
Logical Methods in Computer Science
Vol. 8(4:13)2012, pp. 1–71
www.lmcs-online.org

Submitted Nov. 8, 2011
Published Nov. 19, 2012

ADAPTABLE PROCESSES

MARIO BRAVETTI a, CINZIA DI GIUSTO b, JORGE A. PÉREZ c, AND GIANLUIGI ZAVATTARO d

a,d Laboratory Focus (University of Bologna/INRIA), Italy
e-mail address: bravetti@cs.unibo.it, zavattar@cs.unibo.it

b CEA, List, France
e-mail address: cinzia.digiusto@gmail.com

c CITI and Department of Computer Science, FCT New University of Lisbon, Portugal
e-mail address: japerezp@gmail.com

Abstract. We propose the concept of adaptable processes as a way of overcoming the
limitations that process calculi have for describing patterns of dynamic process evolution.
Such patterns rely on direct ways of controlling the behavior and location of running
processes, and so they are at the heart of the adaptation capabilities present in many
modern concurrent systems. Adaptable processes have a location and are sensible to
actions of dynamic update at runtime; this allows to express a wide range of evolvability
patterns for concurrent processes. We introduce a core calculus of adaptable processes
and propose two verification problems for them: bounded and eventual adaptation. While
the former ensures that the number of consecutive erroneous states that can be traversed
during a computation is bound by some given number k, the latter ensures that if the
system enters into a state with errors then a state without errors will be eventually reached.
We study the (un)decidability of these two problems in several variants of the calculus,
which result from considering dynamic and static topologies of adaptable processes as
well as different evolvability patterns. Rather than a specification language, our calculus
intends to be a basis for investigating the fundamental properties of evolvable processes
and for developing richer languages with evolvability capabilities.

1. Introduction

Process calculi aim at describing formally the behavior of concurrent systems. A leading
motivation in the development of process calculi has been properly capturing the dynamic
character of concurrent behavior. In fact, much of the success of the π-calculus [46] can be
fairly attributed to the way it departs from CCS [45] so as to describe mobile systems in
which communication topologies can change dynamically. Subsequent developments can be
explained similarly. For instance, the Ambient calculus [20] builds on π-calculus mobility
to describe the dynamics of interaction within boundaries and hierarchies, as required in
distributed systems. A commonality in these calculi is that the dynamic behavior of a

1998 ACM Subject Classification: D.2.4, F.3.1, F.3.2, F.4.3.
Key words and phrases: Process calculi, dynamic evolution, expressiveness and decidability, adaptation,

verification, evolvable processes.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-8(4:13)2012
c© M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro
CC© Creative Commons

1

http://creativecommons.org/about/licenses

system is realized through a number of local changes, usually formalized by reduction steps.
Indeed, while in the π-calculus mobility is enforced by the reconfiguration of individual
linkages in the communication topology, in the Ambient calculus spatial mobility is obtained
by individual modifications to the containment relations within the ambient hierarchy. This
way, the combined effect of a series of changes at a local level (links, containment relations)
suffices to explain dynamic behavior at the global (system) level.

There are, however, interesting forms of dynamic behavior that cannot be satisfactorily
described as a combination of local changes, in the above sense. These are behavioral pat-
terns which concern change at the process level (i.e., the process as a whole), and describe
process evolution along time. In general, forms of process evolvability are characterized by
an enhanced control/awareness over the current behavior and location of running processes.
Crucially, this increased control is central to the adaptation capabilities by which processes
modify their behavior in response to exceptional circumstances in their environment. As a
simple example, consider a scheduler in an operating system which manages the execution
of a set of processes. To specify the behavior of the scheduler, the processes, and their
evolution, we would need mechanisms for direct process manipulation, which appear hard
to represent in calculi enforcing local changes only. More precisely, it is not clear at all
how to represent the intermittent evolution of a process under the scheduler’s control: that
is, precise ways of describing that its behavior “disappears” (when the scheduler suspends
the process) and “appears” (when the scheduler resumes the process). Emerging applica-
tions and programming paradigms provide challenging examples of evolvable processes. In
workflow applications, we would like to be able to replace a running activity, suspend the
execution of a set of activities, or even suspend and relocate the whole workflow. Similarly,
in component-based systems we would like to reconfigure parts of a component, a whole
component, or groups of components. Also, we would like to specify the context-aware
policies that dynamically adapt the computational power of cloud computing applications.
At the heart of these applications we find forms of process evolution and adaptation which
appear very difficult (if not impossible) to express in existing process calculi.

A Core Calculus of Adaptable Processes. In an attempt to address these shortcom-
ings, this paper introduces the concept of adaptable processes. Adaptable processes have a
location and are sensible to actions of dynamic update at runtime. While locations are use-
ful to designate and structure processes into hierarchies, dynamic update actions implement
a sort of built-in adaptation mechanism. We illustrate this novel concept by introducing E ,
a core process calculus of adaptable processes. The E calculus arises as a variant of CCS
without restriction and relabeling, and extended with primitive notions of location and dy-
namic update. In E , a[P] denotes the adaptable process P located at a. Name a acts as a
transparent locality: P can evolve on its own but also interact freely with its environment.
Localities can be nested, and are sensible to interactions with update prefixes. An update
prefix ã{U} decrees the update of the adaptable process at a with the behavior defined by
U , a context with zero or more holes, denoted by •. The evolution of a[P] is realized by its
interaction with the update prefix ã{U}, which leads to the process obtained by replacing
every hole • in U by P , denoted U〈〈P 〉〉.

We consider several variants of E , obtained via two orthogonal characterizations. The
first one is structural, and defines static and dynamic topologies of adaptable processes. In a
static topology, the number of adaptable processes does not vary along the evolution of the
system: they cannot be destroyed nor new ones can appear. In contrast, in the more general

2

dynamic topology this restriction is lifted. We will use the subscripts s and d to denote the
variants of E with static and dynamic topologies, respectively. The second characterization
is behavioral, and concerns update patterns—the context U in an update prefix ã{U}. As
hinted at above, update patterns determine the behavior of running processes after an
update action. In order to account for different evolvability patterns, we consider three
kinds of update patterns, which determine three families of E calculi—denoted by the
superscripts 1, 2, and 3, respectively. The first update pattern admits all kinds of contexts,
and so it represents the most expressive form of update. In particular, holes • can appear
behind prefixes. The second update pattern forbids such guarded holes in contexts. In the
third update pattern we further require contexts to have exactly one hole, thus preserving
the current behavior (and possibly adding new behaviors): this is the most restrictive form
of update.

In our view, these variants capture a fairly ample spectrum of scenarios that arise in
the joint analysis of correctness and adaptation concerns in evolvable systems. They borrow
inspiration from existing programming languages, development frameworks, and component
models. The structural characterization follows the premise that while it is appealing to
define the runtime evolution of the structures underlying aggregations of behaviors, in some
scenarios it is also sensible to specify evolution and adaptation preserving such structures.
For instance, we would like software updates to preserve the main architecture of our operat-
ing system; conversely, an operating system could be designed to disallow runtime updates
that alter its basic organization in dangerous ways. A static topology is also consistent
with settings in which adaptable processes represent located resources, whose creation is
disallowed or comes with a cost (as in cloud computing scenarios). The behavioral char-
acterization is inspired in the (restricted) forms of reconfiguration and/or update available
in component models in which evolvability is specified in terms of patterns, such as SOFA
2 [34]. Update patterns are also related to functionalities present in programming languages
such as Erlang [1, 7] and in development frameworks such as the Windows Workflow Foun-
dation (WWF) [44]. In fact, forms of dynamic update behavior for workflow services in the
WWF include the possibility of replacing and removing service contracts (analogous to our
first and second update patterns) and also the addition of new service contracts and oper-
ations (as in our third update pattern, which preserves existing behavior and operations).

Verification of Adaptable Processes. Rather than a specification language, the E calcu-
lus intends to be a basis for investigating the fundamental properties of evolvable processes.
In this presentation, we study two verification problems associated to E processes and their
(un)decidability. They are defined in terms of standard observability predicates (barbs),
which indicate the presence of a designated error signal. We thus distinguish between cor-
rect states (i.e., states in which no error barbs are observable) and error states (i.e., states
exhibiting error barbs). The first verification problem, bounded adaptation (abbreviated
BA) ensures that, given a finite k, at most k consecutive error states can arise in computa-
tions of the system—including those reachable as a result of dynamic updates. The second
one, eventual adaptation (abbreviated EA), is similar but weaker: it ensures that if the
system enters into an error state then it will eventually reach a correct state. We believe
that BA and EA fit well in the kind of correctness analysis that is required in a number of
emerging applications. For instance, on the provider side of a cloud computing application,
these properties allow to check whether a client is able to assemble faulty systems via the
aggregation of the provided services and the possible subsequent updates. On the client

3

Ed – Dynamic Topology Es – Static Topology

E1 BA undec / EA undec BA undec / EA undec
E2 BA dec / EA undec BA dec / EA undec
E3 BA dec / EA undec BA dec / EA dec

Table 1: Summary of (un)decidability results for dialects of E .

side, it is possible to carry out forms of traceability analysis, so as to prove that if the system
exhibits an incorrect behavior, then it follows from a bug in the provider’s infrastructure
and not from the initial aggregation and dynamic updates provided by the client.

In addition to error occurrence, the correctness of adaptable processes must consider
the fact that the number of modifications (i.e. update actions) that can be applied to the
system is typically unknown. For this reason, we consider BA and EA in conjunction with
the notion of cluster of adaptable processes. Given a system P and a set M of possible
updates that can be applied to it at runtime, its associated cluster considers P together
with an arbitrary number of instances of the updates in M . This way, a cluster formalizes
adaptation and correctness properties of an initial system configuration (represented by an
aggregation of adaptable processes) in the presence of arbitrarily many sources of update
actions. For instance, in a cloud computing scenario the notion of cluster captures the cloud
application as initially deployed by the client along with the options offered by the provider
for its evolution at runtime.

Contributions. The main technical results of the paper are summarized in Table 1. The
calculus E1 is shown to be Turing complete, and both BA and EA are shown to be undecidable
for E1 processes. The Turing completeness of E1 says much on the expressive power of update
actions. In fact, it is known that fragments of CCS without restriction can be translated
into finite Petri nets (see, e.g., the discussion in [17]), and so they are not Turing complete.
Update actions in E thus allow to “jump” from finite Petri nets to a Turing complete model.
We then show that in E2 BA is decidable, while EA remains undecidable. Interestingly, EA
is already undecidable in E3d , while it is decidable in E3s .

We now comment on the proof techniques. The decidability of EA in E3s is proved by
resorting to Petri nets: EA is reduced to a problem on Petri nets that we call infinite visits
which, in turn, can be reduced to place boundedness—a decidable problem for Petri nets.
For the decidability of BA we appeal to the theory of well-structured transition systems
[30, 2] and its associated results. In our case, such a theory must be coupled with Kruskal’s
theorem [39] (which allows to deal with terms whose syntactical tree structure has an un-
bounded depth), and with the calculation of the predecessors of target terms in the context
of trees with unbounded depth (which is necessary in order to deal with arbitrary aggrega-
tions and dynamic updates that may generate new adaptable processes). This combination
of techniques proved to be very challenging. In particular, the technique is more complex
than the one given in [3], which relies on a bound on the depth of trees, or the one in [63],
where only topologies with bounded paths are taken into account. Kruskal’s theorem is also
used in [17] for studying the decidability properties of calculi with exceptions and compen-
sations. The calculi considered in [17] are first-order ; in contrast, E can be considered as a
higher-order process calculus (see Section 9).

4

The undecidability results are obtained via encodings of Minsky machines [47], a well-
known Turing complete model. In particular, the encodings that we provide for showing
undecidability of EA in E2 and E3d do not reproduce faithfully the corresponding machine,
but only finitely many steps are wrongly simulated. Similar techniques have been used to
prove the undecidability of repeated coverability in reset Petri nets [28], but in our case their
application revealed much more complex; this is particularly true for the case of E3d where
there is no native mechanism for removing an arbitrary amount of processes. Moreover,
as in a cluster there is no a-priori knowledge of the number of modifications that will be
applied to the system, we need to perform a parametric analysis. Parametric verification
has been studied, e.g., in the context of broadcast protocols in both fully connected [29]
and ad-hoc networks [26]. Differently from [29, 26], in which the number of nodes (or the
topology) of the network is unknown, we consider systems in which there is a known part
(the initial system P), and there is another part composed of an unknown number of process
instances (taken from M , the set of possible modifications).

Summing up, in the present paper we make the following contributions:

(1) We introduce E , a core calculus of adaptable processes. E allows to express a wide range
of patterns of process evolution and runtime adaptation. By means of structural and
behavioral characterizations, we identify different meaningful variants of the language.
We are not aware of other process calculi tailored to the joint representation of evolution
and adaptation concerns in concurrent systems.

(2) We introduce bounded and eventual adaptation—two correctness properties for adapt-
able processes—and study their (un)decidability in each of the variants of E . We do so
by considering systems as part of clusters which define their evolvability along time. To
the best of our knowledge, ours is the first study of the (un)decidability of adaptation
properties for dynamically evolvable processes.

This paper is an extended, revised version of the conference paper [14]. In addition to
provide full details of the technical results, here we thoroughly develop the structural and
behavioral characterizations of adaptable processes. This way, we present a unified treat-
ment of the distinction between the static and dynamic topologies of adaptable processes,
as well as of the three different update patterns. These ideas were treated only partially
in [14], where the family E2 was called E−. In particular, new results not presented in [14]
include the relationship between static and dynamic topologies (Section 2.3) and the decid-
ability of EA in E3s by resorting to Petri nets (Section 5.3). Moreover, several examples and
extended discussions are included. Section 9.1 is based on the short paper [15].

Structure of the document. The rest of this paper is structured as follows. The E calcu-
lus, its different variants, and several associated results are presented in Section 2. The two
verification problems are defined in Section 3. Section 4 presents extended examples of mod-
eling in E , in several emerging applications. Section 5 collects basic definitions and results
on Minsky machines, well-structured transition systems, and Petri nets. (Un)decidability
results for E1, E2, and E3 are detailed in Sections 6, 7, and 8, respectively. Section 9 presents
some additional discussions, and reviews some related works. Section 10 concludes. While
proofs of the main results are included in the main text, technical details for some other
results (most notably, correctness proofs for the encodings) are collected in the Appendix.

5

2. A Calculus of Adaptable Processes

We begin by presenting the E calculus and its different variants. Then, we introduce the
operational semantics of the calculus, and establish the relationship between static and
dynamic topologies of adaptable processes.

2.1. Syntax. The E calculus is a variant of CCS [45] without restriction and relabeling, and
extended with constructs for evolvability. As in CCS, in E processes can perform actions
or synchronize on them. We presuppose a countable set N of names, ranged over by a, b,

possibly decorated as a, b . . . and ã, b̃ As customary, we use a and a to denote atomic
input and output actions, respectively. The syntax of E processes extends that of CCS with
primitive notions of adaptable processes a[P] and update prefixes ã{U}:

P ::= a[P] | P ‖ P |
∑
i∈I

πi.Pi | !π.P π ::= a | a | ã{U}

Above, the U in the update prefix ã{U} is an update pattern: it represents a context, i.e.,
a process with zero or more holes (see Definition 2.1 below). The intention is that when
an update prefix is able to interact, the current state of an adaptable process named a is
used to fill the holes in the update pattern U . Given a process P , process a[P] denotes the
adaptable process P located at a. Notice that a acts as a transparent locality: process P can
evolve on its own, and interact freely with external processes. Localities can be nested, so as
to form suitable hierarchies of adaptable processes. The rest of the syntax follows standard
lines. A process π.P performs prefix π and then behaves as P . Parallel composition P ‖ Q
decrees the concurrent execution of P and Q. We abbreviate P1 ‖ · · · ‖ Pn as

∏n
i=1 Pi,

and use
∏k P to denote the parallel composition of k instances of process P . Given an

index set I = {1, . . , n}, the guarded sum
∑

i∈I πi.Pi represents an exclusive choice over
π1.P1, . . . , πn.Pn. As usual, we write π1.P1 + π2.P2 if |I| = 2, and 0 if I is empty. Process
!π.P defines guarded replication, i.e., infinitely many occurrences of P in parallel, which
are triggered by prefix π.

We now define a general way of extending the grammar of process languages with
holes, so as to define update patterns. Intuitively, we extend rule productions with a
hole (denoted •), distinguishing between rule productions for process expressions (so-called
process categories) from the rest. In particular, we would like to avoid adding holes to rule
productions for prefixes (i.e., productions for π in the syntax).

Definition 2.1. Given a process category E, we denote with E• the process category with
rule productions obtained from those of E by:

(1) adding a new rule “E• ::= •”;
(2) replacing every rule “E ::= term” of E with a rule “E• ::= term•”, where “term•” is

obtained from “term” by syntactically replacing all process categories F occurring in
“term” by F•.

Given an update pattern U and a process Q, we define U〈〈Q〉〉 as the process obtained by
filling in those holes in U not occurring inside update prefixes with Q.

6

Definition 2.2. The effect of replacing the holes in an update pattern U with a process
Q, denoted U〈〈Q〉〉, is defined inductively on U as follows:

• 〈〈Q〉〉 = Q (U1 ‖ U2)〈〈Q〉〉 = U1 〈〈Q〉〉 ‖ U2 〈〈Q〉〉

a[U]〈〈Q〉〉 = a[U〈〈Q〉〉]
(∑

i∈I
πi.Ui

)
〈〈Q〉〉 =

∑
i∈I

πi.Ui 〈〈Q〉〉

(!π.U)〈〈Q〉〉 = !π. (U〈〈Q〉〉)

This way, {·} can be intuitively seen as a scope delimiter for holes • in ã{U}. Indeed, it
is worth observing that Definition 2.2 does not replace holes inside prefixes; this ensures a
consistent treatment of nested update actions.

We now move on to consider different variants of this basic syntax by means of two
different characterizations.

2.1.1. A Structural Characterization of Update. As anticipated in the Introduction, our
structural characterization of update in E defines two families of languages, namely E with
dynamic topology (denoted Ed) and E with static topology (denoted Es). Here, “dynamic”
refers to the ability of creating and deleting new adaptable processes, something allowed in
languages in Ed but not in those in Es. The definition of Ed and Es is parametric on update
patterns U.

Definition 2.3 (Dynamic E – Ed). The class of E processes with dynamic topology (Ed) is
described by the following grammar:

P ::= a[P] | P ‖ P | !π.P |
∑
i∈I

πi.Pi π ::= a | a | ã{U}

where U ::= P•, as in Definition 2.1.

The definition of Es makes use of two distinct process categories: P and A. Intuitively,
P correspond to processes defining the (static) topology of adaptable processes; these are
populated by terms A, which do not include subprocesses of the kind a[Q].

Definition 2.4 (Static E – Es). The class of E processes with static topology (Es) is de-
scribed by the following grammar:

P ::= a[P] | P ‖ P | A
A ::= A ‖ A | !π.A |

∑
i∈I πi.Ai π ::= a | a | ã{a[U] ‖ A}

where the syntax U ::= P•, as in Definition 2.1, considering both P and A as process
categories.

Definition 2.4 relies on syntactic restrictions to ensure that the nesting structure of
adaptable processes in Es remains invariant. The first restriction (i.e., no adaptable process
is removed) is manifest in update prefixes, which are always of the form a[U] ‖ A; this forces
the recreation of the adaptable process a after every update, thus maintaining the static
structure of adaptable processes invariant. For the same reason, holes can only occur inside
the recreated adaptable process: this way, processes cannot be relocated outside a[U]. The
second restriction (i.e., no adaptable process is created) appears in the definition of A, which
decrees that no new adaptable processes occur behind a prefix. As we will discuss below, the
operational semantics ensures that these syntactic restrictions are preserved along process
execution.

7

Remark 2.5. Observe that every Es process is, from a syntactic point of view, also an
Ed process. In fact, the update pattern U = a[U ′] ‖ A is a particular case of the possible
update patterns for Ed processes. The correspondence between processes in Es and Ed from
the point of view of their operational semantics will be made more precise by Lemma 2.18.

2.1.2. A Behavioral Characterization of Update. We now move on to consider three concrete
instances of update patterns U and their associated variants of Ed and Es.

Definition 2.6 (Update Patterns). We shall consider the following three instances of up-
date patterns for Es and Ed:
(1) Full E (E1d and E1s). The first update pattern admits all kinds of contexts for update

prefixes, i.e., U ::= P•. These variants, corresponding to the above Ed and Es, are
denoted also with E1d and E1s , respectively.

(2) Unguarded E (E2d and E2s). In the second update pattern, holes cannot occur in the
scope of prefixes in U :

U ::= P | a[U] | U ‖ U | •
The variants of Ed and Es that adopt this update pattern are denoted E2d and E2s ,
respectively.

(3) Preserving E (E3d and E3s). In the third update pattern, the current state of the
adaptable process is always preserved. Hence, it is only possible to add new adaptable
processes and/or behaviors in parallel or to relocate it:

U ::= a[U] | U ‖ P | •
The variants of Ed and Es that adopt this update pattern are denoted E3d and E3s ,
respectively.

2.2. Semantics. The semantics of E processes is given in terms of a Labeled Transition
System (LTS). We introduce some auxiliary definitions first.

Definition 2.7. Structural congruence is the smallest congruence relation generated by the
following laws: P ‖ Q ≡ Q ‖ P ; P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R.

Definition 2.8 (Normal Form). An E process P is said to be in normal form iff

P =
m∏
i=1

Pi ‖
n∏
j=1

aj [P
′
j]

where, for i ∈ {1, . . . ,m}, Pi is not in the form Q ‖ Q′ or a[Q], and, for all j ∈ {1, . . . , n},
P ′j is in normal form. Note that if m = 0 then the normal form is simply P =

∏n
j=1 aj [P

′
j];

similarly, if n = 0 then the normal form is P =
∏m
i=1 Pi.

Lemma 2.9. Every E process is structurally congruent to a process in normal form.

8

ε

b a

c

St(S)

ε

d

St(S)

Figure 1: Containment structure denotation for P = P1 ‖ b[P2] ‖ a[P3 ‖ c[S]] and R = P1 ‖
d[S], as in Example 2.11.

We now define the containment structure denotation of a process. Intuitively, it captures
the tree-like structure induced by the nesting of adaptable processes.

Definition 2.10 (Containment Structure). Let P =
∏m
i=1 Pi ‖

∏n
j=1 aj [P

′
j] be an E process

in normal form. The containment structure denotation of P , denoted St(P), is built as
follows. The root is labeled ε, and has n children: the subtrees recursively built from
processes P ′1, . . . , P

′
n with roots labeled a1, . . . , an (instead of ε), respectively. When n = 1,

we say that the containment structure St(P) is single-child.

Example 2.11. Consider the processes P , Q, and R defined as

P = P1 ‖ b[P2] ‖ a[P3 ‖ c[S]] Q = a.P2 ‖ b[P3] ‖ a[c[S]] R = P1 ‖ d[S]

where P1, P2, P3 do not contain adaptable processes. Then, P and Q have the same con-
tainment structure denotation; it is depicted in Figure 1 (left). As for R, the containment
structure denotation St(R), that is single-child, is depicted in Figure 1 (right).

Given an update pattern U , the following two definitions on Es processes indicate the
number of holes and adaptable processes which syntactically occur in U , respectively. In
both cases, we do not consider occurrences inside nested update prefixes.

Definition 2.12. Let U denote an Es update pattern or an Es process. The number of
adaptable processes which occur in U , denoted |U |ap, is inductively defined as follows:

| • |ap = 0 |U1 ‖ U2|ap = |U1|ap + |U2|ap |!π.U |ap = 0

|a[U]|ap = 1 + |U |ap |
∑
i∈I

πi.Ui|ap = 0

Notice that in the above definition, as we are considering Es processes, the number of
adaptable processes after a prefix is necessarily 0.

Definition 2.13. Let U be an Es update pattern. The number of holes which occur in U ,
denoted |U |•, is inductively defined as follows:

| • |• = 1 |U1 ‖ U2|• = |U1|• + |U2|• |!π.U |• = |U |•
|a[U]|• = |U |• |

∑
i∈I

πi.Ui|• =
∑
i∈I
|Ui |•

The following auxiliary notation will be useful to formalize the properties of Es processes
along reductions.

9

(Comp)

a[P]
a[P]−−−−→ ?

(Sum)∑
i∈I

πi.Pi
πj−−→ Pj (j ∈ I)

(Repl)

!π.P
π−−→ P ‖ !π.P

(Loc)

P
α−−→ P ′

a[P]
α−−→ a[P ′]

(Act1)

P1
α−−→ P ′1

P1 ‖ P2
α−−→ P ′1 ‖ P2

(Tau1)

P1
a−−→ P ′1 P2

a−−→ P ′2

P1 ‖ P2
τ−−→ P ′1 ‖ P ′2

(Tau3)

P1
a[Q]−−−−→ P ′1 P2

ã{U}−−−−→ P ′2 cond(U,Q)

P1 ‖ P2
τ−−→ P ′1{U〈〈Q〉〉/?} ‖ P ′2

Figure 2: LTS for Es and Ed. Rules (Act2), (Tau2), and (Tau4)—the symmetric coun-
terparts of (Act1), (Tau1), and (Tau3)—have been omitted.

Definition 2.14. Let U be an Es update pattern. The number of prefixed holes occurring
in U , denoted |U |ph, is inductively defined as follows:

| • |ph = 0 |a[U]|ph = |U |ph |U1 ‖ U2|ph = |U1|ph + |U2|ph
|
∑
i∈I

πi.Ui|ph =
∑
i∈I
|Ui|• |!π.U |ph = |U |•

Example 2.15. Let P and U be an Es process and an Es update pattern defined as

P = a
[
b[Q1] ‖ P1

]
‖ ã
{
U
}

.P2 U = b. d̃{• ‖ U1}. 0 ‖ b[a. • ‖ •]
Then we have:

• |P |ap = 2 + |Q1|ap + |P1|ap + 0 and |U |ap = 1

• |U |• = 2 and |U |ph = 1.

We are now ready to define an LTS semantics for Es and another one for Ed. Both LTSs
are generated by the set of rules in Figure 2; they only differ on a condition associated to
update actions. This is the content of the following definition.

Definition 2.16 (LTS for Ed and Es). Given transition labels

α ::= a | a | a[P] | ã{U} | τ

the LTS for Ed, denoted
α−−→d, is defined by the rules in Figure 2 in which, in rules (Tau3)

and (Tau4), we decree cond(U,Q)=true.

Similarly, the LTS for Es, denoted
α−−→s, is defined by the rules in Figure 2 in which, in

rules (Tau3) and (Tau4), we decree that cond(U,Q) holds if we have:

(1) St(a[Q]) = St(a[U ′〈〈Q〉〉] ‖ A) where U = a[U ′] ‖ A, for some U ′, A, and
(2) |U |ph > 0⇒ |Q|ap = 0.

Remark 2.17. The LTS for Es and Ed are finitely branching. The proof proceeds by
induction on the syntactic structure of terms; the base cases are

∑
i∈I πi.Ui and !π.U .

We give intuitions on both LTSs. In addition to the standard CCS actions (input,
output, τ), we consider two complementary actions for process update: ã{U} and a[P].
The former represents the availability of an update pattern U for the adaptable process at

10

a; the latter expresses the fact that the adaptable process at a, with current state P , is

ready to update. We often write
α−−→ instead of

α−−→d and
α−−→s; the actual LTS used in

each case will be clear from the context. Similarly, we define −→ as
τ−−→.

In Figure 2, rule (Comp) represents the contribution of a process at a in an update
operation; we use ? to denote a unique placeholder. Rule (Loc) formalizes transparency
of localities. Rules (Sum), (Repl), (Act1), and (Tau1) are standard. Rule (Tau3)
formalizes process evolvability. To realize the evolution of an adaptable process at a, it
requires: (i) a process Q—which represents its current state; (ii) an update action offering
an update pattern U for updating the process at a—which is represented in P ′1 by ? (cf. rule
(Comp)); (iii) that cond(U,Q) holds (cf. Definition 2.16). As a result, ? in P ′1 is replaced
with process U〈〈Q〉〉 (cf. Definition 2.2).

It is useful to elaborate on the definition of cond(U,Q)—the only point in which the
LTS of Ed and that of Es differ. While cond(U,Q) does not have influence on the update
actions of Ed processes, it does ensure that the syntactic restrictions associated to Es pro-
cesses are preserved along transitions. As specified in Definition 2.16, the condition for Es
processes is given in two parts. The first part ensures that the current structure of nested
adaptable processes—the containment structure denotation from a[Q]—is preserved once
Q is substituted into U as a result of the transition. The second part of the condition en-
sures that no new adaptable processes will appear behind prefixes as a result of the update
operation. Recall that by the syntactic restrictions enforced by Definition 2.4, adaptable
processes cannot occur behind prefixes. In fact, and using the terminology introduced in
that definition, the syntax of Es decrees that only processes in process category A (which
do not contain adaptable processes) can occur behind prefixes. The second part of the con-
dition ensures precisely this. As a simple example, this part of the condition rules out the

synchronization of adaptable process b[a[0]] with update prefix b̃{b[a[b. •]]}.Q, as it would
lead to the non static process b[a[b. a[0]]] ‖ Q.

By considering the syntactic restrictions associated to Es processes, the following lemma
characterizes the conditions under which cond(U0, Q) holds for them.

Lemma 2.18. Let Q and U0 = a[U] ‖ A be an Es process and an Es update pattern,
respectively. Also, let A be as in Definition 2.4. We have

St(a[Q]) = St(a[U〈〈Q〉〉] ‖ A) ∧ (|U |ph > 0⇒ |Q|ap = 0) (2.1)

if and only if one of the following holds:

(0) |U |• = 0 ∧ St(Q) = St(U).
(1) |U |• = 1 ∧ |U |ap = 0 ∧ (|U |ph > 0⇒ |Q|ap = 0)

(2) |U |• > 1 ∧ |U |ap = 0 ∧ |Q|ap = 0.

Proof. The “if” direction is straightforward by observing that by definition |A|ap = 0.

Therefore, (2.1) reduces to

St(Q) = St(U〈〈Q〉〉) ∧ (|U |ph > 0⇒ |Q|ap = 0)

and the analysis focuses on the structure of U . Hence if |U |• = 0 then immediately from (2.1)
we have St(Q) = St(U). If |U |• = 1 then as St(Q) = St(U〈〈Q〉〉) we have that |U |ap = 0

and from the second part of (2.1) we conclude (|U |ph > 0⇒ |Q|ap = 0). Finally, if |U |• > 1

following from St(Q) = St(U〈〈Q〉〉) we conclude |U |ap = 0 and |Q|ap = 0.
As for the ”only if” direction, we consider each item separately:

11

• Item (0): Then Q occurs exactly once only at the left-hand side of the desired equality.
Using the first part of the item (i.e., |U |• = 0) we infer that U〈〈Q〉〉 = U . Since by
definition |A|ap = 0, we have that the second part of the item (i.e., St(Q) = St(U)) is

enough to obtain St(a[Q]) = St(a[U] ‖ A), as wanted.
• Item (1): Then Q occurs exactly once in both sides of the desired equality. The second

part of the item (i.e., |U |ap = 0) guarantees that U〈〈Q〉〉 does not involve any adaptable
processes different from those in Q. The third condition ensures that no adaptable pro-
cesses occur behind prefixes: if Q has adaptable processes then it should necessarily occur
at the top level in U〈〈Q〉〉. Hence, the thesis follows.
• Item (2): Then Q occurs exactly once in the right-hand side of the equality, and arbitrarily

many times in the left-hand side. The second part of the condition, on the number of
adaptable processes in U , follows the same motivations as in the previous case. Given
the possibility of arbitrarily many occurrences of Q in the left-hand side, the only option
to ensure identical containment structure denotations in both sides is to forbid adaptable
processes inside Q, hence the third part of the condition.

The following lemma is standard:

Lemma 2.19. Let P be an E process. Structural congruence is preserved by reduction: if
P ≡ Q and P −→ P ′, then also Q −→ Q′ for some P ′ ≡ Q′.

The following lemma states that Es processes are closed under reduction. Hence, the
operational semantics of Es preserves the syntactic conditions of Definition 2.4.

Lemma 2.20 (Static topologies are preserved by reduction). Let P be an Es process. If
P −→ P ′ then also P ′ is an Es process. Moreover, St(P) = St(P ′).

Proof. By induction on the derivation of P
τ−−→ P ′. See Appendix A.1, Page 52.

2.3. From Static to Dynamic Topologies. We have already remarked that from a syn-
tactic point of view every Es process is also an Ed process. As far as the operational semantics
is concerned, an Es process could have less possible computations due to the additional con-
straint cond(U,Q) of the rules (Tau3) and (Tau4). Nevertheless, in this section we show
that it is always possible to translate a process with static topology into a process with
dynamic topology which has the same semantics (the two LTSs are isomorphic). More
precisely, we will define an encoding J·KdS : Es → Ed such that the following holds:

P −→s P
′ if and only if JP KdS −→d JP ′KdS

We start by presenting some auxiliary definitions.

Definition 2.21. Let P be an Es process. We define the set

SubSt(P) = {St(a[P ′]) | a[P ′] is a subterm of P}

Hence, SubSt(P) is a set of trees: it contains the containment structure denotations of
the adaptable processes occurring in P . Notice that by construction SubSt(P) is a set of
single-child containment structure denotations.

Example 2.22. Let P be as in Example 2.11. Then, we have

SubSt(P) = {St(a[P3 ‖ c[S]]), St(b[P2]), St(c[S])} ∪ SubSt(S)

12

Convention 2.23. Below P and a stand for an Es process and a name, respectively.

• Let S be a set of containment structure denotations. We write S ↓ a to represent the
subset of single-child containment structure denotations of S in which the label of the
only child of the root is a.
• We assume an injective function ϕ that associates containment structure denotations to

names in N . We use κ, κ′, . . . to range over the codomain of ϕ. Moreover, for every
P such that |P |ap = 0, we fix ϕ(St(a[P])) = κa. The definition of ϕ extends to sets

of containment structure denotations as expected; this way, e.g., ϕ(S ↓ a) stands for
the set of names associated to those single-child containment structure denotations in S
with label a. With a slight abuse of notation, we sometimes write ϕ(a[P]) instead of
ϕ(St(a[P])).

We are now ready to present the definition of J·KdS .

Definition 2.24. Adopting the notations in Convention 2.23, let P and U be an Es process
and an Es update pattern, respectively. Also, let S be a set of containment structure
denotations such that SubSt(P) ⊆ S. Moreover, assume err /∈ ϕ(S). The encoding of P into
an Ed process over N , denoted JP KdS , is inductively defined in Figure 3, where

• C1 stands for |U |• = 0;
• C2 stands for (|U |• = 1 ∧ |U |ph > 0 ∧ |U |ap = 0) ∨ (|U |• > 1 ∧ |U |ap = 0);

• C3 stands for |U |• = 1 ∧ |U |ph = 0 ∧ |U |ap = 0;

• C4 stands for |U |• 6= 0 ∧ |U |ap 6= 0.

We now comment on the definition in Figure 3. Unsurprisingly, the encoding only con-
cerns adaptable processes and update prefixes; input and output prefixes are not modified
(cf. line (6)), and guarded sum, parallel composition, and holes are treated homomorphi-
cally (cf. lines (7), (8), and (9), respectively). Intuitively, the encoding captures correct
update actions by renaming every adaptable process and update prefix according to their
containment denotation structure. This way, an adaptable process a[P] is translated into
an adaptable process on name κ, which depends on its containment structure denotation
(cf. line (1)). The intention of this renaming is to allow synchronization only with update
prefixes on name κ, that is, with update prefixes having the same containment structure
denotation; this way, condition St(U) = St(Q) in the LTS of Es is enforced via name equal-
ity. As for the encoding of a process P at a, it is important to observe that the definition
of Es ensures that holes syntactically occurring in P do not occur at top level—they can
only appear inside an update prefix. As such, they are handled by lines (2)–(7) in recursive
applications of the encoding.

Clearly, update prefixes must be modified accordingly; there are four different possibil-
ities, represented by conditions C1–C4 of Definition 2.24:

• C1 captures the cases in which the update pattern U does not contain holes, i.e., U is a
process. Update prefixes with update patterns of this kind are encoded homomorphically,
renaming the prefix accordingly (cf. line (2)). Together with the above explained renam-
ing of adaptable processes with respect to the structure of their contents, this condition
corresponds to Lemma 2.18(0).
• C2 captures the cases in which the update prefix is only meant to interact with adaptable

processes whose content have no adaptable processes. As explained before, and by the
definition of ϕ, these are adaptable processes of the form κa[P] (with |P |ap = 0); this

explains the encoding described in line (3). According to Lemma 2.18, this is the case
13

(1) Ja[P]KdS = κ
[
JP KdS

]
with κ = ϕ(a[P])

(2) Jξ ã{a[U] ‖ A}.U1KdS = ξ κ̃
{
κ
[
JUKdS

]
‖ JAKdS

}
. JU1KdS

with κ = ϕ(a[U]) if C1

(3) Jξ ã{a[U] ‖ A}.U1KdS = ξ κ̃a
{
κa
[
JUKdS

]
‖ JAKdS

}
. JU1KdS if C2

(3a) Jã{a[U] ‖ A}.U1KdS =
∑

κi∈ϕ(S↓a)

κ̃i
{
κi
[
JUKdS

]
‖ JAKdS

}
. JU1KdS if C3

(3b) J! ã{a[U] ‖ A}.U1KdS =
∏

κi∈ϕ(S↓a)

! κ̃i
{
κi
[
JUKdS

]
‖ JAKdS

}
. JU1KdS if C3

(5) Jξ ã{a[U] ‖ A}.U1KdS = ξ ẽrr{0}. JU1KdS if C4

(6) Jξ π.UKdS = ξ π. JUKdS if π = a or π = a

(7) J
∑
i∈I

πi.UiKdS =
∑
i∈I

Jπi.UiKdS

(8) JU1 ‖ U2KdS = JU1KdS ‖ JU2KdS
(9) J•KdS = •

Above, ξπ.P denotes a possibly replicated prefixed process: ξπ.P is either !π.P or π.P , with ξ
being the same on both sides of the definition.

Figure 3: The encoding J·KdS : Es → Ed given in Definition 2.24.

when (i) the update pattern U of the update prefix has exactly one hole that occurs
behind a prefix (cf. Lemma 2.18(1) when |U |ph > 0) or (ii) U has more than one hole (cf.

Lemma 2.18(2)).
• C3 captures the cases in which the update pattern U has exactly one hole which does not

occur behind a prefix. These are update prefixes that may synchronize with any adaptable
process at name a. In order to account for all the possibilities, each non replicated update
prefix at a is encoded as a sum of prefixed processes, each summand corresponding to
an update prefix on a name κi ∈ ϕ(S ↓ a). The only difference between the summands
is the name of the update prefix; the update pattern within the update prefix and its
continuation is the same for all of them (cf. line (3a)). When the update prefix is
replicated, rather than the sum of all possible adaptable processes, we consider their
product (cf. line (3b)). This condition corresponds to Lemma 2.18(1) when |U |ph = 0.
• C4 captures those update patterns that do not adhere to any of the conditions of Lemma

2.18. Hence, interaction with these prefixes may lead to ill-formed Es processes. To
prevent such undesirable interactions, these update prefixes are renamed into err—a dis-
tinguished name signaling error (cf. line (5)).

Before stating the correctness of the encoding, we illustrate it further through a series of
examples.

Example 2.25. Below, notice that by virtue of Definition 2.4, |Ai|ap = 0 for every Ai.

(1) Given the Es process

P1 = b
[
c[A1 ‖ A2]

]
‖ b
[
d[e.A3]

]
‖ b̃
{
c[A4]

}
.Q2

14

we have the Ed process

JP1KdS = κ1
[
Jc[A1 ‖ A2]KdS

]
‖ κ2

[
Jd[e.A3]KdS

]
‖ κ̃1

{
Jc[A4]KdS

}
. JQ2KdS

with κ1 = ϕ(b[c[A1 ‖ A2]]), κ2 = ϕ(b[d[e.A3]]). Notice how the renaming to κ2 rules
out the possibility of an update action for the second adaptable processes on b.

(2) Given the Es process

P2 =c[A1] ‖ c[A2] ‖ d[A3] ‖ d
[
e[A4]

]
‖

c̃{c[• ‖ •] ‖ A5}.Q1 ‖ d̃{d[A6 ‖ a. •]}.Q2

we have the Ed process

JP2KdS =κc
[
JA1KdS

]
‖ κc

[
JA2KdS

]
‖ κd

[
JA3KdS

]
‖ κ1

[
Je[A4]KdS

]
‖

κ̃c
{
κc[• ‖ •] ‖ JA5KdS

}
. JQ1KdS ‖ κ̃d

{
κd[JA6KdS ‖ a. •]

}
. JQ2KdS

with κ1 = ϕ(d[e[A4]]). Notice how the renaming to κ1 rules out the possibility of an
update action for the second adaptable processes on d.

(3) Given the Es process P3 defined as:

e
[
f [A1]

]
‖ e
[
g[h[A2] ‖ A3]

]
‖ (ẽ

{
e[•] ‖ A4

}
.Q1 + ẽ

{
e[f [• ‖ •]] ‖ A5

}
.Q2)

we have (assuming S to be minimal) the Ed process

JP3KdS = κ1
[
Jf [A1]KdS

]
‖ κ2

[
Jg[h[A2] ‖ A3]KdS

]
‖

(κ̃1
{
κ1[•] ‖ JA4KdS

}
. JQ1KdS + κ̃2

{
κ2[•] ‖ JA4KdS

}
. JQ1KdS + ẽrr{0}. JQ2KdS)

with κ1 = ϕ(e[f [A1]]) and κ2 = ϕ(e[g[h[A2] ‖ A3]]).
Observe how the first summand in P3 has been duplicated in JP3KdS , so as to account
for the two possible update actions on e.

We are in place to state the promised correspondence between Es and Ed processes:

Theorem 2.26. Let P be an Es process. Also, let S be a set of containment structure
denotations, such that SubSt(P) ⊆ S. Then we have:

P −→s P
′ if and only if JP KdS −→d JP ′KdS

Proof (Sketch). The proof is in two parts, one for the “if” direction and another other
for the “only if” direction. In both cases, we proceed by induction on the height of the
derivation tree for P −→s P

′ (resp. JP KdS −→d JP ′KdS), with a case analysis on the last
applied rule. For the former, we rely on the characterization of reduction for Es processes
given by Lemma 2.18 so as to show that a reduction in the static side is preserved in the
dynamic side. As for the latter, the proof is similar, and exploits the fact that the encoding
transforms update prefixes that may lead to incorrect update actions into “error” update
prefixes which are unable to participate in reductions. This ensures that for every dynamic
reduction there is also a static reduction. See Appendix A.2 in Page 53 for details.

15

3. Correctness Properties: Bounded and Eventual Adaptation

Here we define the correctness problems that we consider throughout the paper. We would
like adaptation properties defined in the most general way possible; this would allows us to
analyze models of evolvable systems in different settings. For this purpose, our correctness
properties are stated in terms of observability predicates, or barbs. The definition of barbs
is parameterized on the number of repetitions of a given signal. We thus obtain a uniform
definition for bounded and repeated weak barbs.

Definition 3.1 (Barbs). Let P be an E process, and let α be an action in {a, a | a ∈ N}.
We write P ↓α if there exists a P ′ such that P

α−−→ P ′. Moreover:

• Given k > 0, we write P ⇓kα iff there exist Q1, . . . , Qk such that P −→∗ Q1 −→ . . . −→ Qk
with Qi ↓α, for every i ∈ {1, . . . , k}.
• We write P ⇓ωα iff there exists an infinite computation P −→∗ Q1 −→ Q2 −→ . . . with
Qi ↓α for every i ∈ N+.

Furthermore, we use

; k
α and

; ω
α to denote the negation of⇓kα and⇓ωα.

We shall consider two instances of the problem of reaching an error configuration in an
aggregation of terms, or cluster. A cluster is a process obtained as the parallel composition of
an initial process P with an arbitrary set of processes M representing its possible subsequent
modifications. That is, processes in M may contain update actions on the names of the
adaptable processes in P , and therefore may potentially lead to its modification (evolution).

Definition 3.2 (Cluster). Let P, P1, . . . , Pn be E processes and M = {P1, . . . , Pn}. The
set of clusters CSMP is defined as:

CSMP =
{
P ‖

m1∏
P1 ‖ · · · ‖

mn∏
Pn | m1, . . . ,mn ∈ N ∪ {0}

}
The adaptation problems below formalize correctness of clusters with respect to their

ability for recovering from errors by means of update actions. More precisely, given a set of
clusters CSMP and a barb e (signaling an error), we would like to know if all computations
of processes in CSMP
(1) have at most k consecutive states exhibiting e, or
(2) have a finite number of consecutive states exhibiting e.

We thus have the following definition:

Definition 3.3 (Adaptation Problems). Suppose an initial process P , a set of processes
M , and a barb e.

• Given k > 0, the bounded adaptation problem (BA) consists in checking whether for all
processes R ∈ CSMP , R

; k
e holds.

• Similarly, the eventual adaptation problem (EA) consists in checking whether for all pro-
cesses R ∈ CSMP , R

; ω
e holds.

Similarly as processes, static clusters can be encoded into equivalent dynamic ones.

Definition 3.4. Let P, P1, . . . , Pn be Es processes such that M = {P1, . . . , Pn}. The static

cluster set CSMP is transformed into a dynamic cluster set JCSMP KdS = CSM ′P ′ by taking

P ′ = JP KdS and M ′ = {JP1KdS , . . . , JPnK
d
S}, where S = SubSt(P) ∪

⋃
1≤i≤n SubSt(Pi).

16

Theorem 3.5. Let P, P1, . . . , Pn be Es processes such that M = {P1, . . . , Pn}. Then we
have JCSMP KdS = {JCKdS | C ∈ CS

M
P }, where S = SubSt(P) ∪

⋃
1≤i≤n SubSt(Pi).

Proof. Immediate by observing that by Definition 2.24, JP KdS is an homomorphism with

respect to parallel composition, i.e., JP ‖ QKdS = JP KdS ‖ JQKdS .

Notice that, for every cluster C in JCSMP KdS by construction we have SubSt(C) ⊆ S.
Hence, the operational correspondence given by Theorem 2.26 is individually applicable to
each cluster.

4. Adaptable Processes, By Examples

Next we present some concrete scenarios of adaptable processes and discuss their represen-
tation as E processes. We also comment on how the adaptation properties proposed in the
paper (and their associated decidability results) relate to such scenarios.

4.1. Mode Transfer Operators. In [8], dynamic behavior at the process level is defined
by means of two so-called mode transfer operators. Given processes P and Q, the disrupt
operator starts executing P but at any moment it may abandon P and execute Q instead.
The interrupt operator is similar, but it returns to execute what is left of P once Q emits
a termination signal. We can represent similar mechanisms in E as follows:

disrupta(P,Q)
def
= a[P] ‖ ã{Q} interrupta(P,Q)

def
= a[P] ‖ ã{Q ‖ tQ. •}

Assuming that P can evolve on its own to P ′, the semantics of E decrees that disrupta(P,Q)
may evolve either to a[P ′] ‖ ã{Q} (as locality a is transparent) or to Q (which represents
disruption at a). Similarly, by assuming that P was able to evolve into P ′′ just before being
interrupted, process interrupta(P,Q) evolves to Q ‖ tQ.P ′′. Above, we assume that a is not
used in P and Q, and that termination of Q is signaled at the designated name tQ.

These simple definitions show how defining P as an adaptable process at a is enough
to formalize its potential disruption/interruption. It is worth observing that the encoding
of interrupta(P,Q) can only be an E1d process: in the update action at a, there is a hole
occurring behind a prefix (hence, it is not a E2 process) and the topology of adaptable
process is dynamic (since a does not occur in Q, the adaptable process cannot be rebuilt
after interruption). In contrast, the encoding of disrupta(P,Q) is both an E1d and an E2d
process, as in the update pattern there are no holes in the scope of prefixes (in fact, the
update pattern does not have any holes).

4.2. Dynamic Update in Workflow Applications. Designing business/enterprise ap-
plications in terms of workflows is a common practice nowadays. A workflow is a conceptual
unit that describes how a number of activities coordinate to achieve a particular task. A
workflow can be seen as a container of activities; such activities are usually defined in terms
of simpler ones, and may be software-based (such as, e.g., “retrieve credit information from
the database”) or may depend on human intervention (such as, e.g., “obtain the signed au-
thorization from the credit supervisor”). As such, workflows are typically long-running and
have a transactional character. A workflow-based application usually consists of a workflow
runtime engine that contains a number of workflows running concurrently on top of it; a
workflow base library on which activities may rely on; and of a number of runtime services,

17

which are application dependent and implement things such as transaction handling and
communication with other applications. A simple abstraction of a workflow application is
the following E process:

App
def
= wfa

[
we
[
WE ‖W1 ‖ · · · ‖Wk ‖ wbl[BL]

]
‖ S1 ‖ · · · ‖ Sj

]
where the application is modeled as an adaptable process wfa which contains a workflow
engine we and a number of runtime services S1, . . . , Sj . In turn, the workflow engine contains
a number of workflows W1, . . . ,Wk, a process WE (which represents the engine’s behavior
and is left unspecified), and an adaptable process wbl representing the base library (also
left unspecified). As described before, each workflow is composed of a number of activities.
We model each Wi as an adaptable process wi containing a process WLi —representing the
workflow’s logic—, and n activities. Each of them is formalized as an adaptable process aj
and an execution environment envj :

Wi = wi

[
WLi ‖

n∏
j=1

(
envj [Pj] ‖ aj

[
!uj . ẽnvj{envj [• ‖ Aj]}

])]
The current state of the activity j is represented by process Pj running in envj . Locality
aj contains an update action for envj , which is guarded by uj and always available. As
defined above, such an update action allows to add process Aj to the current state of the
execution environment of j. It can also be seen as a procedure that is yet not active, and
that becomes active only upon reception of an output at uj from, e.g., WLi. Notice that by
defining update actions on aj (inside WLi, for instance) we can describe the evolution of the
execution environment. An example of this added flexibility is the process

U1 = ! replacej . ãj
{
aj
[
!uj . ẽnvj

{
envj [• ‖ A2j]

}]}
Hence, given an output at replacej , process aj [!uj . ẽnvj{envj [• ‖ Aj]}] ‖ U1 evolves to

aj [!uj . ẽnvj{envj [• ‖ A2j]}] thus discarding Aj in a future evolution of envj . This kind of
dynamic update is available in commercial workflow engines, such as the Windows Workflow
Foundation (WWF) [44]. Above, for simplicity, we have abstracted from lock mechanisms
that keep consistency between concurrent updates on envj and aj .

In the above processes, it is worth observing that if processes Aj and A2j contain no

adaptable processes, then Wi is an E3s process. This is because the update action at envj
recreates the adaptable process, and preserves the previous state with a hole that is in
parallel to Aj . Otherwise, Wi would be an E3d process, as the topology of adaptable processes
would change as a result of an update action on envj . For the sake of the example, suppose
an emergency activity that executes inside the workflow: process Pj would emit a signal
representing an urgent request, and an update action at envj would represent a response
to the emergency, implemented as process Aj . The two adaptation problems are useful to
represent the future state of the workflow in which the emergency has been controlled: EA
refers to an undetermined future state in which the request signal disappears (meaning that
the emergency will be eventually controlled); whereas BA refers to a fixed future state in
which the request signal disappears (meaning that the emergency will be controlled within
a certain bound). The topology of Aj is relevant in the light of our decidability results for
these two properties: if Wi is given as an E3s process, then both EA and BA are decidable;
otherwise, if Wi is given as an E3d process, then only BA would be decidable.

18

In the WWF, dynamic update can also take place at the level of the workflow engine.
This way, e.g., the engine may suspend those workflows which have been inactive for a
certain amount of time. This optimizes resources at runtime, and favors active workflows.
We can implement this policy as part of the process WE as follows:

U2 = ! suspendi. w̃i
{

! resumei.wi[•]
}

This way, given an output signal at suspendi, process wi[Wi] ‖ U3 evolves to the persistent
process ! resumei.wi[Wi] which can be reactivated at a later time. Observe that, in case one
considers policies such as U2 then we would end up with an E1d process, as the hole and an
adaptable process occur guarded behind a prefix.

4.3. Scaling in Cloud Computing Applications. In the emerging cloud computing
paradigm, applications are deployed in the infrastructure offered by external providers.
Developers act as clients: they only pay for the resources they consume (usually measured
as the processor time in remote instances) and for associated services (e.g., performance
metrics or automated load balancing). Central to the paradigm is the goal of optimizing
resources for both clients and provider. An essential feature towards that goal is scaling : the
capability that cloud applications have for expanding themselves in times of high demand,
and for reducing themselves when the demand is low. Scaling can be appreciated in, e.g., the
number of running instances supporting the application, and may have important financial
effects. Consequently, cloud providers such as Amazon’s Elastic Cloud Computing (EC2)
[5] offer libraries and APIs and services for autoscaling ; also common are external tools
which build on available APIs to implement sophisticated scaling policies.

Here we represent a cloud computing application as adaptable processes. Our focus
is in the formalization of scaling policies, drawing inspiration from the autoscaling library
provided by EC2. For scaling purposes, applications in EC2 are divided into groups, each
defining different scaling policies for different parts of the application. This way, e.g., the
part of the application deployed in Europe can have different scaling policies from the
part deployed in the US. Each group is then composed of a number of identical instances
implementing the web application, and of active processes implementing the scaling policies.

This scenario can be abstracted in E as the process App
def
= G1 ‖ · · · ‖ Gn, with

Gi = gi
[
I ‖ · · · ‖ I ‖ Sdw ‖ Sup ‖ CTRLi

]
where each group Gi contains a fixed number of running instances, each represented by I =
mid[A], a process that abstracts an instance as an adaptable process with an identification
mid and state A. Also, Sdw and Sup stand for the processes implementing scaling down
and scaling up policies, respectively. Process CTRLi abstracts the part of the system which
controls scaling policies for group i. In practice, this control relies on external services (such
as, e.g., services that monitor cloud usage and produce appropriate alerts). A simple way
of abstracting scaling policies is the following:

Sdw = sd
[

! alertd.

j∏
m̃id{0}

]
Sup = su

[
! alertu.

k∏
m̃id
{
mid[•] ‖ mid[•]

}]
Given proper alerts from CTRLi, the above processes modify the number of running instances.
In fact, given an output at alertd process Sdw destroys j instances. This is achieved by leaving
the inactive process as the new state of locality mid. Similarly, an output at alertu process
Sup spawns k update actions, each creating a new instance.

19

Observe that both Sdw and Sup are E2d processes: since we represent instances as adapt-
able processes with state, every modification enforced by the scaling policies will result in a
different topology of adaptable processes. A correctness guarantee in this setting is that the
cloud infrastructure satisfies the scaling requirements of client applications within a fixed
bound. More precisely, we would like to ensure that every scaling alert managed by CTRLi
(requesting more instances, for instance) will disappear within a certain bound, meaning
that the scaling request is promptly addressed by the cloud provider. This kind of reliability
guarantees can be represented in terms of BA, an adaptation problem which is decidable
for E2d processes. Of course, the decidability of correctness guarantees depends much on
their actual representations. Above, we have opted for simple, illustrative representations;
clearly, different process abstractions may exploit other decidability results.

Autoscaling in EC2 also allows to suspend and resume the scaling policies themselves.
To formalize this capability, we proceed similarly as we did for process U2 above. This
way, for the scale down policy, one can assume that CTRLi includes a process Udw =
! suspdown. s̃d{! resumedw. sd[•]} which, provided an output signal on suspdown, captures the
current policy, and evolves into a process that allows to resume it later on. Using the same
principle, other modifications to the policies are possible. For instance, a natural request is
to modify the scaling policies by changing the number of instances involved (i.e., j in Sdw
and k in Sup). As before, if our specification includes the ability of suspending/resuming
scaling policies as implemented by Udw, then we would obtain an E1d process.

5. Preliminaries

We now introduce some background notions on Minsky machines, well-structured transition
systems (WSTS), and Petri nets.

5.1. Minsky machines. Our undecidability results will be obtained by encodings of Min-
sky machines [47]. A Minsky machine (MM) is a Turing complete model composed of a
set of sequential, labeled instructions, and two registers. Registers rj (j ∈ {0, 1}) can hold
arbitrarily large natural numbers. Instructions (1 : I1), . . . , (n : In) can be of three kinds:
INC(rj) adds 1 to register rj and proceeds to the next instruction; DECJ(rj , s) jumps to
instruction s if rj is zero, otherwise it decreases register rj by 1 and proceeds to the next
instruction; a HALT instruction stops the machine. A MM includes a program counter p
indicating the label of the instruction being executed.

In its initial state, the machine has both registers set to 0 and the program counter
p set to the first instruction. We assume that instructions are proper, in the sense that
there is no program counter that refers to a non-existing instruction. The MM terminates
whenever the program counter is set to a HALT instruction. A configuration of a MM is a
tuple (i,m0,m1); it consists of the current program counter and the values of the registers.
Formally, the reduction relation over configurations of a MM, denoted −→M, is defined in
Figure 4.

Since MMs are Turing complete, termination is undecidable.

Theorem 5.1 (Minsky [47]). Minsky machines are Turing complete. Hence, for a MM it
is undecidable whether it terminates.

20

(M-Inc)

i : INC(rj) m′j = mj + 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

(M-Jmp)

i : DECJ(rj , s) mj = 0

(i,m0,m1) −→M (s,m0,m1)

(M-Dec)

i : DECJ(rj , s) mj 6= 0 m′j = mj − 1 m′1−j = m1−j

(i,m0,m1) −→M (i+ 1,m′0,m
′
1)

Figure 4: Semantics of MMs

We shall exploit encodings into MMs to prove undecidability of EA and BA. In our
encodings, we sometimes make the unrestrictive assumption that at the beginning and at
the end of the computation the registers (must) contain the value zero.

5.2. Well-Structured Transition Systems. The decidability of BA for E2d processes will
be shown by appealing to the theory of well-structured transition systems [30, 2]. The
following results and definitions are from [30], unless differently specified.

Recall that a quasi-order (or, equivalently, preorder) is a reflexive and transitive rela-
tion.

Definition 5.2 (Well-quasi-order). A well-quasi-order (wqo) is a quasi-order ≤ over a set
X such that, for any infinite sequence x0, x1, x2 . . . ∈ X, there exist indexes i < j such that
xi ≤ xj .

Note that if ≤ is a wqo then any infinite sequence x0, x1, x2, . . . contains an infinite
increasing subsequence xi0 , xi1 , xi2 , . . . (with i0 < i1 < i2 < . . .). Thus well-quasi-orders
exclude the possibility of having infinite strictly decreasing sequences.

We also need a definition for (finitely branching) transition systems. Here and in the
following →∗ denotes the reflexive and transitive closure of the relation →.

Definition 5.3 (Transition system). A transition system is a structure TS = (S,→),
where S is a set of states and →⊆ S × S is a set of transitions. We define Succ(s) as the
set {s′ ∈ S | s → s′} of immediate successors of s. TS is finitely branching if, for each
s ∈ S, Succ(s) is finite. We also define Pred(s) as the set {s′ ∈ S | s′ → s} of immediate
predecessors of s, while Pred∗(s) and Pred+(s) denote the sets {s ∈ S | s′ →∗ s} and
{s ∈ S | s′ →+ s}, respectively, of predecessors of s.

Convention 5.4. In the rest of the paper, and with a slight abuse of notation, we will
assume the expected point-wise extensions of definitions to sets. For instance, function
Succ just defined on states is extended to sets of states as: Succ(S) =

⋃
s∈S Succ(s).

The key tool to the decidability of several properties of computations is the notion of
well-structured transition system [30, 2]. This is a transition system equipped with a well-
quasi-order on states which is (upward) compatible with the transition relation. Here we
will use a strong version of compatibility; hence the following definition.

Definition 5.5 (Well-structured transition system). A well-structured transition system
with strong compatibility is a transition system TS = (S,→), equipped with a quasi-order
≤ on S, such that the two following conditions hold:

21

(1) ≤ is a well-quasi-order;
(2) ≤ is strongly (upward) compatible with →, that is, for all s1 ≤ t1 and all transitions

s1 → s2 , there exists a state t2 such that t1 → t2 and s2 ≤ t2 holds.

Given a quasi-order ≤ over X, an upward-closed set is a subset I ⊆ X such that the following
holds: ∀x, y ∈ X : (x ∈ I ∧ x ≤ y) ⇒ y ∈ I. Given x ∈ X, we define its upward closure
as ↑ x = {y ∈ X | x ≤ y}. This notion can be extended to sets as expected: given a set
Y ⊆ X we define its upward closure as ↑ Y =

⋃
y∈Y ↑ y.

Definition 5.6 (Finite basis). A finite basis of an upward-closed set I is a finite set B such
that I =

⋃
x∈B ↑ x.

The notion of basis is particularly important when considering the basis of the pre-
decessor of a state in a transition system. More precisely, we are interested in effective
pred-basis as defined below.

Definition 5.7 (Effective pred-basis). A well-structured transition system has effective
pred-basis if there exists an algorithm such that, for any state s ∈ S, it returns the set pb(s)
which is a finite basis of ↑ Pred(↑ s).

The following proposition is a special case of Proposition 3.5 in [30].

Proposition 5.8. Let TS = (S,→,≤) be a finitely branching, well-structured transition
system with strong compatibility, decidable ≤ and effective pred-basis. It is possible to com-
pute a finite basis of Pred∗(I) for any upward-closed set I given via a finite basis.

Finally we will use the following proposition, whose proof is immediate.

Proposition 5.9. Let S be a finite set. Then the equality is a wqo over S.

We shall also appeal to the following result. In [39], Kruskal proved that a wqo on a
set S can be extended to the set of finite trees whose nodes have labels ranging in S; we
refer to this as the set of trees over S. We define how to extend a quasi order on a set S to
the trees over S. If t is a tree and n a node in t, we denote with label(n) the label of the
node n.

Definition 5.10. Let S and ≤ be a set and a wqo over S, respectively. The relation ≤tr on
the set of trees over S is defined as follows. Let t, u be trees over S. We have that t ≤tr u
iff there exists an injection f from the nodes of t to the ones of u such that:

(1) Let m,n be nodes in t. If m is an ancestor of n then f(m) is an ancestor of f(n).
(2) Let m,n, p be nodes in t. If p is the minimal common ancestor of m and n then f(p) is

the minimal common ancestor of f(m) and f(n).
(3) Let n be a node in t. Then label(n) ≤ label(f(n)).

The relation ≤tr is a quasi-order over the trees over S. It is also a wqo, since we have
the following result.

Theorem 5.11 (Kruskal [39]). Let S be a set and ≤ a wqo over S. Then, the relation ≤tr
is a wqo on the set of trees over S.

22

5.3. Petri Nets. We will use Petri nets to prove the decidability of BA for E3s . More
precisely, we will reduce BA for E3s to a problem on Petri nets, that we call infinite visit,
which can be easily reduced to place boundedness.

A Petri net is a tuple N = (S, T,m0), where S and T are finite sets of places and
transitions, respectively. A finite multiset over the set S of places is called a marking, and
m0 is the initial marking. Given a marking m and a place p, we say that the place p
contains m(p) tokens in the marking m if there are m(p) occurrences of p in the multiset
m. A transition is a pair of markings written in the form m′ ⇒ m′′. The marking m
of a Petri net can be modified by means of transition firing: a transition m′ ⇒ m′′ can
fire if m(p) ≥ m′(p) for every place p ∈ S; upon transition firing the new marking of the
net becomes n = (m \ m′)] m′′ where \ and] are the difference and union operators
for multisets, respectively. This is written as m → n. We call computation a sequence
m0 → m1 → · · · → mn. A marking m is reachable if there exists a computation with
final marking m. A place p ∈ S is bounded if there exists a natural number k such that
m(p) ≤ k for every reachable marking m. The place boundedness problem is decidable for
Petri nets [35].

Definition 5.12 (Infinite visit). Given a Petri net N = (S, T,m0), a set of places to visit
V ⊆ S, and a mandatory place p ∈ S, we say that N infinitely visits V with mandatory
place p, if there exists an infinite sequence m0 → m1 → m2 → · · · and an index i such that
for every j ≥ i there exists a place pj ∈ V such that mj(pj) ≥ 1, and moreover mj(p) ≥ 1.

Theorem 5.13. Given a Petri net N = (S, T,m0), a set of places V ⊆ S, and a mandatory
place p ∈ S, it is decidable whether N infinitely visits V with mandatory place p.

Proof. By reduction to the place boundedness problem. Given a Petri net N = (S, T,m0)
and a set of places V ⊆ S, we construct a Petri net N ′ = (S ∪ {ph1, ph2, check}, T ′,m0 ∪
{ph1}) such that N infinitely visits V with mandatory place p if and only if check is not
bounded in N ′.

The Petri net N ′ reproduces the computations in N by (possibly) dividing them into
two phases: the first phase is witnessed by the presence of one token in the additional place
ph1, while the second phase by one token in the additional place ph2. During the second
phase, a transition can be mimicked only if there is at least one token in one of the places
in V and one token in the place p. Moreover, during the second phase, each transition puts
one token in the additional place check.

Formally, we define the set T ′ of the transitions of N ′ as follows:

• for each transition m′ ⇒ m′′ in T , T ′ contains the transition m′] {ph1} ⇒ m′′] {ph1};
• T ′ contains the transition {ph1} ⇒ {ph2};
• for each transition m′ ⇒ m′′ in T and for each place q ∈ V , T ′ contains the transition
m′] {p, q, ph2} ⇒ m′′] {p, q, ph2, check}.

The first group of transitions governs the first phase of the simulation; the second transition
implies the passage from the first to the second phase; while the third group of transitions
is for the second phase.

First, assume that N infinitely visits V with mandatory place p. This means that in
N there exists an infinite sequence m0 → m1 → m2 → · · · and an index i such that for
every j ≥ i there exists a place pj ∈ V such that mj(pj) ≥ 1 and mj(p) ≥ 1. This implies
that in N ′ there is a corresponding computation that mimics the transition m0 → m1 →
m2 → mi−1 during the first phase, and the transitions mi → mi+1 → · · · during the second

23

Register rj [[rj = n]]1 = rj [(| n |)j]

where (| n |)j =

{
zj if n = 0
uj . (| n− 1 |)j if n > 0.

Instructions (i : Ii)
[[(i : INC(rj))]]1 = !pi. r̃j{rj [uj . •]}. pi+1

[[(i : DECJ(rj , s))]]1 = !pi. (uj . pi+1 + zj . r̃j{rj [zj]}. ps)
[[(i : HALT)]]1 = !pi. (e+ pi)

Table 2: Encoding of MMs into E1s .

one. The second phase is infinite, hence check is not bounded because each transition in
the second phase puts one token in such a place.

Assume now that check is unbounded in N ′. As tokens are introduced in check only
during the second phase, this means that there exists no bound to the length of the com-
putations in N ′ that include the second phase. This implies the existence of at least one
infinite computation in N ′ having both the first and the second phase. Consider now the
computation in N composed of the transitions simulated in such an infinite computation
of N ′. This computation in N has a suffix (the part corresponding to the second phase) in
which all the traversed markings have at least one token in one of the places in V as well
as one token in p.

6. Undecidability Results for E1

We prove that BA and EA are undecidable in both E1d and E1s . The result relies on an
encoding of MMs into E1s which satisfies the following: a MM terminates if and only if
its encoding into E1s evolves into a state that starts an infinite computation that traverses
states exhibiting a distinguished barb e.

The encoding, denoted [[·]]1, is given in Table 2. A register j with value m is represented
by an adaptable process at rj that contains the encoding of number m, denoted (| m |)j .
In turn, (| m |)j consists of a sequence of m output prefixes on name uj , ending with an
output action on zj , which represents zero. Instructions are encoded as replicated processes
guarded by pi, which represents the MM when the program counter p = i. Once pi is
consumed, each instruction is ready to interact with the registers. To encode the increment
of register rj , we enlarge the sequence of output prefixes it contains. The adaptable process
at rj is updated with the encoding of the incremented value (which results from putting the
value of the register behind some prefixes) and then the next instruction is invoked. The
encoding of a decrement of register j consists of an exclusive choice: the left side implements
the decrement of the value of a register, while the right one implements the jump to some
given instruction. This choice is indeed exclusive: the encoding of numbers as a chain of
output prefixes ensures that both an input prefix on uj and one on zj are never available at
the same time. When the MM reaches the HALT instruction the encoding can either exhibit
a barb on e, or set the program counter again to the HALT instruction so as to pass through
a state that exhibits e at least k > 0 times. The encoding of a MM into E1s is defined as
follows:

24

Definition 6.1. Let N be a MM, with registers r0 = 0, r1 = 0 and instructions (1 :
I1) . . . (n : In). Given the encodings in Table 2, the encoding of N in E (written [[N]]1) is
defined as [[r0 = 0]]1 ‖ [[r1 = 0]]1 ‖

∏n
i=1[[(i : Ii)]]1 ‖ p1 .

Given this encoding, we have that a MM N terminates iff its encoding has at least k
consecutive barbs on the distinguished action e, for every k ≥ 1.

Lemma 6.2. Let N be a MM and k ≥ 1. N terminates iff [[N]]1⇓ke .

Proof. See Appendix B.1, Page 56.

Theorem 6.3. BA and EA are undecidable in E1s .

Proof (Sketch). The proof proceeds by considering a MM N and its encoding [[N]]1. Tak-

ing the cluster CS∅[[N]]1
= {[[N]]1}, undecidability of BA follows from undecidability of the

termination problem in MMs and Lemma 6.2.
Moreover, the number of consecutive barbs on e can be unbounded: once the machine

reaches the HALT instruction then a barb e will be continuously available by always choosing
to synchronize on pi. Hence, there exists a computation where [[N]]1⇓ωe and we can conclude
that EA is undecidable.

Notice that [[N]]1 is an E1s process without nested adaptable processes. Hence, even if
we consider [[N]]1 as an E1d process, update prefixes cannot modify the topology of nested
adaptable processes (that is, in the semantics of Figure 2 condition cond(U,Q) always holds
true) and the generated transition system is the same. Formally, this can be verified by
using Lemma 2.18. As a consequence, the above undecidability result holds for E1d processes
as well:

Corollary 6.4. BA and EA are undecidable in E1d .

7. (Un)decidability Results for E2

7.1. Decidability of Bounded Adaptation. Here we prove that despite the previous
undecidability result, BA is decidable for E2d processes. That is, given a process P , a set of
processes M , and a barb α, there exists an algorithm to determine whether there exists a
process R ∈ CSMP such that R⇓kα holds. The proof appeals to the theory of well-structured
transition systems (see Section 5.2). The algorithm consists of five steps:

(1) We restrict the set of terms under consideration to those reachable by any R ∈ CSMP .
We characterize this set by
(a) considering the set of sequential subterms in CSMP , i.e., the subterms of P and the

processes in M that do not have parallel composition or adaptable processes as their
topmost operator—see Definition 7.2—and

(b) introducing the ordering � over a tree-like representation of the processes in such
a set—see Definition 7.7.

(2) Next, we prove that � is a well-quasi-ordering (cf. Theorem 7.10) which is strongly
compatible with respect to −→ (cf. Theorem 7.14).

(3) These results enable us to compute a finite basis for the set of processes exhibiting α;
this set is upward-closed with respect to � (cf. Theorem 7.20).

25

(4) We then show that it is possible to compute the finite basis of the set of processes that
expose α at least k consecutive times (Lemma 7.23).

(5) Finally, we show that it is possible to determine whether or not some process R ∈ CSMP
is included in the set generated by the finite basis (Theorem 7.24).

In what follows, we describe the definitions and results associated to these steps. For the
sake of clarity, each of these descriptions is presented separately, in Sections 7.1.1—7.1.5.

Observe that the above strategy requires Kruskal’s theorem (Theorem 5.11) on well-
quasi-orderings on trees. Unlike similar previous results exploiting the theory of well-
structured transition systems for obtaining decidability results (e.g., [18]), in the case of
E2d it is not possible to find a bound on the “depth” of processes. We illustrate this is-
sue with a small example. Consider the process R = a[P] ‖ !ã{a[a[•]]}. 0. One possible
evolution of R is the following:

R −→ a[a[P]] ‖ !ã{a[a[•]]}. 0 −→ a[a[a[P]]] ‖ !ã{a[a[•]]}. 0 −→ . . .

and thus one obtains a process with an unbounded number of nested adaptable processes.
Nevertheless, not everything is lost and some regularity can be found also in our case. By
mapping processes into particular forms of trees and then exploiting an ordering over those
trees, it can be shown that this is indeed a well-quasi-ordering with strong compatibility,
and that it has an effective pred-basis. This way, decidability of BA can be shown by
following the five steps described above.

7.1.1. Step (1). We start by introducing some auxiliary definitions.

Definition 7.1 (Parallel Processes). Let P =
∏m
i=1 Pi ‖

∏n
j=1 aj [P

′
j] be an E process in

normal form. The set of top-level, parallel processes of P , is defined as

Par(P) = {Pi | i ∈ [1. .m]} ∪ {aj [P ′j] | j ∈ [1. .n]}
This definition extends to sets of processes in normal form in the expected way.

Definition 7.2 (Sequential Subprocesses). Let P be an E2d process. The set of sequential
subprocesses of P , denoted sub(P), is defined inductively as follows:

sub(π.P) = {π.P} ∪ sub(P) if π = a or π = a
sub(ã{U}.Q) = {ã{U}.Q} ∪ sub(U) ∪ sub(Q)
sub(

∑
i∈I πi.Pi) =

{∑
i∈I πi.Pi

}
∪
⋃
i∈I sub(πi.Pi)

sub(!π.P) = {!π.P} ∪ sub(P)
sub(P ‖ Q) = sub(P) ∪ sub(Q)
sub(a[P]) = sub(P)
sub(•) = ∅

Observe that sub(0) = sub(
∑

i∈∅ πi.Pi) = {0}. The definition extends to sets of processes
as expected.

Notice that, since we are considering processes P ∈ E2d (which make use of update
patterns that cannot include • in the scope of prefixes), sub(P) is a set of processes that
are not update patterns, that is they cannot have free occurrences of •.

26

ε

ggggggggggggg

nnnnnnn
OOOOOOO

WWWWWWWWWWWWW

a.P1 b̃{Q} b[]

ooooooo
f []

c.R d[] g.T

(a) A tree denotation

ε ε

a.P a.Pb[]

b[]

d[]

f []

c.Q

c.Qe.R

(b) Tree embedding

Figure 5: Tree denotations for E2d processes.

Definition 7.3. Let P be an E2d process. The set of adaptable processes names occurring
in P , denoted apn(P), is inductively defined (by resorting, in general, to apn(U) over E2d
update patterns U) as follows:

apn(a[U]) = {a} ∪ apn(U)
apn(π.P) = apn(P) if π = a or π = a
apn(ã{U}.Q) = apn(U) ∪ apn(Q)
apn(

∑
i∈I πi.Ui) =

⋃
i∈I apn(πi.Ui)

apn(!π.U) = apn(π.U)
apn(U1 ‖ U2) = apn(U1) ∪ apn(U2)
apn(•) = ∅

The definition extends to sets of processes as expected.

Definition 7.4. Given a set of E2d processes S, we define:

lab(S) = sub(S) ∪ {a[] | a ∈ apn(S)}

We are now ready to define the tree denotation of a process.

Definition 7.5 (Tree of a process). Let P =
∏m
i=1 Pi ‖

∏n
j=1 aj [P

′
j] be an E2d process in

normal form. The tree denotation of P , denoted Tr(P), is a tree over lab({P})∪{ε} and it is
built as follows. The root is labeled ε, and hasm+n children: the formerm are leaves labeled
P1, . . . , Pm, while the latter n are subtrees recursively built from processes P ′1, . . . , P

′
n, where

the only difference is that their roots are labeled a1[], . . . , an[], respectively.
Given a set of E2d processes S, TS denotes the set of trees over lab(S) ∪ {ε}.

Example 7.6. Let P be the process a.P1 ‖ b̃{Q} ‖ b[c.R ‖ d[]] ‖ f [g.T]. Given Defini-
tion 7.5, Tr(P) is depicted in Figure 5(a).

We now define the ordering � on processes. It corresponds to the extension of =, as
described in Definition 5.10, to trees. Notice that when = is extended to trees it is no longer
a symmetric relation. More precisely:

Definition 7.7 (Ordering �). Let P and Q be E2d processes. Also, let =tr stand for the
extension of = as in Definition 5.10. Then we decree: P � Q iff Tr(P) =tr Tr(Q).

In other words, given two processes P and Q such that Tr(P) =tr Tr(Q), one simply
checks if all the labels of Tr(P) occur in Tr(Q) and respect the ancestor relation.

27

Example 7.8. Let S and T be the processes defined as

S = a.P ‖ b[c.Q]

T = a.P ‖ d[b[f [e.R ‖ c.Q]]]

Then we have S � T ; tree denotations for both processes (and the injection between them)
are depicted in Figure 5(b).

We write P −→� Q if there is some P ′ such that P −→ P ′ and P ′ � Q. We now define
the set of all derivatives of a given E2d process and show that � is a wqo over it.

Definition 7.9. Given an E2d process P , we define Deriv(P) = {Q | P −→∗ Q}. This
definition is extended to sets of processes in the expected way.

7.1.2. Step 2. We start by showing that given a set of processes S, =tr is a wqo over TS .

Theorem 7.10. Let S be a set of E2d processes. Then, relation =tr is a wqo over TS.

Proof. The set lab(S) is finite by construction. Hence, by Proposition 5.9, equality is a wqo
over lab(S) ∪ {ε}. Finally, since = is a wqo, using Kruskal’s Theorem (Theorem 5.11) we
infer that =tr is a wqo over TS .

We now prove that the trees constructed from processes contained in the set of all
derivatives form a subset of TS . The following notion of monadic and biadic contexts will
be useful in proofs.

Definition 7.11 (Monadic and Biadic Contexts). A monadic context is a context with one
hole (denoted “·”) and is defined according to the following grammar:

C[·] ::= [·] | C[·] ‖ P | a[C[·]
]

where P is an E process. Similarly, a biadic context is a context with two holes (denoted
“·1” and “·2”, respectively) defined according to the following grammar:

D[·1, ·2] ::= C[·1] ‖ C[·2] | a
[
D[·1, ·2]

]
‖ P | a[D[·1, ·2]

]
where P is an E process and C is a monadic context. As customary, C[P] and D[R,Q]
represent the processes obtained by replacing the holes in contexts C[·] and D[·1, ·2] with
processes P and R,Q, respectively.

Lemma 7.12. Let P be an E2d process. If P −→ Q then Tr(Q) ∈ T{P}.

Proof. By induction on the height of the derivation tree for P −→ Q, with a case analysis
in the last rule used. There are seven cases to check. We recall that Tr(Q) ∈ T{P} iff Tr(Q)
is over lab(P) ∪ {ε}.+
Case (Act1): Then P = P1 ‖ P2 and Q = P ′1 ‖ P2, with P1 −→ P ′1. By Definition 7.5 we

have Tr(P) is over lab(P1)∪ lab(P2)∪ {ε}. By inductive hypothesis, we have that Tr(P ′1)
is over lab(P1) ∪ {ε}. Hence we can conclude that Tr(Q) is over lab(P1) ∪ lab(P2) ∪ {ε},
thus Tr(Q) ∈ T{P}.

Case (Act2): Analogous to the case for (Act1) and omitted.
Case (Loc): hen P = a[P1] and Q = a[P ′1], with P1 −→ P ′1. By Definition 7.5 we have

Tr(P) is over lab(P1) ∪ {a[]} ∪ {ε}. By inductive hypothesis, we have that Tr(P ′1) is
over lab(P1)∪ {ε}. Hence we can conclude that Tr(Q) is over lab(P1)∪ {a[]} ∪ {ε}, thus
Tr(Q) ∈ T{P}.

28

Cases (Tau1)-(Tau2): Then P ≡ C1[A] ‖ C2[B], where C1 and C2 are monadic contexts
as in Definition 7.11. Moreover, A is either !b.Q or

∑
i∈I πi.Qi with πl = b, for some

l ∈ I, and B is either !b.R or
∑

i∈I πi.Ri with πl = b, for some l ∈ I.

We consider only the case in which A =
∑

i∈I πi.Qi with πl = b and B = !b.R; the

other cases are similar. Then Q ≡ C1[Ql] ‖ C2[R ‖ !b.R]. We know that Tr(P) is over
lab(C1) ∪ lab(A) ∪ lab(C2) ∪ lab(B) ∪ {ε} and by noticing that lab(Ql) ⊆ lab(A) and
lab(R ‖ !b.R) ⊆ lab(B) we can conclude that Tr(Q) ∈ T{P}.

Cases (Tau3)-(Tau4): Then P ≡ C1[A] ‖ C2[B] where:
• C1 and C2 are monadic contexts, as in Definition 7.11;
• A = b[P1], for some P1;

• B =
∑

i∈I πi.Ri with πl = b̃{b[U] ‖ P2} for l ∈ I, or B = !̃b{U}.R, for some R.

We consider the case in which B = !̃b{b[U] ‖ P2}.R; the other case is similar. Then

Q ≡ C1[U〈〈P1〉〉] ‖ C2[R ‖ !̃b{U}.R]. We know that Tr(P) is over lab(C1) ∪ lab(A) ∪
lab(C2)∪ lab(B)∪{ε} and by noticing that lab(R ‖ !̃b{U}.R) ⊆ lab(B) and that because
of the restrictions on E2d P3 cannot occur behind a prefix, then we can conclude that
Tr(Q) ∈ T{P}.

Lemma 7.12 can be used to show that {Tr(P) | P ∈ Deriv(S)} ⊆ TS , for some set of
processes S. Then, using Theorem 7.10 we can conclude that � is a wqo over it:

Corollary 7.13. Let S be a set of E2d processes. Then, � is a wqo over Deriv(S).

The next result states strong compatibility of � with respect to reductions of E2d .

Theorem 7.14 (Strong Compatibility). Let P and Q be E2d processes such that P � Q.
Then, P −→ P ′ implies that there exists Q′ such that Q −→ Q′ and P ′ � Q′.

Proof. By a case analysis on the reduction P −→ P ′. It can be the result of either a
input/output synchronization—through rules (Tau1)/(Tau2)— or an update synchroniza-
tion—through rules (Tau3)/(Tau4)). In both cases, the reduction may be combined with
uses of rule (Loc), (Act1), and (Act2).

We consider these two kinds of synchronizations separately. Let n be a node with
ancestor m, and let Tr(P) be a tree with root ε. Below, when we say that n is replaced by
Tr(P) we mean that: (i) ε is merged with m; (ii) all children of ε are added as siblings of
n; and (iii) n itself is removed.

Input/output synchronization: Then we have

P ≡ D[A,B]

where D is a biadic context as in Definition 7.11, A is either !a.P1 or
∑

i∈I πi.Qi with
πl = a and Ql = P1 for some l ∈ I, and B is either !a.P2 or

∑
i∈I πi.Ri with πl = a and

Rl = P2 , for some l ∈ I.
Consider the tree Tr(P), and let m and n be two of its nodes, labeled A and B,

respectively.
We first consider the modifications to Tr(P) when P −→ P ′. The tree Tr(P ′) is

obtained from Tr(P) in the following way:
(1) the node labeled A is replaced with Tr(P1);
(2) the node labeled B is replaced with Tr(P2).

Since P � Q, the definition of � ensures that there exists a mapping f that associates
nodes in Tr(P) to nodes in Tr(Q). In turn, this ensures the existence of a node f(m) in

29

Tr(Q) labeled A. It also ensures the existence of a node f(n) labeled B and which has a
common ancestor with f(m). Hence, the reduction can take place in Q as well, and so
Q −→ Q′. Now, Tr(Q′) is obtained from Tr(Q) by applying the same changes described
above to the target nodes (of the input and the output) according to f .

The last thing to show is P ′ � Q′, which follows by observing that the mapping
between Tr(P ′) and Tr(Q′) is necessarily the same mapping f between Tr(P) and Tr(Q),
for all the nodes that have not been modified by the reduction and that there is a one-
to-one correspondence for the other nodes, as the new trees Tr(P1) and Tr(P2) are added
to both Tr(P) and Tr(Q). Thus, Tr(P ′) =tr Tr(Q′).

Update synchronization: Then we have

P ≡ D[a[P1], A]

where D is a biadic context as in Definition 7.11 and A is either !ã{P2}.R or
∑

i∈I πi.Qi
with πl = ã{P2} and Ql = R for some l ∈ I . Consider the tree Tr(P), and let m and n
be two of its nodes, labeled A and a[] (with subtree Tr(P1)), respectively.

We first consider the modifications to Tr(P) when P −→ P ′. The tree Tr(P ′) is
obtained from Tr(P) in the following way:
(1) the node labeled A is replaced with Tr(R);
(2) as for the tree rooted in a[] (Tr(P1)), it is replaced with Tr(P2 〈〈P1〉〉).

Since P � Q, the definition of � ensures that there exists a mapping f that associates
nodes in Tr(P) to nodes in Tr(Q). In turn, this ensures the existence of a node f(m)
in Tr(Q) labeled A. It also ensures the existence of a node f(n) labeled a[] and which
has a common ancestor with f(m). Hence, the update synchronization above can take
place in Q as well, and so Q −→ Q′. Now, Tr(Q′) is obtained from Tr(Q) by applying
the same changes described above to the target nodes (of the adaptable process a and of
the update in A) according to f .

The last thing to show is that P ′ � Q′, which follows by observing that the mapping
between Tr(P ′) and Tr(Q′) is the same mapping f between Tr(P) and Tr(Q), for all the
nodes that have not been modified by the reduction and that there is a correspondence
one to one for the other nodes. More precisely:
(1) Consider the label in node f(m): all nodes removed in Tr(P ′) have been removed in

Tr(Q′), hence nodes m and f(m) are still in relation.
(2) Finally, we consider the two trees rooted in n and f(n), namely S = Tr(P2 〈〈P1〉〉) and

T = Tr(P2 〈〈Q1〉〉), respectively. S is the same subtree as T apart from some subtrees
of P2 and Q2 that can be put easily in relation as the subtrees Tr(P1) and Tr(Q1)
are in relation with f .

Thus, Tr(P ′) =tr Tr(Q′).

7.1.3. Step (3). We now move on to characterize the set of predecessors of a given process
(cf. Definition 5.3) by means of a finite basis (cf. Definition 5.6). Given a set S of processes,
we are only interested in those predecessors whose tree is in TS . As it will be clear later on,
S is intended to represent all processes in a cluster (cf. Definition 3.2).

Definition 7.15. Let P and S be an E2d process and a set of E2d processes, respectively. We
define:

PredS(P) = {Q | Q ∈ Pred(P), Tr(Q) ∈ TS}.

30

As we have seen, reductions in E originate only from synchronizations between input and
output prefixes or from synchronizations between an adaptable process and a corresponding
update prefix. Our characterization of PredS(P) as a finite basis relies, intuitively, on the
formalization of the “parts” of P that might have been involved in a reduction leading
to P . We introduce the notion of syntactic context : it allows us to reason about the
decompositions of P , which are useful to describe the subprocesses that have been involved
in the reduction to P ; such subprocesses may be contained in P or they can be found in S.
In the latter case, we must appeal to parallel extensions of the syntactic context defining
the given decomposition, as we give next:

Definition 7.16 (Syntactic Contexts, Decompositions, Extensions). Syntactic contexts,
ranged over K,K ′, . . ., are defined by the following syntax:

K ::= [·] | a[K] | K ‖ K | P
where P is as in Definition 2.3 using contexts as in Definition 2.6 (2).

Given a process P , a syntactic context K, and processes R̃, we say that K[R̃] is a

decomposition of P if P = K[R̃]. We assume processes R̃ fill the holes in K preserving the
order in which they appear.

A parallel extension of K is a syntactic context with exactly two holes obtained in the
following way:

Ext(K) = {K, K ‖ [·], K ‖ [·] ‖ [·]} ∩ SC2

where SC2 is the set of all syntactic contexts with exactly two holes.

We move on to define the pred-basis function for processes; it is defined with respect
to a set of processes S and noted pbS(·). First, we present some intuitions and auxiliary
definitions. Given a process P , the set pbS(P) represents the basis for the set ↑ PredS(↑ P);
in other words, it is a finite representation of those processes that reduce to P , up to �, i.e.,
a basis for all those Q such that Q −→� P . To this aim, we consider all the decompositions

of P as K[R̃], for some syntactic context K and processes R̃, with |R̃| ≤ 2. There are finitely
many such decompositions. The idea is to characterize a predecessor Q of P by suitably
filling in the holes in (possibly an extension of) K so that the Q is such that Tr(Q) ∈ TS .
Now, each K can have two, one, or even zero holes (as a process can be a decomposition

of itself). In case |R̃| < 2, the syntactic context must be extended so as to contain exactly
two holes; this is defined by Ext(K) above.

Let us analyze the possibilities for such an extended context. As we have seen, re-
ductions in E2d arise from the synchronization of two complementary prefixes occurring (i)
inside two sums, or (ii) one inside a sum and the other in a replicated process; or (iii) both
prefixes in two replicated processes. For the sake of readability, and with a little abuse
of notation, in the explanation below we use biadic contexts filled in with the interacting
prefixes, rather than with the processes in which such prefixes occur. That is, we write
D[α.P, β.Q] rather than, e.g., D[α.P +M, !β.Q]. There are six cases. If K has exactly two
holes then it means that the reduction is “internal” to process P . That is, the reduction
can be traced back by looking at subprocesses of P . Then P = K[P1, P2] and no parallel
extension is needed. There are two possible cases:

(1) P is the result of an input/output synchronization and so its predecessors are of the
form Q = K[a.P1, a.P2], for some a ∈ apn(S) and where a.P1 and a.P2 are processes
in sub(S).

31

(2) P is the result of a synchronization between an update prefix and some corresponding
adaptable process, and so its predecessors are of the form Q = K[ã{Q′}.P1, a[Q′′]],
where P2 = Q′〈〈Q′′〉〉 and a ∈ apn(S). Also, process ã{Q′}.P1 should belong to sub(S).
Moreover, depending on the number of holes in Q′ there are two possible situations: (1)
if |Q′|• = 0 then P2 = Q′ and Q′′ can be any process in sub(S); (2) if |Q′|• > 0 then Q′′

is taken in such a way that P2 = Q′〈〈Q′′〉〉.
In case K has one hole only then we extend the context with a hole so as to accommodate
some process not originally present in P . That is, P = K[P1] and the reduction to P is
characterized by the interaction between a prefix guarding subprocess P1 and some other
subprocess external to P (cases (3) and (4) below). It can also be the case that the reduction
is an update synchronization leading to P1 (case (5)). We thus consider the extended context
D[·, ·] ≡ K[·] ‖ [·]. There are three possible cases:

(3) P is the result of an input/output synchronization, and so its predecessors are either of
the form Q ≡ D[a.P1, a.Q2] or Q ≡ D[a.P1, a.Q2], for some a ∈ apn(S) and processes
a.P1 and a.Q2 (a.P1 and a.Q2, respectively) belong to sub(S).

(4) P is the result of a synchronization between an update prefix guarding P1 and some
corresponding adaptable process. Hence, for some a ∈ apn(S), its predecessors are of
the form Q ≡ D[ã{Q′}.P1, a[Q′′]], with processes ã{Q′}.P1 and Q′′ in sub(S).

(5) P is the result of a synchronization between an update prefix and some corresponding
adaptable process, in such a way that their synchronization leads to P1. This way, the
predecessors of P are of the form Q ≡ D[ã{Q′}.Q2, a[Q′′]] or Q ≡ D[a[Q′′], ã{Q′}.Q2]
where P1 = Q′〈〈Q′′〉〉, for some a ∈ apn(S). Similarly as in case (2) above, process
ã{Q′}.Q2 should belong to sub(S). Moreover, depending on the number of holes in Q′

there are two possible situations: (1) if |Q′|• = 0 then P1 = Q′ and Q′′ can be any
process in sub(S); (2) if |Q′|• > 0 then Q′′ is taken in such a way that P1 = Q′〈〈Q′′〉〉.

The last case to consider is when K has no holes, i.e., the trivial decomposition of P as
itself. Then D[·, ·] ≡ P ‖ [·] ‖ [·] and we have:

(6) P is the result of a synchronization between the subprocesses in the two added holes.
That is, its predecessors are of one of the following: (1) Q ≡ P ‖ a.R1 ‖ a.R2 and (2)
Q ≡ P ‖ ã{Q′}.R1 ‖ a[R2]. In both cases, a ∈ apn(S) and the holes are filled in with
processes in sub(S).

Before giving the definition of pbS(Q), we introduce an auxiliary notion.

Definition 7.17. Let P be an E2d process. The set of update patterns occurring in P ,
denoted Upd(P), is inductively defined as follows:

Upd(ã{U}.Q) = {U} ∪ Upd(U) ∪ Upd(Q)
Upd(a[P]) = Upd(P)
Upd(π.P) = Upd(P) if π = a or π = a
Upd(

∑
i∈I πi.Ui) =

⋃
i∈I Upd(πi.Ui)

Upd(!π.U) = Upd(π.U)
Upd(U1 ‖ U2) = Upd(U1) ∪ Upd(U2)
Upd(•) = ∅

This definition extends to sets of processes as expected.

32

Definition 7.18 (Pred-basis). Let S be a set of E2d processes and P be an E2d process such
that Tr(P) ∈ TS . Given the set

G
S,R̃

= sub(S) ∪ {a[H] | a ∈ apn(S), H ∈ sub(S)}∪

{a[H] | R = U〈〈H〉〉, R ∈ R̃, U ∈ Upd(S), |U |• ≥ 1}
the pred-basis of P with respect to S, denoted pbS(P), is defined as the set:

pbS(P) =
⋃

P=K[R̃]

{
Q | Q −→� P, Q = D[G̃], D ∈ Ext(K), G̃ ⊆ G

S,R̃

}

We show that the well structured transition system given above has an effective pred-basis
(cf. Definition 5.7).

Theorem 7.19. Let P and S be a E2d process and a set of E2d processes, respectively. We
then have that ↑ pbS(P) =↑ PredS(↑ P). Moreover, pbS(·) is effective.

Proof. The inclusion ↑ pbS(P) ⊆↑ PredS(↑ P) follows by construction. We consider the
other inclusion, i.e., ↑ PredS(↑ P) ⊆↑ pbS(P). Given some R ∈↑ PredS(↑ P), then we show
that there is a Q ∈ pbS(P) such that Q � R. As hinted at above, depending on the kind
of reduction that can occur to reach process P we should consider six cases. Below, K,K1

and K2 are syntactic contexts as in Definition 7.16:

Reduction is “internal” to P . Then we have one of the following cases:

(1) P is obtained as an input/output synchronization. Then, R = K1[A,B] (or R =
K1[B,A]) where A is either !a.Q1 or

∑
i∈I πi.Pi with πl = a and Pl = Q1 for some

l ∈ I, and B is either !a.Q2 or
∑

i∈I πi.Ri with πl = a and Rl = Q2 , for some l ∈ I.
There exists K2 such that P = K2[Q1, Q2] and R −→� P . Since R ∈↑ PredS(↑ P) then
A,B ∈ sub(S) and we can conclude R � Q = K2[A,B] ∈ pbS(P).

(2) if P is the result of an update of an adaptable process then

R = K1[A, a[Q′′]]

where A is either !ã{Q′}.Q1 or
∑

i∈I πi.Ri with πl = ã{Q′} and Rl = Q1 for some
l ∈ I, and there exists K2 such that P = K2[Q1, Q2], R −→� P where we have
that Q2 = Q′〈〈Q′′〉〉. If |Q′|• = 0 then Q2 = Q′ and as R ∈↑ PredS(↑ P) we have
A,Q′′ ∈ sub(S) and therefore R � Q = K2[A, a[0]] ∈ pbS(P). Otherwise if |Q′|• > 0
then A ∈ sub(S) and we can immediately conclude R � Q = K2[A, a[Q′′] ∈ pbS(P).

Reduction partially present in P . Then we have one of the following cases:

(3) if R = K1[A,B] (or R = K1[B,A]) where A is either !a.Q1 or
∑

i∈I πi.Pi with πl = a
and Pl = Q1 for some l ∈ I, and B is either !a.Q2 or

∑
i∈I πi.Ri with πl = a and

Rl = Q2 , for some l ∈ I. Then there exists K2 such that P = K2[Q1] and R −→� P .
As A,B ∈ sub(S) (respectively a.Q1, a.Q2 ∈ sub(S)) we can conclude R � Q = K2[A] ‖
B ∈ pbS(P) (respectively Q = K2[B] ‖ A).

(4) if R = K1[A, a[Q2]] where A is either !ã{Q′}.Q1 or
∑

i∈I πi.Ri with πl = ã{Q′} and
Rl = Q1 for some l ∈ I. Then there exists K2 such that P = K2[Q1] and R −→� P .
As A ∈ sub(S) then R � Q = K2[A] ‖ a[0] ∈ pbS(P).

33

(5) if R = K1[a[Q′′], A where A is either !ã{Q′}.Q2 or
∑

i∈I πi.Ri with πl = ã{Q′} and
Rl = Q2 for some l ∈ I. Then there exists K2 such that P = K2[Q1], R −→� P . If
|Q′|• = 0 then Q1 = Q′, A ∈ sub(S) and we can conclude R � Q = K2[a[0]] ‖ A ∈
pbS(P). Otherwise if |Q′|• > 0 then Q1 = Q′〈〈Q′′〉〉 and we can conclude R � Q =
K2[a[Q′′]] ‖ A ∈ pbS(P).

Reduction external to P . Then we have:

(6) R = K1[P,A,B] or R = K1[P,C, a[Q3]] where A is either !a.Q1 or
∑

i∈I πi.Pi with
πl = a and Pl = Q1 for some l ∈ I, B is either !a.Q2 or

∑
i∈I πi.Ri with πl = a and

Rl = Q2 , for some l ∈ I and C is either !ã{Q1}.Q2 or
∑

i∈I πi.Pi with πl = ã{Q1}
and Pl = Q2 for some l ∈ I. As all processes A,B,C,Q3 are taken from sub(S) we can
conclude R � Q = P ‖ A ‖ B ∈ pbS(P) (respectively Q = P ‖ C ‖ a[Q3]).

Moreover, the construction of pbS(Q) is effective. In particular, given a syntactic context
K, there are finitely many ways of extending it with one or two holes so as to obtain a
parallel extension D ∈ Ext(K). In Definition 7.18, notice that when filling in the contexts

with terms in G̃, both the set of sequential subprocesses and the ways of constructing an
update pattern U are finite. This concludes the proof.

Theorem 7.20. Let S be a set of E2d processes. (Deriv(S),−→,�) is a finitely branching,
well-structured transition system with strong compatibility, decidable �, and effective pred-
basis pbS. Hence, it is possible to compute a finite basis pb∗ of Pred∗S(I) (and Pred+S (I)) for
any upward-closed set I which is given via a finite basis.

Proof. Follows from Proposition 5.8, using Remark 2.17, and Theorems 7.14 and 7.19.

7.1.4. Step (4). Next, we define the basis of the set of processes that immediately exhibit
a barb α.

Definition 7.21. Let S and α be a set of E2d processes and a name α ∈ {a, a | a ∈ N},
respectively. Then, we define:

fbα(S) = {R ∈ sub(S) | R ↓α}

Given an initial process P , a set of processes M , and a barb α, to determine whether BA
is decidable, we check if there exists a process R ∈ CSMP such that R⇓kα. It is sufficient to
check if R appears in the set of the predecessors of the processes that can exhibit α at least
k consecutive times. Since � imposes a well-quasi order on E2d processes, it is enough to
characterize the set of predecessors by means of its finite basis, as shown by Theorem 7.20.
More precisely, if k = 1 then it is sufficient to check if R is in the set of predecessors of the
processes in fbα(S), where S = M ∪ {P}. Otherwise, if k > 1 then we need we need to
check for the existence of processes R1, . . . , Rk such that R −→∗ R1 −→ . . . −→ Rk, with

Ri
α−→ for i ∈ [1. . k]. To do this, we proceed backwards. We begin by computing the finite

basis fbα(S); process Rk should be in its upward closure. Then, we compute a finite basis
for the set of processes in PredS(fbα(S)) which exhibit α immediately; Rk−1 should be in
the upward closure of this finite basis, which is constructed as follows. Notice by virtue of
Theorem 7.19, we can rely on the pred-basis given by Definition 7.18, i.e., pbS

(
fbα(S)

)
, in

this case. We consider two classes of elements of pbS
(
fbα(S)

)
: the first one is composed of

those processes that can immediately perform α, while the second contains the rest. The

34

desired finite basis is obtained by taking the set of processes containing (i) every process
in the first class and (ii) every Q in the second class (but with a minimal modification,
with respect to the ordering �, in such a way it can exhibit α immediately). The latter is
achieved by function AddB(Q) (cf. Definition 7.22) which “plugs” into every Q a process
in fbα(S) either in parallel at the top level or inside an adaptable process. This procedure
iterates as expected; each iteration considers the predecessors of the elements of the finite
basis obtained in the previous one. In the last step, in order to calculate all the predecessors
of process R1 we apply Theorem 7.20, thus obtaining a finite basis pb∗ where it is sufficient
to check whether R belongs to its upward closure. More formally:

Definition 7.22. Let S be a set of E2d processes. Given the following set definitions (with
C being a monadic context as in Definition 7.11)

AddB(Q) = {Q ‖ R | R ∈ B} ∪ {C
[
a[R ‖ Qi]

]
| Q = C

[
a[Qi]

]
, R ∈ B}

Ibα(A,B) = {Q ∈ A | Q α−→} ∪ {AddB(Q) | Q ∈ A and Q 6 α−→}
we define the finite basis FBα,k(S) = pb∗(Bα,k(S)) where k ≥ 1 and

Bα,k(S) =

{
fbα(S) if k = 1

Ibα
(
pbS
(
Bα,k−1(S)

)
, fbα

(
S
))

otherwise

The effectiveness of FBα,k will allow us to prove the decidability of BA.

Lemma 7.23. Let S be a set of E2d processes, and let α ∈ {a, a | a ∈ N}. Then, FBα,k(S)
is effective.

Proof. The effectiveness of the calculation of the finite basis of Pred∗S(·) follows from Theo-
rem 7.20. The set Ibα(·, ·) is finite and hence can be computed as defined above. Moreover,
it is easy to see that it is a finite basis representing all the predecessors of fbα(S), which in
turn can immediately exhibit α.

7.1.5. Step (5). We conclude by showing how to determine whether there exists a process
R in CSMP that exhibits α. Recall that Par(P) is the set of all processes and all adaptable
processes in P which are in parallel at top level (see Definition 7.1). We can finally state:

Theorem 7.24. BA is decidable for E2d .

Proof. Let P and M = {T1, . . . , Tn} be an initial process and a set of E2d processes, respec-
tively. In order to show that BA is decidable, it suffices to check that, given some α and
k ≥ 1, there exists a process R ∈ CSMP such that R⇓kα. More precisely, letting S = {P}∪M ,
we have to check if there exists a process Q ∈ FBα,k(S) such that Q � R. From Lemma
7.23, we know that it is possible to compute the set FBα,k(S). Then, for each Qi ∈ FBα,k(S)
we analyze the processes in Par(Qi) (cf. Definition 7.1). Let V be the set of the processes Q′j
in Par(Qi) such that Q′j � T , for some T ∈ M . We now consider Q∗i , the process obtained
by Qi by removing all the occurrences of the parallel processes in V . At this point, it is
enough to check whether Q∗i � P . If this is the case, for at least one Qi ∈ FBα,k(S), then we

can conclude that there exists R ∈ CSMP such that R⇓kα; otherwise there exists no R ∈ CSMP
such that R⇓kα.

35

Control = !a. (f ‖ b ‖ a) ‖ a. a. (p1 ‖ e) ‖ !h. (g. f ‖ h)
Register rj

[[rj = m]]2 =

{
rj [!incj .uj ‖ zj] if m = 0
rj [!incj .uj ‖

∏m uj ‖ zj] if m > 0.
Instructions (i : Ii)
[[(i : INC(rj))]]2 = !pi. f . (g ‖ b. incj . pi+1)

[[(i : DECJ(rj , s))]]2= !pi. f .
(
g ‖ (uj . (b ‖ pi+1)

+zj . r̃j{rj [!incj .uj ‖ zj]}. ps)
)

[[(i : HALT)]]2 = !pi.h.h. r̃0{r0[!inc0.u0 ‖ z0]}. r̃1{r1[!inc1.u1 ‖ z1]}. p1

Table 3: Encoding of MMs into E2s

Note that the decidability result extends to E3d , as it is a subcalculus of E2d . Moreover, by
virtue of Theorems 2.26 and 3.5, decidability of BA extends also to E2s and E3s . We have:

Corollary 7.25. BA is decidable for E3d , E2s , and E3s .

7.2. Undecidability of Eventual Adaptation. Here we show that EA is undecidable
in E2s by relating it to termination in MMs; this result carries over to E1s , E1d , and E2d—
see Corollary 7.29. This relationship is obtained by defining an encoding tailored to the
features of the property. In contrast to the encoding given in Section 6, the encoding
presented here is non faithful as it may perform erroneous tests for zero on the registers
(i.e. in the simulation of the MM a register is assumed to contain the value zero even if
this is not the case). Nevertheless, we are able to define encodings that repeatedly simulate
finite computations of the MM, and if the number of repeated simulations is infinite, then
we have the guarantee that the number of erroneous steps is finite. Thus infinitely many of
the performed simulations are correct. This way, the MM terminates iff its encoding has a
non terminating computation. As during its execution the encoding continuously exhibits
a barb on e, it then follows that EA is undecidable for E2s processes.

The encoding relies on finitely many output prefixes acting as resources on which in-
structions of the MM depend in order to be executed. To repeatedly simulate finite runs of
the MM, at the beginning of the simulation the encoding produces finitely many instances
of these resources. When HALT is reached, the registers are reset, some of the consumed
resources are restored, and a new simulation is restarted from the first instruction. In or-
der to guarantee that an infinite computation of the encoding contains only finitely many
erroneous jumps, finitely many instances of a second kind of resource (different from that
required to execute instructions) are produced. Such a resource is consumed by incre-
ment instructions and restored by decrement instructions. When the simulation performs
a jump, the tested register is reset: if it was not empty (i.e., an erroneous test) then some
resources are permanently lost. When the encoding runs out of resources, the simulation
will eventually block as increment instructions can no longer be simulated. We make two
non restrictive assumptions. First, we assume that a MM computation contains at least
one increment instruction. Second, in order to avoid resource loss at the end of a correct
simulation run, we assume that MM computations terminate with both the registers empty.

We now discuss the encoding defined in Table 3. We first comment on Control, the
process that manages the resources. It is composed of three processes in parallel. The first
replicated process is able to produce an unbounded amount of processes f and b, which

36

represent the two kinds of resources described above. The second process starts and stops
a resource production phase by performing a and a, respectively. Then, it starts the MM
simulation by emitting the program counter p1. The third process is used at the end of
the simulation to restore some of the consumed resources f (that are transformed in g, see
below).

A register rj that stores number m is encoded as an adaptable process at rj containing
m copies of the unit process uj . It also contains process !incj .uj which allows to create
further copies of uj when an increment instruction is executed. Instructions are encoded
as replicated processes guarded by pi. Once pi is consumed, increment and decrement
instructions consume one of the resources f . If such a resource is available then it is
renamed as g, otherwise the simulation blocks. The simulation of an increment instruction
also consumes an instance of resource b.

The encoding of a decrement-and-jump instruction is slightly more involved. It is
implemented as a choice: the process can either perform a decrement and proceed with
the next instruction, or to jump. In case the decrement can be executed (the input uj is

performed) then a resource b is restored. The jump branch can be taken even if the register
is not empty. In this case, the register is reset via an update that restores the initial state of
the adaptable process at rj . Note that if the register was not empty, then some processes uj
are lost. Crucially, this causes a permanent loss of a corresponding amount of resources b, as
these are only restored when process uj are consumed during the simulation of a decrement.

The simulation of the HALT instruction performs two tasks before restarting the exe-
cution of the encoding by reproducing the program counter p1. The first one is to restore
some of the consumed resources f : this is achieved by the third process of Control, which
repeatedly consumes one instance of g and produces one instance of f . This process is
started/stopped by executing the two prefixes h.h. The second task is to reset the registers
by updating the adaptable processes at rj with their initial state.

The full definition of the encoding is as follows.

Definition 7.26. Let N be a MM, with registers r0, r1 and instructions (1 : I1) . . . (n : In).
Given the Control process and the encodings in Table 3, the encoding of N in E2s (written
[[N]]2) is defined as [[r0 = 0]]2 ‖ [[r1 = 0]]2 ‖

∏n
i=1[[(i : Ii)]]2 ‖ Control.

As discussed above, the encoding has an infinite sequence of simulation runs if and
only if the corresponding MM terminates. As the barb e is continuously exposed during
the computation (the process e is spawn with the initial program counter and is never
consumed), we can conclude that a MM terminates if and only if its encoding does not
eventually terminate the simulation runs. As during the simulation runs the barb e is
always exhibited, this coincides with checking whether the encoding does not eventually
adapt.

Lemma 7.27. Let N be a MM. N terminates iff [[N]]2⇓ωe .

Proof. See Appendix C.1, Page 58.

Exploiting Lemma 7.27 and proceeding exactly as the proof of Theorem 6.3 for E1s , we
can state the following.

Theorem 7.28. EA is undecidable in E2s .

37

Control = !a. (f ‖ b ‖ a) ‖ a. a. (p1 ‖ e) ‖ !h. (g. f ‖ h)
Register rj

[[rj = 0]]3 = rj [Regj ‖ cj [0]]

with Regj = !incj . c̃j{cj [•]}. ack.uj . c̃j{cj [•]}. ack
Instructions (i : Ii)
[[(i : INC(rj))]]3 = !pi. f . (g ‖ b. incj . ack. pi+1)

[[(i : DECJ(rj , s))]]3 = !pi. f .
(
g ‖ (uj . ack. (b ‖ pi+1)+

c̃j{•}. r̃j{rj [Regj ‖ cj [•]]}. ps)
)

[[(i : HALT)]]3 = !pi.h.h. c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}.
c̃1{•}. r̃1{r1[Reg1 ‖ c1[•]]}. p1

Table 4: Encoding of MMs into E3d .

Similarly as in that case, undecidability extends also to E2d , E1s and E1d . This easily
follows from the fact that E2s is a subcalculus of E1s and from Lemma 2.18, since [[N]]M is a
process in E2s that does not contain any nested adaptable processes.

Corollary 7.29. EA is undecidable in E1s , E1d , and E2d .

Note that the encoding [[·]]2 uses processes that do not modify the topology of nested
adaptable processes; update prefixes do not remove nor create adaptable processes: they
simply remove the processes currently in the updated locations and replace them with the
predefined initial content. One may wonder whether the ability to remove processes is
necessary for the undecidability result: next we show that this is not the case.

8. (Un)decidability Results for E3

8.1. Undecidability of Eventual Adaptation in E3d . Here we prove that EA is unde-
cidable for E3d processes. We obtain this result by means of a non-faithful encoding of MMs
similar to the one presented before.

In that encoding, Definition 7.26, process deletion was used to restore the initial state
inside the adaptable processes representing the registers. In the absence of process deletion,
we use a more involved technique based on the possibility of moving processes to a different
context: processes to be removed are guarded by an update prefix c̃j{cj [•]} that simply
tests for the presence of a parallel adaptable process at cj ; when a process must be deleted,
it is “collected” inside cj , thus disallowing the possibility to execute such an update prefix.

The encoding is as in Definition 7.26, with registers and instructions as in Table 4:

Definition 8.1. Let N be a MM, with registers r0, r1 and instructions (1 : I1) . . . (n : In).
Given the Control process and the encodings in Table 4, the encoding of N in E3d (written
[[N]]3) is defined as [[r0 = 0]]3 ‖ [[r1 = 0]]3 ‖

∏n
i=1[[(i : Ii)]]3 ‖ Control.

A register rj that stores number m is encoded as an adaptable process at rj that

contains m copies of the unit process uj . c̃j{cj [•]}. ack. It also contains process Regj , which
creates further copies of the unit process when an increment instruction is invoked, as well
as the collector cj , which is used to store the processes to be removed.

38

An increment instruction adds an occurrence of uj . c̃j{cj [•]}. ack. Note that an output
inc could synchronize with the corresponding input inside a collected process. This imme-
diately leads to deadlock as the containment induced by cj prevents further interactions.
The encoding of a decrement-and-jump instruction is implemented as a choice, following
the idea discussed for the static case. If the process guesses that the register is zero then,
before jumping to the given instruction, it proceeds at disabling its current content: this is
done by (i) removing the boundary of the collector cj leaving its content at the top-level,
and (ii) updating the register placing its previous state in the collector. A decrement sim-
ply consumes one occurrence of uj . c̃j{cj [•]}. ack. Note that as before the output uj could
synchronize with the corresponding input inside a collected process. Again, this immedi-
ately leads to deadlock. The encoding of HALT exploits the same mechanism of collecting
processes to simulate the reset of the registers.

This encoding has the same properties of the one discussed for the static case. In fact, in
an infinite simulation the collected processes are never involved, otherwise the computation
would block.

Lemma 8.2. Let N be a MM. N terminates iff [[N]]M⇓ωe .

Proof. See Appendix D.1, Page 63.

Lemma 8.2 allows to conclude that EA is undecidable for processes in E3d . The proof of
the following theorem proceeds as the proofs of Theorems 6.3 and 7.28.

Theorem 8.3. EA is undecidable in E3d .

We can conclude that process deletion is not necessary for proving the undecidability
of EA in E3d . Nevertheless, in the encoding in Table 4 we need to use the possibility to
remove and create adaptable processes (namely, the collectors cj are removed and then
reproduced when the registers must be reset). One could therefore wonder whether EA is
still undecidable if we remove from E3d the possibility to remove processes. Next we show
that this is not the case.

8.2. Decidability of Eventual Adaptation in E3s . We prove the decidability of EA in
E3s by resorting to Petri nets. Namely, we reduce the eventual adaptation problem for E3s
to the infinite visit problem (cf. Definition 5.12).

Before formally defining the encoding of E3s processes into Petri nets, we give some
intuitions. The idea is to use the markings of the Petri net to represent the active sequen-
tial subprocesses and the available adaptable processes. Transitions are used to model the
execution of actions. More precisely, each active sequential subprocess is represented by
one token. Two tokens corresponding to two sequential subprocesses able to execute com-
plementary actions can fire a transition, whose effect is to produce tokens representing the
two continuations. As for update actions, they are represented by transitions that consume
(at least) two tokens: one token corresponding to the process executing the update and
another token representing the adaptable process target of the update operations. In order
to ensure that update actions take place between processes which are in parallel, we keep
track of the adaptable processes in which a process is included: we do so by decorating its
place with a list of outer adaptable processes. Intuitively, this list represents the “address”
of a single adaptable process within the nested structure of adaptable processes.

We now present some auxiliary notations required by the definition. Let P be a process
of E3s and M = {P1, . . . , Pn} be a set of processes of E3s . It is not restrictive to assume that all

39

the update actions on a given adaptable process can be executed: even if the static semantics
decrees that update actions should satisfy conditions on the nesting structure of adaptable
processes, Theorem 2.26 ensures the existence of an Ed process with the same behavior for
which such conditions are always true. Let Pseq(P,M) be the set of sequential subprocesses
in P, P1, . . . , Pn and let A(P,M) be the set of location names nestings, i.e. strings composed
of names of nested locations, starting from the outermost adaptable process, occurring in
one of the processes P, P1, . . . , Pn. We use σ, θ to range over strings in A(P,M), and write
σa for the string obtained from concatenating σ and a.

Definition 8.4. Let P and M = {P1, . . . , Pn} be E3s processes. Its associated Petri net is
defined as the triple

PN(P,M) = (Places(P,M),Trans(P,M), Init(P))

where

• Places(P,M) = {〈P, σ〉 | P ∈ Pseq(P,M), σ ∈ A(P,M)} ∪ A(P,M) ∪ {start, go}, with
start and go being two distinguished auxiliary places.
• Trans(P,M) contains all the instances of the transition schemata reported in Table 5 over

the set of places Places(P,M).
• Init(P) = decε(P)] {start}, with decσ(P) defined inductively as follows:

decσ(a[P]) = decσa(P)] {σa}
decσ(P ‖ P ′) = decσ(P)] decσ(P ′)

decσ(P) = {〈P, σ〉} otherwise

where ε corresponds to the empty string and] denotes multiset union.

We now describe the Petri net computation by giving intuitions on the transitions presented
in Table 5. The initial marking includes one token in the place start plus the tokens
corresponding to the active sequential subprocesses of P . The token in start allows to
generate an arbitrary amount of copies of the processes P1, . . . , Pn ∈ M (Transition (1)).
This is simply achieved by considering n transitions, such that the i-th transition tests for
the presence of the token in start and then produces the sequential subprocesses of Pi.
Nondeterministically, the token is moved from start to go (Transition (2)). At this point,
the simulation of the evolution of the generated configuration is started. As described
above, synchronizations between complementary actions are modeled by transitions that
consume the tokens corresponding to the two synchronizing processes and then produce the
sequential subprocesses in the continuations. Transitions (3)–(5) cover the different cases in
which an input/output synchronization can arise (namely, interaction between two guarded
processes, between a replicated processes and a guarded process, and between two replicated
processes), while Transitions (6)–(9) cover the cases in which a synchronization corresponds
to an update action. In the latter kind of transitions, we need to check the availability of
a target adaptable process, but this adaptable process should not enclose the updating
process (as in, e.g., a[ã{U} ‖ P]). More precisely, suppose there is a process Q executing an
update action on name a, and let σ be the string of the names of the adaptable processes
enclosing Q. The availability of a target adaptable process can be checked by verifying the
presence of a token in a place θa which is not a prefix of σ (see Transitions (6) and (8)).
If θa is a prefix of σ, then the adaptable process at θa could enclose Q. In such a case,
it is sufficient to check that the place θa contains at least two tokens, thus indicating the

40

(1) {start} ⇒ {start}] decε(Pi) with Pi ∈M

(2) {start} ⇒ {go}

(3) {go, 〈
∑

i∈I πi.Ai, σ〉, 〈
∑

j∈J ρj .Bj , θ〉} ⇒ {go}] decσ(Al)] decθ(Bm)

if πl = a and ρm = a (for l ∈ I, m ∈ J)

(4) {go, 〈!π.A, σ〉, 〈
∑

j∈J ρj .Bj , θ〉} ⇒
{go, 〈!π.A, σ〉}] decσ(A)] decθ(Bm)

if π = a (resp. a) and ρm = a (resp. a) (for m ∈ J)

(5) {go, 〈!π.A, σ〉, 〈!ρ.B, θ〉} ⇒
{go, 〈!π.A, σ〉, 〈!ρ.B, θ〉}] decσ(A)] decθ(Bm)

if π = a (resp. a) and ρ = a (resp. a)

(6) {go, 〈
∑

i∈I πi.Ai, σ〉, θa} ⇒
{go}] decσ(Al)] decθ(A)] decθa(U)] {θa}

if θa is not a prefix of σ, πl = ã{a[U] ‖ A} (for l ∈ I)

(7) {go, 〈
∑

i∈I πi.Ai, σ〉, θa, θa} ⇒
{go}] decσ(Al)] decθ(A)] decθa(U)] {θa, θa}

if θa is a prefix of σ, πl = ã{a[U] ‖ A} (for l ∈ I)

(8) {go, 〈!π.A′, σ〉, θa} ⇒
{go, 〈!π.A′, σ〉}] decσ(A′)] decθ(A)] decθa(U)] {θa}

if θa is not a prefix of σ, π = ã{a[U] ‖ A}

(9) {go, 〈!π.A′, σ〉, θa, θa} ⇒
{go, 〈!π.A′, σ〉}] decσ(A′)] decθ(A)] decθa(U)] {θa, θa}

if θa is a prefix of σ, π = ã{a[U] ‖ A}

Table 5: Transition schemata for the Petri net representation of E3s processes in Defini-
tion 8.4.

existence of a different adaptable process with the same path but that does not enclose Q
(see Transitions (7) and (9)).

We now state the correspondence between processes and their associated Petri net.

Lemma 8.5. Let P be a process of E3s , and M be the set {P1, · · · , Pn} and (Places(P,
M),Trans(P,M), Init(P)) be their associated Petri net, as in Definition 8.4. Then, given
a marking m, we have Init(P) →∗ {start}] m → {go}] m iff m = decε(R), for some
R ∈ CSMP .

Proof. Follows by construction of the Petri net.

Lemma 8.6. Let P and (Places(P, ∅),Trans(P, ∅), Init(P)) be an E3s process and its associ-
ated Petri net, as in Definition 8.4. Then we have:

P −→ P ′ iff decε(P)] {go} → decε(P
′)] {go}.

41

Proof. See Appendix D.2, Page 68.

The decidability of EA for E3s follows from the decidability of the existence of a suffix of
an infinite computation composed of markings with at least one token in some given places.

Theorem 8.7. Let P be a process of E3s , and let M be the set {P1, · · · , Pn} of processes
of E3s . Consider S = SubSt(P) ∪ SubSt(P1) ∪ · · · ∪ SubSt(Pn), and let P ′ = JP KdS and

M ′ = {JP1KdS , · · · , JPnKdS}. Let α be a barb. We have that P and M satisfies EA for the
barb α iff the Petri net

(Places(P ′,M ′),Trans(P ′,M ′), Init(P ′))

has an infinite computation with a suffix composed of markings with one token in go and
with at least one token in one of the places 〈

∑
i∈I πi.Ai, θ〉, with πl = α for some l ∈ I, or

〈!α.A, θ〉.

Proof. Suppose that P and M satisfies EA for the barb α then there exists a process R ∈
CSMP such that R⇓ωα. Following from Lemma 8.5 there exists an initial computation of the
Petri net that reaches the marking decε(R)] {go}. Then following from Lemma 8.6 there
exists an infinite computation with a suffix composed of markings with at least one token
in one of the places 〈

∑
i∈I πi.Ai, θ〉, with πl = α for some l ∈ I, or 〈!α.A, θ〉. Notice that

in all of these markings, the place go contains one token.
Similarly if there exists an infinite computation with a suffix composed of markings

with one token in go and at least one token in one of the places 〈
∑

i∈I πi.Ai, θ〉, with πl = α
for some l ∈ I, or 〈!α.A, θ〉 then for Lemma 8.5 and Lemma 8.6 we know that there exists
a process R ∈ CSMP such that R⇓ωα.

The check of the existence of an infinite computation with a suffix composed of markings
with one token in go and with at least one token in some given places corresponds to the
infinite visit problem (Definition 5.12). Thus since this problem is decidable (Theorem 5.13)
it follows that EA is decidable in E3s .

9. Related Work and Discussion

We now comment on the origin and motivations for the constructs of E , review some related
works, describe a modeling technique derived from BA and EA, and discuss variants of the
adaptation problems considered here.

9.1. On the Constructs for Evolvability. The origins of the E calculus can be traced
back to our own previous work on expressiveness and decidability results for core higher-
order process calculi (see, e.g., [40, 27, 52]). Below, we overview these previous works, and
discuss the motivations that led us from higher-order communication to adaptable processes.

Higher-order (or process-passing) concurrency is often presented as an alternative par-
adigm to the first-order (or name-passing) concurrency of the π-calculus for the description
of mobile systems. As in the λ-calculus, higher-order process calculi involve term instan-
tiation: a computational step results in the instantiation of a variable with a term, which
is copied as many times as there are occurrences of the variable. The basic operators of
these calculi are usually those of CCS: parallel composition, input and output prefix, and
restriction. Replication and recursion can be encoded. Proposals of higher-order process
calculi include the higher-order π-calculus [57], Homer [33], and Kell [59].

42

With the purpose of investigating expressiveness and decidability issues in the higher-
order paradigm, a core higher-order process calculus, called Hocore, was introduced [40].
Hocore is minimal, in that only the operators strictly necessary to obtain higher-order
communications are retained. Most notably, Hocore has no restriction operator. Thus
all names are global, and dynamic creation of new names is impossible. The grammar of
Hocore processes is:

P ::= a(x).P | a〈P 〉 | P ‖ P | x | 0

An input process a(x).P can receive on name a a process to be substituted in the place
of x in the body P ; an output message a〈P 〉 sends the output object P on a; parallel
composition allows processes to interact. As in CCS, in Hocore processes evolve from the
interaction of complementary actions; this way, e.g.,

a〈P 〉 ‖ a(x).Q −→ Q{P/x}
is a sample reduction. (See [40, 52] for complete accounts on the theory of Hocore.)

While considerably expressive, Hocore is far from a specification language for settings
involving (forms of) higher-order communication. For instance, it lacks primitives for de-
scribing the localities into which distributed systems are typically abstracted. Similarly,
Hocore also lacks constructs for expressing forms of evolvability and/or dynamic recon-
figuration. In order to deal with these aspects, higher-order process calculi such as Homer
and Kell provide mechanisms that allow to suspend running processes. Such mechanisms
rely on a form of named localities for processes, so called suspension (or passivation) units.
Inside a suspension unit, a process may execute and freely interact with their environment,
but it may also be stopped at any time. More precisely, let us consider the extension of
Hocore with process suspension. Let a[P] denote the process P inside the suspension unit

a. Assuming an LTS with actions of the form P
α−−→ P ′, the semantics of suspension is

formalized by the following two rules:

(Trans)

P
α−−→ P ′

a[P]
α−−→ a[P ′]

(Susp)

a[P]
a〈P 〉−−−−→ 0

where a〈P 〉 corresponds to the output action in the LTS of Hocore (see [40]). While rule
(Trans) defines the transparency of suspension units, rule (Susp) implements suspension:
the current state of a located process is “frozen” as an output action, in which it can no
longer evolve. Hence, in this semantics input prefixes may interact not only with output
actions but also with suspension units; in fact, suspension of a running process is assimilated
to regular process communication. As a simple example, consider the following process S:

S , a[P] ‖ a〈Q〉 ‖ a(x).R

It is easy to see that two possible evolutions for S are S′ , a[P] ‖ R{Q/x} and S′′ , a〈Q〉 ‖
R{P/x}. Other evolutions, related to the behavior of P , are also possible. While the se-
mantics for suspension just described allows for a straightforward definition, we observe two
potential drawbacks: First, the dual rôle of input prefixes induces a form of non determin-
ism that one may regard as unnatural. Consider a(x).R in S above: in the first evolution,
it acts as a communication endpoint, whereas in the second it acts as a suspension realizer.
Second, such a semantics is only possible for calculi which already feature process passing in

43

communications. That is, the possibility of suspending/reconfiguring processes at runtime
is somehow tied to the calculus being higher-order.

With these drawbacks in mind, in the definition of E we have opted for a different
approach: we do not assume higher-order communication, and rely instead on a restricted
form of term instantiation for defining update actions. That is, we exploit a very particular
form of higher-order interaction to define process suspension for calculi which may well
be first-order. Here, in order to focus on the novel features of adaptable processes, we
have considered a variant of CCS. Moreover, as we elaborate below, update in E can be
seen as objective rather than as subjective: an adaptable process may evolve independently
until it is updated by a prefix in its surrounding context. Furthermore, by featuring up-
date prefixes ã{U}—a dedicated construct for representing the runtime reconfiguration of
located processes—E enforces a separation of concerns, which allows to distinguish inter-
action/communication from actions of dynamic reconfiguration. We believe these are all
reasonable design choices, which allow us to focus on the fundamental aspects of evolvability
for concurrent processes. In fact, they could provide a basis for developing new formalisms
with adaptation concerns, such as, e.g., an adaptable extension of the π-calculus or a variant
of E with the nested locations of Homer.

9.2. Related Work. We have already discussed related works from the point of view of
proof techniques in the Introduction. Below, we comment on some languages/formalisms
related to E .

Loosely related to E are process calculi for fault tolerance (see, e.g., [9, 50, 56, 31]).
These are variants of the π-calculus tailored for describing algorithms on distributed sys-
tems; hence, they include explicit notions of sites/locations, network, and failures. A series
of extensions to the asynchronous π-calculus so as to model distributed algorithms is pro-
posed in [9]. One such extensions, aimed at representing process failure, is a higher-order
operation that defines savepoints: process save〈P 〉.Q defines the savepoint P for the current
location; if such a location crashes, then it will be restarted with state P . A value-passing
calculus to represent and formalize algorithms of distributed consensus is introduced in [50];
it includes a failure detector construct S(k).P which executes P if locality k is suspected to
have failed. The partial failure languages of [56, 31] feature similar constructs; such works
aim at developing bisimulation-based proof techniques for distributed algorithms. Crucially,
in the constructs for failure proposed in the above works (savepoints, failure detectors), the
post-failure behavior is defined statically, and does not depend on some runtime behavior.
Hence, as discussed in Section 4, these constructs are easily representable in E . None of
the above works addresses adaptation properties related to failures nor studies decidabil-
ity/expressiveness issues for the languages they work on.
E relies on transparent localities as a way of structuring communicating processes for

update purposes. The hierarchies induced by transparent localities are rather weak; this
is in contrast to process hierarchies in calculi such as Ambients [20] or Seal [22]. The
ambients in the Ambient calculus represent administrative domains and act as containers
of concurrent processes. Ambients may be dissolved using the open primitive; transparent
localities can only be eliminated in Ed by an explicit synchronization with a suitable update
prefix. Movement across the ambient hierarchy is achieved via the in/out primitives; it is
said to be subjective rather than objective, as ambients move themselves and are not moved
by their context. Adapting this distinction to our setting, it is fair to say that E features a
form of objective update, as an adaptable process does not contain information on its future

44

update actions: it evolves autonomously until it is updated by a suitable update prefix
in its context. A fundamental difference of Ambients with respect to higher-order process
calculi is that movement is linear : it is not possible to duplicate an ambient through its
movement. This aspect is one of the main differences between Ambients and Seal, in which
process duplication is possible. A main design guideline in Seal is security; in fact, it is
intended as a calculus of sealed objects. Within the hierarchy of seals, only parent/child
communication is allowed, thus establishing a noticeable difference with respect to the
hierarchies of transparent localities in E .

A suspension-like construct is at the heart of MECo [58], a model for evolvable com-
ponents. It is defined as a process calculus in which components feature a hierarchical
structure, rich input/output interfaces, as well as channel communication. Evolvability in
MECo is enforced by a suspension-like construct that stops a component and extracts its
“skeleton”. Because of its focus on components, adaptation in MECo is mostly concerned
about consistent changes in input/output interfaces; in our case, adaptation is defined in
terms of some distinguished observables of the system, thus constituting a rather general
way of characterizing correctness. Comp [42] is another process calculus for component
models. It is intended to be the component model for the ABS modeling language; as such,
it aims at providing a unified definition of evolvability for objects, components, and runtime
modifications of programs. In Comp, constructs for evolvability are based on the movement
primitives of the Ambient calculus rather than on suspension-based constructs, as in E and
MECo. Hence, the semantics of reconfiguration in Comp is quite different from that in E ,
which prevents more detailed comparisons.

In a broader setting, related to E are formalisms for the specification of (dynamic)
software architectures. While some of them are based on process calculi, none of them
relies on suspension-like constructs to formalize evolution/adaptation. Below we review
some of them; we refer the reader to [13, 12, 36, 25] for more extensive reviews.

One of the earliest proposals for formal grounds to dynamic architectures is [4], where
a formal system for architectural components which relies on (a fragment of) Hoare’s CSP
is introduced. The approach in [4], however, does not consider dynamic architectures. Dar-
win [43] is an Architecture Description Language (ADL) for distributed systems; it aims at
describing the structure of static and dynamic component architectures which may evolve
at runtime. The focus is then on the bindings of interacting components; the operational
semantics of Darwin relies on a π-calculus model for handling such bindings. Darwin fea-
tures a mechanism of dynamic instantiation which allows arbitrary changes in the system
architecture. Associated techniques for analyzing dynamic change in Darwin have been
proposed in [38, 37]. In comparison to E , the kind of changes possible in Darwin con-
cern the system topology rather than the “state” of the interconnected entities, as in our
case. π-ADL [51] is an ADL for dynamic and mobile architectures. Formally defined as
a typed variant of the higher-order π-calculus, π-ADL focuses on a combination of struc-
tural and behavioral perspectives: while the former describes the architecture in terms of
components, connectors, and their configurations, the latter describes it in terms of ac-
tions and behaviors. π-ADL is at the heart of ArchWare-ADL [48, 6], a layered ADL for
active architectures. ArchWare-ADL complements π-ADL with a style layer that allows
the specification of components and connectors, and with an analysis layer which enables
the specification of constraints on the styles. In contrast to E , π-ADL does not offer any
construct for supporting system evolvability. In fact, while ArchWare-ADL supports forms
of evolution (via mechanisms for stopping running programs and decomposing them into

45

its main constituents) these are not provided by the formal framework of π-ADL but by
technologies on top of it [49]. Pilar [25, 24, 23] is an algebraic, reflective ADL. Reflection
in Pilar (defined as the capability of a system to reason and act upon itself) relies on the
notion of reification which, roughly speaking, relates between entities in different levels of
a specification for defining introspection capabilities. The semantic foundation of Pilar is a
first-order, polymorphic typed variant of the π-calculus; no constructs for dynamic update
such as those in E are included in Pilar.

We conclude this review by mentioning other works on formal approaches to dynamic
update [32, 11, 62, 61, 19]. They all rely on different approaches from ours.

In [32], an investigation on on-line software version change is presented. There, an
on-line change is said to be valid if the updated program eventually exhibits behavior of
the new version. The problem of determining validity of an on-line change is shown to
be undecidable by relating it to the halting problem. The study in [32], however, limits
to restricted instances of imperative languages. Moreover, the notion of validity says very
little about correctness and adaptation. A formal model for adaptation in asynchronous
programs in distributed systems is introduced in [11]. Programs are expressed as guarded
commands, and represented as automata; adaptation can be then described as transforming
one automaton to another automaton. The focus of [11] is the verification of the behavior
of system during adaptation, considering the interaction between the new program and
the old one. The use of graph rewriting/category theory to formalize software architecture
reconfiguration has been studied in [62]. In [10], the update calculus, a typed λ-calculus
with a primitive operation for updating modules, is proposed. A development of this idea
was carried out in [61], where a calculus for dynamic update in typed, imperative languages
is proposed. There, the focus is on type-safe updates—intuitively, the consistent update
of type τ with some new type τ ′. There is no knowledge about future software updates;
type coercions mechanisms are then used to recast new (in principle, unknown) types to
old types. In contrast, in our case “update code” is defined in advance. In fact, this is a
conceptual difference between update (as in works such as [61]) and dynamic adaptation,
as we have considered it here. A framework for structural component reconfiguration with
behavioral adaptation considerations is introduced in [19], where component architectures
are given by nets of interacting components represented by LTSs. Notice that the concept of
“behavioral adaptation” in [19] is different from our notion of adaptation. The former refers
to the changes required in component interfaces so as to achieve effective compositions.
Instead, our notion of adaptation concerns a higher abstraction level, as we address the
evolution of running processes through built-it adaptation mechanisms.

9.3. Applying the Verification Problems. In the examples given in Section 4, both BA
and EA were used to check whether a process can reach a state without errors. In general,
however, one may be interested in both solving errors and preserving the correct behavior of
the system. In particular, one could be interested in checking whether certain states of the
systems are still reachable after correcting an error. We now discuss a modeling technique
which allows us to express such a property as an instance of the BA and EA problems. The
key idea is to extend the given system with parallel behaviors, defined in accordance with
the observable events associated to errors and adaptation in the system.

We illustrate the technique by considering the particular case of the EA problem; the
use of the BA problem is analogous. We consider a system abstracted as a process P , with
the following observable actions:

46

(i) a – which signals that the system has reached the state we are interested in;
(ii) es – which is emitted as soon as the system enters in an error phase;

(iii) ef – which signals that the error has been corrected.

We define a process P ∗ as an extension of P with parallel behaviors which, roughly speaking,
“complement” the above actions. Intuitively, by checking whether for such a P ∗ and a barb
e property EA is satisfied, then we will be able to guarantee that after having corrected an
error in P the distinguished state signaled by a is still reachable. Process P ∗ is defined as
follows:

P ∗ , P ‖ c ‖ !c. a. c ‖ es. (e+ c. (e+ ef . (e+ a. c)))

Above, we assume that c and e do not occur in P . In P ∗, we can identify four parts: the
process P which is kept unchanged; process C , !c. a. c, which is used to check that the
state signaled by a has been reached; process c, which is used to spawn the first copy of a;
finally, we have process R , es. (e+ c. (e+ ef . (e+ a. c))).

We explain the behavior of P ∗. When P enters in an error phase (as signaled by es), a

synchronization takes place and R reaches the process R1 , e+ c. (e+ ef . (e+ a. c)). This
is the first point in which barb e becomes available; the only way to satisfy the EA property
is to make e disappear. Then, process R1 synchronizes with c, as this is the only possible
evolution, thus obtaining R2 , e + ef . (e + a. c). Notice that at this point the process P
cannot evolve by consuming a, as the occurrence of a in the process C is guarded by a prefix
c, and no copy of c is available. In R2, barb e is available again and the process can evolve
only when P corrects the error (i.e., when an action ef is observed). As soon as the error

phase is completed, P can synchronize on ef , thus reaching the process R3 , e + a. c. In
R3, barb e will finally disappear as soon as the system P performs again action a.

Clearly, the specific definition of P ∗ will depend on the features of the given P . Still, the
above example is already useful to illustrate how the two verification problems introduced in
the paper can provide a suitable basis for reasoning about non-trivial properties of evolvable
systems which may depend on the observables of the system under consideration.

9.4. Variants of the Correctness Properties. In this presentation, we have studied
correctness of adaptable processes from a rather general perspective; in fact, the defini-
tion of BA and EA are based only on minimal observations on the behavior of the system.
This allows us to reason about the interplay between correctness and adaptation for di-
verse classes of concurrent systems. More informative properties (relating correctness and
the structure of the system, for instance) can be devised according to the nature of some
particular setting.

In this context, it is worth noticing that the technical machinery required for our
(un)decidability results can be adapted to handle a slightly different definition of the adap-
tation problems stated in Definition 3.3. More precisely, such problems can be relaxed so as
to consider non consecutive error occurrences, rather than consecutive ones. For this pur-
pose, we modify the notion of barbs (cf. Definition 3.1) by admitting an arbitrary number
of reductions between the actual error barbs:

Definition 9.1 (Barbs - Alternative Definition). Let P be an E process, and let α be an
action in {a, a | a ∈ N}.
• Given k > 0, we write P ⇓kα iff there exist Q1, . . . , Qk such that P −→∗ Q1 −→∗ . . . −→∗
Qk with Qi ↓α, for every i ∈ {1, . . . , k}.

47

• We write P ⇓ωα iff there exists an infinite computation P −→∗ Q1 −→∗ Q2 −→∗ . . . with
Qi ↓α for every i ∈ N.

Furthermore, we use

; k
α and

; ω
α to denote the negation of ⇓kα and ⇓ωα, with the expected

meaning.

Variants of EA and BA can be then restated considering the new definition above. Thus,
given a set of clusters CSMP and a barb e then the BA problems consists in checking whether
all computations of processes in CSMP have at most k states exhibiting e. Similarly, EA con-
sists in checking whether there is no computation in which e is observable in infinitely many
distinct states. Given these alternative definitions of EA and BA, (un)decidability results
can be easily derived from the ones presented here. In fact, Table 1 remains unchanged
under the alternative adaptation problems, and straightforwardly all undecidability results
hold. As for the decidability results, we should adapt the WSTS construction and the
Petri net simulation. In particular, to show decidability of the alternative definition of BA
for E2d processes, it is enough to slightly change the definition of fbα(S) (Definition 7.22)
and substituting the occurrences of pbS with Pred∗S whose effectiveness is guaranteed by
Theorem 7.20. Concerning the decidability of EA for E3s , the Petri net semantics presented
in Section 8.2 reduces this alternative version of the property to the repeated coverability
problem. This problem is known to be decidable for Petri nets, see e.g. [28].

10. Concluding Remarks

We have proposed the concept of adaptable process as a way of describing complex evolv-
ability patterns in models of concurrent systems. We have introduced E , a process calculus
of adaptable processes, in which located processes can be updated and relocated at runtime.
In our view, this ability improves the kind of reconfiguration that can be expressed in exist-
ing (higher-order) process calculi. In the design of E , we aimed at isolating a small basis for
representing reconfiguration of interacting processes: we extended CCS without restriction
and relabeling (a non Turing complete model), with transparent localities (arguably the
simplest conceivable way of structuring processes into hierarchies) and with update pre-
fixes. The interaction of adaptable processes with update prefixes constitutes a restricted
form of higher-order communication that realizes process reconfiguration.

In order to formalize the correctness of evolvable processes, we proposed the bounded
and eventual adaptation problems. We studied the (un)decidability of these problems in
several variants of E , obtained by different evolvability patterns as well as static and dynamic
topologies of adaptable processes. Our results shed light on the expressive power of E as
well as on the nature of verification for concurrent processes that may evolve at runtime.

There are a number of practical and technical issues associated to adaptable processes
that would be worth investigating in future work.

• We would like to understand how to accommodate (a form of) restriction into E while
preserving our decidability results. This is a delicate issue, as typically adding restriction
causes decidability results to break (see, e.g, [18]). Recently, higher-order calculi with
name creation (which replaces usual name restriction) have been put forward [54]; a
creationist treatment of names is claimed to be closer to distributed implementations and
is shown to have benefits in the development of associated behavioral theories. Exploring
variants of E with a name creation construct could be therefore insightful.

48

• In the definition of eventual adaptation we require the absence of computations with
infinitely many successive error states. It would be interesting to investigate the impact
of fairness on our results, in particular the decidability result for E3s . In fact, the detected
computation with infinitely many successive error state could be unfair, in the sense that
a parallel process or thread able to solve the problem is available but never scheduled. In
several concurrent models, properties like the existence of an infinite computation turn
from decidable to undecidable when restricting to fair computations (see [21] for Petri
nets or [64] for CGF, a stochastic CCS-like process calculus for the modeling of chemical
systems). As a future work we intend to check whether a similar result applies also to
our case.
• It would be interesting to study the behavioral theory of E processes; recent works on

behavioral equivalences for higher-order process calculi with passivation (e.g. [41, 53,
54]) could provide a reasonable starting point. Also, it would be important to devise
(logic-based) techniques for enhancing the verification of adaptable processes; in recent
work [16], we have studied an alternative for tacking this challenging issue.
• From a practical standpoint, it would be interesting to develop extensions or variants of
E tailored to concrete application settings, to determine how the adaptation problems
proposed here fit in such scenarios, and to study how to transfer our decidability results
to such richer languages. For instance, it would be interesting to see how our adaptation
problems fit in the context of higher-order calculi such as Kell and Homer, which feature
rich constructs for structuring processes (kells in Kell, nested locations in Homer).
• Finally, it would be useful to address the complexity of BA and EA. As far as EA is con-

cerned, we have presented its (polynomial) reduction to the Petri net place boundedness
problem, for which an EXPSPACE decision procedure exists [55]. Concerning BA, our
proof of decidability does not give a precise indication about the complexity, as only the
termination of the procedure is guaranteed by the well quasi-ordering we have defined.
We plan to investigate the complexity of the problem by comparing BA to the coverability
problem for reset Petri nets which is known to be non primitive recursive (see, e.g., [60]).
In fact, the possibility of atomically erasing the current contents of an adaptable process
is reminiscent of the ability that reset transitions have for removing all the tokens in
some given place. Hence, a plausible direction of future work is to investigate suitable
abstractions that could help alleviating the state explosion problem.

Acknowledgements

We thank the anonymous reviewers for their useful remarks. This work was partially
supported by the French projects ANR-2010-SEGI-013 - AEOLUS, ANR-11-INSE-0007
- REVER, by the EU integrated project HATS, and by the Fundação para a Ciência e
a Tecnologia (Portuguese Foundation for Science and Technology) through the Carnegie
Mellon Portugal Program, grant INTERFACES NGN-44 / 2009.

References

[1] Open Source Erlang. http://www.erlang.org/, 2011.
[2] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. Algorithmic analysis of programs with well

quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000.
[3] L. Acciai and M. Boreale. Deciding safety properties in infinite-state pi-calculus via behavioural types.

In Proc. of ICALP, volume 5556 of LNCS, pages 31–42. Springer, 2009.

49

http://www.erlang.org/

[4] R. Allen and D. Garlan. A formal basis for architectural connection. ACM Trans. Softw. Eng. Methodol.,
6(3):213–249, 1997.

[5] Amazon Web Services. Autoscaling. http://aws.amazon.com/autoscaling/, 2011.
[6] ArchWare Consortium. The ArchWare ADL: Definition of the Abstract Syntax and Formal Se-

mantics. Project Deliverable. Available at http://www-valoria.univ-ubs.fr/ArchLog/ArchWare-IST/
ArchWareDocs/D1.1b%20V1.pdf, 2002.

[7] J. Armstrong. Making reliable distributed systems in the presence of software errors. PhD thesis, SICS,
2003.

[8] J. Baeten and J. Bergstra. Mode transfer in process algebra. Technical Report Report 00/01, Eindhoven
University of Technology, 2000.

[9] M. Berger and K. Honda. The two-phase commitment protocol in an extended pi-calculus. ENTCS,
39(1), 2000.

[10] G. Bierman, M. Hicks, P. Sewell, and G. Stoyle. Formalizing dynamic software updating. In Proc. of
the International Workshop on Unanticipated Software Evolution (USE’03), Apr 2003.

[11] K. N. Biyani and S. S. Kulkarni. Assurance of dynamic adaptation in distributed systems. Journal of
Parallel and Distributed Computing, 68(8):1097 – 1112, 2008.

[12] J. S. Bradbury. Organizing definitions and formalisms for dynamic software architectures. Technical
Report 2004-477, School of Computing, Queens University, 2004.

[13] J. S. Bradbury, J. R. Cordy, J. Dingel, and M. Wermelinger. A survey of self-management in dynamic
software architecture specifications. In Proc. of WOSS, pages 28–33. ACM, 2004.

[14] M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Adaptable Processes (Extended Abstract).
In Proc. of FMOODS-FORTE’11, volume 6722 of LNCS, pages 90–105. Springer, 2011.

[15] M. Bravetti, C. Di Giusto, J. A. Pérez, and G. Zavattaro. Steps on the road to component evolvability.
In Post-proc. of FACS’10, volume 6921 of LNCS, pages 295–299. Springer, 2011.

[16] M. Bravetti, C. D. Giusto, J. A. Pérez, and G. Zavattaro. Towards the verification of adaptable processes.
In T. Margaria and B. Steffen, editors, ISoLA (1), volume 7609 of Lecture Notes in Computer Science,
pages 269–283. Springer, 2012.

[17] M. Bravetti and G. Zavattaro. On the expressive power of process interruption and compensation. Math.
Struct. in Comp. Sci., 19(3):565–599, 2009.

[18] N. Busi, M. Gabbrielli, and G. Zavattaro. On the expressive power of recursion, replication and iteration
in process calculi. Math. Struct. in Comp. Sci., 19(6):1191–1222, 2009.

[19] A. Cansado, C. Canal, G. Salaün, and J. Cubo. A formal framework for structural reconfiguration of
components under behavioural adaptation. ENTCS, 263:95–110, 2010.

[20] L. Cardelli and A. D. Gordon. Mobile ambients. Theor. Comput. Sci., 240(1):177–213, 2000.
[21] H. Carstensen. Decidability Questions for Fairness in Petri Nets. In Proc. of 4th Annual Symposium on

Theoretical Aspects of Computer Science (STACS), volume 247 of LNCS, pages 396–407, 1987.
[22] G. Castagna, J. Vitek, and F. Zappa Nardelli. The seal calculus. Inf. Comput., 201(1):1–54, 2005.
[23] C. E. Cuesta, P. de la Fuente, and M. Barrio-Solárzano. Dynamic coordination architecture through the

use of reflection. In Proc. of the 2001 ACM symposium on Applied computing, SAC ’01, pages 134–140,
New York, NY, USA, 2001. ACM.

[24] C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and M. E. B. Gutiérrez. Coordination in a reflective
architecture description language. In Proc. of COORDINATION’02, volume 2315 of LNCS, pages 141–
148. Springer, 2002.

[25] C. E. Cuesta, P. de la Fuente, M. Barrio-Solórzano, and M. E. B. Gutiérrez. An ”abstract process”
approach to algebraic dynamic architecture description. J. Log. Algebr. Program., 63(2):177–214, 2005.

[26] G. Delzanno, A. Sangnier, and G. Zavattaro. Parameterized verification of ad hoc networks. In Proc.
of CONCUR, volume 6269 of LNCS, pages 313–327. Springer, 2010.

[27] C. Di Giusto, J. A. Pérez, and G. Zavattaro. On the expressiveness of forwarding in higher-order
communication. In ICTAC, volume 5684 of LNCS, pages 155–169. Springer, 2009.

[28] J. Esparza. Some applications of petri nets to the analysis of parameterised systems, 2003. Talk at
WISP’03.

[29] J. Esparza, A. Finkel, and R. Mayr. On the verification of broadcast protocols. In Proc. of LICS’99,
pages 352–359, 1999.

[30] A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theor. Comput. Sci.,
256(1-2):63–92, 2001.

50

http://aws.amazon.com/autoscaling/
http://www-valoria.univ-ubs.fr/ArchLog/ArchWare-IST/ArchWareDocs/D1.1b%20V1.pdf
http://www-valoria.univ-ubs.fr/ArchLog/ArchWare-IST/ArchWareDocs/D1.1b%20V1.pdf

[31] A. Francalanza and M. Hennessy. A fault tolerance bisimulation proof for consensus (extended abstract).
In Proc. of ESOP, volume 4421 of LNCS, pages 395–410. Springer, 2007.

[32] D. Gupta, P. Jalote, and G. Barua. A formal framework for on-line software version change. IEEE
Trans. Softw. Eng., 22(2):120–131, 1996.

[33] T. Hildebrandt, J. C. Godskesen, and M. Bundgaard. Bisimulation congruences for homer — a calculus
of higher order mobile embedded resources. Technical Report TR-2004-52, IT University of Copenhagen,
2004.

[34] P. Hnetynka and F. Plasil. Dynamic reconfiguration and access to services in hierarchical component
models. In Proc. of CBSE’06, volume 4063 of LNCS, pages 352–359. Springer, 2006.

[35] R. M. Karp and R. E. Miller. Parallel program schemata. J. Comput. Syst. Sci., 3(2):147–195, 1969.
[36] S. Kell. A survey of practical software adaptation techniques. Journal of Universal Computer Science,

14(13):2110–2157, 2008.
[37] J. Kramer and J. Magee. The evolving philosophers problem: dynamic change management. Software

Engineering, IEEE Transactions on, 16(11):1293 –1306, nov 1990.
[38] J. Kramer and J. Magee. Analysing dynamic change in distributed software architectures. IEE Proc. -

Software, 145(5):146–154, 1998.
[39] J. B. Kruskal. Well-quasi-ordering, the tree theorem, and vazsonyi’s conjecture. Transactions of the

American Mathematical Society, 95(2):210–225, 1960.
[40] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness and decidability of higher-

order process calculi. Inf. Comput., 209(2):198–226, 2011.
[41] S. Lenglet, A. Schmitt, and J.-B. Stefani. Characterizing contextual equivalence in calculi with passi-

vation. Inf. Comput., 209(11):1390–1433, 2011.
[42] M. Lienhardt, I. Lanese, M. Bravetti, D. Sangiorgi, G. Zavattaro, Y. Welsch, J. Schfer, and A. Poetzsch-

Heffter. A Component Model for the ABS Language. In Proc. of FMCO 2010. Springer, 2011. To appear.
[43] J. Magee and J. Kramer. Dynamic structure in software architectures. In Proceedings of the 4th ACM

SIGSOFT symposium on Foundations of software engineering, SIGSOFT ’96, pages 3–14, New York,
NY, USA, 1996. ACM.

[44] Microsoft .NET Framework Developer Center. Windows Workflow Foundation. http://msdn.

microsoft.com/en-us/netframework/aa663328.aspx, 2011.
[45] R. Milner. Comunication and Concurrency. Prentice Hall, 1989.
[46] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes, I. Inf. Comput., 100(1):1–40,

1992.
[47] M. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, 1967.
[48] R. Morrison, D. Balasubramaniam, F. Oquendo, B. Warboys, and R. M. Greenwood. An active ar-

chitecture approach to dynamic systems co-evolution. In Proc. of ECSA, volume 4758 of LNCS, pages
2–10. Springer, 2007.

[49] R. Morrison, G. N. C. Kirby, D. Balasubramaniam, K. Mickan, F. Oquendo, S. Ĉımpan, B. Warboys,
B. Snowdon, and R. M. Greenwood. Support for evolving software architectures in the archware adl.
In 4th Working IEEE / IFIP Conference on Software Architecture (WICSA 2004), 12-15 June 2004,
Oslo, Norway, pages 69–78. IEEE Computer Society, 2004.

[50] U. Nestmann, R. Fuzzati, and M. Merro. Modeling consensus in a process calculus. In Proc. of CONCUR,
volume 2761 of LNCS, pages 393–407. Springer, 2003.

[51] F. Oquendo. π-ADL: an Architecture Description Language based on the higher-order typed π-calculus
for specifying dynamic and mobile software architectures. SIGSOFT Softw. Eng. Notes, 29:1–14, May
2004.

[52] J. A. Pérez. Higher-Order Concurrency: Expressiveness and Decidability Results. PhD thesis, University
of Bologna, 2010. Draft in http://www.jorgeaperez.net.

[53] A. Piérard and E. Sumii. Sound bisimulations for higher-order distributed process calculus. In Proc. of
FOSSACS, volume 6604 of LNCS, pages 123–137. Springer, 2011.

[54] A. Piérard and E. Sumii. A higher-order distributed calculus with name creation. In LICS, pages 531–
540. IEEE, 2012.

[55] C. Rackoff. The covering and boundedness problems for vector addition systems. Theor. Comput. Sci.,
6:223–231, 1978.

[56] J. Riely and M. Hennessy. Distributed processes and location failures. Theor. Comput. Sci., 266(1-
2):693–735, 2001. An extended abstract appeared in Proc. of ICALP’97.

51

http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://msdn.microsoft.com/en-us/netframework/aa663328.aspx
http://www.jorgeaperez.net

[57] D. Sangiorgi. Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD
thesis CST–99–93, University of Edinburgh, Dept. of Comp. Sci., 1992.

[58] D. Sangiorgi and F. Montesi. A model of evolvable components. In Proc. of 5th International Symposium
on Trustworthy Global Computing (TGC 2010), LNCS. Springer, 2010.

[59] A. Schmitt and J.-B. Stefani. The kell calculus: A family of higher-order distributed process calculi. In
Global Computing, volume 3267 of LNCS, pages 146–178. Springer, 2004.

[60] P. Schnoebelen. Revisiting ackermann-hardness for lossy counter machines and reset petri nets. In
MFCS, volume 6281 of LNCS, pages 616–628. Springer, 2010.

[61] G. Stoyle, M. W. Hicks, G. M. Bierman, P. Sewell, and I. Neamtiu. Mutatis Mutandis: Safe and
predictable dynamic software updating. ACM Trans. Program. Lang. Syst., 29(4), 2007.

[62] M. Wermelinger and J. L. Fiadeiro. A graph transformation approach to software architecture recon-
figuration. Sci. Comput. Program., 44(2):133–155, 2002.

[63] T. Wies, D. Zufferey, and T. A. Henzinger. Forward analysis of depth-bounded processes. In FOSSACS,
volume 6014 of LNCS, pages 94–108. Springer, 2010.

[64] G. Zavattaro and L. Cardelli. Termination problems in chemical kinetics. In CONCUR, volume 5201 of
Lecture Notes in Computer Science, pages 477–491. Springer, 2008.

Appendix A. Proofs from Section 2

A.1. Proof of Lemma 2.20. We need the following auxiliary definitions.

Definition A.1. Given two E processes in normal form P and Q, we define St(P ‖ Q) as
follows. The root is labeled ε, and has n+m children: the first n sub-children correspond
to the children of the root of St(P), while the rest correspond to the m children of the root
of St(Q),

Proposition A.2 (Syntactic Closure for Es processes). Let P1, P2, . . . be E processes.

(1) P1, P2 ∈ Es iff P1 ‖ P2 ∈ Es.
(2) P ∈ Es iff a[P] ∈ Es.
(3) Pi ∈ Es and |Pi|ap = 0 for i ∈ [1. .n] iff

∑n
i=1 πi.Pi ∈ Es.

(4) P ∈ Es and |P |ap = 0 iff !π.P ∈ Es.

Proof. Immediate from Definitions 2.4 and 2.12. In particular, items (3) and (4) follow by
observing that any process P such that |P |ap = 0 belongs to the syntactic category A in
the grammar of Es processes given in Definition 2.4.

We repeat the statement in Page 12:

Lemma A.3. Let P be an Es process. If P −→ P ′ then also P ′ is an Es process. Moreover,
St(P) = St(P ′).

Proof. The proof proceeds by induction on the height of the derivation tree for P −→ P ′,
with a case analysis on the last applied rule. There are seven cases to check.

Case (Act1): Then P = P1 ‖ P2 and P ′ = P ′1 ‖ P2, with P1 −→ P ′1. By inductive
hypothesis, we have that P ′1 is an Es process. By Proposition A.2 we have that P2 ∈ Es,
and we can therefore conclude that P ′ = P ′1 ‖ P2 is an Es process.

Moreover, by inductive hypothesis, we have that St(P1) = St(P ′1) and by Defini-
tion 2.10 it is easy to see that St(P1 ‖ P2) = St(P ′1 ‖ P2) holds.

Case (Act2): Analogous to the case for (Act1) and omitted.

52

Case (Loc): Then P = a[Q] and P ′ = a[Q′], with Q −→ Q′. By inductive hypothesis,
we have that Q′ is an Es process. For Proposition A.2 we have that P ′ = a[Q′] is an Es
process.

Moreover, by inductive hypothesis, we have that St(Q) = St(Q′). Then, it is immediate
to see that by Definition 2.10 St(a[Q]) = St(a[Q′]).

Cases (Tau1)-(Tau2): Then P ≡ C1[A] ‖ C2[B], where C1, C2 are monadic contexts as
in Definition 7.11. Moreover, A is either !b.Q or

∑
i∈I πi.Qi with πl = b, for some l ∈ I,

and B is either !b.R or
∑

i∈I πi.Ri with πl = b, for some l ∈ I.

We consider only the case in which A =
∑

i∈I πi.Qi and B = !b.R; the other cases are

similar. Then P ′ ≡ C1[Ql] ‖ C2[R ‖ !b.R] and from Proposition A.2 we easily conclude
that P ′ is an Es process.

By assumption and by Proposition A.2 we have that A and B are Es processes. In
turn, this allows us to infer that St(

∑
i∈I πi.Qi) = St(Q′l) and St(!b.R) = St(R), as well-

formed Es processes do not contain adaptable processes behind prefixes, and therefore
their component structure denotations are unaffected by input/output transitions. The
thesis then follows by Definition 2.10: St(P) = St(P ′).

Cases (Tau3)-(Tau4): Then P ≡ C1[A] ‖ C2[B] where:
• C1, C2 are monadic contexts, as in Definition 7.11;
• A = b[P1], for some P1;

• B =
∑

i∈I πi.Ri with πl = b̃{b[U] ‖ P2} for l ∈ I, or B = !̃b{b[U] ‖ P2}.R, for some
P2, R.

We consider the case in which B = !̃b{b[U] ‖ P2}.R; the other case is similar. Then

P ′ ≡ C1[a[U〈〈P1〉〉] ‖ P2] ‖ C2[R ‖ !̃b{b[U] ‖ P2}.R]. For Proposition A.2 we have that

C2[R ‖ !̃b{b[U] ‖ P2}.R] and P2 are Es processes. We now focus on process U〈〈P1〉〉,
for Proposition A.2 we know that P1 is an Es process, if |U |ph = 0 then it could not

occur that an adaptable process in P1 is prefixed. Otherwise, if |U |ph > 0 then the side

condition (2) of rule (Tau3)((Tau4)) ensures that |P1|ap = 0. As U follows the syntax

of Es by means of Proposition A.2 we can conclude that U〈〈P1〉〉 ∈ Es.
Moreover, the side condition (1) of rule (Tau3)((Tau4)) implies that

St(b[P1]) = St(a[U〈〈P1〉〉] ‖ P2).

The thesis then follows by Definition 2.10: St(P) = St(P ′).

A.2. Proof of Theorem 2.26. We divide the proof into two lemmas. We need some
auxiliary results.

Proposition A.4. Let P1 and P2 be Es processes. Then SubSt(P1 ‖ P2) = SubSt(P1) ∪
SubSt(P2).

Proof. Immediate from the definition of SubSt(·) (cf. Definition 2.21).

Lemma A.5. Let P be an Es process. Also, let S be a set of containment structure deno-
tations, such that SubSt(P) ⊆ S. Given the encoding J·KdS in Definition 2.24, if P −→s P

′

then JP KdS −→d JP ′KdS.

Proof. By induction on the height of the derivation tree for P −→s P
′, with a case analysis

on the last applied rule. There are seven cases to check.

53

Case (Act1): Then P = P1 ‖ P2 and P ′ = P ′1 ‖ P2, with P1 −→s P
′
1. By inductive

hypothesis, we have that JP1KdS′ −→d JP ′1K
d
S′ with SubSt(P1) ⊆ S′. Now, since J·KdS is

defined as an homomorphism with respect to parallel composition, and using Proposition
A.4, we can immediately infer that JP1 ‖ P2KdS −→d JP ′1 ‖ P2KdS , with S′ ∪SubSt(P2) ⊆ S,
as wanted.

Case (Act2): Analogous to the case for (Act1) and omitted.
Case (Loc): Then P = a[Q] and P ′ = a[Q′], with Q −→ Q′. By inductive hypothesis, we

have that JQKdS′ −→w JQ′KdS′ , with SubSt(Q) ⊆ S′. From Definitions 2.24 and 2.21 we

immediately infer that Ja[Q]KdS −→d Ja[Q′]KdS , with S′ ∪ St(a[Q]) ⊆ S.
Cases (Tau1)-(Tau2): Then P ≡ C1[A] ‖ C2[B], where
• C1, C2 are monadic contexts as in Definition 7.11;
• A is either !b.Q or

∑
i∈I πi.Qi with πl = b, for some l ∈ I;

• B is either !b.R or
∑

i∈I πi.Ri with πl = b, for some l ∈ I.

We consider only the case in which A =
∑

i∈I πi.Qi and B = !b.R; the other cases

are similar. Then, P ′ ≡ C1[Ql] ‖ C2[R ‖ !b.R]. Using Definitions 2.24 and 7.11 we verify
that the reduction from P is preserved in JP KdS :

JP KdS = JC1

[∑
i∈I

πi.Qi

]
‖ C2

[
!b.R

]
KdS with SubSt(P) ⊆ S

= JC1KdS
[∑
i∈I

Jπi.QiKdS
]
‖ JC2KdS

[
J!b.RKdS

]
= JC1KdS

[∑
i∈I

πi. JQiKdS
]
‖ JC2KdS

[
!b. JRKdS

]
At this point, it is immediate to infer a reduction −→d on b:

JP KdS −→d JC1KdS
[
JQlKdS

]
‖ JC2KdS

[
JRKdS ‖ !b. JRKdS

]
which is easily seen to correspond to JP ′KdS , as wanted.

Cases (Tau3)-(Tau4): Then P ≡ C1[A] ‖ C2[B] where:
• C1, C2 are monadic contexts, as in Definition 7.11;
• A = b[P1], for some P1;

• B =
∑

i∈I πi.Ri with πl = b̃{b[U] ‖ A2} for l ∈ I, or B = !̃b{b[U] ‖ P2}.R, for some
A2, R.
• cond(U,P1) holds

We consider only the case in which B = !̃b{b[U] ‖ A2}.R; the other case is similar. Then,
P ′ ≡ C1

[
a[U〈〈P1〉〉] ‖ A2

]
‖ C2

[
B ‖ R

]
. Since cond(U,P1) holds, we rely on Lemma 2.18

to determine the possible cases for U and P1: each of them entails a different encoding
of JP KdS . Consequently, we verify that in each case the actions that lead to reduction in

P are preserved in JP KdS .

(a) |U |• = 0 ∧ St(P1) = St(U). Then, using the definition of J·KdS , we have

JP KdS = JC1

[
b[P1]

]
‖ C2

[
!̃b{b[U] ‖ A2}.R

]
KdS

= JC1KdS
[
Jb[P1]KdS

]
‖ JC2KdS

[
J!̃b{b[U] ‖ A2}.RKdS

]
= JC1KdS

[
κ[JP1KdS]

]
‖ JC2KdS

[
!κ̃{κ[JUKdS] ‖ JA2KdS}. JRKdS

]
54

At this point, it is immediate to infer a reduction −→d on κ:

JP KdS −→d JC1KdS
[
?
]
{(κ[JUKdS] ‖ JA2KdS)〈〈P1〉〉/?} ‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= JC1KdS

[
(κ[JUKdS] ‖ JA2KdS)〈〈P1〉〉

]
‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= JC1KdS

[
κ[JP1KdS] ‖ JA2KdS

]
‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= P ′′

which is easily seen to correspond to JP ′KdS , as desired.
(b) |U |• = 1 ∧ |U |ap = 0 ∧ (|U |ph > 0⇒ |Q|ap = 0). There are two subcases:

(1)Case |U |ph > 0: Then, similarly as in the previous case, using the definition of

J·KdS we can infer a reduction −→d on name κb.

(2) Case |U |ph = 0. Then, using the definition of J·KdS , we have

JP KdS = JC1

[
b[P1]

]
‖ C2

[
!̃b{b[U] ‖ A2}.R

]
KdS

= JC1KdS
[
Jb[P1]KdS

]
‖ JC2KdS

[
J!̃b{b[U] ‖ A2}.RKdS

]
= JC1KdS

[
κj [JP1KdS]

]
‖ JC2KdS

[∏
κi∈ϕ(S↓b)

! κ̃i
{
κi
[
JUKdS

]
‖ JA2KdS

}
. JRKdS

]
with κj = ϕ(b[P1]). At this point, it is immediate to infer a reduction −→d on
κj :

JP KdS −→d JC1KdS
[
?
]
{(κj [JUKdS] ‖ JA2KdS)〈〈P1〉〉/?} ‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= JC1KdS

[
(κj [JUKdS] ‖ JA2KdS)〈〈P1〉〉

]
‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= JC1KdS

[
κj [JP1KdS] ‖ JA2KdS

]
‖ JC2KdS

[
JBKdS ‖ JRKdS

]
= P ′′

which is easily seen to correspond to JP ′KdS , as desired.
(c) |U |• > 1∧ |U |ap = 0∧ |Q|ap = 0. Then, similarly as in case 1(a), using the definition

of J·KdS we can infer a reduction −→d on name κb.

Lemma A.6. Let P be an Es process. Also, let S be a set of containment structure denota-
tions, such that SubSt(P) ⊆ S. Given the encoding J·KdS in Definition 2.24, if JP KdS −→d JP ′KdS
then P −→s P

′.

Proof. By induction on the height of the derivation tree for P −→d P
′, with a case analysis

on the last applied rule. There are seven cases to check. The analysis of all cases mirrors
the one detailed in the proof of Lemma A.5, and we omit it. The crucial point is the fact
that the encoding uses the special name err to rename those update prefixes that may lead
to incorrect reductions in Es. Hence, adaptable processes included in the Ed process JP KdS
will be unable to interact with those “error” update prefixes. This ensures that for every
reduction −→d there is also a reduction −→s.

We repeat the statement in Page 15:

Theorem A.7 (2.26). Let P be an Es process. Also, let S be a set of containment structure
denotations, such that SubSt(P) ⊆ S. Then we have:

P −→s P
′ if and only if JP KdS −→d JP ′KdS

Proof. Immediate from Lemmas A.5 and A.6.
55

Appendix B. Proofs from Section 6

B.1. Proof of Lemma 6.2. The proof relies on two results: completeness (Lemma B.2)
and soundness (Lemma B.3). We begin by defining the encoding of MM configuration
into E1.

Definition B.1. Let N be a MM with registers rj (j ∈ {0, 1}) and instructions (1 :
I1), . . . , (n : In). The encoding of a configuration (i,m0,m1) of N , denoted [[(i,m0,m1)]]1,
is defined as:

pi ‖ [[r0 = m0]]1 ‖ [[r1 = m1]]1 ‖
n∏
i=1

[[(i : Ii)]]1

where the encodings [[rj = mj]]1 and [[(i : Ii)]]1, . . . , [[(n : In)]]1 are as in Table 2.

Lemma B.2 (Completeness). Let (i,m0,m1) be a configuration of a MM N .

(1) If (i,m0,m1) −→M (i′,m′0,m
′
1) then, for some process P , it holds that

[[(i,m0,m1)]]1 −→∗ P ≡ [[(i′,m′0,m
′
1)]]1.

(2) If (i,m0,m1) 9M then [[(i,m0,m1)]]1⇓ke
Proof.

(1) We proceed by a case analysis on the instruction performed by the Minsky machine.
Hence, we distinguish three cases corresponding to the behaviors associated to rules
M-Inc, M-Dec, and M-Jmp. Without loss of generality, we restrict our analysis to
operations on register r0.
Case M-Inc: We have a Minsky configuration (i,m0,m1) with (i : INC(r0)). By

Definition B.1, its encoding into E1 is as follows:

[[(i,m0,m1)]]1 = pi ‖ [[r0 = m0]]1 ‖ [[r1 = m1]]1 ‖

[[(i : INC(r0))]]1 ‖
∏

l=1..n,l 6=i
[[(l : Il)]]1

After consuming the program counter pi we have the following

[[(i,m0,m1)]]1 −→ r0[(| m0 |)0] ‖ r̃0{r0[u0. •]}. pi+1 ‖ S = P1

where S = [[r1 = m1]]1 ‖
∏n
i=1[[(i : Ii)]]1 stands for the rest of the system. The only

reduction possible at this point is the synchronization on r0, which allows the update
of the adaptable process at r0:

P1 −→ r0[u0. (| m0 |)0] ‖ pi+1 ‖ S = P2 .

By the encoding of numbers, it P2 can be equivalently written as

r0[(| m0 + 1 |)0] ‖ pi+1 ‖ S
and so it is easy to see that P2 ≡ [[(i+ 1,m0 + 1,m1)]]1, as desired.

Case M-Dec: We have a Minsky configuration (i, c,m1) such that (i : DEC(r0, s)) and
c > 0. By Definition B.1, its encoding into E1 is as follows:

[[(i, c,m1)]]1 = pi ‖ [[r0 = c]]1 ‖ [[r1 = m1]]1 ‖
[[(i : DEC(r0, s))]]1 ‖

∏
l=1..n,l 6=i

[[(l : Il)]]1

56

We begin by consuming the program counter pi, which leaves the content of [[(i :
DEC(r0, s))]]1 exposed. Using the encoding of numbers we have the following:

[[(i, c,m1)]]1 −→ r0[u0. (| c− 1 |)0] ‖ (u0. pi+1 + z0. r̃0{r0[z0]}. ps) ‖ S = P1

where S = [[r1 = m1]]1 ‖
∏n
i=1[[(i : Ii)]]1 stands for the rest of the system. Notice that

only reduction possible at this point is the synchronization on u0, which signals the
fact we are performing a decrement instruction. After this synchronization we have

P1 −→ r0[(| c− 1 |)0] ‖ pi+1 ‖ S
≡ [[(i+ 1, c− 1,m1)]]1

as desired.
Case M-Jmp: We have a Minsky configuration (i, 0,m1) and (i : DEC(r0, s)). By

Definition B.1, its encoding into E1 is as follows:

[[(i, 0,m1)]]1 = pi ‖ [[r0 = 0]]1 ‖ [[r1 = m1]]1 ‖
[[(i : DEC(r0, s))]]1 ‖

∏
l=1..n,l 6=i

[[(l : Il)]]1 .

We begin by consuming the program counter pi, which leaves the content of [[(i :
DEC(r0, s))]]1 exposed. Using the encoding of numbers we have the following:

[[(i, 0,m1)]]1 −→ r0[z0] ‖ (u0. pi+1 + z0. r̃0{r0[z0]}. ps) ‖ S = P1

where S = [[r1 = m1]]1 ‖
∏n
i=1[[(i : Ii)]]1 stands for the rest of the system. In P1, the

only reduction possible is through a synchronization on z0, which signals the fact we
are performing a jump. Such a synchronization, in turn, enables an update action
on r0. We then have:

P1 −→ r0[0] ‖ r̃0{r0[z0]}. ps ‖ S
−→ r0[z0] ‖ ps ‖ S
≡ [[(s, 0,m1)]]1

as desired.
(2) We have a Minsky configuration (i,m0,m1) with (i : HALT). By Definition B.1, its

encoding into E1 is as follows:

[[(i,m0,m1)]]1 = pi ‖ [[r0 = m0]]1 ‖ [[r1 = m1]]1

‖ [[(i : HALT)]]1 ‖
∏

l=1..n, l 6=i
[[(l : Il)]]1

≡ pi ‖ !pi. (e+ pi) ‖ S = P0

where S = [[r0 = m0]]1 ‖ [[r1 = m1]]1 ‖
∏
l=1..n, l 6=i[[(l : Il)]]1 stands for the part of the

system that is not able to interact. It is easy to see that P0 ⇓1e. In fact, by synchronizing

on pi and choosing the left-hand side process in the binary sum, we have P0 −→
e−−→. The

thesis is easily seen to hold by observing that by releasing new copies of the encoding
of (i : HALT), one always reaches a derivative Pj of P0 such that Pj ⇓e.

57

Lemma B.3 (Soundness). Let (i,m0,m1) be a configuration of a MM N .
If [[(i,m0,m1)]]1 −→ P1 then either:

(1) For every computation of P1 there exists a Pj such that

P1 −→∗ Pj = [[(i′,m′0,m
′
1)]]1

and (i,m0,m1) −→M (i′,m′0,m
′
1); or

(2) P1⇓ke and (i,m0,m1) 9M.

Proof. Consider the reduction [[(i,m0,m1)]]1 −→ P1. An analysis of the structure of process
[[(i,m0,m1)]]1 reveals that, in all cases, the only possibility for the first step corresponds to
the consumption of the program counter pi. This implies that there exists an instruction
labeled with i, that can be executed from the configuration (i,m0,m1). We proceed by a
case analysis on the possible instruction, considering also the fact that the register on which
the instruction acts can hold a value equal or greater than zero.

In the cases in which (i : INC(rj)) or (i : DEC(rj , s)), it can be shown that computation
evolves deterministically until reaching a process in which a new program counter (that is,
some pi′) appears. The program counter pi′ is always inside a process that corresponds to
[[(i′,m′0,m

′
1)]]1, where (i,m0,m1) −→M (i′,m′0,m

′
1). That is, for the cases (i : INC(rj)) and

(i : DEC(rj , s)), we have that Item (1) above holds. The detailed analysis follows the same
lines as the one reported for the proof of Lemma B.2, and we omit it.

In the case in which (i : HALT), we have that Item (2) holds. In order to see this, it
suffices to observe that if N does not terminate (more precisely: if N does not reach a
program counter associated to a HALT instruction) then [[N]]1 does not have a barb on e. In
fact, by a simple inspection on the encodings in Table 2 we can deduce that e only appears
in the encoding of halt instructions, and does not occur in the encodings of increment and
decrement-and-jump instructions. Hence, a barb on e can only be observed when P1 is the
result of triggering a halt instruction.

We are now ready to repeat the statement of Lemma 6.2, in Page 25:

Lemma B.4 (6.2). Let N be a MM and k ≥ 1. N terminates iff [[N]]1⇓ke .

Proof. It follows directly from Lemmas B.2 and B.3.

Appendix C. Proofs from Section 7

C.1. Proof of Lemma 7.27. The proof relies on two auxiliary results: completeness
(Lemma C.5) and soundness (Lemma C.6). Completeness relies on the auxiliary Lemma C.3.

We first introduce the notion of encoding of a MM configuration into E2s . Notice that it
in addition to the encodings of registers and instructions, it includes a number of resources
f and b which are always available during the execution of the machine:

Definition C.1. Let N be a MM with registers rj (j ∈ {0, 1}) and instructions (1 :
I1), . . . , (n : In). The encoding of a configuration (i,m0,m1) of N , denoted [[(i,m0,m1)]]2,
is defined as:

pi ‖ e ‖ [[r0 = m0]]2 ‖ [[r1 = m1]]2 ‖
n∏
i=1

[[(i : Ii)]]2 ‖ C〈α,β,γ〉

where

58

• C〈α,β,γ〉 def=
∏α f ‖

∏β b ‖
∏γ g ‖ !a. (f ‖ b ‖ a) ‖ !h. (g. f ‖ h), with α, β, γ ≥ 0

• the encodings [[rj = mj]]2 and [[(i : Ii)]]2, . . . , [[(n : In)]]2 are as in Table 3.

Notice that C〈α,β,γ〉 abstracts the evolution of process Control in Table 3, and the
resources that it produces and maintains (namely, α copies of f , β copies of b, and γ copies
of g).

Remark C.2. As we have discussed, the presence of copies of f is required for the execution
of increment and decrement-and-jump instructions. In their absence, the encoding of the
MM would reach a deadlocked state. Such outputs are produced at the beginning of the
execution of the encoding of a MM, by means of a replicated process. In the proofs below,
we assume that the initialization of the encoding always produces enough copies of f so as
to ensure the existence of a correct simulation of the machine. That is to say, we assume
that the absence of copies of f is not a possible source of deadlocks.

We prove that given a MM N there exists a computation of process [[N]]2 which correctly
mimics its behavior.

Lemma C.3. Let (i,m0,m1) be a configuration of a MM N .

(1) If (i,m0,m1) −→M (i′,m′0,m
′
1) then, for some process P , it holds that

[[(i,m0,m1)]]2 −→∗ P ≡ [[(i′,m′0,m
′
1)]]2

(2) If (i,m0,m1) 9M then [[(i,m0,m1)]]2⇓1p1.

Proof.

(1) We proceed by a case analysis on the instruction performed by the Minsky machine.
Hence, we distinguish three cases corresponding to the behaviors associated to rules
M-Inc, M-Dec, and M-Jmp. Without loss of generality, we restrict our analysis to
operations on register r0.
Case M-Inc: We have a Minsky configuration (i,m0,m1) with (i : INC(r0)). By

Definition C.1, its encoding into E2s is as follows:

[[(i,m0,m1)]]2 = pi ‖ e ‖ [[r0 = m0]]2 ‖ [[r1 = m1]]2 ‖
!pi. f . (g ‖ b. inc0. pi+1) ‖

∏
l=1..n,l 6=i

[[(l : Il)]]2 ‖ C〈α,β,γ〉

We then have:

[[(i,m0,m1)]]2 −→ e ‖ [[r0 = m0]]2 ‖ f . (g ‖ b. inc0. pi+1) ‖ C〈α,β,γ〉 ‖ S=P

where S = [[r1 = m1]]2 ‖
∏n
l=1[[(l : Il)]]2 stands for the rest of the system. Starting

from P , a possible sequence of reductions is the following:

P −→ e ‖ [[r0 = m0]]2 ‖ b. inc0. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

= e ‖ r0[!inc0.u0 ‖
m0∏

u0 ‖ z0] ‖ b. inc0. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

−→ e ‖ r0[!inc0.u0 ‖
m0∏

u0 ‖ z0] ‖ inc0. pi+1 ‖ C〈α−1,β−1,γ+1〉 ‖ S

−→≡ e ‖ r0[!inc0.u0 ‖
m0+1∏

u0 ‖ z0] ‖ pi+1 ‖ C〈α−1,β−1,γ+1〉 ‖ S = P ′

59

It is easy to see that P ′ ≡ [[(i+1,m0 +1,m1)]]2, as desired. Observe how the number
of resources changes: in the first reduction, a copy of f is consumed, and a copy
of g is released in its place. Notice that we are assuming that β > 0, that is, that
there is at least one copy of b. In fact, since the instruction only takes place after a
synchronization on b (i.e., the second reduction above) the presence of at least one

copy of b in C〈α−1,β,γ+1〉 is essential to avoid deadlocks.
Case M-Dec: We have a Minsky configuration (i,m0,m1) with m0 > 0 and (i :

DEC(r0, s)). By Definition C.1, its encoding into E2s is as follows:

[[(i,m0,m1)]]2 = pi ‖ e ‖ [[r0 = m0]]2 ‖ [[r1 = m1]]2 ‖
!pi. f .

(
g ‖ (u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps)

)
‖

∏
l=1..n,l 6=i

[[(l : Il)]]2 ‖ C〈α,β,γ〉

We then have:

[[(i,m0,m1)]]2 −→≡ f .
(
g ‖ (u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps)

)
‖ e ‖ [[r0 = m0]]2 ‖ C〈α,β,γ〉 ‖ S = P

where S = [[r1 = m1]]2 ‖
∏n
l=1[[(l : Il)]]2 stands for the rest of the system. Starting

from P , a possible sequence of reductions is the following:

P −→ u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖
e ‖ [[r0 = m0]]2 ‖ C〈α−1,β,γ+1〉 ‖ S

= u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖

e ‖ r0[!inc0.u0 ‖
m0∏

u0 ‖ z0] ‖ C〈α−1,β,γ+1〉 ‖ S = P ′

−→ pi+1 ‖ e ‖ r0[!inc0.u0 ‖
m0−1∏

u0 ‖ z0] ‖ C〈α−1,β+1,γ+1〉 ‖ S = P ′′

It is easy to see that P ′ ≡ [[(i+ 1,m0 − 1,m1)]]2, as desired. Observe how in the last
reduction the presence of at least a copy of u0 in r0 is fundamental for releasing both
an extra copy of b and the trigger for the next instruction.

Case M-Jmp: We have a Minsky configuration (i, 0,m1) and (i : DEC(r0, s)). By
Definition C.1, its encoding into E2s is as follows:

[[(i, 0,m1)]]2 = pi ‖ e ‖ [[r0 = 0]]2 ‖ [[r1 = m1]]2 ‖
!pi. f .

(
g ‖ (u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps)

)
‖

∏
l=1..n,l 6=i

[[(l : Il)]]2 ‖ C〈α,β,γ〉

We then have:

[[(i, 0,m1)]]2 −→≡ f .
(
g ‖ (u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps)

)
‖ e ‖ [[r0 = m0]]2 ‖ C〈α,β,γ〉 ‖ S = P

60

where S = [[r1 = m1]]2 ‖
∏n
l=1[[(l : Il)]]2 stands for the rest of the system. Starting

from P , a possible sequence of reductions is the following:

P −→ u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖
e ‖ [[r0 = 0]]2 ‖ C〈α−1,β,γ+1〉 ‖ S

= u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖
e ‖ r0[!inc0.u0 ‖ z0] ‖ C〈α−1,β,γ+1〉 ‖ S

−→ r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖ e ‖ r0[!inc0.u0] ‖ C〈α−1,β,γ+1〉 ‖ S
−→ r0[!inc0.u0 ‖ z0] ‖ ps ‖ e ‖ C〈α−1,β,γ+1〉 ‖ S = P ′

It is easy to see that P ′ ≡ [[(s, 0,m1)]]2, as desired. Observe how the number of copies
of b remains invariant when the MM is correctly simulated.

(2) If (i,m0,m1) 9M then i corresponds to the HALT instruction. Then, by Definition C.1,
its encoding into E2s is as follows:

[[(i,m0,m1)]]2 = pi ‖ e ‖ [[r0 = m0]]2 ‖ [[r1 = m1]]2 ‖
!pi.h.h. r̃0{r0[!inc0.u0 ‖ z0]}. r̃1{r1[!inc1.u1 ‖ z1]}. p1 ‖∏
l=1..n,l 6=i

[[(l : Il)]]2 ‖ C〈α,β,γ〉

We then have:

[[(i,m0,m1)]]2 −→≡ h.h. r̃0{r0[!inc0.u0 ‖ z0]}. r̃1{r1[!inc1.u1 ‖ z1]}. p1 ‖
e ‖ [[r0 = m0]]2 ‖ C〈α,β,γ〉 ‖ S = P

where S = [[r1 = m1]]2 ‖
∏n
l=1[[(l : Il)]]2 stands for the rest of the system. Starting from

P , a possible sequence of reductions is the following:

P −→∗ r̃0{r0[!inc0.u0 ‖ z0]}. r̃1{r1[!inc1.u1 ‖ z1]}. p1 ‖
e ‖ [[r0 = m0]]2 ‖ C〈α+c,β,γ−c〉 ‖ S = P1

where the output on h in P interacted with process C〈α,β,γ〉 so as to replace c outputs
on g with c outputs on f . After that, a synchronization on h took place between the
evolutions of C〈α,β,γ〉 and of P . We now have:

P1 −→≡ e ‖ [[r0 = 0]]2 ‖ [[r1 = m1]]2

r̃1{r1[!inc1.u1 ‖ z1]}. p1 ‖
n∏
l=1

[[(l : Il)]]2 ‖ C〈α+c,β,γ−c〉

−→ e ‖ [[r0 = 0]]2 ‖ [[r1 = 0]]2 ‖ p1 ‖
n∏
l=1

[[(l : Il)]]2 ‖ C〈α+c,β,γ−c〉

which corresponds to [[(1, 0, 0)]]2. In turn, it can be seen that [[(i,m0,m1)]]2⇓1p1 .

Remark C.4. It is instructive to identify the exact point in which an erroneous compu-
tation can be made when mimicking the behavior of a decrement-and-jump instruction.
Consider again the process P ′, as analyzed in the case M-Dec above:

P ′ = u0. (b ‖ pi+1) + z0. r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖

e ‖ r0[!inc0.u0 ‖
m0∏

u0 ‖ z0] ‖ C〈α−1,β,γ+1〉 ‖ S
61

where S = [[r1 = m1]]2 ‖
∏n
l=1[[(l : Il)]]2 stands for the rest of the system. Above, we

analyzed the correct computation from P ′, namely a synchronization on u0:

P ′ −→ pi+1 ‖ e ‖ r0[!inc0.u0 ‖
m0−1∏

u0 ‖ z0] ‖ C〈α−1,β+1,γ+1〉 ‖ S = P ′′

with P ′′ ≡ [[(i + 1,m0 − 1,m1)]]2. The erroneous computation takes place when there is a
synchronization on z0, rather than on u0. We then have:

P ′ −→ r̃0{r0[!inc0.u0 ‖ z0]}. ps ‖ e ‖

r0[!inc0.u0 ‖
m0∏

u0] ‖ C〈α−1,β,γ+1〉 ‖ S

−→≡ ps ‖ e ‖ r0[!inc0.u0 ‖ z0] ‖ C〈α−1,β,γ+1〉 ‖ S = P ′′′

with P ′′′ ≡ [[(s, 0,m1)]]2. The side effect of the above erroneous computation can be seen on
the number of copies of b that remain after the (erroneous) synchronization on z0. In fact,
while a correct computation (as P ′′ above) increases in one the number of such copies, in an
incorrect computation (as P ′′′ above) the number of copies of b remains invariant. Notice
also that copies of b can be only produced at the beginning of the execution of the encoding
of the MM. This is significant since, as discussed at the end of the case M-Inc, the number
of copies of b has a direct influence on potential deadlocks of the encoding of a MM.

Lemma C.5 (Completeness). Let N be a MM, if N terminates then [[N]]2⇓ωe .

Proof. Recall that N is said to terminate if there exists a computation

(1, 0, 0) −→∗M (h, 0, 0)

such that (h : HALT). Lemma C.3 guarantees the existence of a process P such that
[[(1, 0, 0)]]2 −→∗ P ≡ [[(h, 0, 0)]]2, with P ⇓1p1 . This ensures that every time that the en-
coding of N reaches HALT the simulation is restarted. Therefore, termination of N ensures
that [[N]]2 has an infinite computation: since the encoding always exhibits barb e, we can
conclude that [[N]]2⇓ωe .

Lemma C.6 (Soundness). Let N be a MM. If N does not terminate then [[N]]2

; ω
e .

Proof. It is enough to prove that if N does not terminate (that is, if N does not reach
a HALT instruction) then all the computations of [[N]]2 are finite. Since the encoding can
mimic the behavior of N both correctly and incorrectly, we have two possible cases:

(1) In the first case, the simulation of [[N]]2 is correct and no erroneous steps are introduced.
Notice that at every instruction an output on f is consumed permanently: these copies
of f are only recreated when invoking a HALT instruction, which converts every g into a
f . Since a HALT instruction is never reached, new copies of f are never recreated, and
the computation of process [[N]]2 has necessarily to be finite.

(2) In the second case, the simulation is not correct and one or more wrong guesses oc-
curred in the simulation of a decrement-and-jump instruction. Here, in addition to the
possibility of deadlocks described in Item (1) above, erroneous computations constitute
another source of deadlocks. In fact, as detailed in Remark C.4, for each one of such
wrong guesses a copy of b is permanently lost. An arbitrary number of wrong guesses
may thus lead to a state in which there are no outputs on b. As discussed at the end
of the case of the M-Inc in the proof of Lemma C.3, the encoding of an increment
instruction reaches a deadlock if a copy of b is not available. This means that wrong

62

guesses in simulating a decrement-and-jump instruction may induce deadlocks when
simulating an increment instruction.

Hence, as all the computations of [[N]]2 are finite, therefore [[N]]2 barb e cannot be exposed
an infinite number of times.

We are now ready to repeat the statement of Lemma 7.27, in Page 37:

Lemma C.7 (7.27). Let N be a MM. N terminates iff [[N]]2⇓ωe .

Proof. It follows directly from Lemmas C.5 and C.6.

Appendix D. Proofs from Section 8

D.1. Proof of Lemma 8.2. The proof relies on two results: completeness (Lemma D.3)
and soundness (Lemma D.4). The proof is very similar to the one presented for the case
of E2s , and considerations concerning the handling of resources (i.e., process Control) are
exactly the same. Hence, Remarks C.2 and C.4 are valid also in this proof.

We first introduce the notion of encoding of a MM configuration into E3d .

Definition D.1. Let N be a MM with registers rj (j ∈ {0, 1}) and instructions (1 :
I1), . . . , (n : In). The encoding of a configuration (i,m0,m1) of N , denoted [[(i,m0,m1)]]3,
is defined as:

pi ‖ e ‖ [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖
n∏
i=1

[[(i : Ii)]]3 ‖ C〈α,β,γ〉

where

• C〈α,β,γ〉 def=
∏α f ‖

∏β b ‖
∏γ g ‖ !a. (f ‖ b ‖ a) ‖ !h. (g. f ‖ h), with α, β, γ ≥ 0;

• [[(i : Ii)]]3, . . . , [[(n : In)]]3 are as in Table 4;

• [[rj = mj]]3 stands for rj
[∏mj Uj ‖ Regj ‖ cj [G〈δ〉]

]
with

– Regj = !incj . c̃j{cj [•]}. ack.uj . c̃j{cj [•]}. ack (as in Table 4)

– Uj
def
= uj . c̃j{cj [•]}. ack

– G
〈δ〉
j

def
= Regj ‖

∏δ Uj

Similarly as before, in addition to the encodings of registers and instructions, the encoding
of a MM configuration includes a number of resources f and b which are always available
during the execution of the machine. These are represented by process C〈α,β,γ〉, which
abstracts the evolution of process Control in Table 4, and the resources that it produces
and maintains (namely, α copies of f , β copies of b, and γ copies of g). In addition, the

encoding of register j in E3d includes a “garbage” process G
〈δ〉
j representing residual processes

which are accumulated during the execution of the encoding; as we will see, every interaction
with such a garbage process will result into a deadlocked process.

We prove that given a MM N there exists a computation of process [[N]]3 which correctly
mimics its behavior. We remind that Remark C.2 applies to this case too.

Lemma D.2. Let (i,m0,m1) be a configuration of a MM N .

(1) If (i,m0,m1) −→M (i′,m′0,m
′
1) then, for some process P , it holds that

[[(i,m0,m1)]]3 −→∗ P ≡ [[(i′,m′0,m
′
1)]]3

63

(2) If (i,m0,m1) 9M then [[(i,m0,m1)]]3⇓1p1.

Proof.

(1) We proceed by a case analysis on the instruction performed by the Minsky machine.
Hence, we distinguish three cases corresponding to the behaviors associated to rules
M-Inc, M-Dec, and M-Jmp. Without loss of generality, we restrict our analysis to
operations on register r0.
Case M-Inc: We have a Minsky configuration (i,m0,m1) with (i : INC(r0)). By

Definition D.1, its encoding into E3d is as follows:

[[(i,m0,m1)]]3 = pi ‖ e ‖ [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖ C〈α,β,γ〉 ‖
!pi. f . (g ‖ b. inc0. ack. pi+1) ‖

∏
l=1..n,l 6=i

[[(l : Il)]]3

We then have: [[(i,m0,m1)]]3 −→ R where

R = [[r0 = m0]]3 ‖ f . (g ‖ b. inc0. ack. pi+1) ‖ C〈α,β,γ〉 ‖ S,
and S = e ‖ [[r1 = m1]]3 ‖

∏n
l=1[[(l : Il)]]3 stands for the rest of the system. Starting

from R, a possible sequence of reductions is the following:

R −→ [[r0 = m0]]3 ‖ b. inc0. ack. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

= r0

[m0∏
U0 ‖ !inc0. c̃0{c0[•]}. ack.u0. c̃0{c0[•]}. ack ‖ c0[G〈δ〉0]

]
‖

b. inc0. ack. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

−→ r0

[m0∏
U0 ‖ !inc0. c̃0{c0[•]}. ack.u0. c̃0{c0[•]}. ack ‖ c0[G〈δ〉0]

]
‖

inc0. ack. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S = R′

−→ r0

[m0∏
U0 ‖ c̃0{c0[•]}. ack.u0. c̃0{c0[•]}. ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ ack. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

−→ r0

[m0∏
U0 ‖ ack.u0. c̃0{c0[•]}. ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖

ack. pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

−→ r0

[m0∏
U0 ‖ u0. c̃0{c0[•]}. ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖

pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S

= r0

[m0+1∏
U0 ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ pi+1 ‖ C〈α−1,β,γ+1〉 ‖ S = P

It is easy to see that P ≡ [[(i+ 1,m0 + 1,m1)]]3, as desired. Observe how the number
of resources changes: in the first reduction, a copy of f is consumed, and a copy
of g is released in its place. Notice that we are assuming that β > 0, that is, that
there is at least one copy of b. In fact, since the instruction only takes place after a

64

synchronization on b (i.e., the second reduction above) the presence of at least one

copy of b in C〈α−1,β,γ+1〉 is essential to avoid deadlocks. For the same reason, it is
interesting to observe that in R′ the computation can only evolve if inc0 synchronizes
with the replicated input process inc0 inside r0. Had it synchronized with the input
on inc0 inside c0, the simulation would have reached a deadlock state, as there are
no other adaptable processes at c0 inside it.

Case M-Dec: We have a Minsky configuration (i,m0,m1) with m0 > 0 and (i :
DEC(r0, s)). By Definition D.1, its encoding into E3d is as follows:

[[(i,m0,m1)]]3 = pi ‖ e ‖ [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖ C〈α,β,γ〉 ‖
!pi. f .

(
g ‖ (u0. ack. (b ‖ pi+1) +

c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)
)
‖

∏
l=1..n,l 6=i

[[(l : Il)]]3

We then have:

[[(i,m0,m1)]]3 −→ [[r0 = m0]]3 ‖ C〈α,β,γ〉 ‖
f .
(
g ‖ (u0. ack. (b ‖ pi+1) +

c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)
)
‖ S = R

where S = e ‖ [[r1 = m1]]3 ‖
∏n
l=1[[(l : Il)]]3 stands for the rest of the system. Starting

from R, a possible sequence of reductions is the following:

R −→ [[r0 = m0]]3 ‖ C〈α−1,β,γ+1〉 ‖(
(u0. ack. (b ‖ pi+1) + c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)

)
‖ S

= r0

[m0−1∏
U0 ‖ u0. c̃0{c0[•]}. ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉

‖
(
(u0. ack. (b ‖ pi+1) + c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)

)
‖ S = R′

−→ r0

[m0−1∏
U0 ‖ c̃0{c0[•]}. ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖

ack. (b ‖ pi+1) ‖ S

−→ r0

[m0−1∏
U0 ‖ ack ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖

ack. (b ‖ pi+1) ‖ S

−→ r0

[m0−1∏
U0 ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖ b ‖ pi+1 ‖ S

≡ r0

[m0−1∏
U0 ‖ Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β+1,γ+1〉 ‖ pi+1 ‖ S = P

It is easy to see that P ≡ [[(i + 1,m0 − 1,m1)]]3, as desired. Observe how in the
last reduction the presence of at least a copy of u0 in r0 is fundamental for releasing
both an extra copy of b and the trigger for the next instruction. Notice also that if
u0 in R′ synchronizes with u0 inside adaptable process c0 then, as in the case of the
increment, the simulation would be deadlocked.

65

Case M-Jmp: We have a Minsky configuration (i, 0,m1) and (i : DEC(r0, s)). By
Definition D.1, its encoding into E3d is as follows:

[[(i,m0,m1)]]3 = pi ‖ e ‖ [[r0 = 0]]3 ‖ [[r1 = m1]]3 ‖ C〈α,β,γ〉 ‖
!pi. f .

(
g ‖ (u0. ack. (b ‖ pi+1) +

c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)
)
‖∏

l=1..n,l 6=i
[[(l : Il)]]3

We then have:

[[(i,m0,m1)]]3 −→ [[r0 = 0]]3 ‖ C〈α,β,γ〉 ‖ f .
(
g ‖ (u0. ack. (b ‖ pi+1) +

c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps)
)
‖ S = R

where S = e ‖ [[r1 = m1]]3 ‖
∏n
l=1[[(l : Il)]]3 stands for the rest of the system. Starting

from R, a possible sequence of reductions is the following:

R −→ [[r0 = 0]]3 ‖ C〈α−1,β,γ+1〉 ‖(
u0. ack. (b ‖ pi+1) + c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps

)
‖ S

= r0
[
Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖(

u0. ack. (b ‖ pi+1) + c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. ps
)
‖ S

−→ r0
[
Reg0 ‖ G〈δ〉0

]
‖ C〈α−1,β,γ+1〉 ‖ r̃0{r0[Reg0 ‖ c0[•]]}. ps ‖ S

−→≡ r0
[
Reg0 ‖ c0[Reg0 ‖ G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖ ps ‖ S

' r0
[
Reg0 ‖ c0[G〈δ〉0]

]
‖ C〈α−1,β,γ+1〉 ‖ ps ‖ S = P

It is easy to see that P ≡ [[(s, 0,m1)]]3, as desired. Notice that the first reduction
results from a synchronization on f . The second reduction arises from an update

action on c0, which removes that “boundary” for G
〈δ〉
0 . Finally, the third reduction is

an update action on r0. We use ' to denote the extension of structural congruence
with the axiom !π.P ‖ !π.P = !π.P .

(2) If (i,m0,m1) 9M then i corresponds to the HALT instruction. Then, by Definition D.1,
its encoding into E3d is as follows:

[[(i,m0,m1)]]3 = pi ‖ e ‖ [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖ C〈α,β,γ〉 ‖
!pi.h.h. c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}.
c̃1{•}. r̃1{r1[Reg1 ‖ c1[•]]}. p1 ‖

∏
l=1..n,l 6=i

[[(l : Il)]]3

We then have: [[(i,m0,m1)]]3 −→ R where

R = [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖ C〈α,β,γ〉 ‖
h.h. c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. c̃1{•}. r̃1{r1[Reg1 ‖ c1[•]]}. p1 ‖ S

66

where S = e ‖
∏n
l=1[[(l : Il)]]3 stands for the rest of the system. Starting from R, a

possible sequence of reductions is the following:

R −→∗ [[r0 = m0]]3 ‖ [[r1 = m1]]3 ‖ C〈α+c,β,γ−c〉 ‖ S ‖
c̃0{•}. r̃0{r0[Reg0 ‖ c0[•]]}. c̃1{•}. r̃1{r1[Reg1 ‖ c1[•]]}. p1 = R1

where the output on h in R interacted with process C〈α,β,γ〉 so as to replace c outputs
on g with c outputs on f . After that, a synchronization on h took place between the
evolutions of C〈α,β,γ〉 and of R. We now have:

R1 −→ r0

[m0∏
U0 ‖ Reg0 ‖ G〈δ0〉0

]
‖ r1

[m1∏
U1 ‖ Reg1 ‖ c1[G〈δ1〉1]

]
‖ S ‖

r̃0{r0
[
Reg0 ‖ c0[•]

]
}. c̃1{•}. r̃1{r1

[
Reg1 ‖ c1[•]

]
}. p1 ‖ C〈α+c,β,γ−c〉

−→' r0

[
Reg0 ‖ c0[G〈δ0+m0〉

0]

]
‖ r1

[m1∏
U1 ‖ Reg1 ‖ c1[G〈δ1〉1]

]
‖ S ‖

c̃1{•}. r̃1{r1
[
Reg1 ‖ c1[•]

]
}. p1 ‖ C〈α+c,β,γ−c〉

−→ r0[Reg0 ‖ c0[G〈δ0+m0〉]] ‖ r1[
m1∏

U1 ‖ Reg1 ‖ G〈δ1〉1] ‖ S ‖

r̃1{r1
[
Reg1 ‖ c1[•]

]
}. p1 ‖ C〈α+c,β,γ−c〉

−→' r0

[
Reg0 ‖ c0[G〈δ0+m0〉

0]

]
‖ r1

[
Reg1 ‖ c1[G〈δ1+m1〉

1]

]
‖ S ‖

p1 ‖ C〈α+c,β,γ−c〉

which is easily seen to correspond to [[(1, 0, 0)]]3, and thus [[(i,m0,m1)]]3⇓1p1 .

It is straightforward to see that Remark C.4 is valid for [[N]]3 too. Unsurprisingly, the proof
concludes following the same lines of the proof of Lemma 7.27.

Lemma D.3 (Completeness). Let N be a MM. If N terminates then [[N]]3⇓ωe .

Proof. Recall that N is said to terminate if there exists a computation

(1, 0, 0) −→∗M (h, 0, 0)

such that (h : HALT). Lemma D.2 guarantees the existence of a process P such that
[[(1, 0, 0)]]3 −→∗ P ≡ [[(h, 0, 0)]]3, with P ⇓1p1 . This ensures that every time that the en-
coding of N reaches HALT the simulation is restarted. Therefore, termination of N ensures
that [[N]]3 has an infinite computation: since the encoding always exhibits barb e, we can
conclude that [[N]]3⇓ωe .

Lemma D.4 (Soundness). Let N be a MM. If N does not terminate then [[N]]3

; ω
e .

Proof. It is enough to prove that if N does not terminate (that is, if N does not reach
a HALT instruction) then all the computations of [[N]]3 are finite. Since the encoding can
mimic the behavior of N both correctly and incorrectly, we have two possible cases:

(1) In the first case, the simulation of [[N]]3 is correct and no erroneous steps are introduced.
Notice that at every instruction an output on f is consumed permanently: these copies
of f are only recreated when invoking a HALT instruction, which converts every g into a
f . Since a HALT instruction is never reached, new copies of f are never recreated, and
the computation of process [[N]]3 has necessarily to be finite.

67

(2) In the second case, the simulation is not correct and one or more wrong guesses oc-
curred in the simulation of a decrement-and-jump instruction. Here, in addition to the
possibility of deadlocks described in Item (1) above, erroneous computations consti-
tute another source of deadlocks. In fact, as detailed in Remark C.4, for each one of
such wrong guesses a copy of b is permanently lost. Finally, the last source of error is
represented by a wrong synchronization with incj (in case of an increment) or uj (in
case of a decrement) inside the adaptable process cj . As described above, those wrong
synchronizations lead to a deadlock. An arbitrary number of wrong guesses may thus
lead to a state in which there are no outputs on b. As discussed at the end of the case of
the M-Inc in the proof of Lemma D.2, the encoding of an increment instruction reaches
a deadlock if a copy of b is not available. This means that wrong guesses in simulating
a decrement-and-jump instruction may induce deadlocks when simulating an increment
instruction.

Hence, as all the computations of [[N]]3 are finite, therefore [[N]]3 barb e cannot be exposed
an infinite number of times.

We are now ready to repeat the statement of Lemma 8.2, in Page 39:

Lemma D.5 (8.2). Let N be a MM. N terminates iff [[N]]3⇓ωe .

Proof. It follows directly from Lemmas D.3 and D.4.

D.2. Proof of Lemma 8.6. Here we prove that given an E3s process P its associated
Petri net representation PN(P, ∅) faithfully preserves its behavior. We need some auxiliary
propositions and definitions. The following proposition states how to build a Petri net for
the parallel composition of two processes starting from the Petri nets of the two processes.

Proposition D.6. Let P1 and P2 be two E3s processes with associated Petri nets PN(P1, ∅)
and PN(P2, ∅), as in Definition 8.4. Then, the Petri net PN(P1 ‖ P2, ∅) is defined as:

PN(P1 ‖ P2, ∅) = (Places(P1 ‖ P2),Trans(P1 ‖ P2), Init(P1 ‖ P2))

where

Places(P1 ‖ P2, ∅) = Places(P1, ∅) ∪ Places(P2, ∅),
Trans(P1 ‖ P2, ∅) = Trans(P1, ∅) ∪ Trans(P2, ∅) ∪ T,

Init(P1 ‖ P2) = Init(P1)] Init(P2)

with T representing the set of instances of transition schemata in Table 5 that become
possible due to the interplay of places in Places(P1, ∅) and in Places(P2, ∅).

Proof. Immediate from the definitions.

Similarly, the next proposition shows how to obtain the Petri net associated to a[P]
starting from the one of P .

Proposition D.7. Let P be an E3s process with associated Petri net PN(P, ∅) as in Defini-
tion 8.4. Then, the Petri net PN(a[P], ∅) is defined as:

PN(a[P], ∅) = (Places(a[P]),Trans(a[P]), Init(a[P]))

where:

• Places(a[P], ∅) = {〈Q, aσ〉 | 〈Q, σ〉 ∈ Places(P, ∅)} ∪ {aσ | σ ∈ Places(P, ∅)} ∪{a}.

68

• Trans(a[P]) is obtained from Trans(P, ∅) by replacing places in Places(P, ∅) with places in
Places(a[P], ∅), as defined above.
• Init(a[P]) is obtained from Init(P) by (i) replacing places in Places(P, ∅) with places in
Places(a[P], ∅), as defined above, and (ii) adding a token in the place for the adaptable
process a.

Proof. Immediate from the definitions.

Lemma D.8. Let P and (Places(P, ∅),Trans(P, ∅), Init(P)) be an E3s process and its associ-
ated Petri net, as in Definition 8.4. Then we have:

(1) If P −→ P ′ then decε(P)] {go} → decε(P
′)] {go}.

(2) If decε(P)] {go} → m] {go} then, for some P ′, P −→ P ′ and decε(P
′) = m

Proof. The proof of (1) proceeds by induction on the derivation tree of P −→ P ′, with a
case analysis on the last applied rule. There are seven cases to check.

Case (Act1): Then we have P = P1 ‖ P2 and:

P1 −→ P ′1
P1 ‖ P2 −→ P ′1 ‖ P2

By inductive hypothesis, we have decε(P1)]{go} → decε(P
′
1)]{go}. By Proposition D.6,

Trans(P1, ∅) ⊆ Trans(P1 ‖ P2, ∅). Since by Definition 8.4 decε(P1 ‖ P2) = decε(P1)]
decε(P2), then we can conclude that decε(P)] {go} → decε(P

′)] {go} with decε(P
′) =

decε(P
′
1)] decε(P2). This concludes the proof for this case.

Case (Act2): Analogous to the case for (Act1) and omitted.
Case (Loc): Then we have P = a[P1] and

P1 −→ P ′1
a[P1] −→ a[P ′1]

By inductive hypothesis, we have decε(P1)] {go} → decε(P
′
1)] {go}. Proposition D.7

states that Trans(P, ∅) is obtained by extending the addresses of places in Trans(P1, ∅)
with name a. Since by Definition 8.4 decε(a[P1]) = deca(P1)] {a} then we can conclude
that decε(P)] {go} → decε(P

′)] {go} with decε(P
′) = deca(P

′
1)] {a}. This concludes

the proof for this case.
Cases (Tau1)-(Tau2): Then P ≡ C1[A] ‖ C2[B], where C1, C2 are monadic contexts as

in Definition 7.11. Moreover, A is either !b.Q or
∑

i∈I πi.Qi with πl = b, for some l ∈ I,

and B is either !b.R or
∑

i∈I πi.Ri with πl = b, for some l ∈ I.

We consider only the case in which A =
∑

i∈I πi.Qi and B = !b.R; the other cases are
similar. Let us denote with σ and θ the address (with respect to the hole) induced by
adaptable processes in C1 and C2, respectively. That is, the address of A in C1 is σ and
the address of B in C2 is θ. Then, by construction of the Petri net, there is a token in
the places 〈

∑
i∈I πi.Qi, σ〉 and 〈!b.R, θ〉. Therefore, transition{

go, 〈
∑
i∈I

πi.Qi, σ〉, 〈!b.R, θ〉
}
⇒
{
go, 〈!b.R, θ〉

}
] decθ(R)] decσ(Ql)

(denoted (4) in Table 5) can fire. By definition of dec (cf. Definition 8.4) it is easy to see
that this corresponds to decε(P

′)] {go}. This concludes the proof for this case.
Cases (Tau3)-(Tau4): Then P ≡ C1[A] ‖ C2[B] where:
• C1, C2 are monadic contexts, as in Definition 7.11;

69

• A = b[P1], for some P1;

• B =
∑

i∈I πi.Ri with πl = b̃{b[U] ‖ P2} for l ∈ I, or B = !̃b{b[U] ‖ P2}.R, for some
P2, R.

We consider the case in which B = !̃b{b[U] ‖ P2}.R; the other case is similar. Let us
denote with σ and θ the address (with respect to the hole) induced by adaptable processes
in C1 and C2, respectively. That is, the address of A in C1 is σ and the address of B
in C2 is θ. Then, by construction of the Petri net, we have a token in the places {σb}
and 〈!̃b{b[U] ‖ P2}.R, θ〉. At this point, we should distinguish two cases, depending on
whether σb is contained in θ or not. Suppose σb is not contained in θ. That is, there is
no process with the nesting structure of C1 inside C2. Then transition{

go, σb, 〈!̃b{b[U] ‖ P2}.R, θ〉
}
⇒

{
go, 〈!̃b{b[U] ‖ P2}.R, θ〉, σb

}
]

decθ(R)] decσ(P2)] decσb(U)

(denoted (8) in Table 5) can fire. It easy to see that this corresponds to decε(P
′)] {go}

and we are done.
Similarly, if σb is contained in θ then it means that there exists a process with the

same structure of C1 inside C2. Therefore, the place σb is duplicated and a token is
present in both places. Then transition{

go, σb, σb, 〈!̃b{b[U] ‖ P2}.R, θ〉,
}
⇒
{
go, σb, σb, 〈!̃b{b[U] ‖ P2}.R, θ〉

}
]

decθ(R)] decσ(P2)] decσb(U)

(denoted (9) in Table 5) can fire. It easy to see that this corresponds to decε(P
′)] {go}

and this concludes the proof.

We now move on the proof of (2), which proceeds by a case analysis on the transition
fired by the Petri net. The transition schemata in Table 5 can be divided into two groups:
(1) transitions mimicking a synchronization (i.e., an interaction between an input and an
output prefix) and (2) transitions mimicking an update action (i.e., an interaction between
an update prefix and an adaptable process). We consider these two groups separately:

(1) This group comprises transition schemata (3)–(5) in Table 5. For simplicity we concen-
trate only on transitions of kind (3), as the others are similar. If a transition of this
kind can fire, then we have tokens in{

go,
∑
i∈I
〈πi.Ai, α〉,

∑
j∈J
〈ρj .Bj , β〉

}
which, by construction of the Petri net, implies that

P ≡ D[
∑
i∈I

πi.Ai,
∑
j∈J

ρj .Bj]

where D is a biadic context, as in Definition 7.11. After the fire of the transition,
tokens move to {go}] decα(Al)] decβ(Bm); by construction, this corresponds to a
process P ′ ≡ D[Al, Am], and we are done.

(2) This group comprises transition schemata (6)–(9) in Table 5. For simplicity, we con-
centrate only on transitions of kind (6), as the others are similar. If a transition of this
kind can fire, then we have tokens in{

go, 〈
∑
i∈I

πi.Ai, α〉, β
}

70

which, by construction of the Petri net, implies

P ≡ D[
∑
i∈I

πi.Ai, a[Q]]

where D is a biadic context, as in Definition 7.11. After the fire of the transition the
tokens move to {go}] decα(Al)] decβ(A)] decβa(U)] {βa}; by construction, this
corresponds to a process P ′ ≡ D[Al, a[U〈〈Q〉〉] ‖ A], and we are done.

We can now restate Lemma 8.6, as in Page 41:

Lemma D.9 (8.6). Let P and (Places(P, ∅),Trans(P, ∅), Init(P)) be an E3s process and its
associated Petri net, as in Definition 8.4. Then we have:

P −→ P ′ iff decε(P)] {go} → decε(P
′)] {go}.

Proof. Immediate from Lemma D.8.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

71

	1. Introduction
	A Core Calculus of Adaptable Processes
	Verification of Adaptable Processes
	Contributions
	Structure of the document

	2. A Calculus of Adaptable Processes
	2.1. Syntax
	2.2. Semantics
	2.3. From Static to Dynamic Topologies

	3. Correctness Properties: Bounded and Eventual Adaptation
	4. Adaptable Processes, By Examples
	4.1. Mode Transfer Operators
	4.2. Dynamic Update in Workflow Applications
	4.3. Scaling in Cloud Computing Applications

	5. Preliminaries
	5.1. Minsky machines
	5.2. Well-Structured Transition Systems
	5.3. Petri Nets

	6. Undecidability Results for E1
	7. (Un)decidability Results for E2
	7.1. Decidability of Bounded Adaptation
	7.2. Undecidability of Eventual Adaptation

	8. (Un)decidability Results for E3
	8.1. Undecidability of Eventual Adaptation in Ed3
	8.2. Decidability of Eventual Adaptation in Es3

	9. Related Work and Discussion
	9.1. On the Constructs for Evolvability
	9.2. Related Work
	9.3. Applying the Verification Problems
	9.4. Variants of the Correctness Properties

	10. Concluding Remarks
	Acknowledgements
	References
	Appendix A. Proofs from Section 2
	A.1. Proof of Lemma 2.20
	A.2. Proof of Theorem 2.26

	Appendix B. Proofs from Section 6
	B.1. Proof of Lemma 6.2

	Appendix C. Proofs from Section 7
	C.1. Proof of Lemma 7.27

	Appendix D. Proofs from Section 8
	D.1. Proof of Lemma 8.2
	D.2. Proof of Lemma 8.6

