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Abstract. This paper defines a new notion of bounded computable randomness for cer-
tain classes of sub-computable functions which lack a universal machine. In particular,
we define such versions of randomness for primitive recursive functions and for PSPACE
functions. These new notions are robust in that there are equivalent formulations in terms
of (1) Martin-Löf tests, (2) Kolmogorov complexity, and (3) martingales. We show these
notions can be equivalently defined with prefix-free Kolmogorov complexity. We prove
that one direction of van Lambalgen’s theorem holds for relative computability, but the
other direction fails. We discuss statistical properties of these notions of randomness.

1. Introduction

The study of algorithmic randomness has flourished over the past century. The main topic
of study in this paper is the randomness of a single real number which, for our purposes,
can be thought of as an infinite sequence X = (X(0),X(1), . . . ) from {0, 1}ω . Many inter-
esting notions of algorithmic randomness for real numbers have been investigated in recent
years. The most well-studied notion, Martin-Löf randomness [27] or 1-randomness, is usu-
ally defined in terms of measure. Thus we say a real X is 1-random if it is typical, that
is, X does not belong to any effective set of measure zero in the sense of Martin-Löf [27].
A second definition of 1-randomness may be given in terms of information content: X is
1-random if it is incompressible, that is, the initial segments (X(0),X(1), . . . ,X(n)) have
high Kolmogorov [20] or Levin-Chaitin [11, 23] complexity. A third definition may be given
in terms of martingales: X is 1-random if it is unpredictable, that is, there is no effective
martingale for which one can obtain unbounded capital by betting on the values of X [33].
These three versions have been shown by Schnorr [31] to be equivalent. This demonstrates
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the robustness of the concept of Martin-Löf randomness. Other interesting notions of al-
gorithmic randomness have been studied, although in some cases, formulations are only
given for one or perhaps two versions. For a thorough study of the area of algorithmic
randomness, the reader is directed to three excellent recently published books: Downey and
Hirschfeldt [15], Nies [29] and Li and Vitanyi [24].

This paper presents a notion of bounded randomness for some classes of sub-computable
functions which do not have access to a universal machine for that class. We begin in
Section 2 by stating our definitions for the class of primitive recursive functions and define
a new notion of bounded primitive recursive randomness (BP randomness). We show that
there are three equivalent definitions of BP randomness: one in terms of measure, one in
terms of compressibility, and one in terms of martingales. For measure, a bounded primitive

recursive test will be a primitive recursive sequence of clopen sets (Un)n≥0 such that Un has
measure ≤ 2−n. We define X to be BP random if it does not belong to

⋂
n≥0 Un for any

such test. For compressibility, we say that X is BP compressed by a primitive recursive
machine M if there is a primitive recursive function f such that CM (X ↾ f(c)) ≤ f(c)−c for
all c, where CM is a primitive recursive analogue of Kolmogorov complexity. We show that
X is BP random if and only if X is not BP compressed by any primitive recursive machine.
We will also consider process machines and the resulting notion of process complexity as
studied recently by Day [14].

For martingales, we say that a primitive recursive martingale d succeeds on a sequence X
if there is a primitive recursive function f such that d(X ↾ f(n)) ≥ 2n for each n. Thus d
makes us rich betting on X, and f tells us how fast this happens. We show that X is BP
random if and only if there is no primitive recursive martingale which succeeds on X.

As we shall see, the presence of the auxiliary functions f in the definition of X being
BP-compressed by a primitive recursive machine and in the definition of when a primitive
recursive martingale succeeds on a sequence X is key to our ability to prove that the three
definitions of BP randomness are all equivalent. These definitions can be adapted to define
a notion of bounded randomness for other classes of sub-computable functions and if such
a class satisfies certain closure conditions, then our proofs of the equivalence of the three
notions of primitive recursive randomness can be adapted to prove similar results for that
class of sub-computable functions. However some care has to be taken in the definitions
of the analogue of the auxiliary functions f described above. As an example, in the last
part of the paper, we define a notion of bounded polynomial space randomness, called BPS
randomness. We show that the results obtained for BP randomness carry over, after suitable
modifications, to BPS randomness.

One motivation for the definition of BPS randomness is that it gives a natural notion of
randomness for polynomial space which has equivalent formulations in terms of compress-
ibility, in terms of statistical tests, and in terms of martingales. Moreover, our approach
suggests a general alternative approach to defining randomness via martingales for various
classes of sub-computable functions by adding the requirement that the rate of success of
a strategy is measured by a function in that class. As we discuss below, our notion of
bounded randomness differs from the well-studied notions of resource-bounded randomness
which have been developed over the past twenty-five years. Finally, our general approach to
defining randomness on sub-computable classes of functions should be useful for the study
of resource-bounded trees and effectively closed sets.

The terms bounded randomness and finite randomness are sometimes used to refer to
versions of randomness given by tests in which the c.e. open sets are in fact clopen. The
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term “finite” comes from the fact that any clopen set U is the finite union of intervals
U = [σ1] ∪ · · · ∪ [σk]. Our notion of BP randomness is “bounded” in this sense. Kurtz
randomness [21], also referred to as weak randomness, falls into this category. A real X is
Kurtz random if it does not belong to any Π0

1 class Q of measure zero. But any Π0
1 class

may be effectively expressed as a decreasing intersection of clopen sets Q =
⋂

nQn where
the clopen sets Qn are unions of intervals of length n. If µ(Q) = 0, it is easy to find
a subsequence Ui = Qni

with µ(Ui) ≤ 2−i and thus (Un)n≥0 is a bounded Martin-Löf
test. From this it follows immediately that if our definition of BP random is modified to use
computable functions instead of primitive recursive functions, then it becomes equivalent to
Kurtz randomness. Kurtz randomness has been well-studied, and is already known to have
equivalent definitions in terms of Martin-Löf randomness, Kolmogorov compressibility, and
effective martingales; for this see Wang [34], Downey, Griffiths and Reid [16], and Bienvenu
and Merkle [6]. Uniform relative Kurtz randomness is studied by Kihara and Miyabe [18],
who proved van Lambalgen’s theorem holds for their definition. Another special type of
bounded randomness was recently studied by Brodhead, Downey and Ng [8].

As shown by Wang [34], Kurtz random reals may not be stochastic in the sense of
Church [13]. For example, it need not be the case that the number of occurrences of 0’s in
a Kurtz random sequence X tends to 1/2 in the limit. This can also happen for our BP
random reals. Indeed, we construct a recursive real which is BP random but not stochastic.
However, in Section 2.4, we show that BP random sets do satisfy a weak “infinitely often”
version of the stochastic property.

A lot of work has been done on various notions of resource-bounded randomness. One
of the first approaches to resource-bounded randomness was via the above-mentioned sto-
chastic property of typical reals. It is expected that for a random real, the relative densities
of 0’s and 1’s should be equal in the limit. We identify a set A of natural numbers with its
characteristic function and in those terms we expect that limn(card(A∩ [[n]])/n = 1

2 where
[[n]] = {0, 1, . . . , n− 1}. Levin [23] defined a notion of primitive randomness for a set A to
mean that for every primitive recursive set B, the set A∩B is stochastic relative to B, and
constructed a recursive set that is primitive random. Di Paola [30] studied similar notions
of randomness in the Kalmar hierarchy of elementary functions. Wilber [35] defined a set A
to be P random if, for every PTIME set B, the sets A and B agree on a set of density 1

2 ,
and constructed an exponential time computable P random set.

The literature of computational complexity contains many papers on random number
generators and cryptography which examine various notions of pseudorandomness. For ex-
ample, Blum and Micali [7] gave a weak definition of pseudorandom sequences in which a
randomly generated sequence is said to be pseudorandom if it meets all PTIME statistical
tests. Ko [19] gave definitions of randomness with respect to polynomial time and polyno-
mial space complexity which are in the tradition of algorithmic randomness as established
by Levin, Martin-Löf , Chaitin, and Schnorr. Ko’s notion of polynomial space randomness
has equivalent formulations in terms of tests and in terms of compressibility (namely, the
equivalent classes PSR1 and PSR2 in [19]). Ko also shows PSR1-/PSR2-random reals sat-
isfy strong stochastic properties. The intuition behind Ko’s polynomial space randomness
is very different from the motivation of our BPS randomness. Indeed, Ko defines a notion of
randomness based on the intuition that no polynomial space test can “reject the hypothesis
that x is random on the significance level of 2−m” [19]. However, this is exactly the notion
of polynomial space test that we are adopting. For instance, Ko’s definition of PSR2 is
based on compressibility using a universal polynomial space machine M and states that a
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real X is (PSPACE) compressed if, for every k, there exists infinitely many n such that
KM (X ↾ n) < n − (log n)k, where K is a notion of Kolmogorov complexity. (We have
not stated the definition fully: see [19] for the correct, precise definition.) In contrast, our
definition of BPS states, loosely speaking, that X is (PSPACE) compressed provided there
is some k such that KM (X ↾ nk) ≤ nk −n for all sufficiently large n. (See Section 3 for the
actual definition; in particular, unlike Ko, we do not use a universal machine M). Clearly
every real which is polynomial space random in Ko’s sense is also BPS random. The con-
verse does not hold, as BPS randomness does not have as strong stochastic properties. For
this, see the discussion after Theorem 3.21.

Lutz [26], building on Schnorr [31], defined an important notion of resource-bounded
randomness in terms of martingales. For the special case of polynomial space, Lutz defined
that a real X is PSPACE random if there is no PSPACE martingale which succeeds on X.
This differs from our definition of BPS randomness in that there is no auxiliary function f
which bounds the time-to-success for the martingale. We shall see that this is a strictly
stronger notion than BPS random. Clearly, every PSPACE random real is automatically
BPS random. On the other hard, there are BPS random reals which are not PSPACE
random in the sense of Lutz. This will be an immediate consequence of our Theorem 3.21,
which states that BPS random reals do not enjoy as strong stochastic properties as are
known to hold for PSPACE random reals. Lutz further defined that a set X of reals has
PSPACE measure one if there is no PSPACE martingale which succeeds on every element
of X . Then almost every EXPSPACE real is random, and this can be used to study
properties of EXPSPACE reals by examining whether the set of EXPSPACE reals with the
property has measure one. Buhrman and Longpre [9] gave a rather complicated equivalent
formulation of PSPACE randomness in terms of compressibility. Lutz’s notion of complexity
theoretic randomness concept has been developed further by [1, 2, 3, 28]. Shen et al. [12]
have recently studied on-line complexity and randomness.

Ville’s theorem is a fundamental property of Martin-Löf random reals and states that
any effective subsequence of a random sequence is also random. We prove an analogue of
Ville’s theorem for BP randomness.

Another fundamental property for random reals is van Lambalgen’s theorem, which
states that the join A⊕B of two random sets is random if and only if B is random and A is
random relative to B. We define a natural notion of relative BP randomness which still has
three equivalent formulations. We prove one direction of the analogue of van Lambalgen’s
theorem, showing that if A is BP random relative to B and B is BP random relative to A,
then A⊕B is BP random. However, we give a counterexample for the converse, by showing
there exist A and B such that A is BP random relative to B and B is BP random relative
to A, but A ⊕ B is not BP random. This corrects Theorem 6 of [10] which claimed that
both directions of van Lambalgen’s theorem hold for BP and BPS randomness.

For the case of bounded BPS randomness, we again present equivalent notions, one in
terms of compressibility, one in terms of measure, and one in terms of martingales. In this
case, polynomial growth rate functions are used to bound the rate of compressibility, the
size of the measure-based tests, and the success rate of the martingales. The compressibility
definition is shown to be equivalent whether defined in terms of prefix-free or non-prefix-
free functions. We prove that one direction of van Lambalgen’s theorem holds for relative
randomness of bounded BPS randomness, whereas the other direction fails. We also discuss
stochastic properties of bounded BPS random sequences.
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The outline of this paper is as follows. Section 2 studies BP randomness and shows
the equivalence of our three versions. We construct a computable real which is BP random.
We prove an analogue of Ville’s theorem for primitive recursive subsequences of BP random
reals. We also define a notion of relative randomness and discuss the analogue of van
Lambalgen’s theorem. Section 3 presents three equivalent notions of bounded polynomial
space randomness (which we call “BPS randomness” to distinguish it from earlier different
definitions); and extends all the constructions of Section 2 to bounded BPS randomness.
Section 4 states our conclusions and some directions for further research.

A preliminary version of this paper was published in [10]. The present paper has the
following improvements. It includes all of the proofs for the case of BPS randomness which
were omitted in the conference version. It presents a new definition of BP randomness and
BPS randomness using process machines and the proof of their equivalence with the other
definitions. It proves the equivalence of BPS randomness and weak BPS randomness. It
gives a proof of the intuitive fact that prefix-freeness is not needed for the Kolmogorov
complexity version of BP and BPS randomness. It gives a proof that only one direction of
van Lambalgen’s theorem holds for BP and BPS randomness. This corrects Theorem 6 of
[10], which claimed that both directions of van Lambalgen’s Theorem held for BP and BPS
. It contains an improvement in the construction of a BP random real which significantly
lowers the complexity from 22

n
to nǫ logn.

2. Bounded primitive recursive randomness

This section defines the three notions of primitive recursive randomness, Kolmogorov BP
randomness, Martin-Löf BP randomness, and martingale BP randomness, and proves their
equivalence. Hence we say that a real X is BP random if it satisfies these three definitions.
Subsection 2.3 introduces a notion of prefix-free BP randomness, and shows it is also equiv-
alent to BP randomness. We also prove a simple analogue of Ville’s theorem and discuss
statistical tests and BP randomness.

2.1. Three definitions for BP randomness.

2.1.1. Martin-Löf BP randomness. We work with the usual alphabet Σ = {0, 1} and the
corresponding set {0, 1}∗ of finite strings and the Cantor space {0, 1}ω of infinite sequences,
but our results hold for any finite alphabet. In this section, we study primitive recursive
functions M : Σ∗ → Σ∗. We code finite strings as numbers in order to define these primitive
recursive functions using primitive recursive coding and decoding functions. The code c(σ)
of a finite sequence σ = σ1 · · · σn ∈ {0, 1}∗ is just the natural number whose binary expansion

is 1σ1 · · · σn. Given a nonempty finite set S = {σ(1), . . . , σ(k)} of strings in {0, 1}∗ such that

c(σ(1)) < · · · < c(σ(k)), the code C(S) of S is defined to be the natural number n whose

ternary expansion is 2c(σ(1))2 · · · 2c(σ(k)). We let ∅ denote the empty string. The set of
infinite 0/1 sequences is denoted {0, 1}ω ; these are also called reals. An X ∈ {0, 1}ω is also
viewed as a set, namely the set {i : X(i) = 1}.

For any string σ ∈ {0, 1}∗, |σ| denotes the length of σ. For X ∈ {0, 1}∗ ∪ {0, 1}ω , we
write σ ⊏ X if σ is an initial segment of X, and let [σ] = {X ∈ {0, 1}ω such that σ ⊏ X}.
For a set G of strings in {0, 1}∗, we let [G] =

⋃
{[σ] : σ ∈ G}. We say a sequence (Un)n∈N of
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clopen sets is a primitive recursive sequence if there is a primitive recursive function f such
that for all n, f(n) is a code of a finite set Gn = {σ1,n, . . . , σk(n),n} such that Un = [Gn].

We define a primitive recursive test to be a primitive recursive sequence (Un)n≥0 of
clopen sets such that, for each n, µ(Un) ≤ 2−n. Without loss of generality, we may assume
that there is a primitive recursive function g such that g(n) is a code of a finite set Gn =
{τ1,n, . . . , τr(n),n} such that Un = [Gn] and |τ1,n| = · · · = |τr(n),n| = ℓ(n) where r and ℓ are
also primitive recursive functions. It follows that there is a primitive recursive function m
such that m(n) codes the measure µ(Un) as a dyadic rational. Since the measures µ(Un)
may be computed primitive recursively, one could equivalently define a primitive recursive
test to be a a primitive recursive sequence (Vn)n≥0 such that limn µ(Vn) = 0 and there is a
primitive recursive function f such that, for each p, µ(Vf(p)) ≤ 2−p.

Observe that
⋂

n Un is a Π0
1 class of measure zero, so any primitive recursive test is a

Kurtz test and hence also a Schnorr test.

Definition 2.1. An infinite sequence X ∈ {0, 1}ω is Martin-Löf BP random if X passes

every primitive recursive test, that is, for every primitive recursive test (Un)n≥0, there is
some n such that X /∈ Un.

By the remarks above, every Kurtz random real is Martin-Löf BP random.

Proposition 2.2. X is Martin-Löf BP random if and only if there is no primitive recursive
sequence (Un)n≥0 of clopen sets with µ(Un) = 2−n such that X ∈

⋂
n Un.

Proof. The if direction is immediate. Now suppose that there is a primitive recursive
sequence (Vn)n≥0 such that µ(Vn) ≤ 2−n and X ∈

⋂
n Vn. Let Vn =

⋃
σ∈Gn

[σ] where

Gn ⊆ {0, 1}ℓ(n) for some primitive recursive function ℓ(n), where ℓ(n) ≥ n for all n. Then

µ(Vn) = card(Gn)/2
ℓ(n) ≤ 2−n. Define Hn to be Gn together with 2ℓ(n)−n − card(Gn) addi-

tional strings of length ℓ(n) and let Un = [Hn]. Then for each n, X ∈ Un and µ(Un) = 2−n.

We also need the notion of a weak primitive recursive test. A weak primitive recursive
test (Un)n≥0 is a primitive recursive test for which there are a primitive recursive sequence
(Gn)n≥0 and a primitive recursive function ℓ such that for each n, Un = [Gn] and, for all
τ ∈ Gn, |τ | = ℓ(n) and µ(Un+1 ∩ [τ ]) ≤ 1

2µ([τ ]).
By definition, every weak primitive recursive test (Un)n≥0 is also a primitive recursive

test. Conversely, we can convert a primitive recursive test (Un)n≥0 into a weak primitive
recursive test as follows. First, we may assume that Un+1 ⊆ Un for each n, since the
sequence Wn =

⋂
i≤n Ui is also a primitive recursive test with µ(Wn) ≤ µ(Un) ≤ 2−n. Next

suppose Un = [τ1,n]∪ · · · ∪ [τk(n),n] where there is a primitive recursive function ℓ such that

|τi,n| = ℓ(n) for all i, so each interval [τi,n] has measure exactly 2−ℓ(n). The clopen set Uℓ(n)+1

has a total measure ≤ 2−ℓ(n)−1, so µ(Uℓ(n)+1 ∩ [τi,n]) ≤ µ(Uℓ(n)+1) ≤
1
2µ([τi,n]). Then we

can define a primitive recursive weak test (Vn)n≥0 as follows. Let h(0) = 0 and let V0 = U0.
Then let h(1) = ℓ(0) + 1 and V1 = Uh(1). In general for n > 1, we let h(n+1) = ℓ(h(n)) + 1
and let Vn+1 = Uh(n+1). The sequence V0, V1, . . . will be a weak primitive recursive test.
Since the sequence (Vn)n≥0 is a subsequence of the original sequence (Um)m≥0, it follows
that

⋂
n Vn =

⋂
n Un, so that X passes the weak test (Vn)n≥0 if and only if it passes the

original test.
We have established the following.
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Proposition 2.3. X is Martin-Löf BP random if and only if it passes every weak primitive
recursive test.

2.1.2. Kolmogorov BP randomness. Let M : {0, 1}∗ → {0, 1}∗ be a primitive recursive
function. Let CM (τ) be the length |σ| of the shortest string σ such that M(σ) = τ , that
is, the length of the shortest M -description of τ . Notice that we are using plain and not
prefix-free complexity. We say that X is primitive recursively compressed by M if there
exists a primitive recursive function f such that, for every c ∈ N, CM (X ↾ f(c)) ≤ f(c)− c.

Definition 2.4. An infinite sequence X ∈ {0, 1}ω is Kolmogorov BP random if it is not
primitive recursively compressed by any primitive recursive function M : {0, 1}∗ → {0, 1}∗.

Our definition of primitive recursive compressibility is a natural effective analogue of
the usual definition of Kolmogorov compressibility which says that, for every c ∈ N, there
exists n such that CM (X ↾ n) ≤ n − c. That is, given the formulation “for every c, there
exists n”, there must exist a function f which computes a value n = f(c) for each input
c. The complexity of the function f calibrates the difficulty of computing a value of n for
an arbitrary input c. In the setting of primitive recursive computability, it is reasonable to
require that f be primitive recursive. In addition, this makes the definition equivalent to
the definition given above for BP Martin-Löf randomness.

The function f can be assumed to be strictly increasing without loss of generality; for
this see the remark after the proof of Theorem 2.7.

Of course, one defines Kolmogorov randomness in terms of prefix-free complexity KM

since there are no infinite Kolmogorov random sequences for plain complexity. The def-
inition of Kolmogorov BP random uses plain complexity since every primitive recursive
function is total so there are no prefix-free machines. However, Section 2.3 considers a
version of prefix-free complexity for primitive recursive functions which uses primitive re-
cursive functions M such that M(σ) may diverge. This will be done by introducing a new
symbol ∞ as a possible output of M(σ) to signify that M(σ) diverges. It will not be hard
to show that this makes no difference.

We also consider process machines and the resulting notion of process complexity. A
partial computable function M : {0, 1}∗ → {0, 1}∗ is said to be a process machine if,
whenever τ ⊏ τ ′ and τ, τ ′ ∈ Dom(M), then M(τ) ⊏ M(τ ′), so that M is extension
preserving when defined. A process machine M is a strict process machine if, whenever
τ ⊏ τ ′ ∈ Dom(M), then τ ∈ Dom(M), so the domain of M is closed under prefixes. A strict
process machine M is a quick process machine if M is total and there is an order function h
such that, for all τ ∈ {0, 1}∗, |M(τ)| ≥ h(|τ |). Recall that h : N → N is an order function

provided h is non-decreasing and limn h(n) = ∞. A strict process machine M is called a
quick process BP machine if the order function h is primitive recursive. Finally, X ∈ {0, 1}ω

is quick process BP random provided X is not primitively recursively compressed by any
quick process BP machine.

The definition of a process machine is due to Levin and Zonkin [22] and a similar notion
was defined by Schnorr [32]. Day [14] gives characterizations of computable randomness,
Schnorr randomness, and weak randomness using quick process machines. Theorem 2.7
below shows that X is Kolmogorov BP random if and only if X is quick process BP random.



8 S. BUSS, D. CENZER, AND J. B. REMMEL

2.1.3. Martingale BP randomness. A martingale is a function d : {0, 1}∗ → Q∩ [0,∞) such
that d(∅) = 1 and, for all σ ∈ {0, 1}∗, d(σ) = (d(σ⌢0)+d(σ⌢1))/2. Of course, any primitive
recursive martingale is also a computable martingale. We say that the martingale d succeeds

primitive recursively on X if there is a primitive recursive function f such that, for all n,
d(X ↾ f(n)) ≥ 2n. (Of course, we could replace 2n here with any strictly increasing primitive
recursive function.) In general, a martingale d is said to succeed on X if lim supn d(X ↾ n) =
∞, that is, for every n, there exists m such that d(X ↾ m) ≥ 2n. Thus our definition is an
effectivization of the usual definition with a primitive recursive function f which witnesses
some point where d will return 2n. A martingale could be thought of as a financial advisor
who guarantees the client’s eventual wealth; effective success of the martingale means that
the advisor can predict when the client will reach a given level of wealth. Again, the
requirement that f be primitive recursive is necessary to have the equivalence with BP
Martin-Löf randomness.

Definition 2.5. X is martingale BP random if there is no primitive recursive martingale
which succeeds primitive recursively on X.

If X is not martingale BP random, then there is a computable martingale which suc-
ceeds primitive recursively on X and thus certainly succeeds on X, so X is not computably
random. Hence every computably random real is also a martingale BP random real.

The definition of martingale BP random real has the following equivalent formulations.

Proposition 2.6. The following are equivalent.

(1) X is martingale BP random.
(2) There do not exist a primitive recursive martingale d and a primitive recursive function f

such that, for every n, there exists m ≤ f(n) such that d(X ↾ m) ≥ 2n.
(3) There do not exist a primitive recursive martingale d and a primitive recursive function f

such that d(X ↾ m) ≥ 2n for all n and all m ≥ f(n).

Proof. The implications (1)⇒ (3) and (2)⇒ (1) are obvious. The proof of (3)⇒ (2) uses the
idea of a savings account as formulated in [15, 29]. Let the martingale d and function f be
as in (2). We shall modify these to form a new pair d and f which satisfy (3). The intuition
is that d(τ) is modified so that whenever d(τ) ≥ 2n+1, then one half of the working capital,
as represented by d(τ), is transferred to a savings account. That is, loosely speaking, every
time the capital is doubled, one half of it is placed into the savings account. Formally, we
define d′(τ) as follows. Given τ ∈ {0, 1}∗, define ℓτn to equal the least value, if any, such that
d(τ ↾ ℓτn) ≥ 2n+1. Let τn equal τ ↾ ℓτn, and let n(τ) be the least value of n for which ℓτn is
undefined. Thus, τn(τ)−1 ⊏ τ , and τn(τ) is undefined. Note n(∅) = 0. The martingale d′(τ)
is defined by

d′(τ) =
d(τ)

2n(τ)
+

n(τ)−1∑

i=0

d(τi)

2i+1
.

As the reader can easily verify, d′ is a martingale. The intuition is that the summation on
the righthand side of the equation equals the capital placed in the savings account, and
d(τ)/2n(τ) is the remaining working capital.

Since d(τi) ≥ 2i+1, we have d(τ) ≥ n whenever ℓτn is defined; in particular, this holds
whenever d(τ ′) ≥ 2n+1 for some τ ′ ⊏ τ . Finally, define f ′(n) to equal f(2n+1). Let X ∈

{0, 1}ω and m ≥ f ′(n). Since m ≥ f(2n+1), d(X ↾ m) ≥ 22
n+1

. Therefore, d′(X ↾ m) ≥ 2n.
This establishes that the property of (3) holds for d′ and f ′.
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2.2. Equivalences. The main result of this section is the next two theorems showing that
the three versions of BP random described above are equivalent.

Theorem 2.7. The following statements are equivalent for X ∈ {0, 1}ω :

(1) X is Martin-Löf BP random.
(2) X is Kolmogorov BP random.
(3) X is quick process BP random.

Proof. The implication (2)⇒ (3) is immediate.
(1)⇒ (2): Suppose (2) is false and X is not Kolmogorov BP random. Then there exist

primitive recursive M and f such that CM (X ↾ f(c)) ≤ f(c)− c for all c ∈ N.
Let Uc = {Y ∈ {0, 1}ω : CM (Y ↾ f(c + 1)) ≤ f(c + 1) − c − 1}. We claim this is a

uniformly primitive recursive sequence of clopen sets. To see this, let

Gc = {M(σ) : σ ∈ {0, 1}≤f(c+1)−c−1} ∩ {0, 1}f(c+1).

Then Uc = [Gc], and this expresses (Uc)c≥0 as a primitive recursive sequence of clopen sets.
We also claim that µ(Uc) ≤ 2−c. For this, fix c and let Uc = [τ1] ∪ [τ2] ∪ · · · ∪ [τk], for

distinct τi ∈ {0, 1}f(c+1) . Thus there exist σ1, . . . , σk such that |σi| ≤ f(c+ 1)− c − 1 and

M(σi) = τi for each i ≤ k. Since there are only 2f(c+1)−c−1 strings of length ≤ f(c+1)−c−1,

we have k < 2f(c+1)−c. Since for each i, µ([τi]) = 2−f(c+1),

µ(Uc) = k · 2−f(c+1) < 2f(c+1)−c · 2−f(c+1) = 2−c.

Therefore, (Uc)c is a primitive recursive test. By assumption, X ∈ Uc for all c ≥ 0, so X is
not Martin-Löf BP random.

(3)⇒ (1): Suppose that X is not Martin-Löf BP random. Then there exist primitive
recursive functions g, k, and f so that for all c ≥ 0, g(c) is a code of a set Gc ⊆ {0, 1}f(c)

with cardinality k(c), such that if Uc = [Gc] then µ(Uc) ≤ 2−c and such that X ∈
⋂

c Uc.
Furthermore, we may assume by Proposition 2.3 that this is a weak test, so that, for each
σ ∈ Gc, µ([σ] ∩ Uc+1) ≤ 1

2µ([σ]). By the proof of Proposition 2.3, we may assume that
Uc+1 ⊂ Uc. We may assume without loss of generality that for each c, f(c+ 1)− (c+ 1) >
f(c)− c. This is because we may always break each [τ ] into [τ⌢0] ∪ [τ⌢1] to increase f(c)
by one, if necessary. Also w.l.o.g., f(0) = 0, so U0 = {0, 1}ω .

We define a quick process BP machine M such that CM (σ) ≤ f(c)− c for all c and all
σ ∈ Gc. Since X ↾ f(c) ∈ Gc, we have CM (X ↾ f(c)) ≤ f(c)− c for all c. The machine M
is defined in stages as follows.

At stage c = 1, we have µ(U1) ≤
1
2 , and since µ(U1) = k(1)·2−f(1) , it follows that k(1) ≤

2f(1)−1. Let G1 = {τ1, . . . , τk(1)}. Take the lexicographically first k strings σ1, . . . , σk(1) of
length f(1)− 1, and define M(σi) = τi. To make M a total function, the remaining strings
of length f(1)− 1 are all mapped to 0f(1), and all strings of length < f(1)− 1 are mapped
to the empty string ∅.

Observe that for all strings σ of length < f(1)− 1, |M(σ)| = 0 and for all strings σ of
length f(1)− 1, |M(σ)| = f(1).

After stage c, we have defined M(σ) for all strings σ of length ≤ f(c) − c so that M
is extension-preserving and such that, for each b ≤ c and each τ ∈ Gb, there exists a σ of
length f(b)− b with M(σ) = τ . Furthermore, for any σ, if f(b− 1)− b+1 ≤ |σ| < f(b)− b,
then |M(σ)| = f(b− 1), and if |σ| = f(c)− c, then |M(σ)| = f(c).

At stage c + 1, we define M(σ) when f(c) − c < |σ| ≤ f(c + 1) − c − 1. For each ν
of length f(c) − c we work on the extensions of ν independently. We set M(σ) = M(ν)
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for any extension σ of ν of length < f(c + 1) − c − 1. If M(ν) /∈ Gc, then we let M(σ) =
M(ν)⌢0f(c+1)−1−f(c) for all σ ⊐ ν with |σ| = f(c+ 1) − c− 1. Otherwise, M(ν) ∈ Gc and
let Hν be the members of Gc+1 which extend M(ν):

Hν = {ρ ∈ {0, 1}f(c+1)−f(c) : M(ν)⌢ρ ∈ Gc+1}.

Since (Uc)c is a weak test, µ(Hν) ≤
1
2 and so kν = |Hν | ≤ 2f(c+1)−f(c)−1. Enumerate Hν in

lexicographic order as {ρ1, . . . , ρkν}. Let σi be the i-th string of length f(c+ 1) − f(c)− 1
in lexicographical order with i ≤ kν and set M(ν⌢σi) = M(ν)⌢ρi. For all other σ ∈
{0, 1}f(c+1)−f(c)−1 , set M(ν⌢σ) = M(ν)⌢0f(c+1)−f(c).

It is clear that M continues to be extension-preserving. Since Uc+1 ⊂ Uc, each τ ∈ Gc+1

is equal to M(ν)⌢ρ for some ν and some ρ ∈ Hν . It follows that τ = M(σ) for some σ
of length f(c + 1) − c − 1. Finally, for any σ, if f(c) − c ≤ |σ| < f(c + 1) − c − 1, then
|M(σ)| = f(c) and also if |σ| = f(c+ 1)− c− 1, then |M(σ)| = f(c+ 1).

To see that M is primitive recursive, observe that, since f(c+ 1)− c− 1 > f(c)− c for
all c, we have f(c)− c ≥ c. Thus, given a string σ of length m, we need check only values
c ≤ m to find the least c such that m ≤ f(c) − c. Then we simply run the process above
for c stages to compute M(σ).

To verify thatM is a quick process machine, we define a function h(m) so that |M(τ)| ≥
h(|τ |) for all τ : First let h′(m) be the least c ≤ m such that m < f(c+ 1)− c− 1 and then
let h(m) = f(h′(m)).

By assumption, X ∈ Uc for every c, so X ↾ f(c) = τ for some τ ∈ Gc hence M(σ) = τ
where |σ| = f(c) − c. It follows that CM (X ↾ f(c)) = f(c) − c. Hence, X is not quick
process BP random.

The proof of (3)⇒ (1) above showed that the function f giving the length of strings
for the Martin-Löf tests can be strictly increasing without loss of generality. The same
function f was then used for showing that X can be primitive recursively compressed. It
follows that in the definition of Kolmogorov BP random, f may be assumed to be strictly
increasing without loss of generality.

Theorem 2.8. The following statements are equivalent for X ∈ {0, 1}ω .

(1) X is Martin-Löf BP random.
(2) X is martingale BP random.

Proof. (1)⇒ (2): Suppose that X is not martingale BP random. Then there is a prim-
itive recursive martingale d and a primitive recursive function f such that, for all n,
d(X ↾ f(n)) ≥ 2n. Let Gn = {τ ∈ {0, 1}f(n) : d(τ) ≥ 2n} and Un = [Gn]. The sequence
(Un)n≥0 is a primitive recursive sequence of clopen sets, and X ∈

⋂
n Un.

Since d is a martingale and d(∅) = 1,
∑

|τ |=m d(τ) ≤ 2m. It follows that there are at

most 2f(n)−n strings τ ∈ {0, 1}f(n) such that d(τ) ≥ 2n. For each such τ , µ([τ ]) = 2−f(n).

Thus µ(Un) ≤ 2f(n)−n · 2−f(n) = 2−n. Hence (Un)n≥0 is a primitive recursive test which
succeeds on X, and X is not Martin-Löf BP random.

(2)⇒ (1): Suppose X is not BP Martin-Löf random. By Proposition 2.3, X ∈
⋂

n Un

for some weak primitive recursive test (Un)n≥0. As usual, Un = [Gn], where Gn =
{τ1,n, . . . , τk(n),n} is primitive recursively computable. Let f(n) be the length of the strings
τi,n.

We define a martingale d as follows. For n = 1, and given U1 = [τ1,1] ∪ · · · ∪ [τk,1], we

let d(τi,1) = 2f(1)

k for i = 1, . . . , k. If τ ∈ {0, 1}f(1) \ {τ1,1, . . . , τk,1}, then we let d(τ) = 0.
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Since µ(U1) ≤
1
2 , it follows that k ≤ 2f(1)−1 and therefore d(τi,1) ≥ 2 for each i. Moreover,

∑
τ∈{0,1}f(1) d(τ) = k · 2f(1)

k = 2f(1). Now work backwards using the martingale equation

d(σ) = 1
2 (d(σ

⌢0)+d(σ⌢1)) to define d(σ) for all σ of length ≤ f(1). It follows by induction

that for all j ≤ f(1),
∑

τ∈{0,1}j d(τ) = 2j so that, in particular, d(∅) = 1.

Now suppose that n ≥ 1 and we have defined d(τ) for all τ with |τ | ≤ f(n) so that
d(τ) ≥ 2n for all τ ∈ Gn. We need to extend d to strings of length ≤ f(n + 1). For σ of
length f(n), we will define d(στ), where στ = σ⌢τ , for all τ of length f(n + 1) − f(n). If
d(σ) = 0, then we simply let d(στ) = 0 for all τ . Now fix σ ∈ Gn with d(σ) ≥ 2n and
consider H = {τ : στ ∈ Gn+1}. Since (Un)n is a weak test, µ([H]) ≤ 1

2 . Thus we may
proceed as in the first case where n = 1 to define a martingale m such that m(∅) = 1 and
m(τ) ≥ 2 for all τ ∈ H. Now extend the definition of d to the strings extending σ by
defining d(στ) = d(σ) · m(τ). Since d(σ) ≥ 2n and, for τ ∈ H, m(τ) ≥ 2, it follows that
for στ ∈ Gn+1, d(στ) ≥ 2n+1. It is easy to see that this extension obeys the martingale
equality, since, for any τ ,

d(στ) = d(σ) ·m(τ) = d(σ) ·
1

2
(m(τ⌢0) +m(τ⌢1)) =

1

2
· (d(στ⌢0) + d(στ⌢1)).

Since X ∈
⋂

n Un, it follows that d(X ↾ f(n)) ≥ 2n for each n and hence d succeeds primitive
recursively on X.

It is easy to see that this defines a primitive recursive procedure to compute d(σ). The
first step is to compute f(n) for n ≤ |σ| until we find n so that |σ| ≤ f(n). Then we consider
all extensions τ of σ of length f(n). We follow the procedure outlined above to compute
d(σ ↾ f(i)) for i ≤ n, and, hence, compute d(τ) for all extensions τ of σ of length f(n).
Finally we backtrack using the martingale inequality to compute d(σ) from the values of
such d(τ). Thus d is a primitive recursive martingale and X is not martingale BP random.

The above proofs are similar to those that have already appeared in the literature. For
example Downey, Griffiths and Reid [16] proved the equivalence of analogues of (1) and (3)
of Theorem 2.7 in the setting of Kurtz randomness, and their proof could be modified to
prove the equivalence of (1) and (3) in Theorem 2.7. Similarly, Bienvenu and Merkle [6]
gave a proof the equivalence of parts (1) and (2) in the setting of Kurtz randomness and
their proof can be modified to work in our setting.

Given Theorems 2.7 and 2.8, we define X ∈ {0, 1}ω to be BP random if and only if X
is Martin-Löf BP random. Since every BP test is also a Kurtz test and a computable test,
it follows that all Kurtz random and all computably random reals are BP random.

It is clear that no primitive recursive set can be BP random. It was shown by Jockusch
[17] that Kurtz random sets are immune, that is, they do not include any c.e. subsets. Here
is a version of that result for BP randomness.

Proposition 2.9. If X is BP random, and f is an increasing primitive recursive function,
then X does not contain the range of f .

Proof. Suppose for the contrapositive that X contains the range of f . Let Gn = {σ ∈
{0, 1}f(n) : (∀i < n)(σ(f(i)) = 1)}, and Un = [Gn]. It is clear that µ([Un]) = 2−n so
that (Un)n≥0 is a primitive recursive test. But then X belongs to each Un so X is not BP
random.
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Theorem 2.10. There is a recursive real which is BP random.

Proof. Let (Me, fe) enumerate all pairs of primitive recursive functions, whereMe : {0, 1}
∗ →

{0, 1}∗ and fe : N → N is strictly increasing. Let Ce denote CMe . We define a recursive
real X such that, for any e, there is some c such that Ce(X ↾ fe(c)) > fe(c) − c − 1. Thus
no primitive recursive machine can primitive recursively compress X, so X is BP random.

The definition of X is in stages, with X defined as the union of a sequence ∅ = τ0 ⊆
τ1 ⊆ · · · . Let nk = |τk|. We set τ0 = ∅ and n0 = 0.

At stage k + 1, we let c = nk, and nk+1 = fk(nk). We are looking for an extension
τ = τk+1 of τk of length fk(c) which does not equal Mk(σ) for any σ of length ≤ fk(c)−c−1.

There are 2fk(c)−c different extensions of τk of length fk(c), but only 2fk(c)−c − 1 strings
of length ≤ fk(c) − c − 1. Hence such a string τ exists and we may compute it primitive
recursively (and in a space efficient manner) by the following algorithm. Enumerate all
possible values for τ ∈ {0, 1}nk+1 starting with 0nk+1 . For each value τ , compute M(σ) for
all strings σ of length ≤ fk(c)− c−1. If the values M(σ) are all distinct from the candidate
value for τ , then output that τ .

Next we show that BP random reals satisfy the following analogue of Ville’s Theorem.

Theorem 2.11. LetX ∈ {0, 1}ω be BP random and let g be a primitive recursive increasing
function. Then the sequence (X(g(0)),X(g(1)),X(g(2)), . . .) is also BP random.

Proof. Let Y (n) = X(g(n)), and suppose that Y is not BP random. Let (Un)n≥0 be a
primitive recursive test such that Y ∈

⋂
n Un. As usual, we may assume that Un = [Gn]

where Gn is a subset of {0, 1}f(n) for some primitive recursive function f . In other words,
each τ ∈ Gn has length f(n).

We define a primitive recursive test (Vn)n for X by letting Vn ⊂ [{0, 1}g(f(n)) ] be

Vn = {X : (X(g(0)),X(g(1)), . . . ,X(g(f(n))) ) ∈ Un}.

It is easy to see that µ(Un) = µ(Vn), and (Vn)n≥1 is a primitive recursive test. Also,
X ∈

⋂
n≥1 Vn which violates the assumption that X is BP random. This contradicts the

assumption that Y is BP random.

2.3. Prefix-free primitive recursive. Kolmogorov complexity and randomness are usu-
ally studied for prefix-free machines. By convention, primitive recursive functions are total,
and thus not prefix-free. Nonetheless, we can consider partial primitive recursive functions
by adding a new symbol, ∞, for divergence. The usual definitions of primitive recursive
functions can be readily modified to allow the primitive function to output the special
symbol ∞ to indicate the function diverges. With this convention, a primitive recursive
function M is prefix-free provided that there do not exist distinct strings σ ⊏ τ such that
both M(σ) 6= ∞ and M(τ) 6= ∞.

Definition 2.12. A sequence X ∈ {0, 1}ω is prefix-free BP random if there does not exist
a prefix-free primitive recursive function M and a primitive recursive function f such that
CM (X ↾ f(c)) ≤ f(c)− c for all c.

Proposition 2.13. A real X is BP random if and only if it is prefix-free BP random.
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Proof. Certainly if X is BP random then it is prefix-free BP random. So suppose that X is
not BP random. By Theorem 2.7, there is a primitive recursive test {Uc : c ∈ N} such that
X ∈

⋂
c Uc. We may assume (by replacing Uc with U2c if necessary) that in fact µ(Uc) ≤ 2−2c.

As usual, Un is defined in terms of a primitive recursive Gn = {τ1,n, . . . , τk(n),n} where each
τi,n has length f(n), so Un = [Gn]. As in the proof of Theorem 2.7, we may assume that

f(c + 1) − (c + 1) > f(c) − c. From |Uc| < 2−2c, we have k(c)2−f(c) ≤ 2−2c. Hence
k(c) ≤ 2f(c)−2c. It follows that f(c)− c ≥ c for all c.

We need to define a prefix-free primitive recursive functionM such that CM (X ↾ f(c)) ≤
f(c)−c for all c. We start by defining M(σ) for σ of length < f(1). Let σ1,1, σ2,1, . . . , σk(1),1
be the lexicographically first k(1) strings of length f(1)− 1, and define M(σi) = τi,1. And,
let M(σ) = ∞ for all other strings of length < f(1). Note that M(σ) 6= ∞ for at most half

of the strings of length f(1)− 1, since k(1) ≤ 2f(1)−2.
Now suppose that we have defined the partial function M , in a prefix-free way, for

strings of length ≤ f(c− 1)− c+1, so that the following hold: First, M is injective (where
it converges). Second, for each n < c and τi,n ∈ Gn, there is a unique σ of length f(n) such
that M(σ) = τi,n. Third, M(τ) is undefined for all other strings σ of length ≤ f(c−1)−c+1.
Fourth, for each n < c, M(σ) 6= ∞ for at most fraction 2−n of the strings of length f(n)−n.
We want to extend M by setting the values of M(σ) for all σ of length < f(c) − c. For
f(c− 1)− c+1 < |σ| < f(c)− c, set M(σ) = ∞. In order to define M(σ) for |σ| = f(c)− c,
enumerate the lexicographically first strings σ1,c, σ2,c, . . . , σk(c),c of length f(c)− c which do
not extend any ν for which |ν| < f(c) − c and M(ν) 6= ∞. Once these are enumerated,
define M(σi,c) = τi,c. To see that it is possible to enumerate such strings, first note that

k(c) ≤ 2−c · 2f(c)−c. Furthermore, for each n < c, at most a fraction 2−n of the strings ν

in {0, 1}f(n)−n have M(ν) 6= ∞. Since
∑c−1

n=0 2
−n < 1 − 2−c+1, there are more than k(c)

strings. In fact, there are at least 2k(c) available to enumerate. Thus M is well-defined.
By assumption, X ∈ Uc for every c, so X ↾ f(c) = τi,c for some i and hence M(σi,c) =

τi,c = X ↾ f(c). Since |σi,c| = f(c)− c, we have CM (X ↾ f(c)) = f(c)− c as desired.
It remains to check that M is indeed a primitive recursive function. Recall that

f(c) − c ≥ c. Thus, given a string σ, we only need to check c ≤ |σ| to see whether
m = f(c) − c for some c. If not, then M(σ) = ∞. If so, we use the above construction of
M to determine whether σ = σi,c where M(σi,c) = τi,c. This is clearly a primitive recursive
procedure for computing M(σ).

2.4. Statistical tests. It is interesting to see to what extent the BP random sets are
statistically random. We begin with a positive result.

Theorem 2.14. Let X be a BP random set. For any increasing primitive recursive func-
tion f and any ǫ > 0, ∣∣∣∣

card(X ∩ [[f(n)]])

f(n)
−

1

2

∣∣∣∣ ≤ ǫ

for infinitely many n.

Proof. This follows from the law of large numbers (Chernoff’s Lemma [24, p. 61]). For a
finite string σ, let card(σ) denote card({i : σ(i) = 1}). For n ∈ N and any real ǫ > 0, let

Sn,ǫ =
{
σ ∈ {0, 1}n :

∣∣∣card(σ)
n

−
1

2

∣∣∣ > ǫ
}
.
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Chernoff’s Lemma states that µ([Sn,ǫ]) ≤ 2e−ǫ2n/6.
Fix ǫ > 0 and let m = ⌈1/ǫ⌉. Let Vn = S6m2(n+1) ln 2, 1

m
. It follows by an easy calculation

from Chernoff’s Lemma that µ(Vn) ≤ 2−n. Finally, let Un = Vf(n). Since f is increasing,

f(n) > n and hence µ(Un) ≤ 2−f(n) ≤ 2−n for all n. We claim that (Un)n is in fact a
primitive recursive test. This is because Un = [Gn], where Gn is a set of strings of length
6m2f(n) and the membership of τ in Gn is easily computable by counting the numbers of
0’s and 1’s in τ .

Since X is BP random, it follows that X /∈ Un for at least one n. In fact, by considering
the tests (Un+i)n for each i ∈ N, we see that A /∈ Un for infinitely many n.

Corollary 2.15. For any BP random set X, if limn card(X ∩ [[n]])/n exists, then it equals
1/2.

On the other hand, BP random sets do not have to be stochastic. Note that this is also
the case for Kurtz random sets.

Theorem 2.16. There is a computable BP random set X such that limn card(X ∩ [[n]])/n
does not exist.

Proof. To construct such a set X, modify the proof of Theorem 2.10 by adding long strings
of 0’s and long strings of 1’s (in alternation) after satisfying each requirement. Then we can
make the density go arbitrarily low and then arbitrarily high infinitely often.

2.5. Relative randomness. We now turn to the concept of relative primitive recursive
randomness, namely, BP randomness relative to an oracle Y . Let Y = (Y (0), Y (1), Y (2), . . .)
be a real. The set of functions which are primitive recursive relative to Y can be defined in
two equivalent ways. The first definition uses the characterization of the primitive recursive
functions as the closure of a set of base functions under composition and primitive recursions.
Namely, let the base primitive recursive functions consist of the constant functions f(~x) = c
for c ∈ N, the successor function f(x) = x+1, and the projection functions f(x1, . . . , xk) =
xi. Then a function is primitive recursive relative to Y it can be obtained from the base
functions plus the function Y under the usual primitive recursion operations of composition
and primitive recursion.

The second definition is in terms of Turing machines with runtimes bounded by prim-
itive recursive functions. Namely, a Turing machine, denoted MZ , is given oracle access
to the values of Z in the usual way by giving it a query state and a oracle query/answer
tape. An oracle Turing machine MZ is called a primitive recursive oracle machine provided
there is a primitive recursive function g, such that for all x and all reals Z, MZ(x) has
runtime bounded by g(x) A function fZ is a primitive recursive oracle function provided
there is some primitive recursive oracle machine MZ such that that for all x and all reals Z,
fZ(x) = MZ(x). Then, for a fixed oracle Y , a function f(x) is primitive recursive relative

to Y if and only if there is some primitive recursive oracle Turing machine MZ such that
f(x) = MY (x).

The equivalence of the two definitions for primitive recursive relative to Y is well-known,
and depends on the fact that Y is a 0/1-valued function and thus is majorized by a primitive
recursive function.

We shall define a real X = (X(0),X(1), . . . , ) to be Martin-Löf BP random relative
to Y , Kolmogorov BP random relative to Y , and martingale BP random relative to Y
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by replacing (some of) the primitive recursive functions in the definitions of Martin-Löf
BP random, Kolmogorov BP random, and martingale BP random by primitive recursive
functions relative to Y , respectively.

2.5.1. The compressibility definition. Let CY
M (τ) be the length |σ| of the shortest string σ

such that MY (σ) = τ , that is, the length of the shortest MY -description of τ .

Definition 2.17. An infinite sequence X is primitive recursively compressed relative to Y if
there exist a primitive recursive oracle machine M and a primitive recursive function f such
that, for every c, CY

M (X ↾ f(c)) ≤ f(c)− c. An infinite sequence X is Kolmogorov bounded

primitive recursively random relative to Y (for short, Kolmogorov BP random relative to Y )
if it cannot be primitive recursively compressed relative to Y .

If in the above definition, the condition that f is primitive recursive is replaced by f
is primitive recursive relative to Y , then the set of reals which are Kolmogorov bounded
primitively random relative to Y would not change. This is because we can always find
a primitive recursive function f ′ (not relative to Y ) that dominates f , and then use the
construction mentioned immediately after the proof of Theorem 2.7.

2.5.2. The measure definition. A primitive recursive oracle test is given by a function gZ

which is primitive recursive relative to Z, and a primitive recursive function f such that,
for all reals Z, (1) gZ(n) codes a finite set, denoted GZ

n of strings, with GZ
n ⊆ {0, 1}f(n),

(2) UZ
n = [GZ

n ] is a clopen set, and (3) µ(UZ
n ) < 2−n. If these conditions hold, then, for

a particular real Y , we also refer to the sequences (GY
n )n and (UY

n )n as being primitive
recursive oracle tests.

Definition 2.18. A realX isMartin-Löf BP random relative to a real Y if, for any primitive
recursive oracle test (UY

n )n, X /∈ UY
n for some n.

As before, the definition of Martin-Löf BP random relative to a real Y would be un-
changed if the function f were allowed to be primitive recursive relative to Y instead of just
primitive recursive.

As a simple example, suppose that X is itself primitive recursive and let GZ
n = [X ↾ n]

for all n and Z, so that f(n) = n. Then (GZ
n )n≥0 is a primitive recursive oracle test, and

X ∈ [GZ
n ] for all n. Thus X is not Martin-Löf BP random relative to any Z.

On the other hand, suppose that X is Martin-Löf BP random and let Y be primitive
recursive. We claim then that X is Martin-Löf BP random relative to Y . If not, let (UY

n )n
be a primitive recursive oracle test such that X ∈ UY

n for all n. Then in fact (UY
n )n is a

primitive recursive test since Y is primitive recursive. And X fails this test, contradicting
the assumption that X is Martin-Löf BP random.

The notion of a weak test may also be relativized to say that, as before, for each
τ ∈ GZ

n , µ(U
Z
n+1 ∩ [τ ]) ≤ 1

2µ([τ ]). The proof of Proposition 2.2 relativizes so that we have
the following proposition.

Proposition 2.19. X is Martin-Löf BP random relative to Y if and only if it passes every
weak primitive recursive oracle test relative to the oracle Y .
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2.5.3. The martingale definition. A primitive recursive oracle function dZ is a primitive

recursive oracle martingale if dZ is a martingale for all reals Z.

Definition 2.20. A real X is martingale BP random relative to Y if there is no primitive
recursive oracle martingale dY which succeeds primitive recursively on X.

It is straightforward to check that the proof of Theorem 2.7 relativizes to prove the
following.

Theorem 2.21. The following are equivalent for X,Y ∈ {0, 1}ω .

(1) X is Kolmogorov BP random relative to Y .
(2) X is Martin-Löf BP random relative to Y .
(3) X is martingale BP random relative to Y .

When these conditions hold, we say that X is BP random relative to Y .

2.5.4. van Lambalgen’s theorem. We now discuss van Lambalgen’s theorem for relative BP
randomness. We first prove that one direction of van Lambalgen’s theorem holds in this
setting, and then give a counterexample for the other direction. Recall that if A,B ⊆ N,
then A⊕B = {2x : x ∈ A} ∪ {2x+ 1 : x ∈ B}.

Theorem 2.22. If A⊕B is BP random, then A is BP random relative to B and B is BP
random relative to A.

Proof. Suppose B is not BP random relative to A, and there is a primitive recursive oracle
test (UA

n )n such that B ∈
⋂

n U
A
n . The test (UA

n )n is given by a primitive recursive oracle

function gZ so that, for all reals Z, gZ(n) codes a set GZ
n ⊂ {0, 1}∗ so that UZ

n = [GZ
n ].

The runtime of gZ(n) is primitive recursively bounded; in particular, there is a primitive
recursive function ℓ(n) so that, for all Z and all n, gZ(n) only queries values of Z(i) for

i < ℓ(n). In addition, GZ
n ⊂ {0, 1}≤ℓ(n) for all n. For z = {0, 1}∗ with |z| ≥ ℓ(n), we can

thus unambiguously define gz(n) to equal the value of gZ(n) when run on any Z ⊐ z. In
this situation, we write Gz(n) for the set coded by gz(n), so Gz

n = GZ
n for any Z ⊐ z. We

define a primitive recursive test (Vn)n by letting Vn = [Hn] where

H(n) = {a⊕ b : a, b ∈ {0, 1}ℓ(n) and b ∈ [Ga
n]}.

Clearly, Hn is primitive recursive since b ∈ [Ga
n] holds iff some prefix of b is in Ga

n. Further-

more, since for each a ∈ {0, 1}ℓ(n), µ([Ga
n]) ≤ 2−n, we have µ(Vn) ≤ 2−n. In addition, since

B ∈ UA
n for all n, we also have A⊕B is in Vn for all n. Therefore A⊕B is not BP random.

It follows by symmetry that if A ⊕ B is BP random, then A is BP random relative
to B.

Next we give a counterexample to the converse of Theorem 2.22.

Theorem 2.23. There are reals A and B such that A is BP random relative to B, and
B is BP random relative to A, but A⊕B is not BP random.

Proof. We construct the reals A and B in stages. The stages will be controlled by a fast
growing increasing function h(i): at the end of stage i, the values of A(n) and B(n) for
n < h(i) will have been set. Furthermore, these values will satisfy:

1. For h(2j) ≤ n < h(2j + 1), we have B(n) = 0.
2. For h(2j + 1) ≤ n < h(2j + 2), we have A(n) = 0.
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Define the sequences Ai, Bi ∈ {0, 1}h(i) to consist of the values of A(n) and B(n) that have
been set by the end of the i-th stage. In the end, we set A = limiAi and B = limiBi.
Conditions 1 and 2 clearly imply that A⊕B is not BP random.

Let (MZ
j , fj)j≥0 enumerate all pairs such that MZ

e : {0, 1}∗ 7→ {0, 1}∗ is a primitive

recursive oracle function, and fj : N → N is a primitive recursive function with fj(c) > c
for all c. Stage 2j + 1, which sets the values of A(n) and B(n) for h(2j) ≤ n < h(2j + 1),
will ensure that A is not primitive recursively compressed by (MB

j , fj). Stage 2j + 2 will

act similarly to ensure that B is not primitive recursively compressed by (MA
j , fj).

We describe an odd stage 2j + 1. The value of h(2j) has already been set; we must
define h(2j+1) and the values of A(n) for h(2j) ≤ n < h(2j+1). Define X to be the infinite
sequence consisting of B2j followed by all 0’s. Let c = h(2j) + 1 and compute fj(c) > c.

There are 2fj(c)−h(2j) many strings of the form A2ju with |A2ju| = fj(c). On the other hand,

there are at most 2fj(c)−h(2j) − 1 strings of the form MX
j (v) with |v| ≤ fj(c)− h(2j) − 1 =

fj(c) − c. Fix a value for u so that |A2ju| = fj(c) and u is not equal to MX
j (v) for any

v ∈ {0, 1}≤fj (c)−c.
Now, set h(2j + 1) to be equal to the least value ≥ fj(c) such that, for every v ∈

{0, 1}≤fj (c)−c, MX
j (v) only queries oracle values X(m) for m < h(2j+1). This ensures that

MX
j (v) = MB

j (v) for all such v’s. Set A2j+1 = A2ju0
h(2j+1)−fj(c), so |A2j+1| = h(2j + 1).

Further set B2j+1 = B2j0
h(2j+1)−h(2j). By construction, CMB

j
(A ↾ fj(c)) > fj(c)− c, so A is

not primitive recursively compressed by (MB
j , fj).

That completes the description of the even stages. The odd stages are defined similarly.

Kihara and Miyabe [18] have obtained a similar result for Kurtz random reals, using
the same basic idea for the proof.

3. Polynomial-space bounded randomness

In this section, we modify the definitions of BP randomness to define a notion of bounded
randomness relative to polynomial space functions, called “BPS randomness”. It is impor-
tant to note that this is a notion of bounded randomness, similar to the bounded primitive
recursive randomness developed above.

The usual notion of PSPACE randomness is part of the well-developed study of resource-
bounded measure and randomness due to Lutz, Schnorr, and Ambos-Spies and Mayordomo,
see [25, 3, 31]. It will follow from our definitions that PSPACE randomness implies BPS
randomness. The two notions are certainly different, as PSPACE random sets satisfy the
law of large numbers, whereas BPS random sets, like BP random sets, satisfy only a limited
form of this law, see, for example, Theorem 3.13.

We begin by defining three equivalent notions of BPS randomness, analogous to the
three versions of BP randomness.

First, however, we need to define polynomial space functions. A PSPACE predicate,
or set, is one for which membership can be decided by a Turing machine which uses space
bounded by a polynomial p(n) of the length n of its input. A polynomial space computable
function is a function {0, 1}∗ → {0, 1}∗ which can be computed by a Turing machine M
with a read-only input tape, work tapes, and a write-only output tape such that the space
that M uses on its work tapes is polynomially bounded by the length n of its input. It
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is required that M halts for all possible inputs, thus the runtime of M(x) is bounded by
2p(n) for some polynomial p, where n = |x| is the length of the input x. If in addition, the
length of output of M is polynomially bounded, then we say M computes a function in
FPSPACE. That is, an FPSPACE function f is computable in polynomial space, and there
is a polynomial p(n) such that |f(x)| ≤ p(|x|) for all inputs x. On the other hand, if we do

not bound the length of f(x), so that |f(x)| is bounded only by 2p(n) for some polynomial p,
then we call f an FPSPACE+ function. However, we are primarily interested in FPSPACE
functions.

We will use FPSPACE functions for defining all three of Martin-Löf , Kolmogorov, and
martingale BPS randomness. (So, FPSPACE+ functions are not needed for the definitions.)
All three types of definitions use PTIME functions f : {1}∗ → {1}∗ to bound the lengths
of strings. The importance of these PTIME functions lies solely in the fact that their
growth rate is bounded by a polynomial; in other words, in the fact that |f(1n)| ≤ p(n) for
some polynomial n. In fact, all our definitions could equivalently use just functions of the
form f(1n) = 1n

c+c for c ∈ N. Similarly, the definitions could equivalently use FPSPACE
functions f : 1∗ → {0, 1}∗, as their growth rate is also bounded by a polynomial.

Definition 3.1. A PSPACE test (Un)n≥0 is specified by a pair of functions (G, f) such
that G : {1}∗ × {0, 1}∗ → {0, 1} is an FPSPACE-function and f : {1}∗ → {1}∗ is a strictly
length increasing PTIME function such that for each n,

Gn = {τ ∈ {0, 1}≤|f(1n)| : G(1n, τ) = 1}

is a set of strings of length ≤ |f(1n)| such that Un = [Gn] is a clopen set with measure
≤ 2−n.

As is easy to check, PSPACE tests could be equivalently defined with a FPSPACE+

function g instead of the FPSPACE function G, by defining Gn to be equal to the set coded
by the (potentially exponentially long) string g(1n).

The above definition gave Gn as the domain of a parameterized FPSPACE function G.
An alternate, and equivalent, definition is to define Gn as the range of a parameterized

PSPACE function Ĝ:

Proposition 3.2. The sequence (Gn)n and f satisfy the conditions for the definition of a

PSPACE test iff there is an FPSPACE function Ĝ : {1}∗ × {0, 1}∗ → {0, 1}∗ such that

Gn = {σ ∈ {0, 1}≤|f(1n)| : for some τ ∈ {0, 1}≤|f(1n)|, Ĝ(1n, τ) = σ}.

Therefore, we will also refer to (Ĝ, f) as being a PSPACE test.
A weak PSPACE test (Un)n≥0 is a PSPACE test as above with the additional property

that for each n and σi,n ∈ Gn, µ(Un+1 ∩ [σi,n]) ≤
1
2µ([σi,n]).

Definition 3.3. An infinite sequence X is Martin-Löf BPS random if X passes every
PSPACE test. X is weakly Martin-Löf BPS random if X passes every weak PSPACE test.

Definition 3.4. An infinite sequence X is Kolmogorov BPS random if there do not exist
an FPSPACE function M : {0, 1}∗ → {0, 1}∗ and a PTIME function f : {1}∗ → {1}∗ such
that, for every n ∈ N, CM (X ↾ |f(1n)|) ≤ |f(1n)| − n.

For the next definition, we take members of Q∩ [0,∞) as being coded as ternary strings
σ2τ where σ.τ is the binary expansion of a rational number in Q ∩ [0,∞).
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Definition 3.5. An FPSPACE martingale d : {0, 1} → Q∩ [0,∞) succeeds on X if there is
a PTIME function f : {1}∗ → {1}∗ such that, for all n, d(X ↾ m) ≥ 2n where m = |f(1n)|.
An infinite sequence X is martingale BPS random if no FPSPACE martingale succeeds
on X.

We have the following analogue of Proposition 2.6:

Proposition 3.6. The following are equivalent:

(1) X is martingale BPS random.
(2) There do not exist an FPSPACE martingale d and a PTIME function f such that, for

every n, there exists m ≤ f(n) such that d(X ↾ m) ≥ 2n.
(3) There do not exist an FPSPACE martingale d and a PTIME function f such that

d(X ↾ m) ≥ 2n for all n and all m ≥ f(n).

Proof. As before, the implications (2)⇒ (1) and (1)⇒ (3) are immediate. Proving the
implication (3)⇒ (2) requires a refined version of the argument used in the proof of Propo-
sition 2.6. As before, we use the idea of a savings account, but now the intuition is that once
d(τ) ≥ 4n+1, then one half of the working capital is transferred to a savings account. So,
loosely speaking, every time the capital is quadrupled, one half of it is moved into the sav-
ings account. Suppose d and f are as in (2). We formally define a martingale d′ as follows.
Given τ ∈ {0, 1}∗, define ℓτn to equal the least value ≤ |τ |, if any, such that d(τ ↾ ℓτn) ≥ 4n+1.
Let τn equal τ ↾ ℓτn, and let n(τ) be the least value of n for which ℓτn is undefined. Note
that ℓτn, τn, and n(τ) are in FPSPACE, since d is in FPSPACE. Now define

d′(τ) =
d(τ)

2n(τ)
+

n(τ)−1∑

i=0

d(τi)

2i+1
.

Once again, the summation represents the capital placed in the savings account, and
d(τ)/2n(τ) is the remaining working capital. As before, it is easy to verify that d′ is a
martingale. Also, by the definition, d′(τ) is in FPSPACE.

Since d(τi) ≥ 4i+1, we have d(τ) ≥
∑n(τ)−1

i=1 2i+1 > 2n(τ). Let f ′ be the PTIME function
f ′(1n) = f(12n). Suppose X ∈ {0, 1}ω and m ≥ |f ′(1n)|. Since m ≥ |f(12n)|, there is some
m′ ≤ m such that d(X ↾ m′) ≥ 22n = 4n. Therefore, n(X ↾ m) ≥ n, so d′(X ↾ m) ≥ 2n.
This establishes that the properties of (3) holds for d′ and f ′.

By suitably modifying the proofs of Theorem 2.7 and 2.8, we can prove the equiva-
lence of these three versions of BPS randomness. As we shall see, the modifications are
straightforward in the case of Theorem 2.7, but more substantial for Theorem 2.8.

As a preliminary step, the next lemma states that, for Martin-Löf BPS randomness,
the strings in the sets Gn of a PSPACE test can be required to all be the same length.

Lemma 3.7. For any PSPACE test (G, f), there is an FPSPACE function G′ such that

(G′, f) is a PSPACE test such that, for all n, G′
n ⊂ {0, 1}f(n).

Proof. We are given that Gn = {σ ∈ {0, 1}≤f(n) : G(1n, σ) = 1}. It will suffice to define an

FPSPACE function G′ so that G′
n = {σ ∈ {0, 1}f(n) : G′(1n, σ) = 1} satisfies [Gn] = [G′

n]
for all n. This is simply done: define G′(1n, σ) = 1 to hold exactly when |σ| = n and there
is some τ ⊏ σ such that G(1n, τ) = 1. Clearly [Gn] = [G′

n], and G′ is in FPSPACE since G
is.
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Definition 3.8. A function M : {0, 1}∗ → {0, 1}∗ is said to be an FPSPACE BPS quick

process machine if M is in FPSPACE and is a quick process machine with order function h
such that there is a PTIME function g : {1}∗ → {1}∗ such that g(1n) = 1h(n) for all n.
An infinite sequence X is quick process BPS random if there do not exist an FPSPACE
BPS quick process machine M and a PTIME function f : {1}∗ → {1}∗ such that, for every
n ∈ N, CM (X ↾ |f(1n)|) ≤ |f(1n)| − n.

Theorem 3.9. The following are equivalent for X ∈ {0, 1}ω .

(1) X is Martin-Löf BPS random.
(2) X is Kolmogorov BPS random.
(3) X is quick process BPS random.

Proof. The proof is almost identical to the proof of Theorem 2.7, but noting that all the con-
structions preserve the property of being computable in FPSPACE, instead of being primi-
tive recursive. As before, (2)⇒ (3) is immediate. The proof of (1)⇒ (2) is identical to the
proof of the same case for Theorem 2.7. The only difference is that now Gc must be the range

of a parameterized FPSPACE function Ĝ with Gc = {σ : σ = Ĝ(1c, τ), τ ∈ {0, 1}|f(1
n |)}.

Referring back to the definition of Gc in the proof Theorem 2.7 this is immediately seen to
hold, as M is in FPSPACE.

The proof of (3)⇒ (1) is also identical to the corresponding proof of Theorem 2.7;
however, it is required to show that the functionM is in FPSPACE. In fact, the construction
given in the proof Theorem 2.7 gives a polynomial space algorithm for M . Recall that the
values of M(σ) for f(c)− c < |σ| ≤ f(c+ 1)− c− 1 were computed by expressing σ in the
form σ = M(ν)⌢ρ, if possible, where f(c−1)−c+1 < |ν| ≤ f(c)−c, and then enumerating
Hν in lexicographic order. Since Gc is given as the parameterized domain of the FPSPACE
function G, it is certainly possible to enumerate Gc and hence Hν using only polynomials
space. It is also necessary to find the value ν, if any, such that M(ν) ⊏ σ. This is done by

calculating M(ν) for all ν ∈ {0, 1}|f(c)|−c.
In other words, M(σ) is computed in polynomial space by a recursive procedure that

needs to compute values of M(ν) with f(c − 1) − c + 1 < |ν| ≤ f(c) − c. The depth of
the recursion is equal to c; hence, the overall computation of M(σ) can be carried out in
polynomial space.

Our next goal is to show that X is martingale BPS random if and only if X is weakly
Martin-Löf BPS random. The following lemma about martingales is a version of Kraft’s
Inequality and will be needed to help us prove this result. Two strings σ, τ ∈ {0, 1}∗ are
said to be incompatible if they are distinct and neither one is a prefix of the other.

Lemma 3.10 (Kraft’s Inequality). For any martingale d, any σ ∈ {0, 1}∗ and any finite
set H of pairwise incompatible extensions of σ,

∑

τ∈H

d(τ) · 2−|τ | ≤ d(σ) · 2−|σ|.

Proof. Let n = max{|τ | : τ ∈ H} and note that by the martingale condition,
∑

{d(ρ) : |ρ| = n & σ ⊏ ρ} = d(σ) · 2n−|σ|.
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For each τ ∈ H, let G(τ) = {ρ ∈ {0, 1}n : τ ⊏ ρ}. Then by the martingale condition as
above ∑

ρ∈G(τ)

d(ρ) = d(τ) · 2n−|τ |.

Thus ∑

τ∈H

d(τ) · 2−|τ | =
∑

τ∈H

∑

ρ∈G(τ)

d(ρ) · 2−n

≤
∑

{d(ρ) · 2−n : |ρ| = n & σ ⊏ ρ} = d(σ) · 2−|σ|.

We next prove the analogue of Theorem 2.8 that martingale BPS randomness is equiv-
alent to the other forms of BPS randomness. The proof of Theorem 2.8 needs considerable
reworking however. This is primarily because the proof of Theorem 2.8 depended on the
equivalence of weak Martin-Löf BPS randomness and Martin-Löf BPS randomness. Unfortu-
nately, the proof of Proposition 2.3 cannot be readily modified to apply to BPS randomness:
the difficulty is that that proof defined a function h so that h(n + 1) = ℓ(h(n)) + 1, but h
may not be in PTIME even if ℓ is. Nonetheless, it does follow from the next theorem that
any PSPACE test can be converted into a weak PSPACE test.

Theorem 3.11. The following are equivalent for X ∈ {0, 1}ω .

(1) X is Martin-Löf BPS random.
(2) X is weakly Martin-Löf BPS random.
(3) X is martingale BPS random.

Proof. Clearly (1) implies (2).
(2)⇒ (3): Suppose that (3) fails and d is an FPSPACE martingale which succeeds on X

with a PTIME function f such that, for all n, d(X ↾ |f(1n)|) ≥ 2n. Unlike the (2)⇒ (1)
case of Theorem 2.8, we must construct a weak PSPACE test that X fails instead of just a
PSPACE test. Define G : {1}∗ × {0, 1}∗ → {0, 1} by letting G(1n, σ) = 1 iff

|σ| ≤ |f(1n)| & d(σ) ≥ 2n & (∀i < |σ|)(d(σ ↾ i) < 2n).

Note that, by the martingale equality, if G(1n, σ) = 1, then d(σ) < 2n+1. Clearly G is an
FPSPACE function. Thus

Gn = {σ : |σ| ≤ |f(1n)| & d(σ) ≥ 2n & (∀i < |σ|)(d(σ ↾ i) < 2n)}.

Set Un = [Gn]; we have X ∈ Un for all n by the assumption. By Lemma 3.10 with σ = ∅,∑
τ∈Gn

d(τ) · 2−|τ | ≤ 1. Since for all τ ∈ Gn, d(τ) ≥ 2n, it follows that

µ([Un]) =
∑

τ∈Gn

2−|τ | ≤ 2−n.

Now let Vn = U2n for all n ≥ 0 so that (Vn)n≥0 is a PSPACE test that X fails. We
claim that (Vn)n≥0 is a weak test. We have µ(Vn) = µ(U2n) ≤ 2−2n. For σ ∈ Vn, let
H(σ) = {τ : σ ⊏ τ & τ ∈ Vn+1}. By Lemma 3.10,

∑

τ∈H(σ)

d(τ) · 2−|τ | ≤ d(σ) · 2−|σ|.
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Since d(σ) < 22n+1 and for each τ ∈ H(σ), d(τ) ≥ 22n+2, we obtain
∑

τ∈H(σ)

22n+2 · 2−|τ | ≤ 22n+1 · 2−|σ|.

Dividing by 22n+2, we obtain

µ([H(σ)]) =
∑

τ∈H(σ)

2−|τ | ≤
1

2
· 2−|σ| =

1

2
µ([σ]).

Thus the sequence Vn is a weak PSPACE test as desired. Thus if X is not martingale BPS
random, then X is not weakly Martin-Löf BPS random.

(3)⇒ (1): This is the most difficult case to prove, since we have not (yet) established
the analogue of Proposition 2.3 for BPS randomness. Let {Un}n≥0 be a Martin-Löf BPS test
which X fails, with Un = [Gn] where Gn’s are as usual given by an FPSPACE function G.
In particular, each Un has measure µ(Un) ≤ 2−n, and w.l.o.g. every σ ∈ Gn has length equal
to ℓ(n) for some PTIME function ℓ such that ℓ(n) ≥ i.

We will define martingales di for i = 1, 2, . . ., and then define the overall martingale
which succeeds against X as d =

∑
i 2

−idi. The martingale di is defined using the set U3i−1.
That is to say, we use Uj only for j = 3i− 1.

Definition 3.12. First consider i = 1. The martingale d1 will be defined from G2 so as to
satisfy the following conditions:

1. d1(∅) = 1.
2. d1(σ) = 4 for each σ ∈ G2.
3. d1(σ0) = d1(σ1) = d1(σ) for all σ of length |σ| ≥ ℓ(2).

The point of condition 3. is that the value of d1(σ) “settles down” to a constant value
which depends only on the first ℓ(2) symbols of σ. Property 2. can be forced to hold since
µ(U2) ≤ 1/4, and hence the martingale properties allow the value of d1(∅) to be quadrupled
for σ ∈ G2.

It is straightforward to define an FPSPACE function d1 satisfying these three conditions
1-3. One way to do this is to enumerate the members of G2: since G2 ⊂ {0, 1}ℓ(2) and

µ([G2]) ≤ 1/4, we have |G2| ≤ 2ℓ(2)−2. Let H2 be the lexicographically first 2ℓ(2)−2 − |G2|
many strings of length ℓ(2) which are not in G2. Then define d1 as follows: For σ = ℓ(2),
d1(σ) is set equal to 4 if σ ∈ G2 ∪H2, and set equal to zero otherwise. For longer strings σ,
d1(σ) = d1(σ ↾ ℓ(2)). For shorter strings σ, d1(σ) is computed using Kraft’s inequality and
counting the number of τ ⊐ σ with τ ∈ G2 ∪H2.

Definition 3.13. Now consider i > 1. The martingale di is defined so as to satisfy

1.i di(σ) = 1 for every σ of length |σ| < i. In particular, di(σ) is constant for small σ’s.
2.i di(σ) = 22i for every σ ∈ G3i−1.
3.i di(σ0) = di(σ1) = di(σ) for all σ of length |σ| ≥ ℓ(3i − 1).

The idea for making property 2.i hold with i > 1 is similar to the i = 1 construction
for d1. Property 2.i is possible since

(a) there are 2i−1 strings σ of length i− 1, and for these σ’s, di(σ) = 1 and

(b) we have µ(U3i−1) ≤ 2−(3i−1) so that |G3i−1| ≤ 2ℓ(3i−1)−(3i−1).

For any σ of length i− 1,

µ(U3i−1 ∩ [σ])/µ([σ]) ≤ µ(U3i−1)/µ([σ]) ≤ 2−(3i−1)/2−(i−1) = 2−2i.
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Thus di’s value of 1 for σ may be multiplied by the factor 22i for each τ ∈ U3i which extends σ.
That is, defineH3i−1 to contain, for each σ ∈ {0, 1}i−1, the lexicographically first k(σ) many

extensions of σ in ([σ] ∩ [{0, 1}ℓ(3i−1) ]) \G3i−1 where k(σ) equals 22i − |G3i−1 ∩ [σ]|. Then

define di(σ) as follows: For σ ∈ {0, 1}ℓ(3i−1), set di(σ) equal to 22i if σ ∈ G3i−1 ∪H3i−1, and
equal to zero otherwise. For shorter strings σ, set di using Kraft’s inequality; by construction,
this satisfies 1. For longer strings σ, di(σ) = di(σ ↾ ℓ(3i − 1)). By construction, each di(σ)
can be computed in FPSPACE, uniformly in i and σ, by enumerating the strings in G3i−1.

We finally claim that d(σ) can be computed in polynomial space. For this,

d(σ) =
∑

i≥0

2−idi(σ) =
∑

0≤i≤|σ|

2−idi(σ) +
∑

i>|σ|

2−idi(σ).

The finite summation
∑

0≤i≤|σ| di(σ) can be computed in polynomial space by just evaluat-

ing each di(σ). The other, infinite, summation
∑

i>|σ| di(σ) is equal to 2−|σ| since di(σ) = 1

for |σ| < i. Thus d(σ) can be computed in polynomial space.
Since X↾ℓ(3i− 1) ∈ U3i−1,

d(X↾ℓ(3i− 1)) ≥ 2−idi(X↾ℓ(3i − 1)) = 2−i · 22i = 2i,

and d is an FPSPACE martingale which succeeds against X. This concludes the proof of
Theorem 3.11.

We have the following analogue of Proposition 2.9. This is a version of bi-immunity
for BPS random sets. The notion of immunity is well-studied in the resource-bounded
randomness community. For example, it is known that any ptime random set is ptime
bi-immune; see Ambos-Spies and Mayordomo [3].

Proposition 3.14. Let X be BPS random. Suppose h : {1}∗ → {0, 1}∗ is an FPSPACE
function such that f(n) = |h(1n)| is an increasing function. Then X does not contain the
range of f .

Proof. Argue as in the proof of Proposition 2.9.

Next, analogously to Theorem 2.10, we construct a BPS random real which is not too
complex. A DSPACE(t(n)) real is an infinite sequence X ∈ {0, 1}ω which is computable by
a DSPACE(t(n)) function (which is 0/1 valued, since X is 0/1 valued).

Theorem 3.15. Let ǫ > 0. Then there is a DSPACE(2ǫ(logn)
2
) real which is Martin-Löf

BPS random.

Proof. We modify the proof of Theorem 2.10 as follows. Let (Me, fe) enumerate all pairs
of functions such that Me : {0, 1}∗ → {0, 1}∗ is computable in space max{2, n}max{2,log e}

and fe : {1}∗ → {1}∗ is computable in time max{2, n}max{2,log e}. Every possible BPS
compression will be found in this list, since every computable function has infinitely many
indices. We may also assume without loss of generality that fe(i) ≥ i for all e and i. Let
Ce denote CMe . We will define a real X such that, for every e, there is some c such that
Ce(X ↾ fe(c)) > fe(c) − c − 1. It follows that no BPS machine can BPS compress X, and
hence X is BPS random.

The definition of X proceeds as in the proof of Theorem 2.10. That is, the definition
of X is in stages, and X is the union of a sequence ∅ = τ0 ⊆ τ1 ⊆ · · · . Let nk = |τk|.
Initially τ0 = ∅ and thus n0 = 0.
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At stage k + 1, we let c = nk, and nk+1 = fk(nk). Then we find an extension τ = τk+1

of τk of length fk(c) which does not equal Mk(σ) for any σ of length ≤ fk(c)−c−1. Observe

that there are 2fk(c)−c different extensions of τk of length fk(c), but there are only 2fk(c)−c−1
strings of length ≤ fk(c) − c − 1. Hence such a string τ exists and we may compute it as
follows. Start with the guess that τ = 0nk+1 and successively compute Mk(σ), and compare
it with τ , for every σ of length ≤ fk(c)−c−1. If we find a match, then change τ to 0nk+1−11
and continue incrementing τ until we find the desired string.

It remains to be seen that X is in fact computable in space nǫ logn. To compute X ↾ n
from n, first compute the sequence

n0 = 0, n1 = f0(n0), . . . , nk+1 = fk(nk)

until nk+1 ≥ n. Now X ↾ n will be an initial segment of τk+1, which will have length
nk+1 = fk(nk) ≤ nǫ logn, for sufficiently large n. This last inequality is because fk(m) is
computable in time nlog k and we have nk ≤ n and also k ≤ n since fe(i) ≥ i. Thus Mk(σ)
can be computed in space ≤ nǫ logn for all strings σ of length ≤ nk+1 − nk − 1. It follows
that the entire computation up through stage k+1, needed to compute X ↾ n, can be done
in space nǫ logn.

We also have the following analogue of Theorem 2.11.

Proposition 3.16. Let X ∈ {0, 1}ω be BPS random and let h : {1}∗ → {0, 1}∗ be com-
putable in FPSPACE. Suppose that g(n) = |h(1n)| is an increasing function. Then the
sequence (X(g(0)),X(g(1)), X(g(2)), . . .) is also BPS random.

Proof. The construction from the proof of Theorem 2.11 still applies; we only need to verify
that Vn is an FPSPACE test. To see this, just note that g(f(n)) is computable in space
bounded by p(n) for some polynomial p. From this, Vn is a PSPACE test.

We can also give a prefix-free characterization of BPS randomness, completely analogous
to the case of BP randomness.

Definition 3.17. A sequenceX ∈ {0, 1}ω is prefix-free BPS random if there does not exist a
prefix-free FPSPACE functionM and a PTIME function f such that CM (X ↾ f(c) ≤ f(c)−c
for all c.

Proposition 3.18. A real X is BPS random if and only if it is prefix-free BPS random.

Proof. The proof of Theorem 2.13 applies as is. The only change needed is to verify that
the algorithm for M can be carried out in polynomial space. This is proved using the same
kind of argument used for the proof of the (3)⇒ (1) case of Theorem 3.9.

The theorems on statistical tests also carry over to the setting of BPS random sets:

Theorem 3.19. Let X be a BPS random set. For any increasing primitive recursive
function f and any ǫ > 0, ∣∣∣∣

card(X ∩ [[f(n)]])

f(n)
−

1

2

∣∣∣∣ ≤ ǫ

for infinitely many n.

Proof. The proof is identical to the proof of Theorem 2.14. The fact that Un is a PSPACE
test follows from the fact that membership in Sn,ǫ is decidable in PSPACE for any fixed ǫ.
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Corollary 3.20. For any BPS random set X, if limn card(A∩ [[n]])/n exists, then it equals
1/2.

Theorem 3.21. Let ǫ > 0. Then there exists a BPS random set A in DSPACE(2ǫ(logn)
2
)

such that limn card(A ∩ [[n]])/n does not exist.

Proof. To construct such a set A, modify the proof of Theorem 3.15 by adding long strings
of 0’s and long strings of 1’s (in alternation) after satisfying each requirement. Then we can
make the density go arbitrarily low and then arbitrarily high infinitely often.

It is an immediate consequence of (the proof of) Theorem 3.21, that there are BPS
random reals which are not PSPACE random in the sense of Lutz [26]. To see this, note
that part 4 of example 2.10 of Ambos-Spies and Mayordomo [3] shows that PSPACE random
reals cannot have “exponential gaps”. For the same reason, it follows that there are BPS
random reals which are not PSR1-/PSR2-random in the sense of Ko [19], as Ko showed
that the relative frequencies of 0’s and 1’s in a PSR1-/PSR2-random real quickly converge
to 1/2.

The constructions of Section 2.5 carry over straightforwardly to BPS randomness. Since
we only use relative computation relative to 0/1 valued functions, the definitions of the
various forms of relative BPS randomness are completely straightforward. It is then easy to
prove the equivalence of the the Kolmogorov definition, the Martin-Löf definition, and the
martingale definition of relative randomness by the same constructions as used for Theorems
3.9 and 3.11. We leave the details to the reader. One direction of van Lambalgen’s theorem
also follows by the same proof as Theorem 2.22.

Theorem 3.22. For any reals A and B, if A is BPS random relative to B and B is BPS
random relative to A, then A⊕B is BPS random.

On the other hand, the sets A and B constructed in the proof of Theorem 2.23 are
certainly BPS random relative to each other, and clearly A⊕B is not BPS random. Thus,

Theorem 3.23. There are reals A and B such that A is BPS (even, BP) random relative
to B, and B is BPS (even, BP) random relative to A, but A⊕B is not BPS random.

4. Conclusions and future research

In this paper, we defined a robust notion of primitive recursive and PSPACE bounded
random reals in that both definitions could be framed in all three versions of algorithmically
random reals via measure, Kolmogorov complexity, or martingales. We view the work of
this paper as a possible model for defining algorithmically random reals relative to several
other classes of sub-computable functions. In future work, we will define similar notions
of bounded random reals for other classes of sub-computable functions such as elementary,
on-line, or exponential space.

Lutz [25, 26] proved a wide range of properties of PSPACE randomness. It would
be interesting to understand which of the properties of PSPACE randomness established
in [25, 26] apply also to BPS randomness. Lutz showed that P has measure 0 in EXPTIME.
This means that there is a single EXPTIME martingale which succeeds on every set in P. It
is an interesting question whether there can be a BPS martingale which succeeds on every
set in P.
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Kihara and Miyabe [18] defined a notion of uniform relativization for Kurtz randomness
for which van Lambalgen’s theorem holds. It would be interesting to investigate whether
their uniform relativization can be adapted to the setting of BP and BPS randomness.

A theory of algorithmic randomness for trees and effectively closed sets was developed
in a series of papers by Barmpalias, Brodhead, Cenzer, et al. [4, 5]. One can adapt our
definitions of primitive recursive bounded randomness to define similar notions of bounded
random trees and effectively closed sets for various classes of sub-computable functions.
This will appear in future papers.
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