
Logical Methods in Computer Science
Volume 18, Issue 2, 2022, pp. 20:1–20:33
https://lmcs.episciences.org/

Submitted Oct. 28, 2021
Published Jun. 15, 2022

THE SHAPLEY VALUE OF INCONSISTENCY MEASURES

FOR FUNCTIONAL DEPENDENCIES

ESTER LIVSHITS AND BENNY KIMELFELD

Technion, Haifa, Israel
e-mail address: {esterliv,bennyk}@cs.technion.ac.il

Abstract. Quantifying the inconsistency of a database is motivated by various goals
including reliability estimation for new datasets and progress indication in data cleaning.
Another goal is to attribute to individual tuples a level of responsibility to the overall
inconsistency, and thereby prioritize tuples in the explanation or inspection of errors.
Therefore, inconsistency quantification and attribution have been a subject of much research
in knowledge representation and, more recently, in databases. As in many other fields,
a conventional responsibility sharing mechanism is the Shapley value from cooperative
game theory. In this article, we carry out a systematic investigation of the complexity
of the Shapley value in common inconsistency measures for functional-dependency (FD)
violations. For several measures we establish a full classification of the FD sets into tractable
and intractable classes with respect to Shapley-value computation. We also study the
complexity of approximation in intractable cases.

1. Introduction

Inconsistency measures for knowledge bases have received considerable attention from the
Knowledge Representation (KR) and Logic communities [KLM03,Kni03,HK06,GH06,HK08,
HK10, GH17, Thi17]. More recently, inconsistency measures have also been studied from
the database viewpoint [Ber18,LKT+21]. Such measures quantify the extent to which the
database violates a set of integrity constraints. There are multiple reasons why one might
be using such measures. For one, the measure can be used for estimating the usefulness or
reliability of new datasets for data-centric applications such as business intelligence [CPRT15].
Inconsistency measures have also been proposed as the basis of progress indicators for data-
cleaning systems [LKT+21]. Finally, the measure can be used for attributing to individual
tuples a level of responsibility to the overall inconsistency [MLJ11,Thi09], thereby prioritize
tuples in the explanation/inspection/correction of errors.

Example 1.1. Figure 1 depicts an inconsistent database that stores a train schedule. For
example, the tuple f1 states that train number 16 will depart from the New York Penn
Station at time 1030 and arrive at the Boston Back Bay Station after 315 minutes. Assume
that we have the functional dependency stating that the train number and departure time
determine the departure station. All tuples in the database are involved in violations of this
constraint, as they all agree on the train number and departure time, but there is some
disagreement on the departure station. Hence, one can argue that every fact in the database
affects the overall level of inconsistency in the database. But how should we measure the

Key words and phrases: Shapley value, inconsistent databases, functional dependencies, database repairs.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(2:20)2022
© E. Livshits and B. Kimelfeld
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

20:2 E. Livshits and B. Kimelfeld Vol. 18:2

fact train departs arrives time duration

f1 16 NYP BBY 1030 315

f2 16 NYP PVD 1030 250

f3 16 PHL WIL 1030 20

f4 16 PHL BAL 1030 70

f5 16 PHL WAS 1030 120

f6 16 BBY PHL 1030 260

f7 16 BBY NYP 1030 260

f8 16 BBY WAS 1030 420

f9 16 WAS PVD 1030 390

Figure 1. The inconsistent database of our running example.

responsibility of the tuples to this inconsistency? For example, which of the tuples f1 and f3

has a greater contribution to inconsistency? To this end, we can adopt some conventional
concepts for responsibility sharing, and in this article we study the computational aspects
involved in the measurement of those. ♦

A conventional approach to dividing the responsibility for a quantitative property
(here an inconsistency measure) among entities (here the database tuples) is the Shapley
value [Sha53], which is a game-theoretic formula for wealth distribution in a cooperative game.
The Shapley value has been applied in a plethora of domains, including economics [Gul89],
law [Nen03], environmental science [PZ03,LZS15], social network analysis [NN11], physical
network analysis [MCL+10], and advertisement [BDG+19]. In data management, the Shapley
value has been used for determining the relative contribution of features in machine-learning
predictions [LF18,LL17], the responsibility of tuples to database queries [RKL20,LBKS20,
BG20], and the reliability of data sources [CPRT15].

The Shapley value has also been studied in a context similar to the one we adopt in
this article—assigning a level of inconsistency to statements in an inconsistent knowledge
base [HK10,YVCB18,MLJ11,Thi09]. Hunter and Konieczny [HK06,HK10,HK08] use the
maximal Shapley value of one inconsistency measure in order to define a new inconsistency
measure. Grant and Hunter [GH15] considered information systems distributed along data
sources of different reliabilities, and apply the Shapley value to determine the expected
blame of each statement to the overall inconsistency. Yet, with all the investigation that has
been conducted on the Shapley value of inconsistency, we are not aware of any results or
efforts regarding the computational complexity of calculating this value.

Example 1.2. Let us define the following cooperative game over the database of Figure 1.
We have nine players—the tuples of the database. One of the measures that we consider
for quantifying the level of inconsistency of a coalition of players is the number of tuple
pairs in this group that violate the constraints. For example, consider the constraint defined
in Example 1.1. The inconsistency level of the group {f1, f3, f5} is 2, as there are two
conflicting tuple pairs: {f1, f3} and {f1, f5}. The inconsistency level of the entire database is
29, as this is the total number of conflicting pairs in the database. The Shapley value allows
us to measure the contribution of each individual tuple to the overall inconsistency level.
For example, the Shapley value of the tuple f1, in this case, will be lower than the Shapley

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:3

Table 1. The complexity of the (exact ; approximate) Shapley value of
different inconsistency measures.

lhs chain no lhs chain, PTime c-repair other

Id PTime FP#P-complete ; FPRAS

IMI PTime

IP PTime

IR PTime ? ; FPRAS NP-hard [LKR20] ; no FPRAS

IMC PTime FP#P-complete [LK17] ; ?

value of the tuple f3 (we will later show how this value is computed), which indicates that
f3 has a higher impact on the inconsistency than f1.

In this work, we embark on a systematic analysis of the complexity of the Shapley
value of database tuples relative to inconsistency measures, where the goal is to calculate
the contribution of a tuple to inconsistency. Our main results are summarized in Table 1.
We consider inconsistent databases with respect to functional dependencies (FDs), and
basic measures of inconsistency following Bertossi [Ber19] and Livshits, Ilyas, Kimelfeld and
Roy [LKT+21]. We note that these measures are all adopted from the measures studied in
the aforementioned KR research. In our setting, an individual tuple affects the inconsistency
of only its containing relation, since the constraints are FDs. Hence, our analysis focuses
on databases with a single relation; in the end of each relevant section, we discuss the
generalization to multiple relations. While most of our results easily extend to multiple
relations, some extensions require a more subtle proof.

More formally, we investigate the following computational problem for any fixed combi-
nation of a relational signature, a set of FDs, and an inconsistency measure: given a database
and a tuple, compute the Shapley value of the tuple with respect to the inconsistency
measure. As Table 1 shows, two of these measures are computable in polynomial time:
IMI (number of FD violations) and IP (number of problematic facts that participate in
violations). For two other measures, we establish a full dichotomy in the complexity of
the Shapley value: Id (the drastic measure—0 for consistency and 1 for inconsistency) and
IMC (number of maximal consistent subsets, a.k.a. repairs). The dichotomy in both cases is
the same: when the FD set has, up to equivalence, an lhs chain (i.e., the left-hand sides
form a chain w.r.t. inclusion [LK17]), the Shapley value can be computed in polynomial
time; in any other case, it is FP#P-hard (hence, requires at least exponential time under
conventional complexity assumptions). In the case of IR (the minimal number of tuples to
delete for consistency), the problem is solvable in polynomial time in the case of an lhs chain,
and NP-hard whenever it is intractable to find a cardinality repair [LKR20]; however, the
problem is open for every FD set in between, for example, the bipartite matching constraint
{A→ B,B → A}.

We also study the complexity of approximating the Shapley value and show the fol-
lowing (as described in Table 1). First, in the case of Id, there is a (multiplicative) fully
polynomial-time approximation scheme (FPRAS) for every set of FDs. In the case of IMC,
approximating the Shapley value of any intractable (non-lhs-chain) FD set is at least as hard
as approximating the number of maximal matchings of a bipartite graph—a long standing
open problem [JR18]. In the case of IR, we establish a full dichotomy, namely FPRAS

20:4 E. Livshits and B. Kimelfeld Vol. 18:2

vs. hardness of approximation, that has the same separation as the problem of finding a
cardinality repair.

This article is the full version of a conference publication [LK21]. We have added all of the
proofs, intermediate results and algorithms that were excluded from the conference version.
In particular, we have included in this version the proofs of Observation 3.2, Lemma 5.4,
Lemma 6.3, Lemma 7.2, and Lemmea 7.3, and the algorithms of Figures 5, 8, and 10.
Furthermore, the results of the conference publication have been restricted to schemas with a
single relation symbol. While some of the results (e.g., all of the lower bounds) immediately
generalize to schemas with multiple relation symbols, some generalizations (in particular,
the upper bounds for Id and IMC) require a more subtle analysis that we provide in this
article. We generalize the upper bounds for all the measures to schemas with multiple
relation symbols, in the corresponding sections.

The rest of the article is organized as follows. After presenting the basic notation and
terminology in Section 2, we formally define the studied problem and give initial observations
in Section 3. In Section 4, we describe polynomial-time algorithms for IMI and IP. Then,
we explore the measures Id, IR and IMC in Sections 5, 6 and 7, respectively. We conclude
and discuss future directions in Section 8.

2. Preliminaries

We begin with preliminary concepts and notation that we use throughout the article.

2.1. Database Concepts. By a relational schema we refer to a sequence (A1, . . . , An) of
attributes. A database D over (A1, . . . , An) is a finite set of tuples, or facts, of the form
(c1, . . . , cn), where each ci is a constant from a countably infinite domain. For a fact f and
an attribute Ai, we denote by f [Ai] the value associated by f with the attribute Ai (that
is, f [Ai] = ci). Similarly, for a sequence X = (Aj1 , . . . , Ajm) of attributes, we denote by
f [X] the tuple (f [Aj1], . . . , f [Ajm]). Generally, we use letters from the beginning of the
English alphabet (i.e., A,B,C, ...) to denote single attributes and letters from the end of the
alphabet (i.e., X,Y, Z, ...) to denote sets of attributes. We may omit stating the relational
schema of a database D when it is clear from the context or irrelevant.

A Functional Dependency (FD for short) over (A1, . . . , An) is an expression of the form
X → Y , where X,Y ⊆ {A1, . . . , Am}. We may also write the attribute sets X and Y by
concatenating the attributes (e.g., AB → C instead of {A,B} → {C}). A database D
satisfies X → Y if every two facts f, g ∈ D that agree on the values of the attributes of X
also agree on the values of the attributes of Y (that is, if f [X] = g[X] then f [Y] = g[Y]).
A database D satisfies a set ∆ of FDs, denoted by D |= ∆, if D satisfies every FD of ∆.
Otherwise, D violates ∆ (denoted by D 6|= ∆). Two FD sets over the same relational schema
are equivalent if every database that satisfies one of them also satisfies the other.

Let ∆ be a set of FDs and D a database (which may violate ∆). A repair (of D w.r.t. ∆)
is a maximal consistent subset of D; that is, E ⊆ D is a repair if E |= ∆ but E′ 6|= ∆ for
every E (E′. A cardinality repair (or c-repair for short) is a repair of maximum cardinality;
that is, it is a repair E such that |E| ≥ |E′| for every repair E′.

Example 2.1. Consider again the database of Figure 1 over the relational schema

(train,departs, arrives, time,duration).

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:5

The FD set ∆ consists of the two FDs:

◦ train time→ departs ◦ train time duration→ arrives

The first FD states that the departure station is determined by the train number and
departure time, and the second FD states that the arrival station is determined by the train
number, the departure time, and the duration of the ride.

Observe that the database of Figure 1 violates the FDs as all the facts refer to the
same train number and departure time, but there is no agreement on the departure station.
Moreover, the facts f6 and f7 also agree on the duration, but disagree on the arrival station.
The database has five repairs: (a) {f1, f2}, (b) {f3, f4, f5}, (c) {f6, f8}, (d) {f7, f8}, and (e)
{f9}; only the second one is a cardinality repair. ♦

2.2. Shapley Value. A cooperative game of a set A of players is a function v : P(A)→ R,
where P(A) is the power set of A, such that v(∅) = 0. The value v(B) should be thought of
as the joint wealth obtained by the players of B when they cooperate. The Shapley value of
a player a ∈ A measures the contribution of a to the total wealth v(A) of the game [Sha53],
and is formally defined by

Shapley(A, v, a)
def
=

1

|A|!
∑
σ∈ΠA

(v(σa ∪ {a})− v(σa))

where ΠA is the set of all permutations over the players of A and σa is the set of players
that appear before a in the permutation σ. Intuitively, the Shapley value of a player a is
the expected contribution of a to a subset constructed by drawing players randomly one
by one (without replacement), where the contribution of a is the change to the value of v
caused by the addition of a. An alternative formula for the Shapley value, that we will use
in this article, is the following.

Shapley(A, v, a)
def
=

∑
B⊆A\{a}

|B|! · (|A| − |B| − 1)!

|A|!

(
v(B ∪ {a})− v(B)

)
Observe that |B|! · (|A| − |B| − 1)! is the number of permutations where the players of B
appear first, then a, and then the rest of the players.

2.3. Complexity. In this article, we focus on the standard notion of data complexity, where
the relational schema and set of FDs are considered fixed and the input consists of a database
and a fact. In particular, a polynomial-time algorithm may be exponential in the number of
attributes or FDs. Hence, each combination of a relational schema and an FD set defines a
distinct problem, and different combinations may have different computational complexities.
We discuss both exact and approximate algorithms for computing Shapley values.

Recall that a Fully-Polynomial Randomized Approximation Scheme (FPRAS, for short)
for a function f is a randomized algorithm A(x, ε, δ) that returns an ε-approximation of f(x)
with probability at least 1− δ, given an input x for f and ε, δ ∈ (0, 1), in time polynomial in
x, 1/ε, and log(1/δ). Formally, an FPRAS, satisfies:

Pr [f(x)/(1 + ε) ≤ A(x, ε, δ) ≤ (1 + ε)f(x)] ≥ 1− δ .
Note that this notion of FPRAS refers to a multiplicative approximation, and we adopt this
notion implicitly unless stated otherwise. We may also write “multiplicative” explicitly for

20:6 E. Livshits and B. Kimelfeld Vol. 18:2

stress. In cases where the function f has a bounded range, it also makes sense to discuss an
additive FPRAS where Pr [f(x)− ε ≤ A(x, ε, δ) ≤ f(x) + ε] ≥ 1− δ. We refer to an additive
FPRAS, and explicitly state so, in cases where the Shapley value is in the range [0, 1].

3. The Shapley Value of Inconsistency Measures

In this article, we study the Shapley value of facts with respect to measures of database
inconsistency. More precisely, the cooperative game that we consider here is determined
by an inconsistency measure I, and the facts of the database take the role of the players.
In turn, an inconsistency measure I is a function that maps pairs (D,∆) of a database D
and a set ∆ of FDs to a number I(D,∆) ∈ [0,∞). Intuitively, the higher the value I(D,∆)
is, the more inconsistent (or, the less consistent) the database D is w.r.t. ∆. The Shapley
value of a fact f of a database D w.r.t. an FD set ∆ and inconsistency measure I is then
defined as follows.

Shapley(D,∆, f, I)
def
=

∑
E⊆(D\{f})

|E|! · (|D| − |E| − 1)!

|D|!

(
I(E ∪ {f},∆)− I(E,∆)

)
(3.1)

We note that the definition of the Shapley value requires the cooperative game to be zero on
the empty set [Sha53] and this is indeed the case for all of the inconsistency measures I
that we consider in this work. Next, we introduce each of these measures.

• Id is the drastic measure that takes the value 1 if the database is inconsistent and the
value 0 otherwise [Thi17].
• IMI counts the minimal inconsistent subsets [HK08, HK10]; in the case of FDs, these

subsets are simply the pairs of tuples that jointly violate an FD.
• IP is the number of problematic facts, where a fact is problematic if it belongs to a minimal

inconsistent subset [GH11]; in the case of FDs, a fact is problematic if and only if it
participates in a pair of facts that jointly violate ∆.
• IR is the minimal number of facts that we need to delete from the database for ∆ to

be satisfied (similarly to the concept of a cardinality repair and proximity in Property
Testing) [GH13,GGR98,Ber19].
• IMC is the number of maximal consistent subsets (i.e., repairs) [GH11,GH17].

Table 1 summarizes the complexity results for the different measures. The first column
(lhs chain) refers to FD sets that have a left-hand-side chain—a notion that was introduced
by Livshits et al. [LK17], and we recall in the next section. The second column (no lhs
chain, PTime c-repair) refers to FD sets that do not have a left-hand-side chain, but entail
a polynomial-time cardinality repair computation according to the dichotomy of Livshits et
al. [LKR20] that we discuss in more details in Section 6.

Example 3.1. Consider again the database of our running example. Since the database is
inconsistent w.r.t. the FD set defined in Example 2.1, we have that Id(D,∆) = 1. As for
the measure IMI, the reader can easily verify that there are twenty nine pairs of tuples that
jointly violate the FDs; hence, we have that IMI(D,∆) = 29. Since each tuple participates
in at least one violation of the FDs, it holds that IP(D,∆) = 9. Finally, as we have already
seen in Example 2.1, the database has five repairs and a single cardinality repair obtained by
deleting six facts. Thus, IR(D,∆) = 6 and IMC(D,∆) = 5. In the next sections, we discuss
the computation of the Shapley value for each one of these measures. ♦

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:7

Preliminary analysis. We study the data complexity of computing Shapley(D,∆, f, I) for
different inconsistency measures I. To this end, we give here two important observations
that we will use throughout the article. The first observation is that the computation
of Shapley(D,∆, f, I) can be easily reduced to the computation of the expected value of
the inconsistency measure over all Here, we denote by ED′∼Um(D\{f})

(
I(D′ ∪ {f},∆)

)
the

expected value of I(D′ ∪{f},∆) over all subsets D′ of D \ {f} of a given size m, assuming a
uniform distribution. Similarly, ED′∼Um(D\{f})

(
I(D′,∆)

)
is the expected value of I(D′,∆)

over all such subsets D′.

Observation 3.2. Let I be an inconsistency measure. The following holds.

Shapley(D,∆, f, I) =
1

|D|

|D|−1∑
m=0

[
ED′∼Um(D\{f})

(
I(D′ ∪ {f},∆)

)
− ED′∼Um(D\{f})

(
I(D′,∆)

)]
Proof. We have the following.

Shapley(D,∆, f, I) =
∑

D′⊆(D\{f})

|D′|!(|D| − |D′| − 1)!

|D|!

(
I(D′ ∪ {f},∆)− I(D′,∆)

)

=

|D|−1∑
m=0

∑
D′⊆(D\{f})
|D′|=m

m!(|D| −m− 1)!

|D|!

(
I(D′ ∪ {f},∆)− I(D′,∆)

)

=

|D|−1∑
m=0

m!(|D| −m− 1)!

|D|!

(
|D| − 1

m

) ∑
D′⊆(D\{f})
|D′|=m

1(|D|−1
m

)(I(D′ ∪ {f},∆)
)

(3.2)

−
|D|−1∑
m=0

m!(|D| −m− 1)!

|D|!

(
|D| − 1

m

) ∑
D′⊆(D\{f})
|D′|=m

1(|D|−1
m

)(I(D′,∆)
)

=

|D|−1∑
m=0

m!(|D| −m− 1)!

|D|!

(
|D| − 1

m

)
ED′∼Um(D\{f})

(
I(D′ ∪ {f},∆)

)
(3.3)

−
|D|−1∑
m=0

m!(|D| −m− 1)!

|D|!

(
|D| − 1

m

)
ED′∼Um(D\{f})

(
I(D′,∆)

)
=

1

|D|

|D|−1∑
m=0

[
ED′∼Um(D\{f})

(
I(D′ ∪ {f},∆)

)
− ED′∼Um(D\{f})

(
I(D′,∆)

)]
Note that in Equation (3.2) we multiply and divide by the value

(|D|−1
m

)
. The expectation

expression of Equation (3.3) is due to the fact that 1/
(|D|−1

m

)
is the probability of a random

subset of size m of D \ {f} in the uniform distribution.

Observation 3.2 implies that to compute the Shapley value of f , it suffices to compute
the expectations of the amount of inconsistency over subsets D′ and D′ ∪ {f}, where D′

is drawn uniformly from the space of subsets of size m, for every m. More precisely, the

20:8 E. Livshits and B. Kimelfeld Vol. 18:2

computation of the Shapley value is Cook reducible1 to the computation of these expectations.
Our algorithms will, indeed, compute these expectations instead of the Shapley value.

The second observation is the following. One of the basic properties of the Shapley
value is one termed “efficiency”—the sum of the Shapley values over all the players equals
the total wealth [Sha53]. This property implies that

∑
f∈D Shapley(D,∆, f, I) = I(D,∆).

Thus, whenever the measure itself is computationally hard, so is the Shapley value of facts.

Fact 3.3. Let I be an inconsistency measure. The computation of I is Cook reducible to
the computation of the Shapley value of facts under I.

This observation can be used for showing lower bounds on the complexity of the Shapley
value, as we will see in the next sections.

4. Measures IMI and IP: The Tractable Measures

We start by discussing two tractable measures, namely IMI and IP. We first give algorithms
for computing the Shapley value for these measures, and then discuss the generalization to
multiple relations.

4.1. Computation. Recall that IMI counts the pairs of facts that jointly violate at least
one FD. An easy observation is that a fact f increases the value of the measure IMI by i in
a permutation σ if and only if σf contains exactly i facts that are in conflict with f . Hence,
assuming that D contains Nf facts that conflict with f , the Shapley value for this measure
can be computed in the following way:

Shapley(D,∆, f, IMI) =
∑

E⊆(D\{f})

|E|! · (|D| − |E| − 1)!

|D|!

(
I(E ∪ {f},∆)− I(E,∆)

)

=
1

|D|!

Nf∑
i=1

∑
E⊆(D\{f})
|E∩Nf |=i

|E|! · (|D| − |E| − 1)! · i =
1

|D|!

Nf∑
i=1

|D|−1∑
m=i

∑
E⊆(D\{f})
|E|=m
|E∩Nf |=i

m! · (|D| −m− 1)! · i

=
1

|D|!

Nf∑
i=1

|D|−1∑
m=i

(
Nf

i

)(
|D| −Nf − 1

m− i

)
·m! · (|D| −m− 1)! · i

Therefore, we immediately obtain the following result.

Theorem 4.1. Let ∆ be a set of FDs. Shapley(D,∆, f, IMI) is computable in polynomial
time, given D and f .

We now move on to IP that counts the “problematic” facts; that is, facts that participate
in a violation of ∆. Here, a fact f increases the measure by i in a permutation σ if and only
if σf contains precisely i− 1 facts that are in conflict with f , but not in conflict with any
other fact of σf (hence, all these facts and f itself are added to the group of problematic
facts). We prove the following.

1Recall that a Cook reduction from a function F to a function G is a polynomial-time Turing reduction
from F to G, that is, an algorithm that computes F with an oracle to a solver of G.

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:9

Theorem 4.2. Let ∆ be a set of FDs. Shapley(D, f,∆, IP) is computable in polynomial
time, given D and f .

Proof. We now show how the expected values of Observation 3.2 can be computed in
polynomial time. We start with ED′∼Um(D\{f})

(
IP(D′,∆)

)
. We consider the uniform

distribution Um(D \ {f}) over the subsets of size m of D \ {f}. We denote by X the random
variable holding the number of problematic facts in the random subset. We denote by Yg the
random variable that holds 1 if the fact g is in the random subset and, moreover, participates
there in a violation of the FDs. In addition, we denote the expectations of these variables by
E(X) and E(Yg), respectively (without explicitly stating the distribution D′ ∼ Um(D \ {f})
in the subscript). Due to the linearity of the expectation we have:

ED′∼Um(D\{f})
(
IP(D′,∆)

)
= E(X) = E

 ∑
g∈D\{f}

Yg

 =
∑

g∈D\{f}

E(Yg)

Hence, the computation of ED′∼Um(D\{f})
(
IP(D′,∆)

)
reduces to the computation of E(Yg),

and this value can be computed as follows.

E(Yg) = Pr [g is selected]× Pr [a conflicting fact is selected | g is selected]

=

(|D|−2
m−1

)(|D|−1
m

) · ∑Ng

k=1

(Ng

k

)
·
(|D|−1−Ng

m−k−1

)(|D|−2
m−1

) =

∑Ng

k=1

(Ng

k

)
·
(|D|−1−Ng

m−k−1

)(|D|−1
m

)
where Ng is the number of facts in D \ {f} that are in conflict with g.

We can similarly consider the distribution Um(D \ {f}) and show that the expectation
ED′∼Um(D\{f})

(
IP(D′ ∪ {f},∆)

)
is equal to

∑
g∈D\{f} E(Y ′g), where Y ′g is a random variable

that holds 1 if g is selected in the random subset and, moreover, participates in a violation
of the FDs, and 0 otherwise. For a fact g that is not in conflict with f it holds that
E(Y ′g) = E(Yg), while for a fact g that is in conflict with f it holds that

E(Y ′g) = Pr [g is selected] =

(
|D| − 2

m− 1

)
/

(
|D| − 1

m

)
.

4.2. Generalization to Multiple Relations. The results of this section immediately
generalize to schemas with multiple relation symbols. This is true since one of the basic
properties of the Shapley value is linearity [Sha53]:

Shapley(D, f,∆, a · α+ b · β) = a · Shapley(D, f,∆, α) + b · Shapley(D, f,∆, β)

and both measures, IMI and IP, are additive over multiple relations, that is, the value of the
measure on the entire database is the sum of the values over the individual relations.

20:10 E. Livshits and B. Kimelfeld Vol. 18:2

5. Measure Id: The Drastic Measure

In this section, we consider the drastic measure Id. While the measure itself is extremely
simple and, in particular, computable in polynomial time (testing whether ∆ is satisfied),
it might be intractable to compute the Shapley value of a fact. In particular, we prove a
dichotomy for this measure, classifying FD sets into ones where the Shapley value can be
computed in polynomial time and the rest where the problem is FP#P-complete.2

5.1. Dichotomy. Before giving our dichotomy, we recall the definition of a left-hand-side
chain (lhs chain, for short), introduced by Livshits et al. [LK17].

Definition 5.1 [LK17]. An FD set ∆ has a left-hand-side chain if for every two FDs X → Y
and X ′ → Y ′ in ∆, either X ⊆ X ′ or X ′ ⊆ X.

Example 5.2. The FD set of our running example (Example 2.1) has an lhs chain. We could
also define ∆ with redundancy by adding the following FD: train time arrives → departs.
The resulting FD set does not have an lhs chain, but it is equivalent to an FD set with
an lhs chain. An example of an FD set that does not have an lhs chain, not even up to
equivalence, is {train time→ departs, train departs→ time}. ♦

We prove the following.

Theorem 5.3. Let ∆ be a set of FDs. If ∆ is equivalent to an FD set with an lhs chain,
then Shapley(D, f,∆, Id) is computable in polynomial time, given D and f . Otherwise, the
problem is FP#P-complete.

Interestingly, this is the exact same dichotomy that we obtained in prior work [LK17]
for the problem of counting subset repairs. We also showed that this tractability criterion is
decidable in polynomial time by computing a minimal cover: if ∆ is equivalent to an FD set
with an lhs chain, then every minimal cover of ∆ has an lhs chain. In the remainder of this
section, we prove Theorem 5.3.

5.1.1. Hardness Side. The proof of the hardness side of Theorem 5.3 has two steps. We first
show hardness for the matching constraint {A→ B,B → A} over the schema (A,B), and
this proof is similar to the proof of Livshits et al. [LBKS20] for the problem of computing the
Shapley contribution of facts to the result of the query q() :- R(x), S(x, y), T (y). Then, from
this case to the remaining cases we apply the fact-wise reductions that have been devised in
prior work [LK17]. We start by proving hardness for {A→ B,B → A}.

Lemma 5.4. Computing Shapley(D, f,∆, Id) for the FD set ∆ = {A→ B,B → A} over
the relational schema (A,B) is FP#P-complete.

Proof. We construct a reduction from the problem of computing the number |M(g)| of
matchings in a bipartite graph g [Val79a]. Note that we consider partial matchings; that is,
subsets of edges that consist of mutually-exclusive edges. Given an input bipartite graph g,
we construct m+ 1 input instances (D1, f1), . . . , (Dm+1, fm+1) to our problem, where m is
the number of edges in g, in the following way. For every r ∈ {1, . . . ,m+ 1}, we add one
vertex v1 to the left-hand side of g and r + 1 vertices u1, . . . , ur, v2 to the right-hand side

2Recall that FP#P is the class of polynomial-time functions with an oracle to a problem in #P (e.g., count
the satisfying assignments of a propositional formula).

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:11

Dm+1

. . .

...
f

f f

g D1 D2 . . .

Figure 2. The databases constructed in the reduction of the proof of
Lemma 5.4.

of g. Then, we connect the vertex v1 to every new vertex on the right-hand side of g. We
construct the instance Dr from the resulting graph by adding a fact (u, v) for every edge
(u, v) in the graph. We will compute the Shapley value of the fact f corresponding to the
edge (v1, v2). The reduction is illustrated in Figure 2.

In every instance Dr, the fact f will increase the value of the measure by one in a
permutation σ if and only if σf satisfies two properties: (1) the facts of σf jointly satisfy
the FDs in ∆, and (2) σf contains at least one fact that is in conflict with f . Hence,
for f to affect the value of the measure in a permutation, we have to select a set of facts
corresponding to a matching from the original graph g, as well as exactly one of the facts
corresponding to an edge (v1, ui) (since the facts (v1, ui) and (v1, uj) for i 6= j jointly violate
the FD A→ B). We have the following.

Shapley(Dr, f,∆, Id) =

m∑
k=0

|M(g, k)| · r · (k + 1)! · (m− k + r − 1)!

where M(g, k) is the set of matchings of g containing precisely k edges.
Hence, we obtain m+ 1 equations from the m+ 1 constructed instances, and get the

following system of equations.


1 · 1!m! 1 · 2!(m− 1)! . . . 1 · (m+ 1)!0!

2 · 1!(m+ 1)! 2 · 2!m! . . . 2 · (m+ 1)!1!
...

...
...

...
(m+ 1) · 1!2m! (m+ 1) · 2!(m− 1)! . . . (m+ 1) · (m+ 1)!m!



|M(g, 0)|
|M(g, 1)|

...
|M(g,m)|



=


Shapley(D1, f,∆, Id)
Shapley(D2, f,∆, Id)

...
Shapley(Dm+1, f,∆, Id)


Let us divide each column in the above matrix by the constant (j + 1)! (where j is the

column number, starting from 0) and each row by i+ 1 (where i is the row number, starting
from 0), and reverse the order of the columns. We then get the following matrix.

20:12 E. Livshits and B. Kimelfeld Vol. 18:2

A =


0! 1! . . . m!
1! 2! . . . (m+ 1)!
...

...
...

...
m! (m+ 1)! . . . 2m!


This matrix has coefficients ai,j = (i + j)!, and the determinant of A is det(A) =∏m

i=0 i!i! 6= 0; hence, the matrix is non-singular [Bac02]. Since dividing a column by a
constant divides the determinant by a constant, and reversing the order of the columns can
only change the sign of the determinant, the determinant of the original matrix is not zero
as well, and the matrix is non-singular. Therefore, we can solve the system of equations,
and compute the value

∑m
k=0 M(g, k), which is precisely the number of matchings in g.

Generalization via Fact-Wise Reductions. Using the concept of a fact-wise reduc-
tion [Kim12], we can prove hardness for any FD set that is not equivalent to an FD set with
an lhs chain. We first give the formal definition of a fact-wise reduction. Let (R,∆) and
(R′,∆′) be two pairs of a relational schema and an FD set. A mapping from R to R′ is a
function µ that maps facts over R to facts over R′. (We say that f is a fact over R if f is a
fact of some database D over R.) We extend a mapping µ to map databases D over R to
databases over R′ by defining µ(D) to be {µ(f) | f ∈ D}. A fact-wise reduction from (R,∆)
to (R′,∆′) is a mapping Π from R to R′ with the following properties.

(1) Π is injective; that is, for all facts f and g over R, if Π(f) = Π(g) then f = g.
(2) Π preserves consistency and inconsistency; that is, for all facts f and g over R, {f, g}

satisfies ∆ if and only if {Π(f),Π(g)} satisfies ∆′.
(3) Π is computable in polynomial time.

We have previously shown a fact-wise reduction from ((A,B), {A→ B,B → A}) to
any (R,∆), where ∆ is not equivalent to an FD set with an lhs chain [LK17]. Clearly,
fact-wise reductions preserve the Shapley value of facts, that is, Shapley(D, f, I,∆) =
Shapley(Π(D),Π(f), I,∆′). It thus follows that there is a polynomial-time reduction from
the problem of computing the Shapley value over {A→ B,B → A} to the problem of
computing the Shapley value over any ∆ that has no lhs chain (even up to equivalence),
and that concludes our proof of hardness.

5.1.2. Tractability Side. For the tractability side of Theorem 5.3, we present a polynomial-
time algorithm to compute the Shapley value. As stated in Observation 3.2, the computation
of Shapley(D, f,∆, Id) reduces in polynomial time to the computation of the expected value
of the measure over all subsets of the database of a given size m. In this case it holds
that ED′∼Um(D\{f})

(
Id(D′ ∪ {f},∆)

)
and ED′∼Um(D\{f})

(
Id(D′,∆)

)
are the probabilities

that a uniformly chosen D′ ⊆ D \ {f} of size m is such that (D′ ∪ {f}) 6|= ∆ and D′ 6|= ∆,
respectively. Due to the structure of FD sets with an lhs chain, we can compute these
probabilities efficiently, as we explain next.

Our main observation is that for an FD X → Y , if we group the facts of D by X (i.e.,
split D into maximal subsets of facts that agree on the values of all attributes in X), then
this FD and the FDs that appear later in the chain may be violated only among facts from
the same group. Moreover, when we group by XY (i.e., further split each group of X into
maximal subsets of facts that agree on the values of all attributes in Y), facts from different

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:13

Algorithm 1 DrasticShapley(D,∆,m, T)

1: for all vertices v of T in a bottom-up order do
2: UpdateProb(v,m)

3: return r.val[m]

Subroutine 1 UpdateProb(v,m)

1: for all children c of v in T do
2: for j ∈ {m, . . . , 1} do

3: v.val[j] :=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤|D[prev(c)]|

(
c.val[j1] + (1− c.val[j1]) · v.val[j2]

)
·

(|D[c]|
j1

)·(|D[prev(c)]|
j2

)

(|D[prev(c)]|+|D[c]|
j)

4: if v is a block node then

5: v.val[j] +=
∑

j1+j2=j
0<j1≤|D[c]|

0<j2≤|D[prev(c)]|

(
(1− c.val[j1]) · (1− v.val[j2])

)
·

(|D[c]|
j1

)·(|D[prev(c)]|
j2

)

(|D[prev(c)]|+|D[c]|
j)

Figure 3. An algorithm for computing ED′∼Um(D\{f})
(
Id(D′,∆)

)
for ∆

with an lhs chain.

groups always violate this FD, and hence, violate ∆. We refer to the former groups as blocks
and the latter groups as subblocks. This special structure allows us to split the problem into
smaller problems, solve each one of them separately, and then combine the solutions via
dynamic programming.

We define a data structure T where each vertex v is associated with a subset of D that
we denote by D[v]. The root r is associated with D itself, that is, D[r] = D. At the first
level, each child c of r is associated with a block of D[r] w.r.t. X1 → Y1, and each child c′ of
c is associated with a subblock of D[c] w.r.t. X1 → Y1. At the second level, each child c′′ of
c′ is associated with a block of D[c′] w.r.t. X2 → Y2, and each child c′′′ of c′′ is associated
with a subblock of D[c′′] w.r.t. X2 → Y2. This continues all the way to the nth FD, where
at the ith level, each child u of an (i − 1)th level subblock vertex v is associated with a
block of D[v] w.r.t. Xi → Yi and each child u′ of u is associated with a subblock of D[u]
w.r.t. Xi → Yi.

We assume that the data structure T is constructed in a preprocessing phase. Clearly,
the number of vertices in T is polynomial in |D| and n (recall that n is the number of
FDs in ∆) as the height of the tree is 2n, and each level contains at most |D| vertices;
hence, this preprocessing phase requires polynomial time (even under combined complexity).
Then, we compute both ED′∼Um(D\{f})

(
Id(D′,∆)

)
and ED′∼Um(D\{f})

(
Id(D′ ∪ {f},∆)

)
by

going over the vertices of T from bottom to top, as we will explain later. Note that for the
computation of these values, we construct T from the database D \ {f}. Figure 4 depicts
the data structure T used for the computation of Shapley(D, f9,∆, Id) for the database D
and fact f9 of our running example. Next, we explain the meaning of the values stored in
each vertex.

Each vertex v in T stores an array v.val with |D[v]|+ 1 entries (that is initialized with
zeros) such that v.val[j] = ED′∼Uj(D[v])

(
Id(D′,∆)

)
for all j ∈ {0, . . . , |D[v]|} at the end of

20:14 E. Livshits and B. Kimelfeld Vol. 18:2

the execution. For this measure, we have that:

v.val[j]
def
= Pr [a random subset of size j of D[v] violates ∆]

Our final goal is to compute r.val[m], where r is the root of T . For that purpose, in the
algorithm DrasticShapley, depicted in Figure 3, we go over the vertices of T in a bottom-up
order and compute the values of v.val for every vertex v in the UpdateProb subroutine.
Observe that we only need one execution of DrasticShapley with m = |D| − 1 to compute
the required values for all m ∈ {1, . . . , |D| − 1}, as we calculate all these values in our
intermediate computations.

To compute v.val for a subblock vertex v, we iterate over its children in T (which are the
(i+ 1)th level blocks) according to an arbitrary order defined in the construction of T . For
a child c of v, we denote by prev(c) the set of children of v that occur before c in that order,
and by D[prev(c)] the database

⋃
c′∈prev(c)D[c′]. When considering c in the for loop of line 1,

we compute the expected value of the measure on a subset of D[prev(c)]∪D[c]. Hence, when
we consider the last child of v in the for loop of line 1, we compute the expected value of the
measure on a subset of the entire database D[v].

For a child c of v, there are N1 =
(|D[prev(c)]|+|D[c]|

j

)
subsets of size j of all the children of

v considered so far (including c itself). Each such subset consists of j1 facts of the current c

(there are N2 =
(|D[c]|

j1

)
possibilities) and j2 facts of the previously considered children (there

are N3 =
(|D[prev(c)]|

j2

)
possibilities), for some j1, j2 such that j1 + j2 = j, with probability

N2N3/N1. Moreover, such a subset violates ∆ if either the facts of the current c violate ∆
(with probability c.val[j1] that was computed in a previous iteration) or these facts satisfy
∆, but the facts of the previous children violate ∆ (with probability (1− c.val[j1]) · v.val[j2]).
Observe that since we go over the values j in reverse order in the for loop of line 2 (i.e., from
m to 1), at each iteration of this loop, we have that v.val[j2] (for all considered j2 ≤ j) still
holds the expected value of Id over subsets of size j2 of the previous children of v, which is
indeed the value that we need for our computation.

This computation of v.val also applies to the block vertices. However, the addition of
line 5 only applies to blocks. Since the children of a block belong to different subblocks,
and two facts from the same ith level block but different ith level subbblocks always jointly
violate Xi → Yi, a subset of size j of a block also violates the constraints if we select a
non-empty subset of the current child c and a non-empty subset of the previous children,
even if each of these subsets by itself is consistent w.r.t. ∆. Hence, we add this probability in
line 5. Note that all the three cases that we consider are disjoint, so we sum the probabilities.
Observe also that the leaves of T have no children and we do not update their probabilities,
and, indeed the probability to select a subset from a leaf v that violates the constraints is
zero, as all the facts of D[v] agree on the values of all the attributes that occur in ∆.

Example 5.5. We now illustrate the computation of ED′∼Um(D\{f9})
(
Id(D′,∆)

)
on the

database D and the fact f9 of our running example for m = 3. Inside each node of the data
structure T of Figure 4, we show the values [v.val[0], v.val[1], v.val[2], v.val[3]] used for this
computation. Below them, we present the corresponding values used in the computation
of ED′∼Um(D\{f9})

(
Id(D′ ∪ {f},∆)

)
. For the leaves v and each vertex v ∈ {v5, . . . , v9, v11},

we have that v.val[j] = 0 for every j ∈ {0, 1, 2, 3}, as D[v] has a single fact. As for v10,
when we consider its first child v17 in the for loop of line 1 of UpdateProb, all the values
in v10.val remain zero (since v17.val[j1] = v10.val[j2] = 0 for any j1, j2, and |D[prev(c)]| = 0).
However, when we consider its second child v18, while the computation of line 3 again has

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:15

v7

[0, 1, 0, 0]

[0, 0, 0, 0]

v8 v9

[0, 0, 1
3
, 1]

v6

[0, 1, 1, 0]

[0, 0, 1, 0]

[0, 1, 0, 0]

[0, 0, 0, 0][0, 0, 0, 0]

[0, 1, 0, 0]

v5

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

= BBY

arrives

v13

= PVD

arrives

duration

= 120= 315

duration duration

= 250 = 20

duration

= WAS

arrives

v19v18

= NYP

arrives

v17

= PHL

arrives

v16

= WAS

arrives

v15

= BAL

arrives

v14

= WIL

arrives

[0, 1, 0, 0]

[0, 0, 0, 0]

duration

= 420
v11

duration

= 260
v10

[0, 0, 0, 0]

[0, 1, 0, 0]
v12

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 0, 0]

[0, 1, 0, 0]

[0, 0, 22
28
, 55
56

]

[0, 1, 1, 1]

r

train = 16

[0, 1, 1, 1]

[0, 0, 22
28
, 55
56

]

time = 1030v1

departs = PHL

[0, 1, 1, 1]

[0, 0, 0, 0]

[0, 1, 1, 0]

[0, 0, 0, 0]

v2 v3
departs = NYP

[0, 1, 1, 1]

v4
departs = BBY

duration

= 70

Figure 4. The data structure T of our running example.

no impact on v10.val, after the computation of line 5 we have that v10.val[2] = 1. And,
indeed, there is a single subset of size two of D[v10], which is {f6, f7}, and it violates the FD
train time duration→ arrives. This also affects the values of v4.val. In particular, when we
consider the first child v10 of v4, we have that v4.val[j] = 1 for j = 2 and v4.val[j] = 0 for any
other j. Then, when we consider the second child v11 of v4, it holds that v4.val[2] = 1

3 (as the
only subset of size two of D[v4] that violates the FDs is {f6, f7}, and there are three subsets
in total) and v4.val[3] = 1 (as every subset of size three contains both f6 and f7). Finally,
we have that ED′∼U3(D\{f9})

(
Id(D′,∆)

)
= 55

56 and ED′∼U3(D\{f9})
(
Id(D′ ∪ {f9},∆)

)
= 1. ♦

To compute ED′∼Um(D\{f})
(
Id(D′ ∪ {f},∆)

)
, we use the algorithm DrasticShapleyF of

Figure 5. There, we distinguish between several types of vertices w.r.t. f , and show how
this expectation can be computed for each one of these types. Before elaborating on the
algorithm, we give some non-standard definitions. Recall that all the facts in D[v], for an ith
level block vertex v, agree on the values of all the attributes in X1Y1 . . . Xi. Moreover, all the
facts in D[u], for an ith level subblock vertex u, agree on the values of all the attributes in
X1Y1 . . . XiYi. We say that f conflicts with an ith level block vertex v if for some Xj → Yj
such that j ∈ {1, . . . , i− 1} it holds that f agrees with the facts of D[v] on all the values
of the attributes in Xj but disagrees with them on the attributes of Yj . Note that in this
case, every fact of D[v] conflicts with f . Similarly, we say that f conflicts with an ith level
subblock vertex u if it violates an FD Xj → Yj for some j ∈ {1, . . . , i} with the facts of D[u].
We also say that f matches an ith level block or subblock vertex v if it agrees with the facts
of D[v] on the values of all the attributes in X1Y1 . . . Xi.

In DrasticShapleyF, we define v.val′[j] to be the probability that a random subset of
size j of D[v] violates ∆ when f is added. We first compute v.val for all vertices v of T

20:16 E. Livshits and B. Kimelfeld Vol. 18:2

Algorithm 2 DrasticShapleyF(D,∆,m, T, f)

1: DrasticShapley(D,∆,m, T)
2: for all vertices v of T in a bottom-up order do
3: UpdateProbF(v,m, f)

4: return r.val[m]

Subroutine 2 UpdateProbF(v,m, f)

1: if f conflicts with v then
2: v.val′[j] = 1 for all 1 ≤ j ≤ |D[v]|
3: return
4: if f does not match v then
5: v.val′[j] = v.val[j] for all 1 ≤ j ≤ m
6: return
7: for all children c of v in T do
8: for j ∈ {m, . . . , 1} do

9: v.val′[j] :=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤|D[prev(c)]|

(
c.val′[j1] + (1− c.val′[j1]) · v.val′[j2]

)
·

(|D[c]|
j1

)·(|D[prev(c)]|
j2

)

(|D[prev(c)]|+|D[c]|
j)

10: if v is a block node then

11: v.val′[j] +=
∑

j1+j2=j
0<j1≤|D[c]|

0<j2≤|D[prev(c)]|

(
(1− c.val′[j1]) · (1− v.val′[j2])

)
·

(|D[c]|
j1

)·(|D[prev(c)]|
j2

)

(|D[prev(c)]|+|D[c]|
j)

Figure 5. An algorithm for computing ED′∼Um(D\{f})
(
Id(D′ ∪ {f},∆)

)
for ∆ with an lhs chain.

using DrasticShapley, and then we use these values to compute v.val′ for some vertices v.
First, we observe that for vertices v that conflict with f we have that v.val′[j] = 1 for every
1 ≤ j ≤ D[v], as every non-empty subset of D[v] violates the FDs with f . Note that this
computation also applies to the leaves of T that are in conflict with f . For vertices v that
do not conflict with f but also do not match with f , we have that v.val′[j] = v.val[j] for
every 1 ≤ j ≤ m, as no fact of D[v] agrees with f on the left-hand side of an FD in ∆ (for
j = 0 we clearly have that v.val′[0] = v.val[0] = 0).

For the rest of the vertices, the arguments given in Section 5 for the computation of
v.val still hold in this case; hence, the computation of v.val′ is similar. In particular, for
a child c of v, a subset E of size j of D[prev(c)] ∪D[c] is such that E ∪ {f} violates ∆ if
either (E ∩D[c])∪ {f} violates ∆ or (E ∩D[c])∪ {f} satisfies ∆ but (E ∩D[prev(c)])∪ {f}
violates ∆. If v is a block vertex, then E ∪ {f} also violates ∆ if we choose a non-empty
subset from both (E ∩D[c]) and (E ∩D[prev(c)]). Therefore, the main difference between
the computation of v.val in DrasticShapley and the computation of v.val′ in DrasticShapleyF
is the use of the value c.val′ instead of the value c.val in lines 9 and 11.

5.2. Approximation. We now consider an approximate computation of the Shapley value.
Using the Chernoff-Hoeffding bound, we can easily obtain an additive FPRAS of the
value Shapley(D, f,∆, Id), by sampling O(log(1/δ)/ε2) permutations and computing the

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:17

average contribution of f in a permutation. As observed by Livshits et al. [LBKS20], a
multiplicative FPRAS can be obtained using the same algorithm (possibly with a different
number of samples) if the “gap” property holds: nonzero Shapley values are guaranteed
to be large enough compared to the utility value (which is at most 1 in the case of the
drastic measure). This is indeed the case here, as we now prove the following gap property
of Shapley(D, f,∆, Id).

Proposition 5.6. There is a polynomial p such that for all databases D and facts f of D
the value Shapley(D, f,∆, Id) is either zero or at least 1/(p(|D|)).

Proof. If no fact of D is in conflict with f , then Shapley(D, f,∆, Id) = 0. Otherwise, let
g be a fact that violates an FD of ∆ jointly with f . Clearly, it holds that {g} |= ∆, while
{g, f} 6|= ∆. The probability to choose a permutation σ, such that σf is exactly {g} is
(|D|−2)!
|D|! = 1

|D|·(|D|−1) (recall that σf is the set of facts that appear before f in σ). Therefore,

we have that Shapley(D, f,∆, Id) ≥ 1
|D|·(|D|−1) , and that concludes our proof.

From Proposition 5.6 we conclude that we can obtain an upper bound on the mul-
tiplicative error ε for Shapley(D, f,∆, Id) by requiring an additive gap of ε divided by a
polynomial. Hence, we get the following.

Corollary 5.7. Shapley(D, f,∆, Id) has both an additive and a multiplicative FPRAS.

5.3. Generalization to Multiple Relations. We now generalize our results to schemas
with multiple relation symbols. More formally, we consider (relational) schemas S that
consists of a finite set {R1, . . . , Rn} of relation symbols, each associated with a sequence of
attributes. For a set ∆ of FDs over S and a relation symbol Rj of S, we denote by ∆Rj the
restriction of ∆ to the FDs over Rj . Similarly, for a database D over S, we denote by DRj

the restriction of D to the facts over Rj . Finally, we denote ∆R1 ∪ · · · ∪∆Rj by ∆j and

DR1 ∪ · · · ∪DRj by Dj .
It is straightforward that the lower bound provided in this section also holds for schemas

with multiple relation symbols. That is, given an FD set ∆ over a schema S, if for at least
one relation symbol R of S, the FD set ∆R is not equivalent to an FD set with an lhs chain,
then the problem of computing Shapley(D, f,∆, Id) is FP#P-complete. We now generalize
our upper bound to schemas with multiple relations; that is, we focus on the case where the
FD set ∆R of every relation symbol R of the schema has an lhs chain (up to equivalence),
and show that the Shapley value can be computed in polynomial time.

The formula given in Observation 3.2 for computing the Shapley value is general and
also applies to databases over schemas with multiple relation symbols. As aforementioned,
for the drastic measure, this computation boils down to computing two probabilities—the
probability that a uniformly chosen subset of D \ {f} of size m violates the constraints, and
the probability that such a subset D′ satisfies D′ ∪ {f} 6|= ∆. Since we consider FDs, there
are no violations among facts over different relation symbols; hence, we can compute these
probabilities separately for each one of the relation symbols (i.e., for every pair (DRj ,∆Rj) of
a database and its corresponding FD set), and then we combine these results using dynamic
programming, as we explain next.

Let R1, . . . , Rn be an arbitrary order of the relation symbols. For each j ∈ {1, . . . , n}
we denote by Tmj the probability that a uniformly chosen subset of size m of DRj \ {f}
violates ∆Rj . This value can be computed in polynomial time for every relation symbol,

20:18 E. Livshits and B. Kimelfeld Vol. 18:2

using the algorithm of Figure 3, as we assume that ∆Rj has an lhs chain. Next, we denote

by Pmj the probability that a uniformly chosen subset of size m of Dj \ {f} violates the
constraints of ∆R1 ∪ · · · ∪∆Rj . Hence, the value Pmn is needed for the computation of the
Shapley value. We compute this value using dynamic programming. Clearly, we have that:

Pm1 = Tm1

and for every j > 1 we prove the following.

Lemma 5.8. For j ∈ {2, . . . , n} we have that:

Pmj =
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)

×
(

1−
(

1− Tm1
j

)
×
(

1− Pm2
j−1

))]
Proof. Each subset D′ of size m of Dj \ {f} contains a subset E1 of size m1 of DRj \ {f}
and a subset E2 of size m2 of Dj−1 \ {f}, for some m1,m2 such that m1 +m2 = m. Clearly,
D′ violates the constraints if and only if at least one of E1 or E2 violates the constraints.
That is, Id(D′,∆j) = 1 if either Id(E1,∆Rj) = 1 or Id(E2,∆

j−1) = 1 (or both). Therefore,

Id(D′,∆j) = 1−
(
1− Id(E1,∆Rj)

)
×
(
1− Id(E2,∆

j−1)
)

Then, we have the following:

Pm
j =ED′∼Um(Dj\{f})

(
Id(D′,∆j)

)
=

∑
D′⊆Dj\{f}
|D′|=m

1(|Dj\{f}|
m

)Id(D′,∆j)

=
∑

0≤m1≤|DRj
\{f}|

0≤m2≤|Dj−1\{f}|
m1+m2=m

∑
E1⊆DRj

\{f}
E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

1(|Dj\{f}|
m

) × (1− (1− Id(E1,∆Rj
))× (1− Id(E2,∆

j−1))
)

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj

\ {f}|
m1

)
×
(
|Dj−1 \ {f}|

m2

)
×

∑
E1⊆DRj

\{f}
E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

[
1(|DRj
\{f}|

m1

) × 1(|Dj−1\{f}|
m2

) × (1− (1− Id(E1,∆Rj
))× (1− Id(E2,∆

j−1))
)]]

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)
×

(∑
E1⊆DRj

\{f}
E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

[
1(|DRj
\{f}|

m1

) × 1(|Dj−1\{f}|
m2

) × 1

]
−

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:19

Algorithm 3 Simplify(∆)

1: Remove trivial FDs from ∆
2: if ∆ is not empty then
3: find a removable pair (X,Y) of attribute sets
4: ∆ := ∆−XY

return ∆

Figure 6. A simplification algorithm used for deciding whether a cardinality
repair w.r.t. ∆ can be computed in polynomial time [LKR20].

∑
E1⊆DRj

\{f}
E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

[
1(|DRj
\{f}|

m1

) × 1(|Dj−1\{f}|
m2

) × (1− Id(E1,∆Rj))× (1− Id(E2,∆
j−1))

])]

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)
×

(
1−

 ∑
E1⊆DRj

\{f}
|E1|=m1

1(|DRj
\{f}|

m1

) × (1− Id(E1,∆Rj
))

×
 ∑

E2⊆Dj−1\{f}
|E2|=m2

1(|Dj−1\{f}|
m2

) × (1− Id(E2,∆
j−1))


)]

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj

\ {f}|
m1

)
×
(
|Dj−1 \ {f}|

m2

)
×
(
1−

(
1− Tm1

j

)
×
(
1− Pm2

j−1
))]

This concludes our proof.

We can similarly compute the second probability required for the Shapley value compu-
tation. The only difference is that if the fact f that we consider is over the relation symbol
Rj , then Tmj will be the probability that a uniformly chosen D′ ⊂ DRj of size m is such that

D′ ∪ {f} violates ∆Rj . This value can be computed in polynomial time using the algorithm
of Figure 5. Note that the results of Section 5.2 on the approximate computation of the
Shapley value trivially generalize to schemas with multiple relation symbols; hence, there is
an additive FPRAS and a multiplicative FPRAS for any set of FDs.

6. Measure IR: The Cost of a Cardinality Repair

In this section, we study the measure IR that is based on the cost of a cardinality repair,
that is, the minimal number of facts that should be deleted from the database in order
to obtain a consistent subset. Unlike the other inconsistency measures considered in this
article, we do not have a full dichotomy for the measure IR.

20:20 E. Livshits and B. Kimelfeld Vol. 18:2

6.1. Complexity Results. Livshits et al. [LKR20] established a dichotomy for the problem
of computing a cardinality repair, classifying FD sets into those for which the problem is
solvable in polynomial time, and those for which it is NP-hard. They presented a polynomial-
time algorithm, which we refer to as Simplify, that takes as input an FD set ∆, finds a
removable pair (X,Y) of attribute sets (if such a pair exists), and removes every attribute of
X ∪ Y from every FD in ∆ (we denote the result by ∆−XY). A pair (X,Y) of attribute
sets is considered removable if it satisfies the following three conditions:

• Closure∆(X) = Closure∆(Y),
• XY is nonempty,
• every FD in ∆ contains either X or Y on the left-hand side.

Note that it may be the case that X = Y , and then the conditions imply that every FD of
∆ contains X on the left-hand side. The algorithm is depicted in Figure 6.

Livshits et al. [LKR20] have shown that if it is possible to transform ∆ to an empty set
by repeatedly applying Simplify(∆), then a cardinality repair can be computed in polynomial
time. Otherwise, the problem is NP-hard (and, in fact, APX-complete).

Fact 3.3 implies that computing Shapley(D, f,∆, IR) is hard whenever computing
IR(D,∆) is hard. Hence, we immediately obtain the following.

Theorem 6.1. Let ∆ be a set of FDs. If ∆ cannot be emptied by repeatedly applying
Simplify(∆), then computing Shapley(D, f,∆, IR) is NP-hard.

In the remainder of this section, we focus on the tractable cases of the dichotomy of
Livshits et al. [LKR20]. In particular, we start by proving that the Shapley value can again
be computed in polynomial time for an FD set that has an lhs chain. Note that FD sets
with an lhs chain are a special case of FD sets that can be emptied via Simplify steps. This
holds since every FD set with an lhs chain has either an FD of the form ∅ → X or a set
X of attributes that occurs on the left-hand side of every FD. In the first case, (∅, X) is a
removable pair, while in the second case, (X,X) is a removable pair.

Theorem 6.2. Let ∆ be a set of FDs. If ∆ is equivalent to an FD set with an lhs chain,
then computing Shapley(D, f,∆, IR) can be done in polynomial time, given D and f .

Our polynomial-time algorithm RShapley, depicted in Figure 7, is very similar in structure
to DrasticShapley. However, to compute the expected value of IR, we take the reduction
of Observation 3.2 a step further, and show, that the problem of computing the expected
value of the measure over subsets of size m can be reduced to the problem of computing the
number of subsets of size m of D that have a cardinality repair of cost k, given m and k.
Recall that we refer to the number of facts that are removed from D to obtain a cardinality
repair E as the cost of E. In the subroutine UpdateCount, we compute this number. In
what follows, we denote by MR(D,∆) the cost of a cardinality repair of D w.r.t. ∆.

Lemma 6.3. The following holds.

Shapley(D, f,∆, IR) =
1

|D|

|D|−1∑
m=0

m∑
k=0

k(|D|−1
m

) |Sfm,k| − |Sm,k|
where:

Sm,k = {D′ ⊆ D \ {f} | |D′| = m,MR(D′ ∪ {f},∆) = k}

Sfm,k{D
′ ⊆ D \ {f} | |D′| = m,MR(D′,∆) = k}

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:21

Algorithm 4 RShapley(D,∆,m, T)

1: for all vertices v of T in a bottom-up order do
2: UpdateCount(v,m)

3: return
∑m

k=0
k

(|D|−1
m)
· r.val[m, k]

Subroutine 3 UpdateCount(v,m)

1: v.val[0, 0] = 1

2: if v is a leaf then v.val[j, 0] =
(|D[v]|

j

)
for all j ∈ {1, . . . , |D[v]|}

3: for all children c of v in T do
4: for j ∈ {m, . . . , 1} do
5: for t ∈ {j, . . . , 0} do
6: if v is a block vertex then
7: v.val[j, t] =

∑
j1+j2=j

0≤j1≤|D[c]|
t−j1≤j2≤min{t,|D[prev(c)]|}

∑
t−j1≤w2≤j2

(
c.val[j1, t− j2] · v.val[j2, w2]

)
8: v.val[j, t] +=

∑
j1+j2=j

t−j2≤j1≤min{t,|D[c]|}
0≤j2≤|D[prev(c)]|

∑
t−j2<w1≤j1

(
c.val[j1, w1] · v.val[j2, t− j1]

)
9: else

10: v.val[j, t] =
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤|D[prev(c)]|

∑
t1+t2=t
0≤t1≤j1
0≤t2≤j2

(
c.val[j1, t1] · v.val[j2, t2]

)

Figure 7. An algorithm for computing ED′∼Um(D\{f})
(
IR(D′,∆)

)
for ∆

with an lhs chain.

Proof. We further develop the reduction of Observation 3.2.

Shapley(D, f,∆, IR) =
1

|D|

|D|−1∑
m=0

∑
D′⊆(D\{f})
|D′|=m

1(|D|−1
m

)(I(D′ ∪ {f},∆)− I(D′,∆)
)

=
1

|D|

|D|−1∑
m=0

m∑
k=0

∑
D′⊆(D\{f})
|D′|=m

MR(D′∪{f},∆)=k

1(|D|−1
m

)(I(D′ ∪ {f},∆)
)

− 1

|D|

|D|−1∑
m=0

m∑
k=0

∑
D′⊆(D\{f})
|D′|=m

MR(D′,∆)=k

1(|D|−1
m

)(I(D′,∆)
)

=
1

|D|

|D|−1∑
m=0

m∑
k=0

∑
D′⊆(D\{f})
|D′|=m

MR(D′∪{f},∆)=k

k(|D|−1
m

) − 1

|D|

|D|−1∑
m=0

m∑
k=0

∑
D′⊆(D\{f})
|D′|=m

MR(D′,∆)=k

k(|D|−1
m

)

20:22 E. Livshits and B. Kimelfeld Vol. 18:2

=
1

|D|

|D|−1∑
m=0

m∑
k=0

k(|D|−1
m

) |{D′ ⊆ D \ {f} | |D′| = m,MR(D′ ∪ {f},∆) = k}|

− 1

|D|

|D|−1∑
m=0

m∑
k=0

k(|D|−1
m

) |{D′ ⊆ D \ {f} | |D′| = m,MR(D′,∆) = k}|

We again use the data structure T defined in the previous section. For each vertex v in
T , we define:

v.val[j, t]
def
= number of subsets of size j of D[v] with a cardinality repair of cost t

For the leaves v of T , we set v.val[j, 0] =
(|D[v]|

j

)
for 0 ≤ j ≤ |D[v]|, as every subset of D[v]

is consistent, and the cost of a cardinality repair is zero. We also set v.val[0, 0] = 1 for each
v in T for the same reason. Since the size of the cardinality repair is bounded by the size of
the database, in UpdateCount(v,m), we compute the value v.val[j, t] for every 1 ≤ j ≤ m
and 0 ≤ t ≤ j. To compute this number, we again go over the children of v, one by one.
When we consider a child c in the for loop of line 1, the value v.val[j, t] is the number of
subsets of size j of D[prev(c)] ∪D[c] that have a cardinality repair of cost t.

The children of a block v are subblocks that jointly violate an FD of ∆; hence, when
we consider a child c of v, a cardinality repair of a subset E of D[prev(c)] ∪D[c] is either a
cardinality repair of E ∩D[c] (in which case we remove every fact of E ∩D[prev(c)]) or a
cardinality repair of E ∩D[prev(c)] (in which case we remove every fact of E ∩D[c]). The
decision regarding which of these cases holds is based on the following four parameters: (1)
the number j1 of facts in E ∩D[c], (2) the number j2 of facts in E ∩D[prev(c)], (3) the
cost w1 of a cardinality repair of E ∩D[c], and (4) the cost w2 of a cardinality repair of
E ∩D[prev(c)]. In particular:

• If w1 + j2 ≤ w2 + j1, then a cardinality repair of E ∩D[c] is preferred over a cardinality
repair of E ∩D[prev(c)], as it requires removing less facts from the database.
• If w1+j2 > w2+j1, then a cardinality repair of E∩D[prev(c)] is preferred over a cardinality

repair of E ∩D[c].

In fact, since we fix t in the computation of v.val[j, t], we do not need to go over all w1 and
w2. In the first case, we have that w1 = t− j2 (hence, the total number of removed facts is
t− j2 + j2 = t), and in the second case we have that w2 = t− j1 for the same reason. Hence,
in line 7 we consider the first case where t ≤ w2 + j1, and in line 8 we consider the second
case where w1 + j2 > t. To avoid negative costs, we add a lower bound of t− j1 on j2 and
w2 in line 7, and, similarly, a lower bound of t− j2 on j1 and w1 in line 8.

For a subblock vertex v, a cardinality repair of D[v] is the union of cardinality repairs
of the children of v, as facts corresponding to different children of v do not jointly violate
any FD. Therefore, for such vertices, in line 10, we compute v.val by going over all j1, j2
such that j1 + j2 = j and all t1, t2 such that t1 + t2 = t and multiply the number of subsets
of size j1 of the current child for which the cost of a cardinality repair is t1 by the number
of subsets of size j2 of the previously considered children for which the cost of a cardinality
repair is t2.

Next, we give the algorithm RShapleyF for computing ED′∼Um(D\{f})
(
IR(D′ ∪ {f},∆)

)
,

that again involves a special treatment for vertices that conflict with f . The algorithm is

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:23

Algorithm 5 RShapleyF(D,∆,m, T, f)

1: RShapley(D,∆,m,T)
2: for all vertices v of T in a bottom-up order do
3: UpdateCount(v,m, f)

4: return
∑m

k=0
k

(|D|−1
m)
· r.val[m, k]

Subroutine 4 UpdateCountF(v,m, f)

1: v.val′[0, 0] = 1
2: if f conflict with v then
3: v.val′[j, t] = v.val[j, t− 1] for all 1 ≤ j ≤ |D[v]| and 1 ≤ t ≤ j
4: return
5: if f does not match v or v is a leaf then
6: v.val′[j, t] = v.val[j, t] for all 1 ≤ j ≤ m and 0 ≤ t ≤ j
7: return
8: for all children c of v in T do
9: for j ∈ {m, . . . , 1} do

10: for t ∈ {j, . . . , 1} do
11: if v is a block vertex then
12: v.val′[j, t] =

∑
j1+j2=j

0≤j1≤|D[c]|
t−j1≤j2≤min{t,|D[prev(c)]|}

∑
t−j1≤w2≤j2

(
c.val′[j1, t− j2] · v.val′[j2, w2]

)
13: v.val′[j, t] +=

∑
j1+j2=j

t−j2≤j1≤min{t,|D[c]|}
0≤j2≤|D[prev(c)]|

∑
t−j2<w1≤j1

(
c.val′[j1, w1] · v.val′[j2, t− j1]

)
14: else
15: v.val′[j, t] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

∑
t1+t2=t
0≤t1≤j1
0≤t2≤j2

(
c.val′[j1, t1] · v.val′[j2, t2]

)

Figure 8. An algorithm for computing ED′∼Um(D\{f})
(
IR(D′ ∪ {f},∆)

)
for ∆ with an lhs chain.

depicted in Figure 8. We define:

v.val′[j, t]
def
=number of subsets of size j of D[v] that, jointly with f,

have a cardinality repair of cost t

As in the case of DrasticShapleyF, we start with the execution of RShapley, which allows us to
reuse some of the values computed in this execution. For every vertex, we set v.val′[0, 0] = 1,
as the empty set has a single cardinality repair of cost zero. Then, we consider three types
of vertices. For vertices v that conflict with f we have that v.val′[j, t] = v.val[j, t− 1] for all
1 ≤ j ≤ D[v] and 1 ≤ t ≤ j, as every non-empty subset of v conflicts with f ; hence, we have
to remove f in a cardinality repair, and the cost of a cardinality repair increases by one. For
vertices v that do not match f , we have that v.val′[j, t] = v.val[j, t], as f is not in conflict
with any fact of D[v]; hence, it can be added to any cardinality repair without increasing its
cost. The same holds for the leaves of T that do not conflict with f .

For a block vertex v, all the arguments given for RShapley still apply here. In particular,
for a child c of v, a cardinality repair of E ∪ {f} for a subset E of size j of D[prev(c)]∪D[c],

20:24 E. Livshits and B. Kimelfeld Vol. 18:2

is either a cardinality repair of (E ∩ D[c]) ∪ {f} (in which case we delete all facts of
E ∩D[prev(c)]) or a cardinality repair of (E ∩D[prev(c)]) ∪ {f} (in which case we delete
all facts of E ∩D[c]). Therefore, the only difference in the computation of v.val′ compared
to the computation of v.val for such vertices is the use of c.val′ (that takes f into account)
rather than c.val.

For a subblock vertex v (that does not conflict with f , and, hence, matches f), the
computation of v.val′ is again very similar to that of v.val, with the only difference being
the use of c.val′. Observe that in this case, the children of v correspond to different blocks.
Each such block that does not match f also does not violate any FD with f ; hence, when
we add f to this block, a cardinality repair of the resulting group of facts does not require
the removal of f . The only child of v where a cardinality repair might require the removal
of f is a child that matches f , and, clearly, there is at most one such child. Therefore, we
do not count the fact f twice in the computation of the value v.val′.

6.2. Approximation. In cases where a cardinality repair can be computed in polynomial
time, we can obtain an additive FPRAS in the same way as the drastic measure. (Note
that this Shapley value is also in [0, 1].) Moreover, we can again obtain a multiplicative
FPRAS using the same technique due to the following gap property (proved similarly to
Proposition 5.6).

Proposition 6.4. There is a polynomial p such that for all databases D and facts f of D
the value Shapley(D, f,∆, IR) is either zero or at least 1/(p(|D|)).

As aforementioned, Livshits et al. [LKR20] showed that the hard cases of their dichotomy
for the problem of computing a cardinality repair are, in fact, APX-complete; hence, there is
a polynomial-time constant-ratio approximation, but for some ε > 1 there is no (randomized)
ε-approximation or else P = NP (NP ⊆ BPP). Since the Shapley value of every fact w.r.t. IR
is positive, the existence of a multiplicative FPRAS for Shapley(D, f,∆, IR) would imply the
existence of a multiplicative FPRAS for IR(D,∆) (due to Fact 3.3), which is a contradiction
to the APX-hardness. We conclude the following.

Proposition 6.5. Let ∆ be a set of FDs. If ∆ can be emptied by repeatedly applying
Simplify(∆), then Shapley(D, f,∆, IR) has both an additive and a multiplicative FPRAS.
Otherwise, it has neither multiplicative nor additive FPRAS, unless NP ⊆ BPP.

Unsolved cases for IR. A basic open problem is the computation of Shapley(D, f,∆, IR)
for ∆ = {A→ B,B → A}. On the one hand, Proposition 6.5 shows that this case belongs
to the tractable side if an approximation is allowed. On the other hand, our algorithm
for exact Shapley(D, f,∆, IR) is via counting the subsets of size m that have a cardinality
repair of cost k. This approach will not work here:

Proposition 6.6. Let ∆ = {A→ B,B → A} be an FD set over (A,B). Counting the
subsets of size m of a given database that have a cardinality repair of cost k is #P-hard.

Proof. The proof is by a reduction from the problem of computing the number of perfect
matchings in a bipartite graph, known to be #P-complete [Val79b]. Given a bipartite
graph g = (A ∪B,E) (where |A| = |B|), we construct a database D over (A,B) by adding
a fact (a, b) for every edge (a, b) ∈ E. We then define m = |A| and k = 0. It is rather
straightforward that the perfect matchings of g correspond exactly to the subsets D′ of size
|A| of D such that D′ itself is a cardinality repair.

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:25

Observe that the cooperative game for ∆ = {A→ B,B → A} can be seen as a game on
bipartite graphs where the vertices on the left-hand side represent the values of attribute A,
the vertices on the right-hand side correspond to the values that occur in attribute B, and
the edges represent the tuples of the database (hence, the players of the game). This game
is different from the well-known matching game [AdK14] where the players are the vertices
of the graph (and the value of the game is determined by the maximum weight matching of
the subgraph induced by the coalition). In contrast, in our case the players correspond to
the edges of the graph. It is not clear what is the connection between the two games and
whether or how we can use known results on matching games to derive results for the game
that we consider here.

6.3. Generalization to Multiple Relations. As in the case of IMI and IP, the results of
this section easily generalize to schemas with multiple relations, due to the linearity property
of the Shapley value. As in the case of the drastic measure, the (positive and negative)
results on the approximate computation of the Shapley value trivially generalize to schemas
with multiple relation symbols.

7. Measure IMC: The Number of Repairs

The final measure that we consider is IMC that counts the repairs of the database.

7.1. Dichotomy. A dichotomy result from our previous work [LK17] states that the problem
of counting repairs can be solved in polynomial time for FD sets with an lhs chain (up
to equivalence), and is #P-complete for any other FD set. The hardness side, along with
Fact 3.3, implies that computing Shapley(D, f,∆, IMC) is FP#P-hard whenever the FD
set is not equivalent to an FD set with an lhs chain. Hence, an lhs chain is a necessary
condition for tractability. We show here that it is also sufficient: if the FD set has an lhs
chain, then the problem can be solved in polynomial time. Consequently, we obtain the
following dichotomy.

Theorem 7.1. Let ∆ be a set of FDs. If ∆ is equivalent to an FD set with an lhs chain, then
computing Shapley(D, f,∆, IMC) can be done in polynomial time, given D and f . Otherwise,
the problem is FP#P-complete.

The algorithm MCShapley, depicted in Figure 9, for computing Shapley(D, f,∆, IMC),
has the same structure as DrasticShapley, with the only difference being the computations in
the subroutine UpdateExpected (that replaces UpdateProb).

For a vertex v in T we define:

v.val[j] = E [number of repairs of a random subset of size j of D[v]]

As the number of repairs of a consistent database D is one (D itself is a repair), we set
v.val[0] = 1 for every vertex v and v.val[j] = 1 for 0 ≤ j ≤ |D[v]| for every leaf v. Now,
consider a block vertex v and a child c of v. Since the children of v are subblocks, each
repair consists of facts of a single child. Hence, the total number of repairs is the sum of
repairs of the children of v.

Using standard mathematical manipulations, we obtain the following result:

20:26 E. Livshits and B. Kimelfeld Vol. 18:2

Algorithm 6 MCShapley(D,∆,m, T)

1: for all vertices v of T in a bottom-up order do
2: UpdateExpected(v,m)

3: return r.val[m]

Subroutine 5 UpdateExpected(v,m)

1: v.val[0] = 1
2: if v is a leaf then v.val[j] = 1 for all j ∈ {1, . . . , |D[v]|}
3: for all children c of v in T do
4: for j ∈ {m, . . . , 1} do
5: if v is a block vertex then
6: v.val[j] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

(
c.val[j1] + v.val[j2]

)
7: else
8: v.val[j] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

(
c.val[j1] · v.val[j2]

)

Figure 9. An algorithm for computing ED′∼Um(D\{f})
(
IMC(D′,∆)

)
for ∆

with an lhs chain.

Lemma 7.2. For a block vertex v and a child c of v, we have that:

ED′∼Uj(D[prev(c)]∪D[c])

(
IMC(D′,∆)

)
=

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤D[prev(c)]

ED′∼Uj1
(D[c])

(
IMC(D′,∆)

)
+ ED′∼Uj2

(D[prev(c)]

(
IMC(D′,∆)

)

Proof. As aforementioned, each repair of a subset E of D[v] contains facts from a single child
of v, and the number of repairs is the sum of repairs over the children of v. Moreover, since
our choice of facts from different subblocks is independent, we have the following (where
MC(D,∆) is the set of repairs of D w.r.t. ∆).

ED′∼Uj(D[prev(c)]∪D[c])

(
IMC(D′,∆)

)
=

∑
D′⊆D[prev(c)]∪D[c]

|D′|=j

Pr
[
D′
]
· |MC(D′,∆)|

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

∑
E2⊆D[prev(c)]
|E2|=j2

Pr [E1]Pr [E2]
(
|MC(E1,∆)|+ |MC(E2,∆)|

)

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

∑
E2⊆D[prev(c)]
|E2|=j2

Pr [E1]Pr [E2]|MC(E1,∆)|

+
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

∑
E2⊆D[prev(c)]
|E2|=j2

Pr [E1]Pr [E2]|MC(E2,∆)|

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:27

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

Pr [E1]|MC(E1,∆)|
∑

E2⊆D[prev(c)]
|E2|=j2

Pr [E2]

+
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E2⊆D[prev(c)]
|E2|=j2

Pr [E2]|MC(E2,∆)|
∑

E1⊆D[c]
|E1|=j1

Pr [E1]

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

ED′∼Uj1
(D[c])

(
IMC(D′,∆)

)
+

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤D[prev(c)]

ED′∼Uj2
(D[prev(c)])

(
IMC(D′,∆)

)

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

ED′∼Uj1
(D[c])

(
IMC(D′,∆)

)
+ ED′∼Uj2

(D[prev(c)])

(
IMC(D′,∆)

)

Recall that in our reduction from the problem of computing the Shapley value to that
of computing the expected value of the measure over subsets of a given size of the database,
we considered the uniform distribution where Pr [E] = 1

(|D|m)
for a subset E of size m of D.

Therefore, we have that
∑

E2⊆D[prev(c)]
|E2|=j2

Pr [E2] =
∑

E1⊆D[c]
|E1|=j1

Pr [E1] = 1.

The result of Lemma 7.2 is reflected in line 6 of the UpdateExpected subroutine. Next,
we show the following result for subblock vertices, that we use for the calculation of line 8.

Lemma 7.3. For a subblock vertex v and a child c of v, we have that:

ED′∼Uj(D[prev(c)]∪D[c])

(
IMC(D′,∆)

)
=∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

ED′∼Uj1
(D[c])

(
IMC(D′,∆)

)
· ED′∼Uj2

(D[prev(c)]

(
IMC(D′,∆)

)

Proof. Since the children of v are blocks (that do not jointly violate any FD of ∆), each
repair of a subset E of D[v] is a union of the repairs of the children of v, and the number of
repairs is the product of the number of repairs over the children of v. Hence, we have the
following:

ED′∼Uj(D[prev(c)]∪D[c])

(
IMC(D′,∆)

)
=

∑
D′⊆D[prev(c)]∪D[c]

|D′|=j

Pr
[
D′
]
· |MC(D′,∆)|

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

∑
E2⊆D[prev(c)]
|E2|=j2

Pr [E1]Pr [E2]
(
|MC(E1,∆)| · |MC(E2,∆)|

)

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

∑
E1⊆D[c]
|E1|=j1

Pr [E1]|MC(E1,∆)|
∑

E2⊆D[prev(c)]
|E2|=j2

Pr [E2]|MC(E2,∆)|

20:28 E. Livshits and B. Kimelfeld Vol. 18:2

Algorithm 7 MCShapleyF(D,∆,m, T, f)

1: MCShapley(D,∆,m,T)
2: for all vertices v of T in a bottom-up order do
3: UpdateExpectedF(v,m, f)

4: return r.val[m]

Subroutine 6 UpdateExpectedF(v,m, f)

1: v.val′[0] = 1
2: if f conflict with v then
3: v.val′[j] = v.val[j] + 1 for all 1 ≤ j ≤ |D[v]|
4: return
5: if f does not match v or v is a leaf then
6: v.val′[j] = v.val[j] for all 0 ≤ j ≤ m
7: return
8: for all children c of v in T do
9: for j ∈ {m, . . . , 1} do

10: if v is a block vertex then
11: if c does not conflict with f then
12: v.val′[j] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

(
c.val′[j1] + v.val′[j2]

)
13: else
14: v.val′[j] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

(
c.val[j1] + v.val′[j2]

)

15: if all the children of v conflict with f then
16: v.val′[j] = v.val′[j] + 1 for all 1 ≤ j ≤ m
17: else
18: v.val′[j] =

∑
j1+j2=j

0≤j1≤|D[c]|
0≤j2≤|D[prev(c)]|

(
c.val′[j1] · v.val′[j2]

)

Figure 10. An algorithm for computing ED′∼Um(D\{f})
(
IMC(D′ ∪{f},∆)

)
for ∆ with an lhs chain.

=
∑

j1+j2=j
0≤j1≤|D[c]|

0≤j2≤D[prev(c)]

ED′∼Uj1
(D[c])

(
IMC(D′,∆)

)
· ED′∼Uj2

(D[prev(c)])

(
IMC(D′,∆)

)

The algorithm MCShapleyF that computes ED′∼Um(D\{f})
(
IMC(D′ ∪ {f},∆)

)
is shown

in Figure 10. We define:

v.val′[j] = E [number of repairs of E ∪ {f} for a random subset E of size j of D[v]]

First, we set v.val′[0] = 1 for every vertex v, as when f is added to the empty set we
obtain a consistent database that has a single repair—the whole database. Then, we again
consider three possible types of vertices. For vertices v that conflict with f we have that
v.val′[j] = v.val[j] + 1, as f violates the FDs with every non-empty subset of D[v]; hence,

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:29

for each such subset, {f} is an additional repair, and the number of repairs increases by
one compared to the number of repairs without f . For a vertex v that does not match f ,
it holds that f does not violate the constraints with any subset of D[v]; thus, it does not
affect the number of repairs and we have that v.val′[j] = v.val[j]. The same holds for the
leaves of T that do not conflict with f .

For the rest of the vertices v, the computation is similar to the one in MCShapley. In
particular, we go over the children c of v in the for loop of line 8, and compute v.val′ using
dynamic programming. We observe that if a child c of a block vertex v conflicts with f ,
then when f is added to a subset E of D[c], none of the repairs of E ∪ {f} contains f , but
{f} is an additional repair. For such children c, we use the value c.val in the calculation of
line 14, where we ignore f . Hence, if all the children of v conflict with f , we compute v.val′

in the exact same way we compute v.val, while ignoring the fact f . Then, we increase the
computed value by one in line 18, to reflect the additional repair {f}.

If one of the children c of v does not conflict with f (note that there is at most one such
child), then we take f into account in the computation of line 12, where we use the value
c.val′ rather than c.val. In this case, there is no need to increase the computed value by one,
as we have already considered the addition of f , and the fact f may appear in some of the
repairs of the subset of D[c] (or, again, be a repair on its own).

For a subblock vertex v, we compute v.val′ in the same way we compute v.val in
MCShapley, but we use the value c.val′ in the computation. In this case, each repair of
a subset E of D[c] ∪D[prev(c)] is a union of a repair of (E ∩D[c]) ∪ {f} and a repair of
(E ∩D[prev(c)]) ∪ {f}. Note that in this case, for a child c of v that does not match f we
have that c.val′ = c.val; hence, the fact f is again only taken into account when considering
a child c of v that matches f , and there is no risk in counting the repair {f} twice.

7.2. Approximation. Repair counting for ∆ = {A→ B,B → A} is the problem of count-
ing the maximal matchings of a bipartite graph. As the values Shapley(D, f,∆, IMC) are
nonnegative and sum up to the number of repairs, we conclude that an FPRAS for Shapley
implies an FPRAS for the number of maximal matchings. To the best of our knowledge,
existence of the latter is a long-standing open problem [JR18]. This is also the case for any
∆′ that is not equivalent to an FD set with an lhs chain, since there is a fact-wise reduction
from ∆ to such ∆′ [LK17].

7.3. Generalization to Multiple Relations. As in the case of the drastic measure, we
can generalize the upper bound of this section to schemas with multiple relation symbols
using dynamic programming. We again consider an arbitrary order R1, . . . , Rn of the realtion
symbols of the schema, and denote:

Tmj = ED′∼Um(DRj
\{f})

(
IMC(D′,∆Rj)

)
and:

Pmj = ED′∼Um(Dj\{f})
(
IMC(D′,∆j)

)
The value Tmj can be computed in polynomial time, using the algorithm of Figure 9, as we
assume that each ∆Rj has an lhs chain. As for the value Pmj , we have that Pm1 = Tm1 , and

we prove the following for j > 1. (Recall that we denote by ∆j the FD set ∆R1 ∪ · · · ∪∆Rj

and by Dj the database DR1 ∪ · · · ∪DRj .)

20:30 E. Livshits and B. Kimelfeld Vol. 18:2

Lemma 7.4. For every j ∈ {2, . . . , n} we have that:

Pmj =
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)
× Tm1

j × Pm2
j−1

Proof. A basic observation here is that the number of repairs of DR1 ∪ · · · ∪DRj is a product
of the number of repairs of DRj and the number of repairs of DR1 ∪ · · · ∪DRj−1 , since there
are no conflicts among facts over different relation symbols. Thus, we have the following:

Pm
j =ED′∼Um(Dj\{f})

(
IMC(D′,∆j)

)
=

∑
D′⊆Dj\{f}
|D′|=m

1(|Dj\{f}|
m

)IMC(D′,∆j)

=
∑

0≤m1≤|DRj
\{f}|

0≤m2≤|Dj−1\{f}|
m1+m2=m

∑
E1⊆DRj

\{f}
E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

1(|Dj\{f}|
m

) × (IMC(E1,∆Rj
)× IMC(E2,∆

j−1)
)

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)

×
∑

E1⊆DRj
\{f}

E2⊆Dj−1\{f}
|E1|=m1,|E2|=m2

[
1(|DRj
\{f}|

m1

) × 1(|Dj−1\{f}|
m2

) × (IMC(E1,∆Rj)× IMC(E2,∆
j−1)

)]]

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

[(
|DRj \ {f}|

m1

)
×
(
|Dj−1 \ {f}|

m2

)

×

 ∑
E1⊆DRj

\{f}
|E1|=m1

1(|DRj
\{f}|

m1

) × IMC(E1,∆Rj
)



×

 ∑
E2⊆Dj−1\{f}
|E2|=m2

1(|Dj−1\{f}|
m2

) × IMC(E2,∆
j−1)


]

=
1(|Dj\{f}|
m

) ∑
0≤m1≤|DRj

\{f}|
0≤m2≤|Dj−1\{f}|

m1+m2=m

(
|DRj

\ {f}|
m1

)
×
(
|Dj−1 \ {f}|

m2

)
× Tm1

j × Pm2
j−1

The computation of ED′∼Um(Dj−1\{f})
(
IMC(D′ ∪ {f},∆j)

)
is very similar, with the only

difference being the fact that:

Tmj = ED′∼Um(DRj
\{f})

(
IMC(D′ ∪ {f},∆Rj)

)

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:31

for the relation symbol Rj of f . This value can be computed in polynomial time using
the algorithm of Figure 10. Finally, as in the case of the drastic measure, it is rather
straightforward that the lower bound of Theorem 7.1 generalizes to the case where the FD
set ∆R has no lhs chain (up to equivalence) for at least one relation symbol R of the schema.

8. Conclusions

We studied the complexity of calculating the Shapley value of database facts for basic
inconsistency measures, focusing on FD constraints. We showed that two of them are
computable in polynomial time: the number of violations (IMI) and the number of problematic
facts (IP). In contrast, each of the drastic measure (Id) and the number of repairs (IMC)
features a dichotomy in complexity, where the tractability condition is the possession of an
lhs chain (up to equivalence). For the cost of a cardinality repair (IR) we showed a tractable
fragment and an intractable fragment, but a gap remains on certain FD sets—the ones that
do not have an lhs chain, and yet, a cardinality repair can be computed in polynomial time.
We also studied the approximability of the Shapley value and showed, among other things,
an FPRAS for Id and a dichotomy in the existence of an FPRAS for IR.

Many other directions are left open for future research. First, the picture is incomplete
for the measure IR. In particular, the complexity of the exact computation is open for
the bipartite matching constraint {A→ B,B → A} that, unlike the known FD sets in the
intractable fragment, has an FPRAS. In general, we would like to complete the picture
of IR towards a full dichotomy. Moreover, for the schemas where there is no FPRAS for
IR, our results neither imply nor refute the existence of a constant-ratio approximation
(for some constant). Second, the problems are immediately extendible to any type of
constraints other than functional dependencies, such as denial constraints, tuple generating
dependencies, and so on. Third, it would be interesting to see how the results extend to wealth
distribution functions other than Shapley, for instance the Banzhaff Power Index [DS79].
The tractable cases remain tractable for the Banzhaff Power Index, but it is not clear how
(and whether) our proofs for the lower bounds generalize to this function. Another direction
is to investigate whether properties of the database (e.g., bounded treewidth) have an impact
on the complexity of computing the Shapley value. Finally, there is the practical question
of implementation: while our algorithms terminate in polynomial time, we believe that
they are hardly scalable without further optimization and heuristics ad-hoc to the use case;
developing those is an important challenge for future research.

Acknowledgment

This work was supported by the Israel Science Foundation (ISF), Grant 768/19, and the
German Research Foundation (DFG) Project 412400621 (DIP program).

References

[AdK14] Haris Aziz and Bart de Keijzer. Shapley meets Shapley. In STACS, volume 25 of LIPIcs, pages
99–111. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[Bac02] Roland Bacher. Determinants of matrices related to the pascal triangle. Journal de Théorie des
Nombres de Bordeaux, 14, 01 2002.

20:32 E. Livshits and B. Kimelfeld Vol. 18:2

[BDG+19] Omar Besbes, Antoine Désir, Vineet Goyal, Garud Iyengar, and Raghav Singal. Shapley meets
uniform: An axiomatic framework for attribution in online advertising. In WWW, pages 1713–1723.
ACM, 2019.

[Ber18] Leopoldo E. Bertossi. Measuring and computing database inconsistency via repairs. In SUM,
volume 11142 of Lecture Notes in Computer Science, pages 368–372. Springer, 2018.

[Ber19] Leopoldo E. Bertossi. Repair-based degrees of database inconsistency. In LPNMR, volume 11481
of Lecture Notes in Computer Science, pages 195–209. Springer, 2019.

[BG20] Leopoldo E. Bertossi and Floris Geerts. Data quality and explainable AI. J. Data and Information
Quality, 12(2):11:1–11:9, 2020.

[CPRT15] Laurence Cholvy, Laurent Perrussel, William Raynaut, and Jean-Marc Thévenin. Towards
consistency-based reliability assessment. In AAMAS, pages 1643–1644. ACM, 2015.

[DS79] Pradeep Dubey and Lloyd S. Shapley. Mathematical properties of the banzhaf power index.
Mathematics of Operations Research, 4(2):99–131, 1979.

[GGR98] Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to learning
and approximation. J. ACM, 45(4):653–750, 1998.

[GH06] John Grant and Anthony Hunter. Measuring inconsistency in knowledgebases. J. Intell. Inf. Syst.,
27(2):159–184, 2006.

[GH11] John Grant and Anthony Hunter. Measuring consistency gain and information loss in stepwise
inconsistency resolution. In ECSQARU, volume 6717, pages 362–373. Springer, 2011.

[GH13] John Grant and Anthony Hunter. Distance-based measures of inconsistency. In ECSQARU,
volume 7958 of Lecture Notes in Computer Science, pages 230–241. Springer, 2013.

[GH15] John Grant and Anthony Hunter. Using Shapley inconsistency values for distributed information
systems with uncertainty. In ECSQARU, volume 9161 of Lecture Notes in Computer Science,
pages 235–245. Springer, 2015.

[GH17] John Grant and Anthony Hunter. Analysing inconsistent information using distance-based mea-
sures. Int. J. Approx. Reasoning, 89:3–26, 2017. doi:10.1016/j.ijar.2016.04.004.

[Gul89] Faruk Gul. Bargaining foundations of Shapley value. Econometrica: Journal of the Econometric
Society, pages 81–95, 1989.

[HK06] Anthony Hunter and Sébastien Konieczny. Shapley inconsistency values. In KR, pages 249–259.
AAAI Press, 2006.

[HK08] Anthony Hunter and Sébastien Konieczny. Measuring inconsistency through minimal inconsistent
sets. In KR, pages 358–366. AAAI Press, 2008.

[HK10] Anthony Hunter and Sébastien Konieczny. On the measure of conflicts: Shapley inconsistency
values. Artif. Intell., 174(14):1007–1026, 2010.

[JR18] Yifan Jing and Akbar Rafiey. Counting maximal near perfect matchings in quasirandom and
dense graphs. CoRR, abs/1807.04803, 2018.

[Kim12] Benny Kimelfeld. A dichotomy in the complexity of deletion propagation with functional depen-
dencies. In PODS, pages 191–202, 2012.

[KLM03] Sébastien Konieczny, Jérôme Lang, and Pierre Marquis. Quantifying information and contradiction
in propositional logic through test actions. In IJCAI, pages 106–111. Morgan Kaufmann, 2003.

[Kni03] Kevin M. Knight. Two information measures for inconsistent sets. Journal of Logic, Language
and Information, 12(2):227–248, 2003.

[LBKS20] Ester Livshits, Leopoldo E. Bertossi, Benny Kimelfeld, and Moshe Sebag. The Shapley value of
tuples in query answering. In ICDT, volume 155 of LIPIcs, pages 20: 1–20: 19. Schloss Dagstuhl,
2020.

[LF18] Christophe Labreuche and Simon Fossier. Explaining multi-criteria decision aiding models with
an extended Shapley value. In IJCAI, pages 331–339. ijcai.org, 2018.

[LK17] Ester Livshits and Benny Kimelfeld. Counting and enumerating (preferred) database repairs. In
PODS, pages 289–301. ACM, 2017.

[LK21] Ester Livshits and Benny Kimelfeld. The shapley value of inconsistency measures for functional
dependencies. In ICDT, volume 186 of LIPIcs, pages 15:1–15:19. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021.

[LKR20] Ester Livshits, Benny Kimelfeld, and Sudeepa Roy. Computing optimal repairs for functional
dependencies. ACM Trans. Database Syst., 45(1):4: 1–4: 46, 2020.

https://doi.org/10.1016/j.ijar.2016.04.004

Vol. 18:2 SHAPLEY VALUE OF INCONSISTENCY MEASURES 20:33

[LKT+21] Ester Livshits, Rina Kochirgan, Segev Tsur, Ihab F. Ilyas, Benny Kimelfeld, and Sudeepa Roy.
Properties of inconsistency measures for databases. In SIGMOD Conference, pages 1182–1194.
ACM, 2021.

[LL17] Scott M. Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In NIPS,
pages 4765–4774, 2017.

[LZS15] Zhenliang Liao, Xiaolong Zhu, and Jiaorong Shi. Case study on initial allocation of shanghai
carbon emission trading based on Shapley value. Journal of Cleaner Production, 103:338–344,
2015.

[MCL+10] Richard TB Ma, Dah Ming Chiu, John Lui, Vishal Misra, and Dan Rubenstein. Internet economics:
The use of Shapley value for isp settlement. IEEE/ACM Transactions on Networking (TON),
18(3):775–787, 2010.

[MLJ11] Kedian Mu, Weiru Liu, and Zhi Jin. Measuring the blame of each formula for inconsistent
prioritized knowledge bases. Journal of Logic and Computation, 22(3):481–516, 02 2011. arXiv:
https://academic.oup.com/logcom/article-pdf/22/3/481/3177718/exr002.pdf.

[Nen03] Tatiana Nenova. The value of corporate voting rights and control: A cross-country analysis.
Journal of financial economics, 68(3):325–351, 2003.

[NN11] Ramasuri Narayanam and Yadati Narahari. A Shapley value-based approach to discover influential
nodes in social networks. IEEE Transactions on Automation Science and Engineering, 8(1):130–
147, 2011.

[PZ03] Leon Petrosjan and Georges Zaccour. Time-consistent Shapley value allocation of pollution cost
reduction. Journal of economic dynamics and control, 27(3):381–398, 2003.

[RKL20] Alon Reshef, Benny Kimelfeld, and Ester Livshits. The impact of negation on the complexity of
the Shapley value in conjunctive queries. In PODS, pages 285–297. ACM, 2020.

[Sha53] Lloyd S Shapley. A value for n-person games. In Harold W. Kuhn and Albert W. Tucker, editors,
Contributions to the Theory of Games II, pages 307–317. Princeton University Press, Princeton,
1953.

[Thi09] Matthias Thimm. Measuring inconsistency in probabilistic knowledge bases. In UAI, pages
530–537. AUAI Press, 2009.

[Thi17] Matthias Thimm. On the compliance of rationality postulates for inconsistency measures: A more
or less complete picture. KI, 31(1):31–39, 2017.

[Val79a] Leslie G. Valiant. The complexity of enumeration and reliability problems. SIAM J. Comput.,
8(3):410–421, 1979.

[Val79b] L.G. Valiant. The complexity of computing the permanent. Theoretical Computer Science, 8(2):189
– 201, 1979. doi:10.1016/0304-3975(79)90044-6.

[YVCB18] Bruno Yun, Srdjan Vesic, Madalina Croitoru, and Pierre Bisquert. Inconsistency measures for
repair semantics in OBDA. In IJCAI, pages 1977–1983. ijcai.org, 2018.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

http://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/22/3/481/3177718/exr002.pdf
http://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/22/3/481/3177718/exr002.pdf
https://doi.org/10.1016/0304-3975(79)90044-6

	1. Introduction
	2. Preliminaries
	2.1. Database Concepts.
	2.2. Shapley Value.
	2.3. Complexity.

	3. The Shapley Value of Inconsistency Measures
	4. Measures IMI and IP: The Tractable Measures
	4.1. Computation
	4.2. Generalization to Multiple Relations

	5. Measure Id: The Drastic Measure
	5.1. Dichotomy
	5.2. Approximation
	5.3. Generalization to Multiple Relations

	6. Measure IR: The Cost of a Cardinality Repair
	6.1. Complexity Results
	6.2. Approximation
	6.3. Generalization to Multiple Relations

	7. Measure IMC: The Number of Repairs
	7.1. Dichotomy
	7.2. Approximation
	7.3. Generalization to Multiple Relations

	8. Conclusions
	Acknowledgment
	References

