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Abstract. In systems involving quantitative data, such as probabilistic, fuzzy, or metric
systems, behavioural distances provide a more fine-grained comparison of states than two-
valued notions of behavioural equivalence or behaviour inclusion. Like in the two-valued
case, the wide variation found in system types creates a need for generic methods that apply
to many system types at once. Approaches of this kind are emerging within the paradigm
of universal coalgebra, based either on lifting pseudometrics along set functors or on lifting
general real-valued (fuzzy) relations along functors by means of fuzzy lax extensions. An
immediate benefit of the latter is that they allow bounding behavioural distance by means of
fuzzy (bi-)simulations that need not themselves be hemi- or pseudometrics; this is analogous
to classical simulations and bisimulations, which need not be preorders or equivalence
relations, respectively. The known generic pseudometric liftings, specifically the generic
Kantorovich and Wasserstein liftings, both can be extended to yield fuzzy lax extensions,
using the fact that both are effectively given by a choice of quantitative modalities. Our
central result then shows that in fact all fuzzy lax extensions are Kantorovich extensions for a
suitable set of quantitative modalities, the so-called Moss modalities. For nonexpansive fuzzy
lax extensions, this allows for the extraction of quantitative modal logics that characterize
behavioural distance, i.e. satisfy a quantitative version of the Hennessy-Milner theorem;
equivalently, we obtain expressiveness of a quantitative version of Moss’ coalgebraic logic.
All our results explicitly hold also for asymmetric distances (hemimetrics), i.e. notions of
quantitative simulation.

1. Introduction

Branching-time equivalences on reactive systems are typically governed by notions of bisimi-
larity [Par81, Mil89]. For systems involving quantitative data, such as transition probabilities,
fuzzy truth values, or labellings in metric spaces, it is often appropriate to use more fine-
grained, quantitative measures of behavioural similarity, arriving at notions of behavioural
distance. Distance-based approaches in particular avoid the problem that small quantitative
deviations in behaviour will typically render two given systems inequivalent under two-valued
notions of equivalence, losing information about their similarity. We note in passing that
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behavioural distances are typically pseudometrics, i.e. distinct states can have distance 0 if
their behaviours are exactly equivalent.

Behavioural distances serve evident purposes in system verification, allowing as they
do for a reasonable notion of a specification being satisfied up to an acceptable margin
of deviation (e.g. [Gav18]). Applications have also been proposed in differential privacy
[CGPX14] and conformance testing of hybrid systems [KM15]. Like their two-valued coun-
terparts, behavioural distances have been introduced for quite a range of system types, such
as various forms of probabilistic labelled transition systems or labelled Markov processes
[GJS90, vBW05, Des99, DGJP04]; systems combining nondeterministic and probabilistic
branching variously known as nondeterministic probabilistic transition systems [CGT16],
probabilistic automata [DCPP06], and Markov decision processes [FPP04]; weighted au-
tomata [BGP17]; fuzzy transition systems [CSWC13] and fuzzy Kripke models [Fan15];
and various forms of metric transition systems [dAFS09, FLT11, FL14], which are non-
deterministic transition systems with additional quantitative information, e.g. a metric
on the labels and/or the states. Besides symmetric notions of behavioural distance, there
are asymmetric variants, which correspond to quantitative notions of simulation, e.g. for
rational- [CHR12], real- [TFL10], and lattice-weighted transition systems [PLC15].

This range of variation creates a need for unifying concepts and methods. The present
work contributes to developing such a unified view within the framework of universal
coalgebra, which is based on abstracting a wide range of system types (including all the
mentioned ones) as set functors. Specifically, we work with a generic notion of quantitative
simulation via the key notion of nonexpansive (fuzzy) lax extension of a functor. Fuzzy
and quantale-valued generalizations of lax extensions have been studied in the past [Gav18,
HST14]; we identify a new criterion for such lax extensions to be nonexpansive (equivalently
strong in the sense of Gavazzo [Gav18]) that allows us to relate lax extensions to fuzzy
logics featuring nonexpansive modalities via a Hennessy-Milner thoerem. Given a fuzzy lax
extension, behavioural distance is defined as the greatest quantitative simulation; in general,
behavioural distance is a hemimetric, i.e. obeys the usual axioms of a pseudometric except
symmetry, or equivalently a generalized metric space in the sense of Lawvere [Law73].

For instance, on weighted transition systems with labels in a finite metric space (M,dM)
Larsen et al. [LFT11] consider a simulation distance defined as the least fixed point of the
equation

d(s, t) = sup

s
mÐ→s′

inf

t
nÐ→t′

dM(m,n) + λd(s′, t′),

where 0 ≤ λ < 1 is a discount factor. We shall later see that this simulation distance arises
via a nonexpansive fuzzy lax extension and thus forms an instance of this framework.

For lax extensions obeying a suitable symmetry axiom, quantitative simulations are in
fact quantitative bisimulations in the sense that their relational converse is also a simulation,
and the induced behavioural distance is symmetric, i.e. forms a pseudometric. Existing
coalgebraic approaches to behavioural pseudometrics rely on pseudometric liftings of func-
tors [BBKK18], and in particular lift only pseudometrics; contrastingly, fuzzy lax extensions
act on unrestricted quantitative relations. Hence, quantitative (bi-)simulations need not
themselves be hemi- or pseudometrics, in analogy to classical bisimulations not needing
to be equivalence relations, and thus may serve as small certificates for low behavioural
distance. We show that two known systematic constructions of functor liftings from chosen
sets of modalities, the generic Wasserstein and Kantorovich liftings, both extend to yield
nonexpansive fuzzy lax extensions (it is essentially known that the Wasserstein lifting yields
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a fuzzy lax extension [Hof07]). As our main result, we then establish that every fuzzy
lax extension of a finitary functor is a Kantorovich extension induced by a suitable set of
modalities, the so-called Moss modalities. Notably, the definition of the Moss modalities
involves application of the given lax extension to the quantitative elementhood relation, and
hence centrally relies on lifting quantitative relations that fail to be hemi- or pseudometrics.

This result may be seen as a quantitative version of previous results asserting the
existence of separating sets of two-valued modalities for finitary functors [Sch08, KL09,
MV15], which allow for generic Hennessy-Milner-type theorems stating that states in finitely
branching systems (coalgebras) are behaviourally equivalent iff they satisfy the same modal
formulae [Pat04, Sch08]. Indeed, for nonexpansive lax extensions our main result similarly
allows extracting characteristic quantitative modal logics from given behavioural hemi- or
pseudometrics, where a logic is characteristic or expressive if the induced logical distance
of states coincides with behavioural distance. This result may equivalently be phrased as
expressiveness of a quantitative version of Moss’ coalgebraic logic [Mos99], which provides a
coalgebraic generalization of the classical relational ∇-modality (which e.g. underlies the
a→ Ψ notation used in Walukiewicz’s µ-calculus completeness proof [Wal95]). We relax the
standard requirement of finite branching, i.e. use of finitary functors, to an approximability
condition called finitary separability, and hence in particular cover countable probabilistic
branching. Moreover, we emphasize that we obtain characteristic logics also for asymmetric
distances, i.e. notions of quantitative simulation.

Organization. We recall basic concepts on hemi- and pseudometrics, coalgebraic bisimilarity,
and coalgebraic logic in Section 2. The central notion of (nonexpansive) fuzzy lax extension
is introduced in Section 3, and the arising principle of quantitative (bi-)simulation in
Section 4. The generic Kantorovich and Wasserstein liftings are discussed in Sections 5 and
6, respectively. Our central result showing that every lax extension is a Kantorovich lifting
is established in Section 7. In Section 8, we show how our results amount to extracting
characteristic modal logics from given nonexpansive lax extensions.

Related Work. Probabilistic quantitative characteristic modal logics go back to Desharnais
et al. [DGJP04]; they relate to fragments of quantitative µ-calculi [HK97, MS17, MM97]. A
further well-known class of quantitative modal logics are fuzzy modal and description logics
(e.g. [Mor79, Fit91, Str98, LS08]). Van Breugel and Worrell [vBW05] prove a Hennessy-
Milner theorem for quantitative probabilistic modal logic. Quantitative Hennessy-Milner-type
theorems have since been established for fuzzy modal logic with Gödel semantics [Fan15],
for systems combining probability and non-determinism [DDG16], and for Heyting-valued
modal logics [EKN12] as introduced by Fitting [Fit91]. König and Mika-Michalski [KMM18]
provide a quantitative Hennessy-Milner theorem in coalgebraic generality for the case where
behavioural distance is induced by the pseudometric Kantorovich lifting defined by the same
set of modalities as the logic, a result that we complement by showing that in fact all fuzzy lax
extensions are Kantorovich. The assumptions of König and Mika-Michalski’s theorem require
that behavioural distance be approximable in ω steps. We give a sufficient criterion for this
property: The predicate liftings need to be nonexpansive, and the given lax extension needs to
be finitarily separable (as mentioned above). Again, we remove any assumption of symmetry,
obtaining an expressiveness criterion for characteristic logics of quantitative simulations; in
this sense, our work relates also to (coalgebraic and specific) results on characteristic logics
for two-valued notions of similarity, e.g. [vG90, Bal00, Ĉır06, KKV12, FMS21].
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Fuzzy lax extensions are a quantitative version of lax extensions [MV15, Thi96, Lev11,
BdBH+91], which in turn belong to an extended strand of research on relation liftings [HJ04,
Thi96, Lev11]. They appear to go back to work on monoidal topology [HST14], and have
been used in work on applicative bisimulation [Gav18]; as indicated above, Hofmann [Hof07]
effectively already introduces the generic Wasserstein lax extension (without using the term
but proving the relevant properties, except nonexpansiveness). Our notion of nonexpansive
lax extension, which is central to the connection with characteristic logics, appears to be
new, but as indicated above it can be seen to relate to a condition involving the strength
of the underlying functor as considered by Gavazzo [Gav18]. Our method of extracting
quantitative modalities from fuzzy lax extensions generalizes the construction of two-valued
Moss liftings for (two-valued) lax extensions [KL09, MV15].

This paper is an extended and revised version of a previous conference publication [WS20].
Besides containing additional discussion and full proofs, the present version generalizes
the overall technical treatment including the main results to the asymmetric setting, thus
covering not only quantitative notions of bisimulation but also quantitative notions of
simulation.

2. Preliminaries

We recall basic notions on metrics, pseudometrics (where distinct points may have distance 0),
and hemimetrics (where additionally distance is not required to be symmetric). Moreover,
we give a brief introduction to universal coalgebra [Rut00] and the generic treatment of
two-valued bisimilarity. Basic knowledge of category theory (e.g. [AHS90]) will be helpful.

Hemimetric Spaces. For the present purposes, we are interested only in bounded distance
functions, and then normalize distances to lie in the unit interval. Thus, a (1-bounded)
hemimetric on a set X is a function d∶X ×X → [0,1] satisfying d(x,x) = 0 (reflexivity),
and d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality) for x, y, z ∈ X. If additionally d(x, y) =
d(y, x) for all x, y ∈ X (symmetry), then d is a pseudometric. If moreover for all x, y ∈ X,
d(x, y) = 0 implies x = y, then d is a metric. The pair (X,d) is a hemimetric space,
or respectively a (pseudo-)metric space if d is a (hemi-/pseudo-)metric. We write ⊖ for
truncated subtraction on the unit interval, i.e. x⊖ y = max(x − y,0) for x, y ∈ [0,1]. Then
d⊖(x, y) = x⊖ y defines a hemimetric d⊖ on [0,1]; moreover, [0,1] is a metric space under
Euclidean distance dE(x, y) = ∣x − y∣. The supremum distance of functions f, g∶X → [0, 1] is
∥f − g∥∞ = supx∈X ∣f(x) − g(x)∣. A map f ∶X → Y of hemimetric spaces (X,d1), (Y, d2), is
nonexpansive (notation: f ∶ (X,d1)→1 (Y, d2)) if d2(f(x), f(y)) ≤ d1(x, y) for all x, y ∈X.

Universal Coalgebra is a uniform framework for a broad range of state-based system
types. It is based on encapsulating the transition type of a system as an (endo-)functor, for
the present purposes on the category of sets: A functor T assigns to each set X a set TX, and
to each map f ∶X → Y a map Tf ∶TX → TY , preserving identities and composition. We may
think of TX as a parametrized datatype; e.g. the (covariant) powerset functor P assigns to
each set X its powerset PX, and to f ∶X → Y the direct image map Pf ∶PX → PY,A↦ f[A];
and the distribution functor D maps each set X to the set of discrete probability distributions
on X. Recall that a discrete probability distribution on X is given by a probability mass
function µ∶X → [0, 1] such that ∑x∈X µ(x) = 1 (implying that the support {x ∈X ∣ µ(x) > 0}
of µ is at most countable); we abuse µ to denote also the induced probability measure,
writing µ(A) = ∑x∈A µ(x) for A ⊆ X. Moreover, D maps f ∶X → Y to Df ∶DX → DY ,
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µ↦ µf−1 where the image measure µf−1 is given by µf−1(B) = µ(f−1[B]) for B ⊆ Y . We
will introduce further examples later.

Systems of a transition type T are then cast as T -coalgebras (A,α), consisting of a
set A of states and a transition function α∶A→ TA, thought of as assigning to each state a
structured collection of successors. E.g. a P-coalgebra α∶A→ PA assigns to each state a a set
α(a) of successors, so is just a (non-deterministic) transition system. Similarly, a D-coalgebra
assigns to each state a distribution over successor states, and thus is a probabilistic transition
system or a Markov chain. A morphism f ∶ (A,α) → (B,β) of T -coalgebras (A,α) and
(B,β) is a map f ∶A→ B such that β ○ f = Tf ○ α, where ○ denotes the usual (applicative)
composition of functions; e.g. morphisms of P-coalgebras are functional bisimulations, also
known as p-morphisms or bounded morphisms.

A functor T is finitary if for each set X and each t ∈ TX, there exists a finite subset
Y ⊆ X such that t = Ti(t′) for some t′ ∈ TY , where i∶Y → X is the inclusion map (this is
equivalent to the more categorically phrased condition that T preserves directed colimits).
Intuitively, T is finitary if every element of TX mentions only finitely many elements of X.
Every set functor T has a finitary part Tω given by

TωX =⋃{Ti[TY ] ∣ Y ⊆X finite, i∶Y →X inclusion}.
E.g. Pω, the finite powerset functor, maps a set to the set of its finite subsets, and Dω, the
finite distribution functor, maps a set X to the set of discrete probability distributions on X
with finite support. Coalgebras for finitary functors generalize finitely branching systems,
and hence feature in Hennessy-Milner type theorems, which typically fail under infinite
branching.

Bisimilarity and Lax Extensions. Coalgebras come with a canonical notion of observable
equivalence: States a ∈ A, b ∈ B in T -coalgebras (A,α), (B,β) are behaviourally equivalent if
there exist a coalgebra (C,γ) and morphisms f ∶ (A,α)→ (C,γ), g∶ (B,β)→ (C,γ) such that
f(a) = g(b). Behavioural equivalence can often be characterized in terms of bisimulation
relations, which may provide small witnesses for behavioural equivalence of states and in
particular need not form equivalence relations. The most general known way of treating
bisimulation coalgebraically is via lax extensions L of the functor T , which map relations
R ⊆X × Y to LR ⊆ TX × TY subject to a number of axioms (monotonicity, preservation of
relational converse, lax preservation of composition, extension of function graphs) [MV15]; L
preserves diagonals if L∆X = ∆TX for each set X, where for any set Y , ∆Y denotes the
diagonal {(y, y) ∣ y ∈ Y }. The Barr extension T of T [Bar70, Trn80] is defined by

TR = {(Tπ1(r), Tπ2(r)) ∣ r ∈ TR}

for R ⊆X × Y , where π1∶R →X and π2∶R → Y are the projections; T preserves diagonals,
and is a lax extension if T preserves weak pullbacks. E.g., the Barr extension P of the
powerset functor P is the well-known Egli-Milner extension, given by

(V,W ) ∈ P(R) ⇐⇒ (∀x ∈ V.∃y ∈W. (x, y) ∈ R) ∧ (∀y ∈W.∃x ∈ V. (x, y) ∈ R)
for R ⊆ X × Y , V ∈ P(X), W ∈ P(Y ). An L-bisimulation between T -coalgebras (A,α),
(B,β) is a relation R ⊆ A ×B such that (α(a), β(b)) ∈ LR for all (a, b) ∈ R; e.g. for L = P,
L-bisimulations are precisely Park/Milner bisimulations on transition systems. If a lax
extension L preserves diagonals, then two states are behaviourally equivalent iff they are
related by some L-bisimulation [MV15].
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Coalgebraic Logic serves as a generic framework for the specification of state-based
systems [CKP+11]. For our present purposes, we are primarily interested in its simplest
incarnation as a modal next-step logic, dubbed coalgebraic modal logic, and its role as
a characteristic logic for behavioural equivalence in generalization of Hennessy-Milner
logic [HM85]. We briefly recall the syntax and semantics of coalgebraic modal logic, as well
as basic results. The framework is based on interpreting custom modalities of given finite
arity over coalgebras for a functor T as n-ary predicate liftings, which are families of maps

λX ∶ (2X)n → 2TX

(subject to a naturality condition) where 2 = {�,⊺} and for any set Y , 2Y is the set of
2-valued predicates on Y . We do not distinguish notationally between modalities and the
associated predicate liftings. Satisfaction of a formula of the form λ(φ1, . . . , φn) (in some
ambient logic) in a state a ∈ A of a T -coalgebra (A,α) is then defined inductively by

a ⊧ λ(φ1, . . . , φn) iff α(a) ∈ λA(Jφ1K, . . . , JφnK) (2.1)

where for any formula ψ, JψK = {c ∈ A ∣ c ⊧ ψ}. E.g. the standard diamond modality ◇
is interpreted over the powerset functor P by the predicate lifting ◇X(Y ) = {Z ∈ P(X) ∣
∃x ∈ Z.Y (x) = ⊺}, which according to (2.1) induces precisely the usual semantics of ◇ over
transition systems (P-coalgebras). The standard Hennessy-Milner theorem is generalized
coalgebraically [Pat04, Sch08] as saying that two states in T -coalgebras are behaviourally
equivalent iff they satisfy the same Λ-formulae, provided that T is finitary (which corresponds
to the usual assumption of finite branching) and Λ is separating, i.e. for any set X, every
t ∈ TX is uniquely determined (within TX) by the set

{(λ,Y1, . . . , Yn) ∣ λ ∈ Λ n-ary, Y1, . . . , Yn ∈ 2X , t ∈ λ(Y1, . . . , Yn)}.
For finitary T , a separating set of modalities always exists [Sch08].

3. Fuzzy Relations and Lax Extensions

We next introduce the central notion of the paper, concerning extensions of fuzzy (or real-
valued) relations along a set functor T , which we fix for the remainder of the paper. We
begin by fixing basic concepts and notation on fuzzy relations. Hemimetrics can be viewed
as particular fuzzy relations, forming a quantitative analogue of preorders; correspondingly,
pseudometrics may be seen as a quantitative analogue of equivalence relations.

Definition 3.1. Let A and B be sets. A fuzzy relation between A and B is a map
R∶A × B → [0,1], also written R∶A →+ B. We say that R is crisp if R(a, b) ∈ {0,1} for
all a ∈ A, b ∈ B (and generally apply the term crisp to concepts that live in the standard
two-valued setting). The converse relation R○∶B →+ A is given by R○(b, a) = R(a, b). For
R,S∶A→+ B, we write R ≤ S if R(a, b) ≤ S(a, b) for all a ∈ A, b ∈ B.

Convention 3.2. Crisp relations are just ordinary relations. However, since we are working
in a metric setting, it will be more natural to use the convention that elements a ∈ A, b ∈ B
are related by a crisp relation R if R(a, b) = 0, in which case we write aRb.

Convention 3.3 (Composition). We write composition of fuzzy relations diagrammatically,
using ‘;’. Explicitly, the composite R1;R2 ∶A→+ C of R1∶A→+ B and R2∶B→+ C is defined by

(R1;R2)(a, c) = infb∈B R1(a, b)⊕R2(b, c),



Vol. 18:2 CHARACTERISTIC LOGICS FOR BEHAVIOURAL HEMIMETRICS 19:7

where ⊕ denotes  Lukasiewicz disjunction: x⊕y = min(x+y, 1). Note that given our previous
convention on crisp relations, the restriction of this composition operator to crisp relations
is precisely the standard relational composition. We reserve the applicative composition
operator ○ for composition of functions. In particular, R∶A→+ B is viewed as a function
A × B → [0,1] whenever ○ is applied to R. Throughout the paper, we use the fact that
composition is monotone, that is, for R1 ≤ R′

1 and R2 ≤ R′
2 we have R1;R2 ≤ R′

1;R′
2.

Definition 3.4 (Functions as relations). The ε-graph of a function f ∶A → B is the fuzzy
relation Grε,f ∶A→+ B given by Grε,f(a, b) = ε if f(a) = b, and Grε,f(a, b) = 1 otherwise. The
ε-graph of the identity function idA is also called the ε-diagonal of A, and denoted by ∆ε,A.
We refer to Gr0,f simply as the graph of f , also denoted Grf , and to ∆0,A as the diagonal
of A, which we continue to denote as ∆A.

The following is now straightforward.

Lemma 3.5.

(1) For every function f ∶A→ B, we have ∆B ≤ Gr○f ; Grf and Grf ; Gr○f ≤ ∆A.

(2) For every R∶A′→+ B′, f ∶A→ A′ and g∶B → B′, we have R ○ (f × g) = Grf ;R; Gr○g.

Using the notation assembled, we can rephrase the definition of hemimetric and pseudometric
as follows.

Lemma 3.6. Let d∶X →+ X be a fuzzy relation.

(1) d is a hemimetric iff d ≤ ∆X (reflexivity) and d ≤ d;d (triangle inequality).
(2) d is a pseudometric iff it is a hemimetric and additionally d○ = d (symmetry).

We now introduce our central notion of nonexpansive lax extension:

Definition 3.7 (Fuzzy relation liftings and lax extensions). A (fuzzy) relation lifting L of T
maps each fuzzy relation R∶A→+ B to a fuzzy relation LR∶TA→+ TB.

(1) We say that L preserves converse if for all R we have

(L0) L(R○) = (LR)○.
(2) We say that L is a (fuzzy) lax extension if it satisfies

(L1) R1 ≤ R2 ⇒ LR1 ≤ LR2

(L2) L(R;S) ≤ LR;LS

(L3) LGrf ≤ GrTf and L(Gr○f) ≤ Gr○Tf
for all sets A,B, and R,R1,R2∶A→+ B, S∶B→+ C, f ∶A→ B.

(3) A fuzzy lax extension L is nonexpansive, and then briefly called a nonexpansive lax
extension, if

(L4) L∆ε,A ≤ ∆ε,TA

for all sets A and ε > 0.

Axioms (L0)–(L3) are straightforward quantitative generalizations of the axiomatization of
two-valued lax extensions [MV15]; fuzzy lax extensions in this sense have also been called
[0,1]-relators [Gav18, HST14] (in the more general setting of quantale-valued relations).
Compared to [WS20], we do not require fuzzy lax extensions to satisfy Axiom (L0) in general;
examples of this will be shown in Example 3.14. This necessitates the addition of the second
clause in Axiom (L3) (which of course is implied by the first clause in presence of (L0)).
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Axiom (L4) has no two-valued analogue; its role and the terminology are explained by
Lemma 3.9 below.

The axioms (L1)–(L3) imply the following basic property [HST14, Corollary III.1.4.4]:

Lemma 3.8 (Naturality). Let L be a fuzzy lax extension of T , let R∶A′ →+ B′ be a fuzzy
relation, and let f ∶A→ A′, g∶B → B′. Then

L(R ○ (f × g)) = LR ○ (Tf × Tg).

Proof. We need to show two inequalities. For ‘≤’, we have

L(R ○ (f × g)) = L(Grf ;R; Gr○g) (Lemma 3.5.2)
≤ LGrf ;LR;L(Gr○g) (L2)
≤ GrTf ;LR; Gr○Tg (L3)
= LR ○ (Tf × Tg). (Lemma 3.5.2)

For ‘≥’, we have

LR ○ (Tf × Tg) = GrTf ;LR; Gr○Tg (Lemma 3.5.2)
= GrTf ;L(∆A′ ;R; ∆B′); Gr○Tg (∆ neutral for ;)
≤ GrTf ;L(Gr○f ; Grf ;R; Gr○g; Grg); Gr○Tg (Lemma 3.5.1) and (L1)
≤ GrTf ; Gr○Tf ;L(Grf ;R; Gr○g); GrTg; Gr○Tg (L2) and (L3)
≤ L(Grf ;R; Gr○g) (Lemma 3.5.2)
≤ L(R ○ (f × g)). (Lemma 3.5.1)

Using Lemma 3.8, we can prove the following characterization of Axiom (L4), which is an
important prerequisite for the Hennessy-Milner theorem.

Lemma 3.9. Let L be a fuzzy lax extension of T . Then the following are equivalent:

(1) L satisfies Axiom (L4) (i.e. is nonexpansive).
(2) For all functions f ∶A→ B and all ε > 0, LGrε,f ≤ Grε,Tf .
(3) For all sets A,B, the map R ↦ LR is nonexpansive w.r.t. the supremum metric on A→+ B.

Proof.

● (1)⇐⇒ (2): The implication‘⇐’ is trivial; we prove ‘⇒’. We have

LGrε,f = L(∆ε,B ○ (f × idB)) (Definition 3.4)
= L∆ε,B ○ (Tf × idTB) (Lemma 3.8)
≤ ∆ε,TB ○ (Tf × idTB) (1)
= Grε,Tf . (Definition 3.4)

● (1)Ô⇒ (3): Let R1,R2∶A→+ B and ε > 0 such that ∥R1 −R2∥∞ ≤ ε; we need to show that
∥LR1 −LR2∥∞ ≤ ε. The assumption implies R1 ≤ R2; ∆ε,B, hence, using (L1), (L2), and
(1),

LR1 ≤ L(R2; ∆ε,B) ≤ LR2;L∆ε,B ≤ LR2; ∆ε,TB.

Symmetrically, we show LR2 ≤ LR1; ∆ε,TB, so that ∥LR1 −LR2∥∞ ≤ ε.
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● (3)Ô⇒ (1): We have ∥∆ε,A −∆A∥∞ = ε, and hence by assumption ∥L∆ε,A −L∆A∥∞ ≤ ε.
In particular, L∆ε,A ≤ L∆A; ∆ε,TA, so

L∆ε,A ≤ L∆A; ∆ε,TA ≤ ∆TA; ∆ε,TA = ∆ε,TA

using (L3).

Remark 3.10. As stated in the introduction, nonexpansiveness of lax extensions relates
to conditions on certain lax extensions for strong monads introduced by Gavazzo [Gav18],
called L-continuous V -relators (for V a quantale). Specifically, as T is a set functor, it
has a tensorial strength strA,B ∶A × TB → T (A ×B) given by strA,B(a, t) = T (b↦ (a, b))(t).
Instantiating to the unit interval and using our notation, the axioms of an L-continuous
[0,1]-relator L require that strength is nonexpansive, i.e. that for all sets A,B,X and Y
and all fuzzy relations R∶A→+ B and S∶X →+ Y we have

L(R⊕ S) ○ (strA,X × strB,Y ) ≤ R⊕LS, (3.1)

where ⊕ is taken pointwise. We say that L is strong if it satisfies (3.1) and show that L is
strong iff it is nonexpansive:

Let a ∈ A, b ∈ B and let p∶X → A ×X and q∶Y → B × Y be the maps x ↦ (a, x) and
y ↦ (b, y), respectively. Then, unfolding the definition of str and applying Lemma 3.8, we
have, for t1 ∈ TX and t2 ∈ TY ,

L(R⊕S)(strA,X(a, t1), strB,Y (b, t2)) = L(R⊕S)(Tp(t1), T q(t2)) = L((R⊕S)○(p×q))(t1, t2).
Put ε ∶= R(a, b). Then we have, for all x ∈X and y ∈ Y ,

((R⊕ S) ○ (p × q))(x, y) = R(a, b)⊕ S(x, y) = (∆ε,X ;S)(x, y),
so that (R ⊕ S) ○ (p × q) = ∆ε,X ;LS. Similarly, for a and b fixed like this we have that
(R⊕LS)((a, t1), (b, t2)) = (∆ε,TX ;LS)(t1, t2). Thus, (3.1) is equivalent to the requirement
that

L(∆ε,X ;S) ≤ ∆ε,TX ;LS (3.2)

for all sets X,Y , all S∶X →+ Y and all ε ≥ 0. Finally, we show that (3.2) is equivalent to (L4):

● ‘⇒’: We have L(∆ε,X) = L(∆ε,X ; ∆X) ≤ ∆ε,TX ;L∆X ≤ ∆ε,TX ; ∆TX = ∆ε,TX , using (3.2)
and (L3) in the inequalities and neutrality of ∆ in the equalities.

● ‘⇐’: By (L2) and (L4), we have L(∆ε,X ;S) ≤ L∆ε,X ;LS ≤ ∆ε,TX ;LS.

As indicated previously, many existing approaches to behavioural metrics (e.g. [vBW05,
BBKK18]) are based on lifting functors to pseudometric spaces. In the present framework,
every lax extension induces a functor lifting to hemimetric spaces; or to pseudometric spaces
if the lax extension preserves converse:

Lemma 3.11. Let L be a fuzzy lax extension.

(1) Let d∶X →+ X be a hemimetric. Then Ld is a hemimetric on TX. If d is a pseudometric
and L preserves converse, then Ld is a pseudometric as well.

(2) For every nonexpansive map f ∶ (X,d1)→ (Y, d2) of hemimetric spaces, the map
Tf ∶ (TX,Ld1)→ (TY,Ld2) is nonexpansive.

Proof.

(1) Using Lemma 3.6 and the laws of lax extensions, we have Ld ≤ L∆X ≤ ∆TX and
Ld ≤ L(d;d) ≤ Ld;Ld, so Ld is a hemimetric. If L preserves converse and d is a
pseudometric, then (Ld)○ = L(d○) = Ld, so that Ld is a pseudometric.
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(2) Let f ∶ (X,d1) → (Y, d2) be a nonexpansive map, that is d2 ○ (f × f) ≤ d1. Then Tf is
nonexpansive as well, by naturality (Lemma 3.8) and monotonicity:

Ld2 ○ (Tf × Tf) = L(d2 ○ (f × f)) ≤ Ld1.

As a consequence of Lemma 3.11, every fuzzy lax extension of T ∶Set → Set gives rise to
a functor T ∶HMet → HMet on the category HMet of hemimetric spaces and nonexpansive
maps that lifts T in the sense that U ○ T = T ○U , where U ∶HMet→ Set is the functor that
forgets the hemimetric. Similarly, every converse-preserving fuzzy lax extension induces a
lifting of T to the category of pseudometric spaces.

Much of the development will be based on finitary functors; for instance, we need
a finitary functor so we can give an explicit syntax for the characterizing logic of a lax
extension. We can capture a broader class of functors, specifically those functors that are
suitably approximated by their finitary parts in the sense that the finitary part forms a
dense subset of the unrestricted functor.

Definition 3.12. Let (X,d) be a hemimetric space. A set A ⊆X is dense if for all x ∈X
and all ε > 0 there exists some a ∈ A such that both d(x, a) ≤ ε and d(a, x) ≤ ε.

This notion of density for hemimetrics coincides with an existing one for quantale-valued
distances [FK97]. In particular, it is essential to require both inequalities in Definition 3.12,
as otherwise certain pathological cases of dense subsets may occur. For instance, if we left
out the second inequality from the above definition, then the singleton set {1} would be a
dense subset of the unit interval [0,1] under the hemimetric d⊖ (Section 2).

Equipped with this definition of density, we proceed to introduce the following condition
which allows for the treatment of lax extensions of certain non-finitary functors.

Definition 3.13. A fuzzy lax extension L of the functor T is finitarily separable if for every
set X, TωX is a dense subset of TX w.r.t. the hemimetric L∆X .

Clearly, any lax extension of a finitary functor is finitarily separable. The prototypical
example of a finitarily separable lax extension of a non-finitary functor is the Kantorovich
lifting of the discrete distribution functor D (Example 5.11.1); that is, every discrete
distribution can be approximated, under the usual Kantorovich metric, by finitely supported
distributions.

We conclude the section with a basic example of a nonexpansive lax extension, deferring
further examples to the sections on systematic constructions of such extensions (Sections 5
and 6):

Example 3.14 (Hausdorff lifting). The Hausdorff lifting is the relation lifting H for the
powerset functor P, defined for fuzzy relations R∶A→+ B by

HR(U,V ) = max(sup
a∈U

inf
b∈V

R(a, b), sup
b∈V

inf
a∈U

R(a, b))

for U ⊆ A,V ⊆ B. The Hausdorff lifting can be viewed as a quantitative analogue of
the Egli-Milner extension (Section 2), where sup replaces universal quantification and inf
replaces existential quantification. It is shown already in [HST14] that H is a fuzzy lax
extension. Indeed, it is easy to see that H is also converse-preserving and nonexpansive.
These properties will also follow from the results of Section 6, where we show that H is in
fact an instance of the Wasserstein lifting. H is not finitarily separable, because for every
set X we have H∆X = ∆PX .
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We may also consider asymmetric versions of the Hausdorff lifting by simply omitting
one of the two terms in the definition, putting

H←R(U,V ) = sup
a∈U

inf
b∈V

R(a, b) and H→R(U,V ) = sup
b∈V

inf
a∈U

R(a, b)

for U ⊆ A,V ⊆ B. Both H← and H→ are nonexpansive fuzzy lax extensions, but neither of
them preserves converse.

4. Quantitative Simulations

We next identify a notion of simulation based on a lax extension L of the functor T ;
similar concepts appear in work on quantitative applicative bisimilarity [Gav18]. We define
behavioural distance based on this notion, and show coincidence with the distance defined
via the pseudometric lifting induced by L according to Lemma 3.11.

Definition 4.1. Let L be a lax extension of T , and let α∶A → TA and β∶B → TB be
coalgebras.

(1) A fuzzy relation R∶A→+ B is an L-simulation if LR ○ (α × β) ≤ R.
(2) R is an L-bisimulation if both R and R○ are L-simulations.
(3) We define L-behavioural distance dLα,β ∶A→+ B to be the infimum of all L-simulations:

dLα,β = inf{R∶A→+ B ∣ R is an L-simulation}.

If α = β, we write dLα = dLα,β instead.

Remark 4.2. Putting Definition 4.1 in other words, an L-simulation is precisely a prefix
point for the map F (R) = LR ○ (α × β). Note that F is monotone by (L1). This means
that, according to the Knaster-Tarski fixpoint theorem, dLα,β is itself a prefix point (i.e. an

L-simulation), and also the least fixpoint of F , i.e. dLα,β = LdLα,β ○ (α × β). In particular, the
infimum in Definition 4.1.3 is always a minimum.

Example 4.3. The weighted transition systems discussed in the introduction can be
modelled as coalgebras for the functor Pω(M × −), and the simulation distance given there
is then L-behavioural distance for the fuzzy lax extension L defined for R∶A→+ B by

LR(U,V ) = sup
(m,a)∈U

inf
(n,b)∈V

dM(m,n) + λR(a, b),

where U ⊆M ×A,V ⊆M ×B. To ensure that all values of LR lie in the unit interval [0,1],
we require that dM(m,n) ≤ 1 − λ for all m,n ∈M . If M is finite (as is the case in [LFT11])
this can always be achieved by rescaling.

We note the following facts about L-simulations:

Lemma 4.4. Let L be a fuzzy lax extension, and let α∶A→ TA, β∶B → TB and γ∶C → TC
be coalgebras. Then

(1) ∆A is an L-simulation.
(2) For any L-simulations R∶A→+ B and S∶B→+ C, R;S is an L-simulation.



19:12 P. Wild and L. Schröder Vol. 18:2

Proof. For Item (1), we have

L∆A ○ (α × α) ≤ ∆TA ○ (α × α) = Gr○α; ∆TA; Grα = Gr○α; Grα ≤ ∆A

by (L3) and both parts of Lemma 3.5. For Item (2), we compute

L(R;S) ○ (α × γ)
≤ (LR;LS) ○ (α × γ) (L2)
= Grα;LR;LS; Gr○γ (Lemma 3.5.2)
≤ Grα;LR; Gr○β; Grβ;LS; Gr○γ (Lemma 3.5.1)
= LR ○ (α × β);LS ○ (β × γ) (Lemma 3.5.2)
≤ R;S. (assumption)

For converse-preserving lax extensions, this notion of simulation is actually one of bisimula-
tion, more precisely:

Lemma 4.5. If L preserves converse, then every L-simulation is an L-bisimulation.

Proof. Let α∶A→ TA and β∶B → TB be coalgebras and let R be an L-simulation. Then by
(L0) we have

L(R○) ○ (β × α) = (LR)○ ○ (β × α) = (LR ○ (α × β))○ ≤ R○.

As L-behavioural distance is the least L-simulation, we have

Lemma 4.6. For every coalgebra α∶A→ TA, dLα is a hemimetric. If L preserves converse,
then dLα is a pseudometric.

Proof. Since dLα is an L-simulation, both ∆A and dLα;dLα are L-simulations by Lemma 4.4. As
dLα is the least L-simulation, this implies dLα ≤ ∆A and dLα ≤ dLα;dLα, so that dLα is a hemimetric
by Lemma 3.6.

In the converse-preserving case, we additionally have that (dLα)○ is an L-simulation by
Lemma 4.5, and therefore dLα ≤ (dLα)○, making dLα a pseudometric by Lemma 3.6.

Remark 4.7. As announced above and as we show next, existing generic notions of
behavioural distance defined via functor liftings [BBKK18] agree with the one given above
(when both apply). Specifically, when applied to the functor lifting induced by a converse-
preserving lax extension L of T according to Lemma 3.11, the definition of behavioural
distance via functor liftings amounts to taking the same least fixpoint as in Definition 4.1
but only over pseudometrics instead of over fuzzy relations [BBKK18, Lemma 6.1]. Now let
(A,α) be a coalgebra and denote the behavioural distance on A according to the definition
in [BBKK18] by d̄α. We claim that d̄α = dLα, with dLα defined according to Definition 4.1.
Indeed, ‘≥’ is trivial since d̄α is, by definition, an L-bisimulation, and ‘≤’ is immediate
from dLα being a pseudometric (Lemma 4.6).

Remark 4.8. Every converse-preserving fuzzy lax extension L induces a crisp lax exten-
sion Lc, where for any crisp relation R, LcR = (LR)−1[{0}] ⊆ TA×TB (recall Convention 3.2).
It is easily checked that Lc preserves diagonals (Section 2) iff

L∆A is a metric for each set A. (4.1)

By results on lax extensions cited in Section 2, Lc-bisimilarity coincides with behavioural
equivalence in this case, i.e. if L satisfies (4.1), then L characterizes behavioural equivalence:
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Two states a ∈ A and b ∈ B in coalgebras (A,α) and (B,β) are behaviourally equivalent iff
dLα,β(a, b) = 0.

Example 4.9 (Small bisimulations). We give an example of a bisimulation for a lax extension
of the functor TX = [0,1] ×PX. Coalgebras for T are Kripke frames where each state is
labelled with a number from the unit interval. They are similar to the weighted transition
systems from [LFT11], except that here the labels are on the states rather than on the
transitions. This T has a converse-preserving nonexpansive lax extension L, defined for
fuzzy relations R∶A→+ B by

LR((p,U), (q, V )) = 1
2(∣p − q∣ +HR(U,V )),

where p, q ∈ [0,1], U ⊆ A,V ⊆ B, and H is the Hausdorff lifting (Example 3.14). The idea
behind this definition is that the L-behavioural distance of two states is the supremum of
the accumulated branching-time differences between state labels over all runs of a process
starting at these states. The factor 1

2 ensures that the total distance is at most 1 by
discounting the differences at later stages with exponentially decreasing factors.

Now consider the T -coalgebras (A,α) and (B,β) below:

a1 0.7

a2 0.2 a3 0.8

b1 0.4

b2 0.7 b3 0

We put R(a1, b1) = 0.2,R(a2, b3) = R(a3, b2) = 0.1, and R(ai, bj) = 1 in all other cases. We

show that R is an L-bisimulation witnessing that dLα,β(a1, b1) ≤ 0.2, even though it is clearly

neither reflexive nor symmetric on the disjoint union of the systems (it is easy to come up
with similar but slightly larger examples where R also fails to be transitive, i.e. to satisfy
the triangle inequality).

Specifically, we need to show for each ai and bj that LR(α(ai), β(bj)) ≤ R(ai, bj). The
cases with R(ai, bj) = 1 are trivial; in the other cases we have:

HR({a2, a3},{b2, b3}) = max( max
a∈{a2,a3}

min
b∈{b2,b3}

R(a, b), max
b∈{b2,b3}

min
a∈{a2,a3}

R(a, b))

= max(0.1,0.1) = 0.1

LR(α(a1), β(b1)) = LR((0.7,{a2, a3}), (0.4,{b2, b3}))
= 1

2(∣0.7 − 0.4∣ +HR({a2, a3},{b2, b3}))
= 1

2(0.3 + 0.1) = 0.2 = R(a1, b1)
LR(α(a2), β(b3)) = LR((0.2,∅), (0,∅)) = 1

20.2 = 0.1 = R(a2, b3)
LR(α(a3), β(b2)) = LR((0.8,∅), (0.7,∅)) = 1

20.1 ≤ 0.1 = R(a3, b2)
As indicated previously, quantitative Hennessy-Milner theorems can only be expected to hold
for nonexpansive lax extensions. The key observation is the following. By standard fixpoint
theory, L-behavioural distance can be approximated from below by an ordinal-indexed
increasing chain:

Definition 4.10. Let L be a lax extension of T , and let (A,α), (B,β) be T -coalgebras. The
sequence of approximants of (L-behavioural distance) dLα,β are the fuzzy relations dκ∶A→+ B,
indexed over ordinal numbers κ, inductively defined by

d0 = 0, dκ+1 = Ldκ ○ (α × β), dλ = supκ<λ dκ (λ limit ordinal).
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We show some basic properties of these sequences:

Lemma 4.11. Let L be a lax extension of T , let (A,α), (B,β) be T -coalgebras, and let
(dκ∶A→+ B)κ be the sequence of approximants of dLα,β. Then:

(1) The sequence (dκ)κ is increasing.
(2) We have dκ ≤ dLα,β for each ordinal κ.

(3) Let (A′, α′), (B′, β′) be T -coalgebras, let f ∶A → A′, g∶B → B′ be coalgebra morphisms,
and let (d′κ∶A′→+ B′)κ be the sequence of approximants of dLα′,β′. Then dκ = d′κ ○ (f × g)
for each ordinal κ.

Proof.

(1) Because dλ = supκ<λ dκ for limit ordinals λ, it is enough to show that dκ ≤ dκ+1 for each
ordinal κ. We proceed by induction; there are three cases. d0 ≤ d1 holds trivially. For
successor ordinals κ + 1, we have dκ+1 = Ldκ ○ (α × β) ≤ Ldκ+1 ○ (α × β) = dκ+2, where we
used (L1) and the inductive hypothesis in the inequality. Finally, for limit ordinals λ,
we have Ldκ ≤ Ldλ for each κ < λ by (L1), so that supκ<λLdκ ≤ Ldλ. Therefore,
dλ = supκ<λ dκ ≤ supκ<λ dκ+1 = supκ<λLdκ ○ (α × β) ≤ Ldλ ○ (α × β) = dλ+1.

(2) We proceed by induction; the cases for 0 and limit ordinals are trivial. For successor
ordinals, we have dκ+1 = Ldκ ○(α×β) ≤ LdLα,β ○(α×β) = dLα,β by the inductive hypothesis,

by (L1), and by definition of dLα,β.

(3) Again, we proceed by induction; the cases for 0 and limit ordinals are immediate from
the definition. For κ + 1 a successor ordinal, we compute

dκ+1 = Ldκ ○ (α × β) (definition of dκ+1)
= L(d′κ ○ (f × g)) ○ (α × β) (IH)
= Ld′κ ○ (Tf × Tg) ○ (α × β) (Lemma 3.8)
= Ld′κ ○ (α × β) ○ (f × g) (f, g morphisms)
= d′κ+1 ○ (f × g). (definition of d′κ+1)

Crucially, if L is nonexpansive and finitarily separable, then the chain of approximants
stabilizes after ω steps. Formally:

Theorem 4.12. Let L be a nonexpansive finitarily separable lax extension of T . Given
T -coalgebras (A,α), (B,β), let (dκ∶A→+ B)κ, be the approximants of dLα,β. Then

(i) dω+1 = dω, and
(ii) L-behavioural distance dLα,β equals dω.

To prove Theorem 4.12 in the case of non-finitary T , we make use of unravellings of coalgebras:

Definition 4.13 (Unravelling). Let (C,γ) be a T -coalgebra and put C+ = ⋃m≥1C
m.

(1) For c̄ = (c1, . . . , cm) ∈ Cm and c ∈ C we put last(c̄) = cm and appc̄(c) = (c1, . . . , cm, c),
defining maps last∶C+ → C for each m ≥ 1 and appc̄∶C → C+ for each m ≥ 1 and c̄ ∈ Cm.

(2) The unravelling of (C,γ) is the T -coalgebra (C+, γ+), where γ+∶C+ → TC+ is given by

γ+(c̄) = Tappc̄(γ(last(c̄)).

Every coalgebra is behaviourally equivalent to its unravelling:

Lemma 4.14. For every T -coalgebra (C,γ),
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(i) the map last∶ (C+, γ+)→ (C,γ) is a coalgebra morphism; and
(ii) every state c ∈ C is behaviourally equivalent to the state (c) ∈ C+.

This fact is essentially standard; we give a proof for the sake of completeness:

Proof.

(i) Let c̄ ∈ C+. Then clearly last ○ appc̄ = id by definition and therefore

(T last ○ γ+)(c̄) = T last(Tappc̄(γ(last(c̄)))) = T id(γ(last(c̄))) = (γ ○ last)(c̄).

(ii) This is immediate from (i), as behavioural equivalence is witnessed by the coalgebra
morphisms id∶C → C and last∶C+ → C.

Proof of Theorem 4.12. By the fixpoint definition of dLα,β and Lemma 4.11.2, (ii) is immediate

from (i). We prove (i), i.e. that Ldω(α(a), β(b)) = dω(a, b) for all a ∈ A, b ∈ B. We begin by
assuming that T is finitary, and generalize to the non-finitary case later.

Since T is finitary, there exist finite subsets A0 ⊆ A, B0 ⊆ B and s ∈ TA0, t ∈ TB0

such that α(a) = Ti(s) and β(b) = Tj(t), where i∶A0 → A and j∶B0 → B are the inclusion
maps. We then have Ldω(α(a), β(b)) = L(dω ○ (i × j))(s, t) by naturality (Lemma 3.8). By
Lemma 4.11.1, the maps dn ○ (i × j) converge to dω ○ (i × j) pointwise, and therefore also
under the supremum metric (i.e. uniformly), since A0 ×B0 is finite. Since L is nonexpansive,
it is also continuous w.r.t. the supremum metric by Lemma 3.9, so it follows that

Ldω(α(a), β(b)) = L(dω ○ (i × j))(s, t) (naturality)
= supn<ω L(dn ○ (i × j))(s, t) (L continuous)
= supn<ω Ldn(α(a), β(b)) (naturality)
= supn<ω dn+1(a, b) = dω(a, b). (definition of dn+1, dω)

This covers the finitary case. In the general case, we make use of the unravellings (A+, α+)
and (B+, β+), as well as the sequence (d+κ∶A+ →+ B+)κ of approximants of dLα+,β+ . We can

assume w.l.o.g. that A ≠ ∅ ≠ B; then the inclusions Am ↪ A+, Bm ↪ B+ (for m ≥ 1) are
preserved by T , and for readability we assume in the following that TAm is in fact a subset
of TA+; similarly for Bm and Tω, with naturality of L guaranteeing that the identification
does not affect lifted distance. Now let ε > 0. As L is finitarily separable, we can construct
Tω-coalgebras αε∶A+ → TωA

+ and βε∶B+ → TωB
+ approximating α+ and β+ respectively.

Specifically, for every ā ∈ Am we have α+(ā) ∈ TAm+1 by definition, and as TωA
m+1 is dense

in TAm+1, we can choose an element αε(ā) ∈ TωAm+1 such that

L∆A+(α+(ā), αε(ā)) ≤ ε ⋅ 3−m and L∆A+(αε(ā), α+(ā)) ≤ ε ⋅ 3−m. (4.2)

Similarly, for each b̄ ∈ Bm we choose βε(b̄) ∈ TωBm+1 such that

L∆B+(β+(b̄), βε(b̄)) ≤ ε ⋅ 3−m and L∆B+(βε(b̄), β+(b̄)) ≤ ε ⋅ 3−m. (4.3)

We denote the sequence of approximants of dLαε,βε by (dεκ∶A+→+ B+)κ and show by induction

that the dεκ approximate the d+κ in the following sense: for all m ≥ 1 and all ā ∈ Am, b̄ ∈ Bm,

∣dεκ(ā, b̄) − d+κ(ā, b̄)∣ ≤ ε ⋅ 31−m (4.4)

for all ordinals κ.
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For κ = 0 this clearly holds. For the inductive step from κ to κ + 1, we note again that
for ā ∈ Am and b̄ ∈ Bm we have α+(ā) ∈ TAm+1 and β+(b̄) ∈ TBm+1 by definition . Therefore,
by Lemma 3.9.3 and the inductive hypothesis, we have

∣Ldεκ(α+(ā), β+(b̄)) −Ld+κ(α+(ā), β+(b̄))∣ ≤ ε ⋅ 31−(m+1) = ε ⋅ 3−m, (4.5)

so that we compute:

dεκ+1(ā, b̄)
= Ldεκ(αε(ā), βε(b̄)) (definition of dεκ+1)
= L(∆A+ ;dεκ; ∆B+)(αε(ā), βε(b̄)) (∆ neutral for ;)
≤ L∆A+(αε(ā), α+(ā)) +Ldεκ(α+(ā), β+(b̄)) +L∆B+(β+(b̄), βε(b̄)) (L2)
≤ Ldεκ(α+(ā), β+(b̄)) + 2ε ⋅ 3−m (4.2) and (4.3)
≤ Ld+κ(α+(ā), β+(b̄)) + ε ⋅ 3−m + 2ε ⋅ 3−m (4.5)
= d+κ+1(ā, b̄) + ε ⋅ 31−m. (definition of d+κ+1)

We can symmetrically derive d+κ+1(ā, b̄) ≤ dεκ+1(ā, b̄) + ε ⋅ 31−m, this time using the other
inequalities in (4.2) and (4.3), so (4.4) holds for κ + 1 as claimed. Finally, if κ is a limit
ordinal, then (4.4) also follows inductively, as taking suprema is a nonexpansive operation.

Since the functor Tω is finitary, we know from the finitary case that dεω = dεω+1. Therefore
we have, for all ā ∈ Ak, b̄ ∈ Bk,

∣d+ω(ā, b̄) − d+ω+1(ā, b̄)∣ ≤ ∣d+ω(ā, b̄) − dεω(ā, b̄)∣ + ∣dεω+1(ā, b̄) − d+ω+1(ā, b̄)∣ ≤ 2ε ⋅ 31−k ≤ 2ε.

Because this holds for all ε > 0, we have d+ω = d+ω+1. Thus, using Lemma 4.11.3 twice,

dω+1 ○ (last × last) = d+ω+1 = d+ω = dω ○ (last × last).

As last is surjective, this implies dω+1 = dω.

5. The Kantorovich Lifting

As a pseudometric lifting, the Kantorovich lifting is standard in the probabilistic setting:
Given a metric d on a set X, the Kantorovich distance Kd(µ1, µ2) between discrete distri-
butions µ1, µ2 on X is defined by

Kd(µ1, µ2) = sup{Eµ1(f) −Eµ2(f) ∣ f ∶ (X,d)→ ([0,1], dE) nonexpansive}

where E takes expected values and dE(x, y) = ∣x − y∣ is Euclidean distance. The coalgebraic
generalization of the Kantorovich lifting, both in the pseudometric setting [KMM18] and
in the present setting of fuzzy relations, is based on fuzzy predicate liftings, a quantitative
analogue of two-valued predicate liftings (Section 2) that goes back to work on coalgebraic
fuzzy description logics [SP11]. Fuzzy predicate liftings will feature in the generic quantitative
modal logics that we extract from fuzzy lax extensions (Section 8).

Recall that the contravariant fuzzy powerset functor Q∶Setop → Set is defined on sets X
as QX = (X → [0,1]) and on functions f ∶X → Y as Qf ∶QY → QX, Qf(h) = h ○ f .

Definition 5.1 (Fuzzy predicate liftings). Let n ∈ N.
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(1) An n-ary (fuzzy) predicate lifting is a natural transformation

λ∶Qn ⇒ Q ○ T,
where the exponent n denotes n-fold cartesian product.

(2) The dual of λ is the n-ary predicate lifting λ̄ given by

λ̄(f1, . . . , fn) = 1 − λ(1 − f1, . . . ,1 − fn).
(3) We call λ monotone if for all sets X and all functions f1, . . . , fn, g1, . . . , gn ∈ QX such

that fi ≤ gi for all i,

λX(f1, . . . , fn) ≤ λX(g1, . . . , gn).
(4) We call λ nonexpansive if for all sets X and all functions f1, . . . , fn, g1, . . . , gn ∈ QX,

∥λX(f1, . . . , fn) − λX(g1, . . . , gn)∥∞ ≤ max(∥f1 − g1∥∞, . . . , ∥fn − gn∥∞).

Remark 5.2. By the Yoneda lemma, unary predicate liftings are equivalent to the evaluation
functions e∶ T [0, 1]→ [0, 1] used in work on pseudometric functor liftings [BBKK18, Sch08]
and on the generic Wasserstein lifting [Hof07]; more generally, an n-ary predicate lifting is
equivalent to a generalized form of evaluation function, of type T ([0,1]n)→ [0,1] [Sch08].

More precisely, an evaluation function e∶T [0,1]→ [0,1] gives rise to a unary predicate
lifting λe given by λe(f) = e ○ Tf . Conversely, the evaluation function corresponding to
λ∶Q⇒ Q ○ T is eλ = λ[0,1](id).

In the more general setting with higher arities, an n-ary evaluation function is a map
e∶T ([0, 1]n)→ [0, 1], giving rise to a predicate lifting λe(f1, . . . , fn) = e○T ⟨f1, . . . fn⟩, while for
each n-ary predicate lifting λ the corresponding evaluation function is eλ = λ[0,1]n(π1, . . . , πn).

Before we can show that the Kantorovich lifting is a lax extension, we first need to generalize
it so that it lifts arbitrary fuzzy relations instead of just pseudometrics. To this end,
we introduce the notion of nonexpansive pairs (a similar idea appears already in [Vil08,
Section 5]):

Definition 5.3. Let R∶A→+ B. A pair (f, g) of functions f ∶A → [0,1] and g∶B → [0,1] is
R-nonexpansive if f(a) − g(b) ≤ R(a, b) for all a ∈ A, b ∈ B.

This notion is compatible with our previous use of the term: When A = B and d∶A→+ A is a
hemimetric, then f ∶ (A,d)→ ([0, 1], d⊖) is nonexpansive in the sense used so far (cf. Section 2)
iff the pair (f, f) is d-nonexpansive in the sense defined above. If d is a pseudometric, then
this is moreover equivalent to f being nonexpansive as a map (A,d)→ ([0,1], dE).

Given a function and a fuzzy relation, we can construct a nonexpansive companion:

Definition 5.4. Let R∶A→+ B and f ∶A→ [0,1]. Then we define R[f]∶B → [0,1] by

R[f](b) = supa∈A f(a)⊖R(a, b)
(recall from Section 2 that ⊖ denotes truncated subtraction).

We note some basic properties of nonexpansive pairs and nonexpansive companions. In
particular, the nonexpansive companion of some function f is the least function (in pointwise
order) forming a nonexpansive pair with f .

Lemma 5.5. Let R∶A→+ B. Then the following hold:

(1) If f ′ ≤ f and g ≤ g′ and (f, g) is R-nonexpansive, then (f ′, g′) is R-nonexpansive.
(2) (f, g) is R-nonexpansive if and only if R[f] ≤ g.
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Definition 5.6. Let Λ be a set of monotone predicate liftings. The Kantorovich lifting KΛ

is defined as follows: for R∶A→+ B, KΛR∶TA→+ TB is given by

KΛR(t1, t2) = sup{λA(f1, . . . , fn)(t1)⊖ λB(g1, . . . , gn)(t2) ∣
λ ∈ Λ n-ary, (f1, g1), . . . (fn, gn) R-nonexpansive}.

To show that the Kantorovich lifting is a lax extension, we need the following fact about
nonexpansive pairs that will be used in the proof of the triangle inequality (L2).

Lemma 5.7. Let R∶A →+ B,S∶B →+ C. Then for every (R;S)-nonexpansive pair (f, h)
there exists some function g∶B → [0,1] such that (f, g) is R-nonexpansive and (g, h) is
S-nonexpansive.

Proof. For each b ∈ B the value g(b) can be chosen arbitrarily in the interval

[sup
a∈A

f(a)⊖R(a, b), inf
c∈C

h(c)⊕ S(b, c)],

so for instance we can use the nonexpansive companion g ∶= R[f] (Definition 5.4). This
interval is non-empty because by assumption

f(a) − h(c) ≤ (R;S)(a, c) ≤ inf
b′∈B

R(a, b′) + S(b′, c) ≤ R(a, b) + S(b, c)

for all a ∈ A, c ∈ C, so f(a)−R(a, b) ≤ h(c)+S(b, c) by rearranging. Similar rearranging also
shows that choosing g(b) in this way ensures that (f, g) is R-nonexpansive and (g, h) is
S-nonexpansive.

We are now ready to prove the central result of the section, stating that the Kantorovich
lifting is always a fuzzy lax extension. In general, it does not preserve converse, but does if
the set of predicate liftings contains all duals of predicate liftings.

Theorem 5.8. Let Λ be a set of monotone predicate liftings. The Kantorovich lifting KΛ

is a lax extension. If Λ is closed under duals, then KΛ preserves converse. If all λ ∈ Λ are
nonexpansive, then KΛ is nonexpansive as well.

Proof. For readability, we pretend that all λ ∈ Λ are unary although the proof works just
as well for unrestricted arities, whose treatment requires no more than adding indices. We
show the five properties one by one:

● (L1): Let R1 ≤ R2. Then every R1-nonexpansive pair is also R2-nonexpansive. Thus
KΛR1 ≤KΛR2, because the supremum on the left side is taken over a subset of that on
the right side.

● (L2): Let R∶A→+ B,S∶B →+ C and t1 ∈ TA, t2 ∈ TB, t3 ∈ TC. Let λ ∈ Λ and let (f, h) be
(R;S)-nonexpansive. Let g be given by Lemma 5.7. Then it is enough to observe that:

λA(f)(t1)⊖ λC(h)(t3) ≤ (λA(f)(t1)⊖ λB(g)(t2)) + (λB(g)(t2)⊖ λC(h)(t3))
≤KΛR(t1, t2) +KΛS(t2, t3).

● (L3): Let h∶A → B and t ∈ TA. We need to show that KΛGrh(t, Th(t)) = 0. Let λ ∈ Λ
and let (f, g) be Grh-nonexpansive, implying f ≤ g ○ h. Then

λA(f)(t) ≤ λA(g ○ h)(t) = λB(g)(Th(t)),
by monotonicity and naturality of λ. The proof for Gr○h is analogous, noting that a pair
(f, g) is Gr○h-nonexpansive iff f ○ h ≤ g.
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● (L4): Let A be a set, t ∈ TA and ε > 0. We need to show that KΛ∆ε,A(t, t) ≤ ε. Let
λ ∈ Λ and let (f, g) be ∆ε,A-nonexpansive, implying f(a) − g(a) ≤ ε for all a ∈ A. By
monotonicity of λ, we can restrict our attention to the case g(a) = f(a)⊖ ε, so that we
have ∥f − g∥∞ ≤ ε. In this case,

λA(f)(t)⊖ λA(g)(t) ≤ ∥λA(f) − λA(g)∥∞ ≤ ∥f − g∥∞ ≤ ε.

● (L0): Let R∶A→+ B and t1 ∈ TA, t2 ∈ TB. Note that a pair (g, f) is R○-nonexpansive iff
(1 − f,1 − g) is R-nonexpansive. Now, using that Λ is closed under duals,

KΛ(R○)(t2, t1) = sup{λB(g)(t2)⊖ λA(f)(t1) ∣ λ ∈ Λ, (g, f) R○-nonexp.}
= sup{λ̄A(f)(t1)⊖ λ̄B(g)(t2) ∣ λ ∈ Λ, (f, g) R-nonexp.} =KΛR(t1, t2).

Remark 5.9 (Kantorovich for pseudometrics). On pseudometrics, the Kantorovich liftingKΛ

as given by Definition 5.6 agrees with the usual Kantorovich distance −↑T defined for
pseudometrics [BBKK18, Definition 5.4]. If d∶A→+ A is a pseudometric, then

d↑T (t1, t2) = sup{∣λA(f1, . . . , fn)(t1) − λA(f1, . . . , fn)(t2)∣ ∣
λ ∈ Λ, f1, . . . , fn∶ (A,d)→1 ([0,1], dE)}.

Lemma 5.10. If Λ is closed under duals, then KΛ(d) = d↑T for every pseudometric d.

Proof. First, note that if (f, g) with f, g∶A → [0,1] is d-nonexpansive, then f(a) − g(a) ≤
d(a, a) = 0 for all a ∈ A, so f ≤ g. By monotonicity of the λ ∈ Λ, the value of the
supremum in Definition 5.6 thus does not change if we restrict the choice of (f, g) to the
case f = g. Finally, in case f = g, d-nonexpansiveness implies that f(a) − f(b) ≤ d(a, b) and
f(b)−f(a) ≤ d(b, a) = d(a, b) for every a, b ∈ A, which means that f is in fact a nonexpansive
map f ∶ (A,d)→1 ([0, 1], dE). Also the supremum does not change when taking the absolute
value, because f is nonexpansive iff 1 − f is and Λ is closed under duals.

Example 5.11 (Kantorovich liftings).

(1) The standard Kantorovich lifting K of the discrete distribution functor D is an instance
of the generic one, for the single predicate lifting ◇(f)(µ) = Eµ(f). We claim that K is
finitarily separable. To see this, let µ ∈ DX and ε > 0. We need to find µε ∈ DX with
finite support such that K∆X(µ,µε) ≤ ε. Note that a pair (f, g) is ∆X -nonexpansive iff
f ≤ g, so by monotonicity

K∆X(µ,µε) = sup{∑x∈X f(x)(µ(x)⊖ µε(x)) ∣ f ∶X → [0,1]} ≤ ∑x∈X ∣µ(x) − µε(x)∣.

Because µ is discrete, there exists a finite set Y ⊆ X with µ(Y ) ≥ 1 − ε
2 . If Y = X,

then we can just put µε = µ. Otherwise, let x0 ∈ X ∖ Y . Then we define µε as follows:
µε(x0) = µ(X ∖ Y ), µε(x) = µ(x) for x ∈ Y , and µε(x) = 0 otherwise. In this case,

∑x∈X ∣µ(x) − µε(x)∣ ≤ 2µ(X ∖ Y ) ≤ ε.

Following Remark 4.8, we can also see that the Kantorovich lifting characterizes be-
havioural equivalence for probabilistic transition systems, i.e. probabilistic bisimilar-
ity [LS91]: To see that K satisfies (4.1), by Lemma 3.11 it suffices to show that
K∆X(µ1, µ2) > 0 for any µ1 ≠ µ2 ∈ DX. W.l.o.g. assume µ1(x) > µ2(x) for some x ∈X
and let f ∈ QX be such that f(x) = 1 and f(x′) = 0 otherwise. Then, as (f, f) is
∆X -nonexpansive, we have K∆X(µ1, µ2) ≥ f(x)(µ1(x) − µ2(x)) > 0.
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(2) The asymmetric Hausdorff lifting H← (Example 3.14) is equal to the Kantorovich lifting
for the single predicate lifting ◇X(f)(A) = sup f[A]. Let R∶A→+ B and let U ⊆ A, V ⊆ B.
We show H←R(U,V ) =K{◇}R(U,V ).
● ‘≤’: Let (f, g) be an R-nonexpansive pair. Then

sup
a∈U

f(a)⊖ sup
b∈V

g(b) ≤ sup
a∈U

inf
b∈V

f(a)⊖ g(b) ≤ sup
a∈U

inf
b∈V

R(a, b) =H←R(a, b).

● ‘≥’: Let a ∈ U and let f ∈ QA be the indicator function of {a}, that is f(a′) = 1 if
a′ = a and f(a′) = 0 otherwise. Put g = R[f], so that g(b) = 1⊖R(a, b) for each b ∈ B.
Then, as (f, g) is R-nonexpansive (Lemma 5.5),

K{◇}R(U,V ) ≥ sup
a∈U

f(a)⊖ sup
b∈V

g(b) = 1⊖ sup
b∈V

(1⊖R(a, b)) = inf
b∈V

R(a, b).

Dually, the other asymmetric form H→ of the Hausdorff lifting is thus the Kantorovich
lifting for the single predicate lifting ◻X(f)(A) = inf f[A]. It follows immediately that
the symmetric Hausdorff lifting H is the Kantorovich lifting KΛ for Λ = {◻,◇}.

(3) The fuzzy neighbourhood functor is the (covariant) functor N = Q ○Q; the elements of
NX are called fuzzy neighbourhood systems, and their coalgebras fuzzy neighbourhood
frames [RG13, CNR16]. The monotone (nonexpansive) fuzzy neighbourhood functor M
is the subfunctor M of N given by MX consisting of the fuzzy neighbourhood systems
that are monotone and nonexpansive as maps A∶QX → [0,1]. We put

LR(A,B) = supf∈QX A(f)⊖B(R[f])
for R∶X →+ Y , A ∈MX, B ∈MY (recall Definition 5.4). Then L is a nonexpansive
lax extension of M; specifically, L = K{λ} where λ is the predicate lifting given by
λX(f)(A) = A(f).

6. The Wasserstein Lifting

The other generic construction for lax extensions arises in a similar way, by generalizing
the generic Wasserstein lifting for pseudometrics [BBKK18] to lift arbitrary fuzzy rela-
tions instead of just pseudometrics; our construction slightly generalizes one given by
Hofmann [Hof07]. Like the Kantorovich lifting, the Wasserstein lifting is based on a choice of
predicate liftings. Compared to the case of the Kantorovich lifting, where we needed to work
with nonexpansive pairs, the generalization from lifting pseudometrics to lifting relations is
much more direct for the Wasserstein lifting. In the same way as for the original construction
of pseudometric Wasserstein liftings, additional constraints, both on the functor and the set
of predicate liftings involved, are needed for the Wasserstein lifting to be a lax extension.
Indeed, the Wasserstein lifting may be seen as a quantitative analogue of the two-valued
Barr extension (Section 2), and like the latter works only for functors that preserve weak
pullbacks. In particular, Wasserstein liftings are based on the central notion of coupling:

Definition 6.1. Let t1 ∈ TA, t2 ∈ TB for sets A,B. The set of couplings of t1 and t2 is
Cpl(t1, t2) = {t ∈ T (A ×B) ∣ Tπ1(t) = t1, Tπ2(t) = t2}.

The Wasserstein lifting uses predicate liftings in a quite different manner from the Kantorovich
lifting, and in particular appears to make sense only for unary predicate liftings, so unlike
elsewhere in the paper, the restriction to unary liftings in the next definition is not just for
readability.
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Definition 6.2 (Wasserstein lifting). Let Λ be a set of unary predicate liftings. The generic
Wasserstein lifting is the relation lifting WΛ of T defined for R∶A→+ B by

WΛR(t1, t2) = supλ∈Λ inf{λA×B(R)(t) ∣ t ∈ Cpl(t1, t2)}.

This construction is similar to [Hof07, Definition 3.4] except that we admit more than one
modality. On pseudometrics, the Wasserstein lifting coincides with the pseudometric lifting
−↓T as defined in [BBKK18, Definition 5.12] (again up to the fact that we admit more than
one modality). We will see that the following conditions ensure that the Wasserstein lifting
is a fuzzy lax extension:

Definition 6.3. Let λ be a unary predicate lifting.

(1) λ is subadditive if for all sets X and all f, g ∈ QX, λX(f ⊕ g) ≤ λX(f)⊕ λX(g).
(2) λ preserves the zero function if for all sets X, λX(0X) = 0TX , where 0X ∶x↦ 0.
(3) λ is standard if it is monotone, subadditive, and preserves the zero function.

Baldan et al. give conditions under which the Wasserstein lifting arising from some set of
evaluation functions (Remark 5.2) preserves pseudometrics. For this purpose they consider
the notion of a well-behaved evaluation function [BBKK18, Definition 5.14].

Definition 6.4. An evaluation function e∶T [0,1]→ [0,1] is well-behaved if it satisfies the
following conditions.

(1) The predicate lifting λe is monotone.
(2) For all t ∈ T ([0, 1]2), we have dE(e(t1), e(t2)) ≤ λe(dE)(t), where tj = Tπj(t) for j = 1, 2.
(3) e−1[{0}] = Ti[T{0}], where i∶{0}→ [0,1] is the inclusion map.

This amounts to a slightly stronger condition than standardness of the corresponding
predicate lifting:

Lemma 6.5. An evaluation function e∶T [0,1] → [0,1] is well-behaved iff the predicate
lifting λe is standard and e−1[{0}] ⊆ Ti[T{0}].

Proof. First, note that monotonicity of λe features in both notions and λe preserves zero iff
e−1[{0}] ⊇ Ti[T{0}]. It remains to relate Item 2 of Definition 6.4 with subadditivity of λe.
Reformulating in terms of λe gives

∣λe(π1)(t) − λe(π2)(t)∣ ≤ λe(dE)(t) for t ∈ T ([0,1]2). (6.1)

We show that (6.1) is equivalent to subadditivity of λe, given that λe is monotone:

● ‘⇒’: Let f, g ∈ QX, t ∈ TX. Put t′ ∶= T ⟨f ⊕ g, f⟩(t) ∈ T ([0,1]2). Then, by naturality, we
have λe(π1)(t′) = λe(f ⊕ g)(t) and λe(π2)(t′) = λe(f)(t) and

λe(dE)(t′) = λe(dE ○ ⟨f ⊕ g, f⟩)(t) ≤ λe(g)(t),

where the last step is by monotonicity of λe. Therefore, λ(f ⊕ g)(t) − λ(f)(t) ≤ λ(g)(t)
by (6.1).

● ‘⇐’: Put f = dE , g = π1∶ [0,1]2 → [0,1]. Then it is easily checked that f ⊕ g ≥ π2 and
therefore

λe(π2) ≤ λe(f ⊕ g) ≤ λe(f) + λe(g) = λe(dE) + λe(π1)
by monotonicity and subadditivity of λe, so λe(π1) − λe(π2) ≤ λe(dE). Similarly, we can
show that λe(π2) − λe(π1) ≤ λe(dE) by swapping the roles of π1 and π2.
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Similar conditions also feature in Hofmann’s topological theories [Hof07, Definition 3.1],
which consist of a monad acting on a quantale via an evaluation function and on which his
generic Wasserstein extension is based. Explicitly, a topological theory is defined as a triple
consisting of a monad T , a quantale V , and a map ξ∶TV → V satisfying a number of axioms.
We only consider the case of the quantale [0, 1]op, with the order given by ≥ and the monoid
structure by ⊕. The first two axioms state that ξ is a T -algebra and can be ignored for our
purposes. The remaining axioms instantiate as follows, where as usual λξ(f) = ξ ○ Tf is the
predicate lifting associated with ξ:

(Q⊗) ⊕ ○⟨λξ(π1), λξ(π2)⟩ ≥ λξ(⊕)
(Qk) 0 ≥ λξ(01)(t) for every t ∈ T1, where 1 is a singleton set

(Q′
∨) λξ is a monotone natural transformation

Using a similar idea as in Lemma 6.5, we see that (Q⊗) is equivalent to subadditivity
of λξ and (Qk) is equivalent to preservation of the zero function. Finally note that [Hof07,
Theorem 3.5 (d)] (which states that the Wasserstein lifting satisfies (L2)) requires that the
functor satisfies the Beck-Chevalley condition, i.e. preserves weak pullbacks.

If T preserves weak pullbacks, the following so-called gluing lemma holds [BBKK18,
Lemma 5.18]:

Lemma 6.6 (Gluing). Let A, B and C be sets, and let t1 ∈ TA, t2 ∈ TB, t3 ∈ TC. Let
t12 ∈ Cpl(t1, t2) and t23 ∈ Cpl(t2, t3). Then there exists t123 ∈ Cpl(t1, t2, t3) such that

T ⟨π1, π2⟩(t123) = t12 and T ⟨π2, π3⟩(t123) = t23,

where the πj are the projections of the product A ×B ×C. Moreover, t13 ∶= T ⟨π1, π3⟩(t123) ∈
Cpl(t1, t3).

Using Lemma 6.6, we can now show that the Wasserstein lifting is a fuzzy lax extension.
Unlike the Kantorovich lifting, the Wasserstein lifting always preserves converse, without
any further restrictions on the set of predicate liftings.

Theorem 6.7. If T preserves weak pullbacks and Λ is a set of standard predicate liftings,
then the Wasserstein lifting WΛ is a converse-preserving lax extension. If additionally all
λ ∈ Λ are nonexpansive, then WΛ is nonexpansive as well.

Proof. We show the five properties one by one:

● (L0): Let swap = ⟨π2, π1⟩∶A × B → B × A. Then T swap is an isomorphism between
Cpl(t1, t2) and Cpl(t2, t1) and it suffices to observe that for every λ ∈ Λ and t ∈ T (A ×B),
λB×A(R○)(T swap(t)) = λA×B(R)(t) by naturality of λ.

● (L1): Immediate from the definition of WΛ and monotonicity of the predicate liftings.
● (L2): Let R∶A →+ B,S∶B →+ C and let t1 ∈ TA, t2 ∈ TB, t3 ∈ TC. We need to show

that WΛ(R;S)(t1, t3) ≤ WΛR(t1, t2) +WΛS(t2, t3). Let λ ∈ Λ, t12 ∈ Cpl(t1, t2) and t23 ∈
Cpl(t2, t3), and let t123 and t13 be as in Lemma 6.6. We need to show

λA×C(R;S)(t13) ≤ λA×B(R)(t12) + λB×C(S)(t23). (6.2)

We define three functions f12, f13, f23∶A×B×C → [0, 1] by f12(a, b, c) = R(a, b), f23(a, b, c) =
S(b, c), and f13(a, b, c) = (R;S)(a, c). Then, as f13 ≤ f12 ⊕ f23, we obtain

λA×B×C(f13)(t123) ≤ λA×B×C(f12)(t123) + λA×B×C(f23)(t123)
by monotonicity and subadditivity of λ, which is equivalent to (6.2) by naturality of λ.
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● (L3): Let f ∶A → B, t1 ∈ TA and λ ∈ Λ. We need to find t ∈ Cpl(t1, T f(t1)) such that
λA×B(Grf)(t) = 0. Indeed, take t = T ⟨idA, f⟩(t1). Then Tπ1(t) = T idA(t1) = t1 and
Tπ2(t) = Tf(t1), and, as λ is natural and preserves zero,

λA×B(Grf)(t) = λA(Grf ○ ⟨idA, f⟩)(t1) = λA(0A)(t1) = 0.

This proves WΛ(Grf) ≤ GrTf . The second clause WΛ(Gr○f) ≤ Gr○Tf now follows using (L0).

● (L4): Let A be a set, ε > 0, t1 ∈ TA and λ ∈ Λ. It is enough to find t ∈ Cpl(t1, t1) such that
λA×A(∆ε,A)(t) ≤ ε. Indeed, take t = T ⟨idA, idA⟩(t1). Then Tπ1(t) = Tπ2(t) = t1, and with
εA∶A→ [0,1] being the constant map a↦ ε we derive

λA×A(∆ε,A)(t) = λA(εA)(t1) ≤ ∥λA(εA) − λA(0A)∥∞ ≤ ε,
using that λ is natural, nonexpansive and preserves zero.

Example 6.8 (Wasserstein liftings).

(1) Similar to the case of the standard Kantorovich lifting K (Example 5.11.1), the standard
Wasserstein lifting W of the discrete distribution functor D arises as an instance of the
generic Wasserstein lifting, for the same predicate lifting ◇(f)(µ) = Eµ(f). In fact, it is
well known [Vil08, Theorem 5.10] that K =W , a fact known as Kantorovich-Rubinstein
duality.

(2) The Hausdorff lifting H (Example 3.14) is the Wasserstein lifting W{λ} for P, where
λX(f)(A) = sup f[A] for A ⊆ X. To see this, let R∶A→+ B, and let U ⊆ A and V ⊆ B.
Then we show that HR(U,V ) =W{λ}R(U,V ) by proving the two inequalities separately:
● ‘≤’: Let Z ∈ Cpl(U,V ). Then for every a ∈ U there exists b ∈ V such that (a, b) ∈ Z, so

infb∈V R(a, b) ≤ supR[Z]. Thus, we have supa∈U infb∈V R(a, b) ≤ supR[Z], and, by a
symmetrical argument, supb∈V infa∈U R(a, b) ≤ supR[Z].

● ‘≥’: Let ε > 0. It suffices to find a coupling Z ∈ Cpl(U,V ) such that supR[Z] ≤
HR(U,V ) + ε. So let ε > 0. We construct functions f ∶U → V and g∶V → U as
follows: For each a ∈ U choose f(a) ∈ V such that R(a, f(a)) ≤ infb∈V R(a, b) + ε.
Similarly, for each b ∈ V choose g(b) ∈ U such that R(g(b), b) ≤ infa∈U R(a, b) + ε.
Now put Z = {(a, f(a)) ∣ a ∈ U} ∪ {(g(b), b) ∣ b ∈ V }. Clearly, Z ∈ Cpl(U,V ) and by
construction,

supR[Z] = max(supa∈U R(a, f(a)), supb∈V R(g(b), b)) ≤HR(U,V ) + ε.
(3) The convex powerset functor C, whose coalgebras combine probabilistic branching and

nondeterminism [BSS17], maps a setX to the set of nonempty convex subsets ofDX. The
Wasserstein lifting W{λ}, where λX(f)(A) = supµ∈AEµ(f) for A ∈ CX, is a nonexpansive
lax extension of C. Of course, λ is just the composite of the predicate liftings respectively
defining the standard Kantorovich/Wasserstein and Hausdorff liftings. W{λ} indeed
coincides with the composite HW of these liftings (for which a quantitative equational
axiomatization has recently been given by Mio and Vignudelli [MV20]):

Let R∶A→+ B, and let U ∈ CA and V ∈ CB. We show W{λ}(R)(U,V ) =HW (R)(U,V ).
There are two inequalities:
● ‘≥’: Let Z ∈ CplC(U,V ). We put Y = P⟨Dπ1,Dπ2⟩(Z). Then Pπ1(Y ) = PDπ1(Z) =
Cπ1(Z) = U and similarly Pπ2(Y ) = V , so that Y ∈ CplP(U,V ). Now, note that for
every µ ∈ D(A ×B) we have that Eµ(R) ≥WR(Dπ1(µ),Dπ2(µ)) and therefore

sup
µ∈Z

Eµ(R) ≥ sup
(µ1,µ2)∈Y

WR(µ1, µ2) ≥HW (R)(U,V ).
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● ‘≤’: Let Y ∈ CplP(U,V ) and ε > 0. It suffices to find Z ∈ CplC(µ1, µ2) such that

sup
µ∈Z

Eµ(R) ≤ sup
(µ1,µ2)∈Y

WR(µ1, µ2) + ε.

For every (µ1, µ2) ∈ DA ×DB there exists some µ ∈ CplD(U,V ) such that Eµ(R) ≤
WR(µ1, µ2) + ε. Let Z ′ be a set consisting of one such µ for every pair (µ1, µ2) ∈ Y
and put Z = conv(Z ′), where conv is convex hull. Then we have

Cπ1(Z) = PDπ1(conv(Z ′)) = conv(PDπ1(Z ′)) = conv(U) = U.

Here we made use of the fact that Dπ1 is linear when considered as a map RA×B →
RA, and linear maps preserve convex sets. We similarly have Cπ2(Z) = V , so that
Z ∈ CplC(U,V ). Finally, we note that taking expected values is a linear operation, so if
µ = ∑ni=1 piµi is a convex combination of probability measures, then Eµ = ∑ni=1 piEµi ≤
maxni=1 Eµi . Therefore we have, as required,

sup
µ∈Z

Eµ(R) = sup
µ∈Z′

Eµ(R) ≤ sup
(µ1,µ2)∈Y

WR(µ1, µ2) + ε.

7. Lax Extensions as Kantorovich Liftings

We proceed to establish the central result that every fuzzy lax extension is a Kantorovich
lifting for some suitable set Λ of predicate liftings, and moreover we characterize the
Kantorovich liftings induced by nonexpansive predicate liftings as precisely the nonexpansive
lax extensions. For a given fuzzy lax extension L, the equality KΛR = LR splits into two
inequalities, one of which is characterized straightforwardly:

Definition 7.1. An n-ary predicate lifting λ preserves nonexpansiveness if for all fuzzy
relations R and all R-nonexpansive pairs (f1, g1), . . . , (fn, gn), the pair

(λA(f1, . . . , fn), λB(g1, . . . , gn))

is LR-nonexpansive. A set Λ of predicate liftings preserves nonexpansiveness if all λ ∈ Λ
preserve nonexpansiveness.

Lemma 7.2. We have KΛR ≤ LR for all fuzzy relations R if and only if Λ preserves
nonexpansiveness.

Definition 7.3 (Separation). A set Λ of predicate liftings is separating for L if KΛR ≥ LR
for all fuzzy relations R.

To motivate Definition 7.3, recall from Section 2 that in the two-valued setting a set Λ of
predicate liftings (for simplicity, assumed to be unary) is separating if

t1 ≠ t2 Ô⇒ ∃λ ∈ Λ,A′ ⊆ A such that t1 ∈ λA(A′) /↔ t2 ∈ λA(A′)

for t1, t2 ∈ TA. Analogously, unfolding definitions in the inequality KΛR ≥ LR (and again
assuming unary liftings), we arrive at the condition that for all t1 ∈ TA, t2 ∈ TB, ε > 0,

LR(t1, t2) > ε Ô⇒ ∃λ ∈ Λ, (f, g) R-nonexpansive such that λA(f)(t1) − λB(g)(t2) > ε.

We are now ready to state our main result, which says that all lax extensions are Kantorovich:
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Theorem 7.4. If L is a finitarily separable lax extension of T , then there exists a set Λ
of monotone predicate liftings that preserves nonexpansiveness and is separating for L, i.e.
L =KΛ. Moreover, L is nonexpansive iff Λ can be chosen in such a way that all λ ∈ Λ are
nonexpansive.

This result can be seen as a fuzzy version of the statements that every finitary functor has a
separating set of two-valued modalities (and hence an expressive two-valued coalgebraic modal
logic) [Sch08, Corollary 45], and that more specifically, every finitary functor equipped with
a diagonal-preserving lax extension has a separating set of two-valued monotone predicate
liftings [MV15, Theorem 14]. We will detail in Section 8 how Theorem 7.4 implies the
existence of characteristic modal logics. The proof of Theorem 7.4 uses a quantitative version
of the so-called Moss modalities [KL09, MV15]. The construction of these modalities relies
on the fact that Tω can be presented by algebraic operations of finite arity:

Definition 7.5. A finitary presentation of Tω consists of a signature Σ of operations with
given finite arities, and for each σ ∈ Σ of arity n a natural transformation σ∶ (−)n ⇒ Tω such
that every element of TωX has the form σX(x1, . . . , xn) for some σ ∈ Σ.

For the remainder of this section, we fix a finitary presentation of Tω with signature Σ (such
a presentation always exists [MV15, Example 21]) and assume a finitarily separable fuzzy
lax extension L of T . To derive predicate liftings from the operations in Σ, we make use of
the fuzzy elementhood relation ∈X (indexed over arbitrary sets X), where ∈X ∶X →+ QX is
given by ∈X(x, f) = f(x).

Definition 7.6. Let σ ∈ Σ be n-ary. The Moss lifting µσ ∶Qn ⇒ Q ○ T is defined by

µσX(f1, . . . , fn)(t) = L∈X(t, σQX(f1, . . . , fn)).

It follows from naturality of σ and L (Lemma 3.8) that µσ is indeed natural and therefore a
predicate lifting, as shown next. Indeed, for any g∶A → B, f1, . . . , fn ∈ QB and t ∈ TB we
note that ∈A ○ (id ×Qg) = ∈B ○ (g × id) by definition of ∈A and ∈B and thus

µσA(f1 ○ g, . . . , fn ○ g)(t)
= L∈A(t, σQA(f1 ○ g, . . . , fn ○ g)) (definition of µσ)
= L∈A(t, TQg(σQB(f1, . . . , fn))) (σ natural)
= L(∈A ○ (id ×Qg))(t, σQB(f1, . . . , fn)) (Lemma 3.8)
= L(∈B ○ (g × id))(t, σQB(f1, . . . , fn))
= L∈B(Tg(t), σQB(f1, . . . , fn)) (Lemma 3.8)
= µσB(f1, . . . , fn)(Tg(t)). (definition of µσ)

We are now in a position to present the proof of Theorem 7.4: We take Λ to be the set of
Moss liftings and show the required properties of Λ one by one.

Convention 7.7. Throughout this proof, all statements and proofs will be written for the
case where all σ ∈ Σ (and therefore the induced Moss liftings) are unary. This is purely in
the interest of readability; the general case requires only more indexing.
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Monotonicity. The proof is based on the following auxiliary fact about pairs of elements
that are mapped to 0.

Lemma 7.8. Let σ ∈ Σ and R∶A→+ B. Then for all a ∈ A, b ∈ B with R(a, b) = 0 we have
LR(σA(a), σB(b)) = 0.

Proof. Put R0 = {(a, b) ∈ A ×B ∣ R(a, b) = 0} and consider the projection maps π1∶R0 → A
and π2∶R0 → B. Then it is easy to see that R ≤ Gr○π1

; Grπ2 (noting again that we read 0 as
‘related’ and 1 as ‘unrelated’; in particular recall Convention 3.3 and Definition 3.4). Using
the axioms of lax extensions, we obtain

LR ≤ L(Gr○π1
; Grπ2) ≤ LGr○π1

;LGrπ2 ≤ Gr○Tπ1
; GrTπ2 . (7.1)

For (a, b) ∈ R0, put t = σA×B((a, b)), so that Tπ1(t) = σA(a) and Tπ2(t) = σB(b) by
naturality of σ. This means that (Gr○Tπ1

; GrTπ2)(σ(a), σ(b)) = 0, so that by (7.1) we have
LR(σA(a), σB(b)) = 0.

Lemma 7.9. Let σ ∈ Σ. Then the Moss lifting µσ is monotone.

Proof. We make use of the fuzzy relation R∶QX→+ QX given by R(g, f) = supx∈X f(x)⊖g(x),
which we claim to satisfy the following two useful properties:

R(g, f) = 0 ⇐⇒ f ≤ g (7.2)

∈X ≤ ∈X ;R (7.3)

The first property is clear; the second property amounts to showing that f(x) ≤ g(x)⊕R(g, f)
for all x ∈X and all f, g ∈ QX and is easily shown by case analysis on the definition of ⊕.

Let f, g ∈ QX with f ≤ g and let t ∈ TX. First, we note that by (7.2) we have R(g, f) = 0
and thus LR(σQX(g), σQX(f)) = 0 by Lemma 7.8. Second, by (7.3) and the axioms of lax
extensions we have L∈X ≤ L(∈X ;R) ≤ L∈X ;LR. Therefore:

µσX(f)(t) = L∈X(t, σQX(f)) ≤ (L∈X ;LR)(t, σQX(f))
≤ L∈X(t, σQX(g))⊕LR(σQX(g), σQX(f)) = µσX(g)(t).

Preservation of nonexpansiveness.

Lemma 7.10. Let σ ∈ Σ. Then the Moss lifting µσ preserves nonexpansiveness.

Proof. Let R∶A→+ B and consider the map R[−]∶QA→ QB,f ↦ R[f]. First, we show that

∈A ≤ R; ∈B; Gr○R[−]. (7.4)

Let f ∈ QA, g ∈ QB, and let a ∈ A, b ∈ B. We need to show that

∈A(a, f) ≤ R(a, b)⊕ ∈B(b, g)⊕Gr○R[−](g, f).

If g ≠ R[f], this holds trivially as Gr○R[−](g, f) = 1. Otherwise, if g = R[f], then we have

f(a)⊖R(a, b) ≤ g(b) by definition, and hence

∈A(a, f) = f(a) ≤ R(a, b)⊕ g(b) ≤ R(a, b)⊕ ∈B(b, g)⊕Gr○R[−](g, f).

Now let (f, g) be R-nonexpansive and let t1 ∈ TA and t2 ∈ TB. We need to show that

µσA(f)(t1) − µσB(g)(t2) ≤ LR(t1, t2). (7.5)
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By monotonicity of µσ and Lemma 5.5 it is enough to show this for the case g = R[f]. In
this case we have TR[−](σQA(f)) = σQB(g) by naturality of σ. Applying the lax extension
laws to (7.4), we have L∈A ≤ LR;L∈B; Gr○TR[−], so that

L∈A(t1, σQA(f)) ≤ LR(t1, t2)⊕L∈B(t2, σQB(g))⊕Gr○TR[−](σQB(g), σQA(f))
= LR(t1, t2)⊕L∈B(t2, σQB(g)),

and (7.5) follows by rearranging.

Separation. To show that Λ is separating for L, we need to make use of the fact that L is
finitarily separable.

Lemma 7.11. Λ is separating for L, that is, L ≤KΛ.

Proof. Let R∶A→+ B and t1 ∈ TA, t2 ∈ TB. Let ε > 0. Put s∶B → QA, s(b)(a) = R(a, b).
Because the set of Σ-terms over QA generates TωQA and L is finitarily separable, there
exists some σ ∈ Σ and some f ∈ QA such that we have L∆QA(σQA(f), T s(t2)) ≤ ε and
L∆QA(Ts(t2), σQA(f)) ≤ ε. Put g = R[f]. Then it suffices to show that

µσA(f)(t1) − µσB(g)(t2) + 2ε ≥ LR(t1, t2). (7.6)

First, by construction and naturality (Lemma 3.8),

L∈A(t1, T s(t2)) = L(∈A ○ (idA × s))(t1, t2) = LR(t1, t2),
where in the second step we used that (∈A ○ (idA × s))(a, b) = s(b)(a) = R(a, b) for all
a ∈ A, b ∈ B. By the axioms of lax extensions we also have L∈A ≤ L∈A;L∆QA and therefore

LR(t1, t2) = L∈A(t1, T s(t2)) ≤ L∈A(t1, σQA(f))⊕L∆QA(σQA(f), T s(t2)) ≤ µσA(f)(t1) + ε.
Second, by the axioms of lax extensions and using naturality again,

L∈B(t2, T (R[−] ○ s)(t2)) = L(∈B ○ (idB × (R[−] ○ s)))(t2, t2)
≤ L∆B(t2, t2) = ∆B(t2, t2) = 0,

(7.7)

where in the inequality we used that for all b1, b2 ∈ B,

(∈B ○ (idB × (R[−] ○ s)))(b1, b2) = R[s(b2)](b1) = supa∈AR(a, b2)⊖R(a, b1) ≤ ∆B(b1, b2).
As before, we have L∈B ≤ L∈B;L∆QB . We also have σQB(g) = TR[−](σQA(f)) by naturality
of σ. Therefore, by naturality of L:

µσB(g)(t2)
= L∈B(t2, σQB(g)) (definition)
≤ L∈B(t2, T (R[−] ○ s)(t2))⊕L∆QB(T (R[−] ○ s)(t2), TR[−](σQA(f))) (L2)
= L∆QB(T (R[−] ○ s)(t2), TR[−](σQA(f))) (7.7)
= L(∆QB ○ (R[−] ×R[−]))(Ts(t2), σQA(f)) (naturality)
≤ L∆QA(Ts(t2), σQA(f)) ≤ ε. (Lemma 3.5)

Our target inequality (7.6) now follows by combining and rearranging the above inequalities.
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Nonexpansiveness. We note that ε-diagonals characterize the supremum norm as follows:

Lemma 7.12. Let X be a set, let f, g∶X → [0,1] and let ε > 0. Then ∥f − g∥∞ ≤ ε if and
only if both (f, g) and (g, f) are ∆ε,X-nonexpansive pairs.

Lemma 7.13. Let σ ∈ Σ. If L is nonexpansive, then the Moss lifting µσ is nonexpansive.

Proof. Let f, g ∈ QX with ∥f − g∥∞ ≤ ε. We need to show that ∥µσX(f) − µσX(g)∥∞ ≤ ε. By
Lemma 7.12, we know that the pairs (f, g) and (g, f) are ∆ε,X -nonexpansive. Therefore,
because the Moss liftings preserve nonexpansiveness (Lemma 7.10), the pairs (µσX(f), µσX(g))
and (µσX(g), µσX(f)) are L∆ε,X -nonexpansive, and thus they are also ∆ε,TX -nonexpansive
by (L4). The claim now follows by another application of Lemma 7.12.

8. Real-valued Coalgebraic Modal Logic

We next recall the generic framework of real-valued coalgebraic modal logic, which lifts
two-valued coalgebraic modal logic (Section 2) to the quantitative setting, and will yield
characteristic quantitative modal logics for all nonexpansive lax extensions. The framework
goes back to work on fuzzy description logics [SP11]. The present version, characterized by
a specific choice of propositional operators, appears in work on the coalgebraic quantita-
tive Hennessy-Milner theorem [KMM18], and generalizes quantitative probabilistic modal
logic [vBW05].

Given a set Λ of nonexpansive (fuzzy) predicate liftings, the set LΛ of modal (Λ)-formulae
is given by

φ,ψ ∶∶= c ∣ φ⊖ c ∣ φ⊕ c ∣ φ ∧ ψ ∣ φ ∨ ψ ∣ λ(φ1, . . . , φn) (8.1)

where c ∈ Q∩ [0, 1] and λ ∈ Λ has arity n. The semantics assigns to each formula φ and each
coalgebra (A,α) a real-valued map JφKA,α∶A→ [0,1], or just JφK, defined by

JcK(a) = c Jφ ∧ ψK(a) = min(JφK(a), JψK(a))
Jφ⊖ cK(a) = max(JφK(a) − c,0) Jψ ∨ ψK(a) = max(JφK(a), JψK(a))
Jφ⊕ cK(a) = min(JφK(a) + c,1) Jλ(φ1, . . . , φn)K(a) = λA(Jφ1K, . . . , JφnK)(α(a))

Remark 8.1. We thus adopt what is often called Zadeh semantics for the propositional
operators. This choice is pervasive in characteristic logics for behavioural distances (includ-
ing [vBW05, KMM18, WSPK18]) – in particular, the more general  Lukasiewiecz semantics
fails to be nonexpansive w.r.t. behavioural distance, and indeed induces a discrete logical
distance [WSPK18].

In the same vein, we require the modalities λ ∈ Λ to be nonexpansive to avoid situations
where non-zero logical distances (Definition 8.4) can be arbitrarily blown up by repeated
application of modalities, such as in the case of the doubling modality λX(f)(x) = 2f(x) of
the identity functor.

In the two-valued setting, one can sometimes restrict the propositional base in charac-
teristic logics; notably, two-valued probabilistic modal logic characterizes (event) bisimilarity
of probabilistic transition systems even with conjunction as the only propositional connec-
tive [DEP98]. No similar results appear to be known in the quantitative case; e.g. van
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Breugel and Worrell’s characteristic logic for behavioural distance of probabilistic tran-
sition systems [vBW05] does feature essentially the same propositional operators as our
grammar (8.1), if negation is defined as in Remark 8.2 below.

Following [vBW05], we restrict truth constants in formulae to rational numbers, thus
ensuring that the set of formulae is countable provided Λ is countable. This countability is
not needed for any of our results, and they will still hold if the truth constants come from
any dense subset of [0,1] (including [0,1] itself).

Remark 8.2. The logic as defined above does not include negation. This is to be expected,
as already in the classical case the characteristic logic for similarity is negation-free modal
logic with ◇ as the only modality [vG90]. However, if the set Λ of predicate liftings is
closed under duals (and the corresponding Kantorovich lifting therefore preserves converse),
then negation ¬φ can be defined recursively using De Morgan’s laws for the propositional
operators and duals for the modalities:

¬c = 1 − c ¬(φ ∧ ψ) = ¬φ ∨ ¬ψ
¬(φ⊖ c) = ¬φ⊕ c ¬(φ ∨ ψ) = ¬φ ∧ ¬ψ
¬(φ⊕ c) = ¬φ⊖ c ¬λ(φ1, . . . , φn) = λ̄(¬φ1, . . . ,¬φn)

With negation defined like this, this version of real-valued coalgebraic modal logic is equivalent
to the one in [WS20], which includes negation as a primitive. The latter logic does not
explicitly include addition, but in the presence of subtraction and negation we can define it
as φ⊕ c = ¬(¬φ⊖ c).
Example 8.3.

(1) Fuzzy modal logic may be seen as a basic fuzzy description logic [LS08]. Eliding
propositional atoms for brevity (they may be added as nullary modalities), we take
Λ = {◇,◻}. Models are fuzzy relational structures, i.e. coalgebras for the covariant fuzzy
powerset functor F given by FX = [0,1]X and Ff(g)(y) = supf(x)=y g(x), and ◇ and
◻ are interpreted as the predicate liftings

◇A(f)(g) = sup
a∈A

min(g(a), f(a)) and ◻A (f)(g) = inf
a∈A

max(1 − g(a), f(a)).

We note that ◇ and ◻ are dual, so that negation can be defined as in Remark 8.2.
Hennessy-Milner-type results necessarily apply only to finitely branching models, i.e.
coalgebras for Fω.

(2) Probabilistic modal logic: Take models to be probabilistic transition systems with possible
deadlocks, i.e. coalgebras for the functor 1+D, where DA is the set of discrete probability
distributions on A (Section 2); and Λ = {◇}, with

◇A(f)(∗) = 0 for ∗ ∈ 1, and ◇A (f)(µ) = Eµ(f) = ∑a∈A µ(a) ⋅ f(a).
Probabilistic modal logic can be extended with negation by adding the dual ◻ of ◇.
As taking expected values is self-dual, ◻ only differs from ◇ on deadlocks, where
◻A(f)(∗) = 1. When additionally extended with propositional atoms, this induces (up
to restricting to discrete probabilities) van Breugel et al.’s contraction-free quantitative
probabilistic modal logic [vBHMW07].

In the two-valued setting, modal logic is typically invariant under bisimulation, i.e. bisimilar
states satisfy the same modal formulae. By contrast, under the asymmetric notion of
similarity, the corresponding statement is that the fragment of modal logic that only uses
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the ◇ and no negations is preserved under simulation, i.e. if some state is simulated by
another state, then all formulae of this shape that are satisfied by the first state are also
satisfied by the second state.

In the quantitative setting, both of these statements correspond to nonexpansiveness
of formula evaluation w.r.t. the behavioural distance arising from a Kantorovich lifting,
where the distinction between the two scenarios is embedded in the choice of modalities. We
may also phrase this more compactly by saying that logical distance is below behavioural
distance:

Definition 8.4. The Λ-logical distance between states a ∈ A, b ∈ B in T -coalgebras (A,α),
(B,β) is

dΛ(a, b) = sup{JφK(a)⊖ JφK(b) ∣ φ ∈ LΛ}.

Lemma 8.5. Let φ be a modal Λ-formula, and let a ∈ A, b ∈ B be states in T -coalgebras
(A,α), (B,β). Then

JφKA,α(a)⊖ JφKB,β(b) ≤ dKΛ

α,β(a, b).

Proof. Induction on φ, with trivial Boolean cases (in Zadeh semantics, all propositional
operators on [0, 1] are nonexpansive). For the modal case, we have (for readability, restricting
to unary λ ∈ Λ)

Jλ(φ)K(a)⊖ Jλ(φ)K(b) = λA(JφK)(α(a))⊖ λB(JφK(β(b)) (definition of Jλ(φ)K)
≤KΛd

KΛ

α,β(α(a), β(b)) (definition of KΛ, IH)

= dKΛ

α,β(a, b) (definition of dKΛ

α,β)

Lemma 8.6 (Nonexpansiveness of quantitative modal logic).
If Λ preserves nonexpansiveness w.r.t. a lax extension L, then dΛ ≤ dL.

Proof. Immediate from Lemma 8.5 and Lemma 7.2.

Finally, we show how the characterization of lax extensions as Kantorovich extensions can
be used to define characteristic logics for nonexpansive lax extensions. Recall the sequence
of approximants (Definition 4.10) we used in Theorem 4.12 to approach the L-behavioural
distance dLα,β of coalgebras α∶A→ TA and β∶B → TB via fixpoint iteration:

d0 = 0, dn+1 = Ldn ○ (α × β), dω = supn<ω dn.

If L =KΛ, then each individual step in this iteration can be related to the logical distance
taken over some subset of LΛ. More precisely, if we define the rank of a modal formula φ to
be the maximal nesting depth of modalities, then

Lemma 8.7. For each n < ω and all a ∈ A, b ∈ B we have:

dn(a, b) = sup{JφK(a)⊖ JφK(b) ∣ φ ∈ LΛ, φ has rank at most n}.

A proof for the more general case of quantale-valued logics and relations can be found
in [WS21, Theorem 6.1]. In that paper, this characterization of finite-depth distances forms
the basis of a Hennessy-Milner theorem for the quantale-valued Kantorovich lifting of finitary
functors. In the present setting, we can drop the condition that T must be finitary by
combining Lemma 8.7 with Theorem 4.12 to obtain, complementing Lemma 8.6, a criterion
phrased directly in terms of conditions on the lax extension and the modalities:
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Theorem 8.8 (Coalgebraic quantitative Hennessy-Milner theorem). Let L be a finitarily
separable fuzzy lax extension, and let Λ be a separating set of monotone nonexpansive
predicate liftings for L. Then dΛ = dL.

Proof. By Lemma 8.7 we have dω = supn<ω dn = dΛ and by Theorem 4.12 we have dω = dL.

Example 8.9.

(1) Since we only require L to be finitarily separable (rather than T finitary), Example 5.11.1
implies that we recover expressiveness [vBHMW07, vBW05] of quantitative probabilistic
modal logic over countably branching discrete probabilistic transition systems (Exam-
ple 8.3.2) as an instance of Theorem 8.8.

(2) Let L be the lax extension of T = Pω(M × −) from Example 4.3. As T is finitary, it
follows by Theorem 7.4 that L =KΛ for the set Λ of Moss liftings of L and the logic LΛ

is characteristic for simulation distance by Theorem 8.8.

Applying Lemma 8.6 and Theorem 8.8 to L =KΛ and using our result that all lax extensions
are Kantorovich extensions for their Moss liftings (Theorem 7.4), which moreover are
monotone and nonexpansive in case L is nonexpansive, we obtain expressive logics for
finitarily separable nonexpansive lax extensions:

Corollary 8.10. If L is a finitarily separable nonexpansive lax extension of a functor T ,
then dL = dΛ for the set Λ of Moss liftings.

We can see the coalgebraic modal logic of Moss liftings as concrete syntax for a more abstract
logic where we incorporate functor elements into the syntax directly, as in Moss’ coalgebraic
logic [Mos99] and its generalization to lax extensions [MV15]. The set LL of formulae in the
arising quantitative Moss logic is generated by the same propositional operators as above,
and additionally by a modality ∆ that applies to Φ ∈ TL0 for finite L0 ⊆ LL, with semantics

J∆ΦK(a) = L∈A(α(a),Φ).
The dual of ∆ is denoted ∇, and behaves like a quantitative analogue of Moss’ two-valued ∇.
From Corollary 8.10, it is immediate that this logic is expressive:

Corollary 8.11 (Expressiveness of quantitative Moss logic). Let L be a finitarily separable
nonexpansive lax extension of a functor T . Then L-behavioural distance dL coincides with
logical distance in quantitative Moss logic, i.e. for all states a ∈ A, b ∈ B in coalgebras
α∶A→ TA, β∶B → TB,

dLα,β(a, b) = sup{JφK(a)⊖ JφK(b) ∣ φ ∈ LL}.
Example 8.12.

(1) We equip the finite fuzzy powerset functor Fω with the Wasserstein lifting W◇ for ◇ as
in Example 8.3.1, in analogy to the Hausdorff lifting (Example 6.8.2). Then ∇ applies
to finite fuzzy sets Φ of formulae, and

J∇ΦK(a) = supt∈Cpl(Φ,α(a)) inf(φ,a′)∈LL×Amax(1 − t(φ, a′), φ(a′))
for a state a in an F -coalgebra (A,α), i.e. in a finitely branching fuzzy relational structure.

(2) Let Cfg be the subfunctor of the convex powerset functor C given by the finitely generated
convex sets of (not necessarily finite) discrete distributions, equipped with the Wasserstein
lifting described in Example 6.8.3. Then ∇ applies to finite sets of finite distributions
on formulae, understood as spanning a convex polytope. By Corollary 8.11, the arising
instance of quantitative Moss logic is expressive for all Cfg-coalgebras.
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9. Conclusions

We study behavioural distances based on fuzzy lax extensions, with a particular focus on
nonexpansive lax extensions, establishing that the latter are closely related to distances
based on coalgebraic modal logic. Nonexpansiveness of a lax extension can equivalently be
expressed in terms of strength of the underlying functor [Gav18] or as lax preservation of ε-
diagonals. We examine two general constructions of nonexpansive lax extensions, respectively
generalizing the classical Kantorovich and Wasserstein distances and strengthening previous
generalizations where only pseudometrics are lifted [BBKK18]. Our construction of the
Kantorovich lifting is based in particular on generalizing nonexpansive functions on a single
space to nonexpansive pairs of functions on two different spaces (implicit in work on optimal
transportation [Vil08]), while the Wasserstein lifting mostly coincides with an existing
construction from work on topological theories [Hof07].

Our main result shows that every nonexpansive lax extension is a Kantorovich lifting
for a suitable choice of modalities, the so-called Moss modalities. Moreover, one can
extract from a given nonexpansive lax extension a characteristic modal logic satisfying a
quantitative Hennessy-Milner property. Using our notion of finitarily separable lax extension
additionally allows us to extend these constructions to certain non-finitary functors such
as the discrete distribution functor. All our results apply both to symmetric behavioural
distances, i.e. notions of quantitative bisimulation, and to asymmetric behavioural distances,
i.e. notions of quantitative simulation.
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https://doi.org/10.1145/3209108
https://doi.org/10.1016/j.tcs.2004.07.022
https://doi.org/10.1016/j.aim.2007.04.013
https://doi.org/10.1016/j.entcs.2009.07.097
https://doi.org/10.1016/j.entcs.2009.07.097
https://doi.org/10.4230/LIPIcs.CONCUR.2015.18
https://doi.org/10.4230/LIPIcs.CONCUR.2018.37
https://doi.org/10.1007/978-3-642-19805-2
https://doi.org/10.1016/j.tcs.2011.04.003
https://doi.org/10.1016/j.tcs.2011.04.003


Vol. 18:2 CHARACTERISTIC LOGICS FOR BEHAVIOURAL HEMIMETRICS 19:35

CONCUR 2020, volume 171 of LIPIcs, pages 28:1–28:18. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.28.

[Par81] David Park. Concurrency and automata on infinite sequences. In Peter Deussen, editor, Theo-
retical Computer Science, 5th GI-Conference, volume 104 of LNCS, pages 167–183. Springer,
1981. doi:10.1007/BFb0017288.

[Pat04] Dirk Pattinson. Expressive logics for coalgebras via terminal sequence induction. Notre Dame
J. Formal Log., 45:19–33, 2004.

[PLC15] Haiyu Pan, Yongming Li, and Yongzhi Cao. Lattice-valued simulations for quantitative transition
systems. Int. J. Approx. Reason., 56:28–42, 2015. doi:10.1016/j.ijar.2014.10.001.

[RG13] Ricardo Rodriguez and Lluis Godo. Modal uncertainty logics with fuzzy neighborhood semantics.
In Lluis Godo, Henri Prade, and Guilin Qi, editors, Weighted Logics for Artiticial Intelligence,
WL4AI 2013 (Workshop at IJCAI 2013), pages 79–86, 2013.

[Rut00] Jan Rutten. Universal coalgebra: A theory of systems. Theor. Comput. Sci., 249:3–80, 2000.
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