
Logical Methods in Computer Science
Vol. 10(4:7)2014, pp. 1–9
www.lmcs-online.org

Submitted Feb. 13, 2013
Published Dec. 9, 2014

COMPUTING A SOLUTION OF FEIGENBAUM’S FUNCTIONAL

EQUATION IN POLYNOMIAL TIME

PETER HERTLING AND CHRISTOPH SPANDL

Computer Science Department, Universität der Bundeswehr München, 85577 Neubiberg, Germany
e-mail address: {peter.hertling,christoph.spandl}@unibw.de

Abstract. Lanford has shown in 1982 that Feigenbaum’s functional equation has an
analytic solution. We show that this solution is a polynomial time computable function.
This implies in particular that the so-called first Feigenbaum constant is a polynomial time
computable real number.

1. Introduction

Independently, Feigenbaum [7] and Großmann and Thomae [8] observed that the behaviour
of the points of bifurcations of certain parameterized classes of dynamical systems on an
interval obeys certain universal laws that are governed by constants which are now called
Feigenbaum constants. For detailed presentations of these notions the reader is referred to
[5] and to [6]. In particular the so-called first Feigenbaum constant α = −2.50290787 . . . is
the inverse 1/g(1) of the value g(1) at 1 of a solution g of Feigenbaum’s functional equation
which was explicitly constructed by Lanford [10]. In this note we show that this solution
function g is a polynomial time computable function. This implies that the first Feigenbaum
constant is a polynomial time computable number.

Which real numbers are computable? This question was one of the motivations for
Alan Turing to write his famous papers [15, 16], in which he developed the notion of a
Turing machine and gave a definition of computable real numbers. Since then computable
analysis has developed into a research area in which the effective solvability of problems over
the real numbers or more general continuous objects, in particular all kinds of numerical
problems, is analyzed using mathematically precise notions of effective solvability, based
on computability theory and complexity theory; see, e.g., [13, 9, 17, 1]. Among the first
questions that one can ask in this theory is the question whether particular real number
constants are computable real numbers or not. For example, it is easy to see and well known
that the number π and the Euler number e are computable. In fact, they can be computed

2012 ACM CCS: [Mathematics of computing]: Continuous mathematics—Continuous functions;
[Theory of computation]: Design and analysis of algorithms—Approximation algorithms analysis—
Numeric approximation algorithms; Computational complexity and cryptography.

Key words and phrases: Feigenbaum function; computable analysis; polynomial time computability.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(4:7)2014

c© P. Hertling and C. Spandl
CC© Creative Commons

http://creativecommons.org/about/licenses

2 P. HERTLING AND C. SPANDL

quite fast. An exemplary recent result of this kind is the observation by Rettinger [14] that
the Bloch constant, a famous real number constant in complex analysis, is computable.

A real number c is called computable, if there is an algorithm (a Turing machine) which,
given an arbitrary n ∈ N computes a rational number qn satisfying |c − qn| < 2−n. A
real number c is called polynomial time computable if there are a Turing machine M and a
polynomial p with coefficients in N such thatM , given the string 1n for any n ∈ N, computes
in at most p(n) steps a binary string a = am . . . a0 (wherem is an arbitrary natural number)
and a binary string b = b1 . . . bn such that

|c− a.b| < 2−n.

Here, by a.b we mean the dyadic rational number defined by

a.b = am . . . a0.b1 . . . bn =

m
∑

i=0

ai · 2i +
n
∑

j=1

bj · 2−j .

Instead of binary strings one might as well consider decimal strings, and instead of the upper
bound 2−n one might as well consider 10−n. Finally, a sequence (ck)k∈N of real numbers
is called polynomial time computable if there are a Turing machine M and a two-variate
polynomial p with coefficients in N such that M , given 1k01n for k, n ∈ N, computes in at
most p(k, n) steps a binary string a = am . . . a0 (where m is an arbitrary natural number)
and a binary string b = b1 . . . bn such that

|ck − a.b| < 2−n.

In order to formulate our main result precisely we need to introduce some terminology.
We closely follow Lanford [10]. In fact, this paper by Lanford is the basis of our analysis.

Let M be the set of all continuously differentiable functions f : [−1, 1] → [−1, 1]
satisfying the following conditions:

(1) f(0) = 1,
(2) x · f ′(x) < 0 for x 6= 0, i.e., f is strictly increasing on [−1, 0] and strictly decreasing on

[0, 1],
(3) f(−x) = f(x) for all x, i.e., f is even.

Furthermore, let D ⊆M be the set of all functions inM satisfying additionally the following
conditions:

(1) 0 < −f(1),
(2) −f(1) < f(f(1)),
(3) f(f(f(1))) ≤ −f(1).
It is easy to check that for any function f ∈ D, the function Tf , defined by

Tf(x) :=
1

f(1)
· f(f(f(1) · x))

is an element of M . Lanford [10] showed the following result.

Theorem 1.1 ([10, Theorem 1 and Prop. 2]). There exists a function g, analytic and even

on the set {z ∈ C : |z| <
√
8} and with real values on real numbers, whose restriction to

[−1, 1] is an element of D and a fixed point of the operator T .

The so-called first Feigenbaum constant α is given by α = 1/g(1).
We prove the following addition to Lanford’s theorem.

Theorem 1.2. There exists a function g that has the properties stated in Theorem 1.1 and

additionally the following properties.

(1) The sequence of Taylor coefficients around 0 of this analytic function g is a polynomial

time computable sequence of real numbers.

COMPUTING A SOLUTION OF FEIGENBAUM’S FUNCTIONAL EQUATION IN POLYNOMIAL TIME 3

(2) The number α = 1/g(1) is a polynomial time computable real number.

Our proof is based on Lanford’s paper [10]. In the following section we give the proof.

2. A Polynomial Time Algorithm for Computing Lanford’s solution of

Feigenbaum’s Functional Equation

Lanford uses a variant of the Newton method in order to define an operator which has the
same fixed points as T . Then he gives a computer-assisted proof of a number of estimates
that show that this operator is a contraction in the neighborhood of an explicitly defined
polynomial ψ0, with respect to an ℓ1-type norm on the space of Taylor coefficients of func-
tions closely related to the functions f on which T acts. Furthermore, this operator maps
this polynomial ψ0 not too far away from itself. By the contraction mapping principle it
follows that the operator has a unique fixed point g.

We show that this construction leads to a polynomial time algorithm.
The following terminology is copied from [10]. Let

Ω := {z ∈ C : |z2 − 1| < 2.5},
and let H be the Banach space of even functions, bounded and analytic on Ω, real on real
points, equipped with the supremum norm. We also define

H0 := {f ∈ H : f(0) = 0},
H1 := 1 +H0.

Lanford works on a subspace of H1 equipped with a stronger norm. Let N+ := {1, 2, 3, . . .}
be the set of positive integers, ℓ1 := {ν : N+ → R :

∑

∞

i=1 |νi| < ∞}, where νi := ν(i).
Lanford considers the space R⊕ ℓ1 with the ℓ1-norm || · || defined by

||(u, ν)|| := |u|+
∞
∑

i=1

|νi|

for u ∈ R and ν ∈ ℓ1. With an element (u, ν) ∈ R ⊕ ℓ1 he associates the following element
ψ of H1:

ψ(z) := 1− z2 ·
(

u

10
+

∞
∑

i=1

νi ·
(

z2 − 1

2.5

)i
)

.

Let A be the set of all functions ψ defined in this way. A is a subset of H1 and contains any
element of H1 that is analytic on a neighborhood of the closure of Ω. In the following we will
identify the elements of A with elements of the space R ⊕ ℓ1 with the ℓ1-norm introduced
above.

The first step in Lanford’s construction is the explicit definition of a polynomial ψ0 ∈ A
of degree 20 of the form ψ0(z) = 1+

∑10
i=1 g

(0)
i · z2i by choosing as the values (g

(0)
1 , . . . , a

(0)
10):

“the first ten terms of the series given in Table 1 below”; this table can be found on Page
432 in [10]. Then Lanford continues by stating that for ψ ∈ A with ||ψ − ψ0|| < 0.01 one
has Tψ ∈ A as well. The goal is to compute a fixed point of T as the limit of a sequence
of functions starting with ψ0 that are computed using a contractive mapping. In order to
achieve this, Lanford uses the operator J : R⊕ ℓ1 → R⊕ ℓ1 defined by

J(u, ν) :=
(u

3.669
,−ν

)

,

4 P. HERTLING AND C. SPANDL

and defines for any ψ ∈ A with ||ψ − ψ0|| < 0.01

Φ(ψ) := ψ − J(Tψ − ψ).

This operator Φ is an approximation of the operation iterated in the Newton algorithm
applied to the function ψ 7→ Tψ − ψ. Note that Φ has the same fixed points as T . For
the proof of the following estimates Lanford uses computer calculations. By DΦ(ψ) in the
following lemma we mean the Fréchet derivative of Φ at ψ, which exists and can easily be
calculated.

Lemma 2.1 ([10, Page 430]).

(1) For ψ ∈ A with ||ψ − ψ0|| < 0.01, ||DΦ(ψ)|| < 0.9.
(2) ||Φ(ψ0)− ψ0|| < 4 · 10−6.

This lemma implies that Φ maps the closed ball {ψ ∈ A : ||ψ−ψ0|| ≤ 0.009} into itself
and that Φ is a contraction with Lipschitz constant 0.9 on this ball. By the contraction
mapping theorem, the sequence (φm)m of functions defined by φ0 := ψ0 and φm+1 := Φ(φm)
converges to a fixed point g of Φ. It satisfies

||g − φm|| ≤ 4 · 10−5 · 0.9m, (2.1)

hence,
||g − ψ0|| ≤ 4 · 10−5. (2.2)

Remember that Φ has the same fixed points as T . Thus, g is a fixed point of T . Lanford
shows that this fixed point of T has all of the properties stated in Theorem 1.1.

From (2.1) it is clear that by starting with the explicitly defined polynomial ψ0 and
by applying the contractive operator Φ to ψ0 O(n) times one obtains a polynomial that
approximates the fixed point g with precision 10−n (with respect to the norm considered
by Lanford and described above). We wish to show that one can approximate the fixed
point g with precision 10−n in time polynomial in n. In order to achieve that, we are going
to show that the precision needed in the n-th step is not too high and that the number of
coefficients that need to be considered in the n-th step is not too high as well. In fact, we
will show that in the n-th step it is sufficient to consider a polynomial of a degree depending
linearly on n.

First, we make some observations about the fixed point g of the operators T and Φ.
For z0 ∈ C and r > 0 let

B(z0, r) := {z ∈ C : |z − z0| < r}.
By Theorem 1.1, g is an even analytic function defined on the disc B(0,

√
8) satisfying

g(0) = 1. Therefore its Taylor series around 0,

1 +
∞
∑

i=1

aiz
2i with ai :=

g(2i)(0)

(2i)!

converges in B(0,
√
8) and is equal to g in B(0,

√
8). Then the function h defined by

h(z) := −
∞
∑

j=0

aj+1z
j

is an analytic function in the ball B(0, 8), and for all z ∈ B(0,
√
8) we have

g(z) = 1− z2 · h(z2).

COMPUTING A SOLUTION OF FEIGENBAUM’S FUNCTIONAL EQUATION IN POLYNOMIAL TIME 5

The Taylor series of h around 1 converges and is identical with h in the ball B(1, 7):

h(z) =

∞
∑

j=0

bj(z − 1)j with bj :=
h(j)(1)

j!
.

The Cauchy integral formula then gives

|bj | ≤ C · 6.5−j

with C = max{|h(z)| : z ∈ ∂B(1, 6.5)}, where for z0 ∈ C and r > 0

∂B(z0, r) = {z ∈ C : |z − z0| = r}.
We claim that results in [10] imply C ≤ 62/13. Indeed, according to [10, Remark 4.2 on Page

431] |g(z)−g(0)(z)| ≤ 1.7·10−2 holds for all z ∈ B(0,
√
8), where g(0)(z) = 1+

∑40
i=1 g

(0)
i ·z2i is

a polynomial of degree 80 with coefficients g
(0)
i given in Table 1 on Page 432 of [10]. Defining

h(0)(z) by g(0)(z) = 1− z2 · h(0)(z2), we obtain |h(z)− h(0)(z)| ≤ 1.7 · 10−2/5.5 ≤ 3.1 · 10−3

for z ∈ ∂B(1, 6.5). Writing h(0)(z) =
∑39

j=0 b
(0)
j (z − 1)j (the numbers b

(0)
j for j = 0, . . . , 39

can easily be computed from the numbers g
(0)
i for i = 1, . . . , 40) we obtain

|h(z)| ≤ 3.1 · 10−3 + |h(0)(z)| ≤ 3.1 · 10−3 +

39
∑

j=0

|b(0)j | · 6.5j ≤ 4.7 <
62

13

for z ∈ ∂B(1, 6.5). Thus, C ≤ 62/13, and we have

|bj | ≤
62

13
· 6.5−j .

Defining

u(∞) := 10 · b0 and, for i ∈ N
+, ν

(∞)
i := 2.5i · bi

we obtain for all z ∈ {z ∈ C : |z2 − 1| < 7}

g(z) = 1− z2 ·
(

u(∞)

10
+

∞
∑

i=1

ν
(∞)
i ·

(

z2 − 1

2.5

)i
)

and for all i ≥ 1

|ν(∞)
i | ≤ 62

13
·
(

2.5

6.5

)i

=
62

13
·
(

5

13

)i

. (2.3)

Note that this implies for all k ≥ 1
∞
∑

i=k

|ν(∞)
i | ≤ 62

13
· 13
8

·
(

5

13

)k

=
31

4
·
(

5

13

)k

(2.4)

We wish to approximate in time polynomial in n the function g, i.e., the sequence
(u(∞), ν(∞)) ∈ R⊕ ℓ1, with precision 10−n in the norm introduced above. We start with the

polynomial ψ0 chosen by Lanford and define the numbers u(0), ν
(0)
1 , . . . , ν

(0)
9 by

ψ0(z) := 1− z2 ·
(

u(0)

10
+

9
∑

i=1

ν
(0)
i ·

(

z2 − 1

2.5

)i
)

.

These numbers can easily be computed explicitly and are given in Table 2.

6 P. HERTLING AND C. SPANDL

Table 2

u(0) 13.99535280247654509657069657886239000000000

ν
(0)
1 −0.37020336425570944099807863650264000000000

ν
(0)
2 −0.10516441308487059395306704671240000000000

ν
(0)
3 0.04689224531866417356902064258837500000000

ν
(0)
4 −0.00657196434429489515940234119726562500000

ν
(0)
5 −0.00092424880356949042888086870078125000000

ν
(0)
6 0.00060199775715465703408272872656250000000

ν
(0)
7 −0.00007266358160903580114416214843750000000

ν
(0)
8 −0.00003921160572782132082950382843017578125

ν
(0)
9 0.00000105783506805382222151565551757812500

We come to the
Central Step of the algorithm. Let us assume by induction hypothesis that for somem ≥ 0

we have computed 10 +m real numbers u(m), ν
(m)
1 , . . . , ν

(m)
9+m with the following properties:

• Property I: Each of these numbers is a decimal fraction of the form

σa1a0.b1 . . . b41+m

where σ ∈ {−1,+1} is a sign and a1, a0, b1, . . . , b41+m are decimal digits.
• Property II: The polynomial ψm of degree 20 + 2m defined by

ψm(z) := 1− z2 ·
(

u(m)

10
+

9+m
∑

i=1

ν
(m)
i ·

(

z2 − 1

2.5

)i
)

satisfies
||ψm − g|| < 0.01 · 0.93m.

First we observe that the polynomial ψ0 indeed has these properties for m = 0. The first

property can be checked easily by explicitly calculating the numbers u(0), ν
(0)
1 , . . . , ν

(0)
9 ; see

Table 2. The second property is a consequence of Equation (2.2).

Now we wish to compute suitable numbers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1. Note that, due

to (2.2), Property II implies

||ψm − ψ0|| ≤ ||ψm − g|| + ||g − ψ0|| < 0.01 · 0.93m + 4 · 10−5 < 0.01 (2.5)

if m ≥ 1. Therefore, the estimate stated in Lemma 2.1(1) applies to ψm. As ψm is a
polynomial of degree ≤ 20 + 2m in which no monomials of odd degree occur, by definition
of Φ and of T , Φ(ψm) is a polynomial of degree ≤ (20 + 2m)2 in which no monomials of
odd degree occur. The numbers v, µ1, . . . , µ2·(10+m)2−1 are defined by

Φ(ψm)(z) = 1− z2 ·

v

10
+

2·(10+m)2−1
∑

i=1

µi ·
(

z2 − 1

2.5

)i

 .

In order to simplify notation in the following, we additionally use

µi := 0 for i > 2 · (10 +m)2 − 1.

COMPUTING A SOLUTION OF FEIGENBAUM’S FUNCTIONAL EQUATION IN POLYNOMIAL TIME 7

We compute the first 10 + m + 1 of these numbers with precision 10−41−(m+1), i.e., we

compute decimal fractions u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1 with at most 41+(m+1) digits after

the decimal point such that

|u(m+1) − v| ≤ 10−41−(m+1) and for i = 1, . . . , 9 +m+ 1, |ν(m+1)
i − µi| ≤ 10−41−(m+1).

That is, we simply forget the coefficients µi for i > 9+m+1. This ends the description of the

Central Step of the algorithm in which we compute the numbers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1

from the numbers u(m), ν
(m)
1 , . . . , ν

(m)
9+m.

It is clear that this Central Step can be executed in time polynomial in m.

Remark 2.1. It is fairly easy to see that no more than O(m3) elementary arithmetic
operations are needed in the Central Step. Note that in order to achieve that it is important
that not all of the 2·(10+m)2 coefficients of the polynomial Φ(ψm)(z) are computed but only
the first 10 +m+1 coefficients. By somewhat tedious estimations one can show that there
are positive constants a, b with the property that it is sufficient to perform each arithmetic
operation with a+ b ·m digits in total, that is, before or after the decimal point. Let M(m)
be a function satisfying O(M(c ·m)) = O(M(m)) such that two binary or decimal numbers
of length m can be multiplied in time O(M(m)). For example, the Schönhage-Strassen
bound m · logm · log logm is such a function. It is well known that one can also add,
subtract, or divide numbers of length m within this time [2]. We conclude that the Central
Step can be done in time O(m3 · M(m)).

We claim that these numbers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1 have the desired properties.

First, we show that they have Property II (with m replaced by m+ 1). We calculate

||ψm+1 − g||

= |u(m+1) − u(∞)|+
9+m+1
∑

i=1

|ν(m+1)
i − ν

(∞)
i |+

∞
∑

i=10+m+1

|ν(∞)
i |

≤ |u(m+1) − v|+ |v − u(∞)|+
9+m+1
∑

i=1

|ν(m+1)
i − µi|+

9+m+1
∑

i=1

|µi − ν
(∞)
i |+

∞
∑

i=10+m+1

|ν(∞)
i |

≤ (10 +m+ 1) · 10−41−(m+1) + |v − u(∞)|+
∞
∑

i=1

|µi − ν
(∞)
i |+

∞
∑

i=10+m+1

|ν(∞)
i |

= (10 +m+ 1) · 10−41−(m+1) + ||Φ(ψm)− g||+
∞
∑

i=10+m+1

|ν(∞)
i |

= (10 +m+ 1) · 10−41−(m+1) + ||Φ(ψm)− Φ(g)||+
∞
∑

i=10+m+1

|ν(∞)
i |

≤ (10 +m+ 1) · 10−41−(m+1) + 0.9 · ||ψm − g||+ 31

4
·
(

5

13

)10+m+1

< (10 +m+ 1) · 10−41−(m+1) + 0.9 · 0.01 · 0.93m +
31

4
·
(

5

13

)10+m+1

≤ 0.01 · 0.001 · 0.93m + 0.01 · 0.9 · 0.93m + 0.01 · 0.025 · 0.93m

< 0.01 · 0.93m+1.

8 P. HERTLING AND C. SPANDL

The next to last estimate is a consequence of the bounds

(10 +m+ 1) · 10−41−(m+1) ≤ 10−5 · 0.93m and

31

4
·
(

5

13

)10+m+1

≤ 2.5 · 10−4 · 0.93m

for m ≥ 0. It is not hard to verify them. Thus we have shown Property II (with m replaced

by m+1 in Property II) for the numbers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1. Concerning Property

I, it is part of the definition of these numbers, that each of them is a finite decimal fraction
with at most 41+ (m+1) decimal digits after the decimal point. That each of them has at
most 2 decimal digits in front of the decimal point follows from the values of the numbers

u(0), ν
(0)
1 , . . . , ν

(0)
9 , from Equation (2.2) and Property II which together imply that the num-

bers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1 are quite close to the numbers u(0), ν

(0)
1 , . . . , ν

(0)
9 , 0, 0, 0, . . .;

see (2.5). We have shown that the numbers u(m+1), ν
(m+1)
1 , . . . , ν

(m+1)
9+m+1 have Property I

(with m replaced by m+ 1 in Property I) as well.
Since the Central Step in the m-th iteration can be performed in time O(m3 · M(m)),

the first m iterations can be done in time O(m4 · M(m)). Since the smallest number m
with 0.01 · 0.93m ≤ 10−n depends linearly on n, this shows that we can compute the first n
elements of the sequence (u(∞), ν(∞)) ∈ R × ℓ1 with precision 10−n in time O(n4 · M(n)).

Then also the number g(1) = 1− u(∞)

10 can be computed in this time with precision 10−n. The
same applies to 1/g(1) because the inverse 1/y of a real number y 6= 0 can be computed with
precision 10−n in time M(n) using no more than a linear number of digits of y [2, 17]. Thus,
the first Feigenbaum constant α = 1/g(1) is a polynomial time computable real number,
actually, computable in time O(n4 · M(n)). By Müller [11, Cor. 3.3] the fact that the

sequence (u(∞), ν(∞)) can be computed in polynomial time implies also that the function g
is computable in polynomial time on any compact subset of the set {z ∈ C : |z2 − 1| < 7}.
And by Theorem 2.4 of Müller [11], the sequence of Taylor coefficients around 0 of the
function g is a polynomial time computable sequence of real numbers. We have shown
Theorem 1.2.

3. Final Remarks

The proof is based on a number of claims in Lanford’s paper [10]. In order to prove them,
Lanford used analytic estimations and extensive computer calculations which are described
only very roughly in his paper. We must admit that we did not check all of these claims,
but most of them.

Briggs [3, 4] has computed several hundred digits of the Feigenbaum constants, but
without correctness guarantee. We intend to see how many digits of the first Feigenbaum
constant we can compute with a correctness guarantee, using the exact real number arith-
metic package iRRAM by Müller [12].

References

[1] V. Brattka, P. Hertling, and K. Weihrauch. A tutorial on computable analysis. In S. B. Cooper, B. Löwe,
and A. Sorbi, editors, New Computational Paradigms: Changing Conceptions of What is Computable,
pages 425–491. Springer, New York, 2008.

[2] R. P. Brent. Fast multiple-precision evaluation of elementary functions. J. ACM, 23:242–251, 1976.

COMPUTING A SOLUTION OF FEIGENBAUM’S FUNCTIONAL EQUATION IN POLYNOMIAL TIME 9

[3] K. Briggs. A precise calculation of the Feigenbaum constants. Mathematics of Computation, 57:435–439,
1991.

[4] K. Briggs. Feigenbaum scaling in discrete dynamical systems, 1997.
[5] P. Collet and J.-P. Eckmann. Iterated Maps on the Interval as Dynamical Systems. Progress in Physics.

Birkhäuser, Boston, Massachusetts, 1980.
[6] P. Collet, J.-P. Eckmann, and O. E. Lanford. Universal properties of maps on an interval. Communica-

tions in Mathematical Physics, 76:211–254, 1980.
[7] M. J. Feigenbaum. Quantitative universality for a class of nonlinear transformations. Journal of Statis-

tical Physics, 19:25–52, 1978.
[8] S. Großmann and S. Thomae. Invariant distributions and stationary correlation functions of one-

dimensional discrete processes. Zeitschrift für Naturforschung, 32a:1353–1363, 1977.
[9] K.-I. Ko. Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser,

Boston, 1991.
[10] O. E. Lanford. A computer-assisted proof of the Feigenbaum conjectures. Bulletin of the AMS, 6:427–

434, 1982.
[11] N. T. Müller. Polynomial time computation of Taylor series. In Proceedings of the 22th JAIIO - Panel’93,

Part 2, pages 259–281, 1993. Buenos Aires, 1993.
[12] N. T. Müller. The iRRAM: Exact arithmetic in C++. In J. Blanck, V. Brattka, and P. Hertling, editors,

Computability and Complexity in Analysis, volume 2064 of Lecture Notes in Computer Science, pages
222–252, Berlin, 2001. Springer. 4th International Workshop, CCA 2000, Swansea, UK, September 2000.

[13] M. B. Pour-El and J. I. Richards. Computability in Analysis and Physics. Perspectives in Mathematical
Logic. Springer, Berlin, 1989.

[14] R. Rettinger. On the computability of Blochs constant. In R. Dillhage, T. Grubba, A. Sorbi,
K. Weihrauch, and N. Zhong, editors, Proceedings of the Fourth International Conference on Com-
putability and Complexity in Analysis (CCA 2007), volume 202 of Electronic Notes in Theoretical Com-
puter Science, pages 315–322. Elsevier, 2008. CCA 2007, Siena, Italy, June 16–18, 2007.

[15] A. M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. Proceedings
of the London Mathematical Society, 42(2):230–265, 1936.

[16] A. M. Turing. On computable numbers, with an application to the “Entscheidungsproblem”. A correc-
tion. Proceedings of the London Mathematical Society, 43(2):544–546, 1937.

[17] K. Weihrauch. Computable Analysis. Springer, Berlin, 2000.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	2. A Polynomial Time Algorithm for Computing Lanford's solution of Feigenbaum's Functional Equation
	3. Final Remarks
	References

