which case the claim follows by the
pre-evidence condition for boxes, or there is a transitive subrole r′ of r such that there are
nominals x1, . . . , xm (m ≥ 2) such that x1 = x, xm = y and xi ⊲

r′
Γ xi+1 for all 1 ≤ i < n. In

this case, by induction on m one can show that the pre-evidence condition for transitivity
assertions applied to r′ and [r]nsx ∈ Γ implies either [r]nsxm−1 ∈ Γ (true by assumption

for m = 2) or [r′]nsxm−1 ∈ Γ̃ (if m > 2). Either way, the claim follows by the pre-evidence
condition for boxes.
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R�

[r]ntx

∃y, z ∈ Y, y 6= z : y
.
=z | ∃y ∈ Y : ty

Y ⊆ {y |x Dr

Γ
y}, |Y | = |Y/∼Γ

| = n+ 1

RT

Tr, [r′]0tx

[r]0ty
r ⊆∗

Γ
r′, x ⊲r

Γ
y

Figure 4: New rules for T⊑

4.3. Tableau Rules. The tableau rules for the extended calculus T⊑ in Fig. 4 replace the
original rule R� from Fig. 1 and add a new rule RT , which is necessary to achieve the
pre-evidence condition for transitivity assertions. While the formulation of R♦ remains
unchanged, the rule will now have to use an adapted notion of quasi-evidence, which will be
introduced in Sect. 4.4. For now, we assume R♦ is formulated with the restriction “〈r〉ntx
not pre-evident on Γ” instead. Again, it is not hard to verify that the extended rules are
sound.

4.4. Control. As it turns out, in the presence of role inclusion we have to modify the
definition of patterns. It no longer suffices to consider patterns separately for each role.
This is due to the fact that now, different roles may be constrained by inclusion assertions.
Consider, for instance, the unsatisfiable branch

Γ := {r ⊑ r′, 〈r〉0px, 〈r
′〉0¬̇px, [r

′]1(p ∧̇ ¬̇p)x, r′xy, ¬̇py, 〈r〉0pz, rzu, pu}

According to our previous notion of quasi-evidence, 〈r〉0px is quasi-evident on Γ as x has
no r-successor (even if we extend the set of successors to {y |x ⊲r

Γ y}) and P r
Γx is ex-

panded. Since the other two diamonds on Γ are evident, Γ is quasi-evident, witnessing the
incompleteness of our previous definition of patterns.

Hence, we redefine the notion of a pattern as follows. Given a branch Γ, a pattern is
a set of terms of the form µs, where µ ∈ {〈r〉n, [r]n | r ∈ Rel Γ, n ∈ N}. We write PΓx

for the largest pattern P such that P ⊆ {t | tx ∈ Γ̃}. We call PΓx the pattern of x on Γ.
A pattern P is expanded on Γ if there are nominals x, y and a role r such that x ⊲r

Γ y
and P ⊆ PΓx. In this case, we say that x expands P on Γ. Note that here we use the
relation ⊲r

Γ rather than Dr
Γ. Otherwise, we would get the same problems with termination

as outlined in Sect. 4.2.
A diamond formula 〈r〉nsx is quasi-evident on Γ if it is either pre-evident on Γ or x has

no successor on Γ (i.e., there is no y and r such that x ⊲r
Γ y) and PΓx is expanded on Γ. As

before, we restrict the rule R♦ such that it can only be applied to diamond formulas that
are not quasi-evident, and call a branch Γ quasi-evident if it satisfies all of the pre-evidence
conditions but the one for diamond formulas, which we again replace by

〈r〉ntx ∈ Γ ⇒ 〈r〉ntx is quasi-evident on Γ

but now with the adapted notion of quasi-evidence.

Example 4.5. Figure 5 shows a tableau derivation in T⊑ resulting in a quasi-evident branch.
As in Example 3.5, we write Γn for the branch up to line n. We observe:

• Since r is reflexive and r ⊑ r′ ∈ Γ0, r
′ is also reflexive. Consequently, we have x Dr′

Γ0
x,

which explains why R� applies to [r′]0〈r〉0px ∈ Γ0.
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0. r ⊑ r′, Rr, T r′, [r′]0〈r〉0px, 〈r
′〉0qx

1. 〈r〉0px R�

2. rxy, py R♦

3. r′xz, qz R♦

4. [r′]0〈r〉0pz RT

5. 〈r〉0pz R�

6. rzu, pu R♦

Figure 5: Tableau derivation for {r ⊑ r′, Rr, T r′, [r′]0〈r〉0px, 〈r
′〉0qx}

• The rule RT propagates [r′]0〈r〉0p to z but not to y since r is not (necessarily) transitive.
• In T , 〈r〉0pz ∈ Γ5 would be quasi-evident since P r

Γ5
x = P r

Γ5
z. In T⊑, however, R♦ applies

to 〈r〉0pz since PΓ5
x = {〈r〉0p, 〈r

′〉0q, [r
′]0〈r〉0p} 6= {〈r〉0p, [r

′]0〈r〉0p} = PΓ5
z.

Lemma 4.6. Let Γ,∆ be branches such that {r ⊑ r′ | r ⊑ r′ ∈ Γ} = {r ⊑ r′ | r ⊑ r′ ∈ ∆}.
Let x, y, u, v be nominals such that {r | rxy ∈ Γ̃} = {r | ruv ∈ ∆̃}. Then, for all r,
x ⊲r

Γ y ⇔ u ⊲r
∆ v.

Proof. Let Γ, ∆, x, y, u and v be as required. Let r be a role. We show x ⊲r
Γ y ⇒ u ⊲r

∆ v by
induction on the derivation of x ⊲r

Γ y. The other direction follows analogously by induction
on the derivation of u ⊲r

∆ v. Assume x ⊲r
Γ y. We distinguish two cases:

• rxy ∈ Γ̃. Then, by assumption, ruv ∈ ∆̃, and so u ⊲r
∆ v.

• There is some r′ such that r′ ⊑ r ∈ Γ and x ⊲r′
Γ y. By the inductive hypothesis, we have

u ⊲r′
∆ v. Moreover, by assumption, r′ ⊑ r ∈ ∆. Hence, u ⊲r

∆ v.

Lemma 4.7. Let Γ be a quasi-evident branch and let 〈r〉nsx be not pre-evident on Γ. Let

y expand PΓx on Γ and let ∆ := Γ ∪ {r′xz | r′yz ∈ Γ̃}. Then:

(1) ∀r′, z : x ⊲r′
∆ z ⇐⇒ y ⊲r′

Γ z and x Dr′
∆ z ⇐⇒ y Dr′

Γ z,
(2) ∀r′,m, t : 〈r′〉mt ∈ PΓx =⇒ 〈r′〉mtx pre-evident on ∆,
(3) 〈r〉nsx pre-evident on ∆,
(4) ∀r′,m, t, z : 〈r′〉mtz pre-evident on Γ =⇒ 〈r′〉mtz pre-evident on ∆,
(5) ∆ quasi-evident.

Proof. We begin with (1). Let r′ be a role and z a nominal. We will only show the first
equivalence since the other claim easily follows. Since 〈r〉nsx is quasi-evident but not evident

on Γ, x has no successor on Γ. Hence, by construction, {r′ | r′xz ∈ ∆̃} = {r′ | r′yz ∈ Γ̃}.
The claim follows by Lemma 4.6.

Claims (2–4) are shown analogously to the corresponding claims of Lemma 3.6.
Now to (5). The only conditions that might in principle be violated in ∆ are the

quasi-evidence condition for diamonds of the form 〈r′〉mtz ∈ ∆ where z ∼∆ x, the evidence
condition for boxes [r′]mtz ∈ ∆ where z ∼∆ x, and the evidence condition for transitivity
assertions Tr′ ∈ ∆.

For diamonds of the above form, the quasi-evidence condition holds by (2).
For transitivity assertions, it suffices to show that for every r1, r2 such that Tr1 ∈ Γ,

r1 ⊆∗
Γ r2, and [r2]0tx ∈ Γ̃, and for all z such that x ⊲

r1
∆ z, it holds [r1]0tz ∈ Γ̃. Since
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PΓy ⊇ PΓx, we have [r2]0ty ∈ Γ̃. The claim now follows by (1) and the quasi-evidence
condition for Tr1 ∈ Γ.

The claim for boxes follows analogously (we exploit PΓy ⊇ PΓx and (1)).

Theorem 4.8 (Pre-evidence Completion). For every quasi-evident branch Γ there is a
pre-evident branch ∆ such that Γ ⊆ ∆.

Proof. Proceeds analogously to the proof of Theorem 3.7 with Lemma 4.7 in place of
Lemma 3.6.

Theorem 4.9 (Quasi-evidence). Every open and maximal branch in T⊑ is quasi-evident.

Proof. Proceeds analogously to the proof of Theorem 3.8. The additional case for transi-
tivity assertions is straightforward.

4.5. Termination. The termination proof for T⊑ proceeds analogously to the proof for T .
Let us sketch what needs to be adapted. Because of the rule RT , the set SΓ of modal
expressions occurring on Γ needs to be extended as follows: S ′Γ := SΓ ∪ {[r]0s | r ⊆∗

Γ r
′ ∧

[r′]0s ∈ SΓ}. With the extended definition of S, Proposition 3.9 holds for T⊑. Lemma 3.10
is modified as follows:

Lemma 4.10. Let s be of the form 〈r〉ntx or Entx. If s is (pre-)evident on Γ and Γ ⊆ ∆,
then s is (pre-)evident on ∆.

Proposition 3.11 is unaffected by the extensions to the calculus. Proposition 3.12 is
adapted as follows:

Proposition 4.11. If R♦ is applicable to a formula 〈r〉nsx ∈ Γ, then either

(1) x has a successor on Γ, or
(2) PΓx is not expanded on Γ.

Also, analogously to Lemma 3.13, the expandedness of our extended patterns is pre-
served by tableau rule application. Lemma 3.14 and Proposition 3.15 remain valid if we
redefine

ψX
♦ Γ := |{〈r〉ns ∈ S ′Γ | ∃x ∈ X : 〈r〉nsx not pre-evident on Γ}|

and ψ♦Γ accordingly, with the modified definition of a successor.

5. Conclusion

We have presented a terminating tableau calculus for graded hybrid logic with global
modalities and role hierarchies. Following [8, 7, 24], our calculus is cumulative, representing
state equality abstractly via an equivalence relation (declarative approach). The existing
calculi for equivalent and stronger logics [18, 19, 17] work on possibly cyclic graph struc-
tures and treat equality by destructive graph transformation during tableau construction
(procedural approach). The procedural approach encompasses algorithmic decisions that
are not present in the more abstract declarative approach. From a declarative calculus we
can always obtain a procedural system by refinement.

Exploiting an extended pattern-based blocking technique and the cumulativity of our
calculus, we have proved a NExpTime complexity bound for the associated decision pro-
cedure. To ensure termination of pattern-based blocking in the presence of reflexivity, we
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differentiated between the induced transition relation Dr
Γ and its non-reflexive counterpart

⊲r
Γ. The implementation of pattern-based blocking for a hybrid language with global modal-

ities [15] reveals its considerable practical potential. We consider it a promising project to
implement the extended version of pattern-based blocking presented in this paper and com-
pare its performance to that of established blocking techniques.

Following related work [16, 20, 18, 19, 17], we restrict the language decided by our
calculus to contain no graded boxes on complex roles. As shown by Horrocks, Sattler
and Tobies [20], this restriction is essential for decidability of logics extending SHIN . In
the absence of inverse roles (I), however, the restriction of graded boxes to simple roles
can be significantly relaxed [26]. In [25], we give a terminating tableau calculus for SOQ
extended by graded boxes on transitive roles. The logic extends the decidable fragment
of [26] by nominals but lacks inclusion assertions that are allowed (with some restrictions)
in [26]. It remains an open problem to design an efficient tableau calculus for the full
decidable fragment of [26]. Also, it is still open if the fragment of [26] remains decidable
when extended by nominals.

Acknowledgement. We would like to thank our referees for their valuable comments that
helped to improve the paper.
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