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Abstract. We analyze the strength of Helly’s selection theorem (HST), which is the most
important compactness theorem on the space of functions of bounded variation (BV ). For
this we utilize a new representation of this space intermediate between L1 and the Sobolev
space W

1,1, compatible with the—so called—weak∗ topology on BV . We obtain that HST

is instance-wise equivalent to the Bolzano-Weierstraß principle over RCA0. With this HST

is equivalent to ACA0 over RCA0. A similar classification is obtained in the Weihrauch
lattice.

In this paper we investigate the space of functions of bounded variation (BV ) and
Helly’s selection theorem (HST) from the viewpoint of reverse mathematics and computable
analysis. Helly’s selection theorem is the most important compactness principle on BV . It
is used in analysis and optimization, see for instance [1, 3].

This continues our work in [10] and [12] where (instances of) the Bolzano-Weierstraß
principle and the Arzelà-Ascoli theorem were analyzed. There we showed, among others,
that an instance of the Arzelà-Ascoli theorem is equivalent to a suitable single instance of
the Bolzano-Weierstraß principle (for the unit interval [0, 1]), which, in turn, is equivalent
to an instance of WKL for Σ0

1-trees. Here, we will show that an instance of Helly’s selection
theorem is equivalent to a single instance of the Bolzano-Weierstraß principle (and with
this to an instance of the other principles mentioned above). It is a priori not clear that
this is possible since the proof of HST uses seemingly iterated application of the Arzelà-
Ascoli theorem and since there are compactness principles, which are instance-wise strictly
stronger than Bolzano-Weierstraß for [0, 1]. (For instance the Bolzano-Weierstraß principle
for weak compactness on ℓ2 has this property, see [11].) A fortori this shows that HST is
equivalent to ACA0 over RCA0.
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We represent BV as a weak derivative space in the style of Sobolev spaces. Our repre-
sentation differs from all previous treatments in computable analysis or constructive math-
ematics known to the author. Previously functions of bounded variation were regarded as
actual functions, whereas we only regard them as L1-functions. With this, they can be char-
acterized by the integral of absolute value of their weak derivative. This has the advantage
that it is closer to modern applications. Moreover, this allows one to easily define functions
of bounded variation not only on the real line but also on Rn, which is not possible with
the classical definition of bounded variation. We therefore believe that our representation
has also other applications in computable analysis.

This paper is organized as follows. In Section 1 we define the space BV , in Section 2 we
compare BV to other spaces and to other possible representations of functions of bounded
variation, and in Section 3 we analyze Helly’s selection theorem.

1. The space of functions of bounded variation

A countable vector space A over a countable field K consists of a set |A| ⊆ N and mappings
+: |A| × |A| −→ |A|, · : K × |A| −→ |A|, and a distinguished element 0 ∈ |A|, such that
A, +, ·, 0 satisfies the usual vector space axioms.

A (code for a) separable Banach space B consists of a countable vector space A over Q

together with a function ‖·‖ : A −→ R satisfying ‖q · a‖ = |q| · ‖a‖ and ‖a + b‖ ≤ ‖a‖ + ‖b‖
for all q ∈ Q, a, b ∈ A. A point in B is defined to be a sequence of elements (ak)k in A such
that ‖ak − ak+1‖ ≤ 2−k. Addition and multiplication on B are defined to be the continuous
extensions of +, · from A to B.

The space L1 := L1([0, 1]) will be represented by the Q-vector space of rational polyno-

mials Q[x] together with the norm ‖p‖1 :=
∫ 1

0 |p(x)| dx. Since the rational polynomials are
dense in the usual space L1, this defines (a space isomorphic to) the usually used space (prov-
ably in suitable higher-order system where the textbook definition of L1 can be formalized).
See Example II.10.4, Exercise IV.2.15 and Chapter X.1 in [18].

1.1. Bounded variation. The variation of a function f : [0, 1] −→ R is defined to be

V (f) := sup
0≤t1<···<tn≤1

n−1∑

i=1

|f(ti) − f(ti+1)| . (1.1)

For an L1-equivalence classes of functions f ∈ L1 the variation is defined to be the infimum
over all elements, i.e.,

VL1(f) := inf { V (g) | g : [0, 1] → R and g = f almost everywhere } . (1.2)

The subspace of all L1-functions of bounded variation form a subspace of L1 with the
following norm

‖f‖BV := ‖f‖1 + VL1(f).

However, it is not possible to code this space as a separable Banach space, as we did
for L1, since the variation V is difficult to compute (see Proposition 17 below) and since
this space is not separable in this norm. (To see this take for instance the characteristic
functions χ[0,u](x) of the intervals [0, u]. It is clear that these functions belong to BV . For
u, w ∈ [0, 1] with u 6= w the function χ[0,u] − χ[0,w] contains a bump of height 1, therefore
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‖χ[0,u] − χ[0,w]‖BV
≥ 2. Thus, these functions form a set of the size of the continuum which

cannot be approximated by countably many functions.)
We will define the space BV to be a subspace of L1.

Definition 1 (BV , RCA0). The space BV := BV ([0, 1]) is defined like the space L1([0, 1])
with the following exception. A point in BV is a sequence (pk)k ⊆ Q[x] together with a
rational number v ∈ Q, such that

• ‖pk − pk+1‖1 ≤ 2−k, and

•
∫ 1

0 |p′
k(x)| dx ≤ v.

The vector space operations are defined pointwise for pk and v. (For scalar multiplica-
tion one chooses a suitable rational upper bound for the new v.)

The parameter v will be called the bound on the variation of f .

This definition is justified by Propositions 7 and 9 below. For later use we will collect
the following lemma.

Lemma 2 (RCA0). Let (fn)n ⊆ BV be a sequence converging in L1 at a fixed rate to a
function f ∈ L1, i.e., ‖fn − f‖1 ≤ 2−n. If the bounds of variations vn for fn are uniformly
bounded by a v, then f ∈ BV .

Proof. Let (pn,k)k be the rational polynomials coding fn. One has ‖pk+1,k+1 − f‖1 ≤

‖pk+1,k+1 − fk+1‖1 + ‖fk+1 − f‖1 ≤ 2−k. Thus, (pk+1,k+1)k, v is a code for f in the sense
of Definition 1.

For working with functions of BV it will be handy to use mollifiers as defined below,
since one can use them to smoothly approximate characteristic functions without increasing
the variation.

Definition 3 (Mollifier, RCA0). Let

η(x) :=







c · exp
(

1
x2−1

)

if |x| < 1,

0 otherwise,
where c :=

(∫ 1

−1
exp

(
1

x2 − 1

)

dx

)−1

.

The function η is called a mollifier. It is easy to see that η is infinitely often differentiable
provably in RCA0. By definition

∫ 1
−1 η dx = 1.

Define ηǫ(x) := 1
ǫ
η
(

x
ǫ

)
. We have that the support of ηǫ is contained in B(0, ǫ) = {x ∈

R | |x| < ǫ} and that
∫ 1

−1 ηǫ dx = 1.

The integral of this mollifier can be used to smoothly approximate characteristic func-
tions of intervals. For instance

x 7−→

∫ x

−1
ηǫ

(

y − 1
4

)

− ηǫ

(

y − 3
4

)

dy (1.3)

approximates χ[ 1
4

, 3
4 ] in L1, see Figure 1. Since the approximating function does not oscillate,

the variation of it is not bigger that the variation of the approximated function.
The integral of such a mollifier x 7−→

∫ x
0 ηǫ(y − z) dy is contained in BV . To see this

let (qk)k ⊆ Q[x] be a sequence approximating ηǫ(x − z) in L1, i.e.

‖qk − ηǫ(x − z)‖1 ≤ 2−k.

Since ‖ηǫ(x − z)‖1 ≤ 1 we have that ‖qk‖ ≤ 2. Integrating qk we obtain a sequence of again

rational polynomials pk(x) =
∫ x

0 qk(y) dy. By definition ‖pk −
∫ x

0 ηǫ(y − z) dy‖1 ≤ 2−k.
Thus (pk)k, v = 2 is a code for the integral of the mollifier.
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(1.3) with ǫ = 0.2

(1.3) with ǫ = 0.1

1
4

3
4

x

Figure 1: Approximation of χ[ 1
4

, 3
4

].

Proposition 4 (WWKL0). Let f : [0, 1] −→ R be a continuous function. If the variation of
f is bounded, that means that there exists a v ∈ Q such that all sums in (1.1) are bounded
by v, then (the L1-equivalence class of) f belongs to BV .

For the proof of this proposition we will need the following notation and theorem from
[17]. A partition of [0, 1] is a finite set ∆ =

{

0 = x0 ≤ ξ1 ≤ x1 ≤ · · · ≤ ξn ≤ xn = 1
}

.
The mesh of ∆ is |∆| := max{xk − xk−1 | 1 ≤ k ≤ n}. The Riemann sum for ∆ is

S∆(f) :=
∑n

k=1 f(ξk)(xk − xk−1). The limit lim|∆|→0 S∆(f) =
∫ 1

0 f(x) dx is the Riemann
integral.

Definition 5. A function f is effectively integrable if there exists a h : N −→ N such that
for any partitions ∆1, ∆2 and n ∈ N,

|∆1| < 2−h(n) ∧ |∆2| < 2−h(n) →|S∆1(f) − S∆2(f)| < 2−n+1.

The function h is called modulus of integrability for f .

Theorem 6 (RCA0, [17]). The following are equivalent:

(1) WWKL0,
(2) Every bounded, continuous function on [0, 1] is effectively integrable.

Proof of Proposition 4. Since the variation of f is bounded, f is bounded. Therefore by
Theorem 6 the function f is effectively integrable. In particular, there exists a modulus of
integrability h.

Let fn be the following sequence of step functions approximating f .

fn(x) :=
∑

k
χ[k·2−h(n),(k+1)·2−h(n)) · f(k · 2−h(n)) where k is such that x ∈

[
k

2h(n) , k+1
2h(n)

)

Since fn is a finite sum of characteristic functions of intervals, it belongs to BV . The
variation of fn is obviously bounded by v. By definition ‖fn − fn+1‖1 < 2−n+1, thus (fn)n

converges in L1-norm to an f ∈ L1. By Lemma 2, f ∈ BV .

In the following we will use right continuous functions. Such a function f : [0, 1] −→ R

will be coded by a sequence of real numbers (xq)q∈Q index by rational numbers such that
the limit from the right

lim
qցx,q∈Q

xq =: f(x)

exists. This definition makes sense in ACA0.

Proposition 7 (ACA0). Let f : [0, 1] −→ R be a right continuous function. If the variation
of f is bounded as in Proposition 4 then (the L1-equivalence class of) f belongs to BV .
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Proof. We approximate f using the functions fn given by

fn(x) :=
∑

k
χ[k·2−n,(k+1)·2−n) · f(k · 2−n) where k is such that x ∈

[
k

2n , k+1
2n

)

Like in the proof of Proposition 4 the variation of fn is bounded by the variation v of f .
The values of fn(x) are included in [f(0) − v, f(0) + v]. The functions fn(x) converge to f
on all points of continuity of f . We claim that the points of discontinuity of f have measure
0. Indeed, consider the measurable set (in the sense of [18, Defintion X.1.12])

A :=
⋃

n∈N

⋂

k∈N

{

x
∣
∣
∣ max

(∣
∣
∣f(x − 2−k) − f(x)

∣
∣
∣ ,
∣
∣
∣f(x + 2−k) − f(x)

∣
∣
∣

)

> 2−n
}

︸ ︷︷ ︸

=:An

.

This formula describes the points of discontinuity of f . Consider the set An from above. If
for any n the set An would have positive measure then there exists 2n · v many points in
An which would contradict the boundedness of the variation. Thus each An has measure
0 and with this A. Therefore, we can apply the dominated convergence theorem (see [2,
Theorem 4.3]) and obtain that (fn)n converges in L1 to (the L1-equivalence class of) f and
by Lemma 2 then f ∈ BV .

Lemma 8 (RCA0). For a continuous function f : [0, 1] −→ R, such that |f ′(x)| is effectively

integrable, the variation V (f) is bounded by
∫ 1

0 |f ′(x)| dx.

Proof. For two points t1, t2 ∈ [0, 1] we can estimate

|f(t1) − f(t2)| =

∣
∣
∣
∣

∫ t2

t1

f ′(x) dx

∣
∣
∣
∣ ≤

∫ t2

t1

∣
∣f ′(x)

∣
∣ dx.

Therefore,

V (f) = sup
0≤t1<···<tn≤1

n−1∑

i=1

|f(ti) − f(ti+1)|

≤ sup
0≤t1<···<tn≤1

n−1∑

i=1

∫ ti+1

ti

∣
∣f ′(x)

∣
∣ dx ≤

∫ 1

0

∣
∣f ′(x)

∣
∣ dx.

Proposition 9 (ACA0). For each f ∈ BV there exists a right-continuous function g which
is almost everywhere equal to f and with V (g) < ∞, or in other words the infimum in (1.2)
is bounded.

Proof. Let (pk)k, v be a code for f . By the previous lemma V (pk) ≤ v.
By [18, Remark X.1.11] the polynomials (pk)k converge to a function g almost every-

where. To be precise there exists an ascending sequence of closed sets (Cf
n)n with measure

1 − 2−n such that (pk(x))k converges uniformly on Cf
n for each n. Let M :=

⋃

n Cf
n . It is

clear that (pk)k converges to g also in L1-norm.
The variation of g with ti in (1.1) restricted to be in M is, as the pointwise limit of pk,

also bounded by v.
To obtain the proposition the only thing left to show is how to extend g to a proper

function on the full unit interval. We claim that there exists a subsequence of (pkj
)
j

such

that (pkj
(x))

j
converges for all x ∈ Q ∩ [0, 1]. To obtain this subsequence note that

|pk(x)| ≤ ‖f‖1 + v =: v′. Let qi be an enumeration of Q ∩ [0, 1] and consider for each

k the point (pk(qi))i ∈ [−v′, v′]N. Now [−v′, v′]N is compact and ((pk(qi))i)k contains, by
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the Bolzano-Weierstraß principle, a convergent subsequence, which also satisfies the claim.
See Lemma III.2.5 and Theorem III.2.7 of [18].

Thus, we may assume that Q ∩ [0, 1] ⊆ M by passing to a subsequence of (pk). Then
let g+ be the right continuous extension of g, i.e.

g+(x) :=

{

g(x) if x ∈ M,

limyցx, y∈Q g(y) otherwise.

The limit in the second case exists by the boundedness of the variation of g. Suppose
that it does not exist then there would be an ǫ and an infinite sequence in M oscillating at
least ǫ at each step and, with this, the variation of g would be infinite.

The almost everywhere converging subsequence of (pk)k follows by Remark X.1.11 [18]
from WWKL. The set M is arithmetic and thus exists provably in ACA0. Also the extension
g+ of g can be build in using a routine application of the Bolzano-Weierstraß principle again
provable in ACA0.

Corollary 10 (Jordan decomposition, ACA0). For each function f ∈ BV coded by (pk)k, v
there exists a measurable set C such that f restricted to C is non-decreasing, that is,
lim inf p′

k(x) ≥ 0 for almost all x ∈ C, and f restricted to the complement of C is non-
increasing, that is, lim sup p′

k(x) ≤ 0.

Proof. Let g be the right-continuous function as in Proposition 9 and let C be the following
measurable set

C :=
⋂

m∈N

⋃

n∈N

⋂

k>n

{x | g(x) < g(x + 2−k) + 2−m}.

Since g has bounded variation the complement of C is almost everywhere equal to

[0, 1] \ C =
⋂

m∈N

⋃

n∈N

⋂

k>n

{x | g(x) > g(x + 2−k) − 2−m}.

The result follows.

Independently, the Jordan decomposition was investigated by Nies, Yokoama et al. in
[14].

2. Comparison to other spaces

2.1. Sobolev space W 1,1. Our motivation for representing the space BV in the way we
did in Definition 1 is that in this way BV lies between L1 and the Sobolev space W 1,1.
We believe that this is the right way to represent this space since BV is in practice almost
always used as an intermediate space between L1 and W 1,1.

Recall that the Sobolev space W 1,1 := W 1,1([0, 1]) is the coded separable Banach space
over the rational polynomials Q[x] together with the following norm

‖p‖W 1,1 := ‖p‖1 + ‖p′‖1.

From this definition it is obvious that W 1,1 is a subspace of BV .

Proposition 11 (RCA0). W 1,1 ⊆ BV ⊆ L1 and all of these inclusions are strict.
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Proof. The inclusions are clear. We show only the strictness. The function

f(x) :=

{

x · sin(1/x · 2π) if x > 0,

0 otherwise,

is continuous on [0, 1] and therefore contained in L1. However, it has unbounded variation
and therefore f /∈ BV . A characteristic function of a nontrivial interval, say χ[ 1

2
,1], is

contained in BV . It is not contained in W 1,1, because the derivative of χ[ 1
2

,1] would be

almost everywhere 0 and infinite at 1
2 , which is impossible.

2.2. BV as dual space. It is well known that the space BV is isomorphic to the dual
space of C([0, 1]), i.e. the space of uniformly continuous and linear functionals defined on
the continuous functions on [0, 1] with ‖·‖∞-norm. Before we can show this we will need
some more properties of mollifiers.

Definition 12 (Mollification of a function, RCA0). Let f : [0, 1] −→ R be a continuous,
effectively integrable function. We extend f to [−1, 2] by setting f(x) = f(1 − x) for x > 1
and f(x) = f(−x) for x < 0. We define the mollification of f to be

f ǫ(x) := (f ∗ ηǫ)(x) :=

∫ x+ǫ

x−ǫ
ηǫ(x − y)f(y) dy =

∫ ǫ

−ǫ
ηǫ(y)f(x − y) dy (2.1)

for x ∈ [0, 1] and 0 < ǫ ≤ 1.
For a function f ∈ L1 the mollification is defined in the same way. (The extension of f

can be defined pointwise for each (pk)k coding f .)

Proposition 13 (RCA0). Let f be as above.

(i) f ǫ is infinitely often differentiable.

(ii) If f is uniformly continuous, then f ǫ ǫ→0
−−→ f uniformly. If f has additionally a

modulus of uniform continuity then there exists a modulus of convergence for f ǫ ǫ→0
−−→

f .

Proof. (i): We show only that f ǫ differentiable.

f ǫ(x + h) − f ǫ(x)

h
=

1

ǫ

∫ 1

0

1

h

(

η

(
x + h − y

ǫ

)

− η

(
x − y

ǫ

))

f(y) dy

Now for h → 0 we have that 1
h

(

η
(x+h−y

ǫ

)
− η

(x−y
ǫ

))

converges uniformly in y to d
dx

η
(

x−y
ǫ

)

.

Therefore one can exchange integration and taking the limit of h and obtains that

d

dx
f ǫ(x) =

1

ǫ

∫ 1

0

d

dx

(
η(x − y)

)
· f(y) dy (2.2)

exists.
(ii):

|f ǫ(x) − f(x)| =

∣
∣
∣
∣

∫ x+ǫ

x−ǫ
ηǫ(x − y)(f(y) − f(x)) dy

∣
∣
∣
∣

≤ sup
y∈[x−ǫ,x+ǫ]

|f(y) − f(x)|
ǫ→0
−−→ 0 by uniform continuity.

Thus from a modulus of uniform continuity one can define a uniform modulus of convergence

of f ǫ(x)
ǫ→0
−−→ f(x).



8 A. P. KREUZER

For a code (pk)k, v for an f ∈ BV let T be the following linear functional defined on
all h ∈ C([0, 1]).

T (h) := lim
k→∞

∫ 1

0
h · p′

k dx (2.3)

Note that T will depend not only on the L1-class of f but also on the specific sequence of
rational polynomials. See Proposition 16 below. We can estimate

T (h) ≤ ‖h‖∞ · v.

Thus T is continuous and therefore in the dual C∗([0, 1]). It is clear that this is provable
in ACA0. (For a formal definition of bounded functionals and the dual space, see Defini-
tions II.10.5 and X.2.3 in [18].)

For the other direction let T : C([0, 1]) −→ R be a linear, continuous functional with
‖T ‖ ≤ v for some v ∈ R. We can continuously extend T to functions of the form χ(y,1] (and
linear combinations thereof) by approximating this function using the mollifier, cf. (1.3).
We claim that the function

m(y) := T (χ(y,1])

has bounded variation. Indeed for 0 ≤ t1 < · · · < tn ≤ 1 we have
n−1∑

i=1

|m(ti+1) − m(ti)| =
n−1∑

i=1

ei (m(ti+1) − m(ti)) for suitable ei ∈ {−1, 1}

= T

(
n−1∑

i=1

ei χ(ti,ti+1]

)

≤ v since the sum is bounded by 1.

It is clear that m is right continuous. Thus, by Proposition 7 we have m ∈ BV . Now let
h ∈ C([0, 1]) be a uniformly continuous function. The function h can be approximated in
‖·‖∞ by functions of the form

hn(x) := h

(
i

2n

)

if x ∈

[
i

2n
,
i + 1

2n

)

.

(A modulus of convergence can be defined from a modulus of uniform continuity of h.) Then

T (h) = T
(

lim
n→∞

hn

)

= lim
n→∞

T (hn)

= lim
n→∞

∑

i

[

h

(
i

2n

)

·

(

m

(
i + 1

2n

)

− m

(
i

2n

))]

(for a suitable choice of (pk)k converging pointwise at all q ∈ [0, 1] ∩ Q, see proof of Propo-
sition 9)

= lim
n→∞

lim
k→∞

∑

i

[

h

(
i

2n

)

·

(

pk

(
i + 1

2n

)

− pk

(
i

2n

))]

(by uniform convergence in n)

= lim
k→∞

lim
n→∞

∑

i

[

h

(
i

2n

)

·

(

pk

(
i + 1

2n

)

− pk

(
i

2n

))]

= lim
k→∞

∫ 1

0
h · p′

k dx.

These observations give rise to the following propositions.
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Proposition 14 (ACA0). Each (code of an) f ∈ BV induces a bounded linear functional
T ∈ C∗([0, 1]) given by (2.3).

Proposition 15 (ACA0). Each T ∈ C∗([0, 1]) is of the form (2.3) for a suitable (code of
an) f ∈ BV .

We just note that since h can be approximated by infinitely often differentiable functions
we may assume that it is differentiable. Then one can use integration by parts on (2.3) and
obtain that

T (h) = lim
k→∞

(

h(1)pk(1) − h(0)pk(0) −

∫ 1

0
h′ · pk dx

)

.

Under the assumption that h(0) = h(1) = 0—this is given for instance if h ∈ C0((0, 1)),
that is the space of all uniformly continuous functions with compact support included in
(0, 1)—we get

T (h) = − lim
k→∞

∫ 1

0
h′ · pk dx.

This value can be computed from ‖h′‖∞ since ‖pk − pk+1‖1 ≤ 2−k. Thus one obtains the
following.

Proposition 16 (RCA0). The functional T (h) as in (2.3) restricted to h ∈ C0((0, 1)) exists
and does only depend on the L1-equivalence class of f (and not on its code).

Or in other words, in this restricted case one does not need ACA0 to get Proposition 14.
The proposition below shows that ACA0 is in general necessary.

Proposition 17 (RCA0). The statement of Proposition 14 is equivalent to ACA0.
In fact, it suffices to know for each f ∈ BV the value ‖T ‖ or VL1(f) for T as in (2.3)

to obtain ACA0.

Proof. The right-to-left direction is Proposition 14. For the other direction consider the
Π0

1-statement (indexed by n)
∀i φ(n, i).

We show that we can build a set X with n ∈ X ↔ ∀i φ(n, i).
Let

fn,k(x) :=

{

1 − 2
∫ x

0 η2−i′
−1(y) dy if ∃i ≤ k φ(n, i) and i′ is minimal with φ(n, i′),

0 otherwise.

Since
∥
∥1 − 2

∫ x
0 η2−i′

−1(y) dy
∥
∥

1 < 2−i′−1 the sequence (fn,k)k forms a Cauchy-sequence with

rate 2−k for each n and the variation is bounded by 1. By Lemma 2 the limit of fn of
(fn,k)k is contained in BV .

Let Tn be the functional corresponding to fn as in (2.3). Since the function fn is the
constant 0 function if ∀i φ(n, i) is true and otherwise λx.1 − 2

∫ x
0 η2−i′

−1(y) dy for an i′ we
get that

Tn(λx.1) = 0 ↔ ∀i φ(n, i)

Tn(λx.1) = −1 ↔ ¬∀i φ(n, i)

Thus, one can read off the real number Tn(λx.1) whether ∀i φ(n, i) is true. To obtain the
second statement of the proposition for this particular n note that since Tn is non-increasing
‖Tn‖ = VL1(f) = −Tn(λx.1).
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To obtain the full result we use a standard Cantor-middle third set construction to
embed the Cantor space into the unit interval. See for instance the proof of Theorem IV.1.2

in [18]. Thus, let f(x) :=
∑∞

n=0
2fn(x)

3n and let T be the corresponding functional. Then
∀i φ(0, i) if true if −T (λx.1) ∈ [0, 1/3] and false if it is in [2/3, 1]. The statement for n = 1
is true if −T (λx.1) ∈ [0, 1/9] ∪ [2/3, 7/9] and false if it is in [2/9, 1/3] ∪ [8/9, 1] and so on.
From this one can easily construct the set X.

Remark 18 (Weak∗ topology). The space C∗([0, 1]) is a dual space and, with this, one can
define the weak∗ topology on it in the usual way. We say a sequence (Tn)n ⊆ C∗([0, 1])
converges to T in the weak∗ topology iff

Tn(h)
n→∞
−−−→ T (h) for all h ∈ C([0, 1]).

Since BV is isomorphic to C∗([0, 1]) this induces a topology on BV . However, in most cases
the following combination with the L1-topology is used. We say that a sequence of functions
(fn) ⊆ BV converges in the weak∗ topology to f iff fn

n→∞
−−−→ f in L1 and the functionals

corresponding to fn converge in weak∗ topology of C∗([0, 1]). See Definition 3.11 of [1].
One can show that for a sequence (fn)n and f in BV that if

− fn
n→∞
−−−→ f in L1 and

− the variation of (fn)n is uniformly bounded

then there exists a subsequence (fg(n))n converging in the weak∗ topology to f . See Propo-

sition 3.13 in [1].1

This leads to the following. The representation of BV as given in Definition 1 is
consistent with the weak∗ topology in the sense that if a sequence of representations (ri)i ⊆
NN converges in the Baire space then the sequence of represented elements fri

contains a
weak∗-converging subsequence. See also Lemma 2.

2.3. Other representations. In [4] Brattka proposes two different ways to represent ele-
ments of non-separable spaces. The first representation essentially codes an element f of
a space X as a sequence of countable objects plus the norm ‖f‖X . Whereas the second
representation just consists of the countable objects plus an upper bound v on the norm.
See also [8].

In the case of Definition 1 the countable objects are rational polynomials. The rep-
resentation we defined in Definition 1 is intermediate between those two representations
proposed by Brattka because we have an upper bound of the norm of an element f ∈ BV ,
i.e. ‖f‖BV ≤ v, and thus the second representation is reducible to our representation. How-
ever, we have f as full L1 object including its norm, thus our representation is stronger.

Alternatively, we could have added the value of the variation instead of merely an upper
bound to the representation of an element of BV . Since by Proposition 17 going from an
upper bound to right value of VL1 requires ACA0, this representation is too strong in general.

Other ways to represent functions of bounded variation are to take computable functions
with a computable variation, see [15], or as a computable function defined on a countable,
dense subset of [0, 1], see [13, 9]. The first approach is too restricted since very few functions

1Note that the theorem there is stated in a misleading way. The statement should actually read
“Proposition 3.13 Let (uh) ⊂ [BV (ω)]m. Then there exists a subsequence (uk(h)) converging to u in
[BV (ω)]m if (uh) is bounded in [BV (ω)]m and uh converges to u in [L1(ω)]m. If (uh) converges to u in
[BV (ω)]m then uh converges to u in [L1(ω)]m and is bounded in [BV (ω)]m.”
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of bounded variation are computable. The second approach is orthogonal to ours since it
defines points of functions, whereas we define the function in the L1-sense. This representa-
tion has been successfully used in algorithmic randomness, see [7, 16]. However we believe
that our approach is more natural since it fits nicely into the Sobolev spaces and easily
generalizes to functions defined in Rn, which is not the case for the pointwise definition.

3. Helly’s selection theorem

Theorem 19 (Helly’s selection theorem, HST, ACA0). Let (fn)n ⊆ BV be a sequence of
functions with bounds for variations vn. If

(i) ‖fn‖1 ≤ u for a u ∈ Q,
(ii) vn ≤ v for a v ∈ Q,

then there exists an f ∈ BV and a subsequence fg(n) such that fg(n)
n→∞
−−−→ f in L1 and the

variation of f is bounded by v.

The statement of this theorem will be abbreviated by HST.
Originally Helly’s selection theorem was formulated for usual functions and not L1-func-

tions. There usually (i) is replaced by the statement that |fn(x)| ≤ u′ for an x ∈ [0, 1] and a
bound u′. Note that this implies (i) since by (ii) with the bound u′ we have ‖fn‖∞ ≤ u′ + v
and with this also ‖fn‖1 ≤ u′ + v =: u.

For the proof of HST we will need the following lemma.

Lemma 20 (RCA0). Let f ∈ BV and let v be the bound of variation of f . The system
RCA0 proves that for each ǫ > 0 that

(i) f ǫ ∈ L1 exists, and that
(ii) ‖f ǫ − f‖1 ≤ 2ǫv.

Proof. Let (pk)k be the sequence of rational polynomials coding f . We have

‖f ǫ − (pk)ǫ‖1 =

∫ 1

0

∫ ǫ

−ǫ
ηǫ(y) (f(x − y) − pk(x − y)) dy dx

=

∫ ǫ

−ǫ
ηǫ(y)

∫ 1

0
(f(x − y) − pk(x − y)) dx dy by Fubini

≤ 2‖f − pk‖1

∫ ǫ

−ǫ
ηǫ(y) = 2‖f − pk‖1.

(The 2 in the above inequality comes from the possible reflection of f in the mollification
as we defined it.) It follows that (a 2−k+1-good approximation with rational polynomials
of) (pk+2)ǫ is a code for f ǫ ∈ L1.

For (ii) we have for any k

‖f ǫ − f‖1 ≤ ‖(pk)ǫ − pk‖1 + 2−k+2
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since ‖f − pk‖1 < 2−k and ‖f ǫ − pǫ
k‖1 < 2−k+1 by the above estimate. Further,

‖(pk)ǫ − pk‖1 =

∫ 1

0

∫ ǫ

−ǫ
ηǫ(y) · pk(x − y) dy − pk(x) dx

=

∫ 1

0

∫ ǫ

−ǫ
ηǫ(y) · (pk(x − y) − pk(x)) dy dx since

∫

ηǫ = 1

=

∫ 1

0

∫ 1

−1
η(y) · (pk(x − ǫy) − pk(x)) dy dx substituting y 7→ ǫy

since |pk(x − ǫy) − pk(x)| =
∣
∣
∣

∫ y
0

d
dy

pk(x − ǫy) dy
∣
∣
∣ = |ǫ

∫ y
0 p′

k(x − ǫy) dy| ≤ 2ǫ‖p′
k‖1 for y ∈

[−1, 1]

≤

∫ 1

0

∫ 1

−1
η(y) · 2ǫ‖p′

k‖1 dy dx = 2ǫ‖p′
k‖1 ≤ 2ǫv.

Proof of Theorem 19. For the mollifications f ǫ
n of fn we have by definition (2.1) that

‖f ǫ
n‖∞ ≤ ‖fn‖1 ‖ηǫ‖∞ ≤

u

ǫ
,

and by (2.2) that
∥
∥
∥(f ǫ

n)′
∥
∥
∥

∞
≤ ‖fn‖1 ‖η′

ǫ‖∞ ≤ u ‖η′
ǫ‖∞.

Thus, for each fixed ǫ the sequence (f ǫ
n)n is uniformly bounded and—by the uniform bound

on the derivative—equicontinuous. We instantiate ǫ with 2−i and obtain a sequence of

sequences of bounded, equicontinuous functions (f
(2−i)
n )n,i. By the previous lemma this

sequence is contained in L1 and converges as i → ∞ to fn.
By Proposition 21 below, a variant of the Arzelà-Ascoli theorem, there exists a subse-

quence g(n), such that for each k

∀j ≤ k ∀n, n′ ≥ k
∥
∥
∥f

(2−j)
g(n) − f

(2−j)
g(n′)

∥
∥
∥

∞
≤ 2−k.

Now for n, n′ ≥ k
∥
∥
∥fg(n) − fg(n′)

∥
∥
∥

1
≤

∥
∥
∥
∥f

(2−k)
g(n) − f

(2−k)
g(n′)

∥
∥
∥
∥

1
+

∥
∥
∥
∥fg(n) − f

(2−k)
g(n)

∥
∥
∥
∥

1
+

∥
∥
∥
∥fg(n′) − f

(2−k)
g(n′)

∥
∥
∥
∥

1

≤ 2−k + 2 · 2 · 2−kv.

Thus, fg(n) forms a L1-converging sequence with rate of convergence 2−k + 2−k+2v. Thus
lim fg(n) = f ∈ L1. By Lemma 2 we have that f ∈ BV .

The previous proof was inspired by [1, Theorem 3.23].

Proposition 21 (Diagonalized Arzelà-Ascoli, ACA0). Let fn,j : [0, 1] −→ R be a sequence
of sequences of functions. If for each j

(1) the sequence (fn,j)n is bounded by uj ∈ Q, and
(2) (fn,j)n is uniformly equicontinuous, i.e., there exists a modulus of uniform equicontinu-

ity φj(l), such that ∀l ∀n ∀x, y ∈ [0, 1]
(

|x − y| < 2−φj(l) → |fn,j(x) − fn,j(y)| < 2−l
)
,

then there exists a subsequence g(n) such that for all j the sequence fg(n),j converges uni-
formly in the sense that

∀k ∀j ≤ k ∀n, n′ ≥ k
∥
∥
∥fg(n),j − fg(n′),j

∥
∥
∥

∞
< 2−k. (3.1)
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Proof. By replacing fn,k with
fn,k

2un
+ 1

2 we may assume that the image of fn,k is contained

in the unit interval [0, 1].
In [12, Lemma 3, Corollary 4] we showed that an equicontinuous sequence of functions

hn : [0, 1] −→ [0, 1] converges uniformly iff hn converges pointwise on Q ∩ [0, 1], i.e., for an
enumeration q of Q∩ [0, 1] the sequence

(
(hn(q(i)))i

)

n
⊆ [0, 1]N converges in [0, 1]N with the

product norm d((xi), (yi)) =
∑

i 2−id(xi, yi). Moreover, from a rate of convergence and the
modulus of uniform equicontinuity one can calculate a rate of convergence of hn in ‖·‖∞.

With this the Arzelà-Ascoli theorem follows directly from an application of the Bolzano-
Weierstraß principle for the space [0, 1]N. For details see [12].

We can parallelize this process for fn,j by applying the Bolzano-Weierstraß principle

to the sequence
((

fn,j(q(i))
)

〈i,j〉

)

n
⊆ [0, 1]N. With this we obtain a subsequence g(n) such

that for each j we have
(
fg(n),j(q(i))

)

i
∈ [0, 1]N converges at a given rate for n → ∞. By

the above considerations we get that fg(n),j ∈ C([0, 1]) converges uniformly at a given rate
(depending in φj). By thinning out the sequence g(n) we get (3.1).

This proposition is provable in ACA0 since Bolzano-Weierstraß principle for the space
[0, 1]N is instance-wise equivalent to the Bolzano-Weierstraß principle for [0, 1] which is
provable in ACA0, see e.g. [12, 18].

We now come the reversal.

Theorem 22. Over RCA0, HST is equivalent to ACA0.

Proof. The right to left direction is simply Theorem 19. For the left-to-right direction we
will show that HST implies the Bolzano-Weierstraß principle (for [0, 1]) which is by [18,
Theorem III.2.2] equivalent to ACA0. Let (xn)n ⊆ [0, 1] be any sequence in the unit interval.
Let fn(x) := xn be the sequence of corresponding constant functions. It is clear that
fn ∈ BV and that ‖fn‖1 = xn. One easily verifies that for any limit f as given by HST the
value ‖f‖1 is a limit point of xn and thus a solution to BW.

The proofs of Theorem 19 and Theorem 22 actually give more information on the
strength of HST. It shows that for each instance of HST, that is for each sequence of
functions (fn)n ⊆ BV with a uniform bound of variation, one can compute uniformly a
sequence (xn)n ⊆ [0, 1], such that from any limit point of this sequence one can compute
a solution to HST for fn. By the proof of Theorem 22 the backward direction also holds.
This is summarized in the following corollary.

Corollary 23. The principles HST and BW are instance-wise equivalent, i.e., writing
HST((fn)) for HST restricted to (fn) and BW((xn)) for BW restricted to (xn), then we
have the following. There are codes for Turing machines e1, e2, such that

RCA0 ⊢ ∀X
(

BW({e1}X) → HST(X)
)

,

RCA0 ⊢ ∀X
(

HST({e2}X) → BW(X)
)

.

This corollary should be compared with Theorem 3.1 of [10], where it is shown that BW

is instance-wise equivalent to WKL for Σ0
1-trees, and Theorem 9 of [12], where it is shown

that BW is instance-wise equivalent to the Arzelà-Ascoli theorem.

Remark 24 (HSTweak). In [10] we also analyzed the following weaker variant BWweak of the
Bolzano-Weierstrass principle, which states that for each sequence (xn) ⊆ [0, 1] there is a
subsequence that converges but possibly without any computable rate of convergence. Since
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points are coded as sequences converging at the rate 2−k the existence of the limit point of
the sequence might not be provable. This principle is considerably weaker than BW. For
instance BWweak it does not imply ACA0 nor WKL0.

Replacing BW in the above proof immediately yields that BWweak is instance-wise equiv-
alent to the variant of HST which only states the existence of a converging subsequence.

3.1. HST in the Weihrauch lattice. Helly’s selection theorem can be formulated in the
Weihrauch lattice. The above proof yields also a classification in these terms. We refer the
reader to [5, 6] for an introduction to the Weihrauch lattice.

The functions of the space L1 can be represented by the rational polynomials closed
under the ‖·‖1-norm. We will call this representation δL1 . With this Helly’s selection
theorem is then a partial multifunction of the following type.

HST :⊆ (L1([0, 1]), δL1 )N ⇒ (L1([0, 1]), δL1 )

where dom(HST) =
{

(fn)
∣
∣
∣

∫ 1
0 |f ′

n| dx is uniformly bounded
}

. The derivative of f ′
n here is

taken in the sense of distributions. We chose this representation since it is customary in
the Weihrauch lattice not to add any additional information—like the uniform bound on
the variation—to the representation. However, we can easily recover this uniform bound by
searching for it. This can be done using the limit lim. Since v is not needed to build the

sequence of equicontinuous functions (f
(2−i)
n in the proof of Theorem 19) the bound of the

variation can be computed in parallel to the application of the diagonalized Arzelà-Ascoli
theorem (which follows from BWT[0,1]N) . Thus,we get

HST ≤W lim × BWT[0,1]N ≤W BWT[0,1]N ≡W BWTR.

Using the reversal we obtain in total HST ≡W BWTR.
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