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Abstract. We introduce a logical foundation to reason on tree structures with constraints
on the number of node occurrences. Related formalisms are limited to express occurrence
constraints on particular tree regions, as for instance the children of a given node. By
contrast, the logic introduced in the present work can concisely express numerical bounds
on any region, descendants or ancestors for instance. We prove that the logic is decidable
in single exponential time even if the numerical constraints are in binary form.

We also illustrate the usage of the logic in the description of numerical constraints on
multi-directional path queries on XML documents. Furthermore, numerical restrictions on
regular languages (XML schemas) can also be concisely described by the logic. This implies
a characterization of decidable counting extensions of XPath queries and XML schemas.
Moreover, as the logic is closed under negation, it can thus be used as an optimal reasoning
framework for testing emptiness, containment and equivalence.

1. Introduction

XML is nowadays recognized as the standard technology in the description and exchange
of data in the World Wide Web. One of the cornerstones in the XML community is XPath,
which has been well-established as the most accepted query language for XML documents
(finite unranked trees). XPath takes also an important role in other XML technologies, such
as XSLT, XProc and XQuery. The navigational core of XPath is formed by regular path
queries, and its expressive power corresponds to the first order logic with two variables FO2

[Mar05]. A regular path query selects the nodes obtained by the navigation of the path.
Consider for instance the following query: �

‹: a{ �: b. This query expression navigates
through the ancestors nodes (�‹) named a, and from there it selects the children (�) labeled
with b. The XPath language specification [CD99] also defines arithmetical constructs on
the number of node occurrences, for example: �: c r�‹:a ą �

‹:bs. This query selects the
c children with more descendants named a than ancestors named b. However, extending
regular path queries with arithmetical constructs leads to undecidability [tCM09]. Here we

2012 ACM CCS: [Theory of Computation]: Logic—Modal and temporal logics; Logic—Automated
reasoning; Formal languages and automata theory—Tree languages; [Information systems]: Data man-
agement systems—Query languages—XML query languages—XPath.

Key words and phrases: counting constraints, satisfiability, query reasoning, XML schemas.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-10(2:10)2014

c© E. Bárcenas and J. Lavalle
CC© Creative Commons

http://creativecommons.org/about/licenses
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focus our study on numerical constraints, that is, restrictions with respect to constants (in
binary), as for instance: �: c r�‹:a ą 5s. In this query, the selection is constrained to the
c children with more than 5 descendants named a. In this paper, we identify decidable
extensions of XPath with numerical constraints on any regular path.

Query reasoning in the presence of XML schemas is one of the central issues that arises
from the static analysis of XML specifications and transformations. XML schemas are used
to describe sets of trees by means of regular expressions. Regular tree languages (types)
subsume most XML schema languages used in practice, such as XML schema, DTDs and
RelaxNG [MLMK05]. Numerical constraints on regular languages are widely used in many
technologies, such as egrep [Hum88], Perl [WCO00] and XML schema languages [MLMK05].
These constraints serve to bound the number of occurrences. For instance, the regular
language over ta, bu, such that a occurs exactly once and b occurs at least four times, can
be written as follows:

pabbbb`q | pbabbb`q | pbbabb`q | pbbbab`q | pbbbb`aq

However, in general, hardcoding numerical constraints produces exponentially larger expres-
sions than the original problem [Gel10]. This implies a drastic impact in the computational
cost of reasoning on these kind of constraints, more precisely, reasoning on hardcoded numer-
ical constraints is exponentially more expensive. Furthermore, Gelade [Gel10] also showed
that even if the numerical constraints are directly translated to NFAs, the exponential blow-
up cannot be avoided. In this paper, we provide a way to avoid this exponential blow-up by
a succinct characterization of regular languages with numerical constraints. More precisely,
in the current work it is proposed a tree logic with counting constructs. These constructs
can restrict the number of node occurrences with respect to a constant coded in binary. It
is also shown that the proposed logic is decidable in exponential time. Also, we show that
regular tree expressions (and queries) with counting operators can be linearly embedded by
the proposed logic.

Motivations and Related Work. The fully enriched µ-calculus is the modal logic with
inverse and graded modalities, nominals, a least and a greatest fixed-points. Graded modal-
ities are used to constrain the number of immediate successors of certain node with respect
to a constant. The fully enriched µ-calculus was shown to be undecidable by Bonatti et
al. [BLMV06]. Nevertheless, it has been recently shown that this result does not apply in
the context of finite trees; more precisely, it was provided in [BGLS11] a single exponential
satisfiability algorithm for the fully enriched µ-calculus for trees. However, graded modali-
ties (in trees) are limited to impose numerical bounds on the number of children nodes only.
Although, it was shown in [BMM10] that numerical constraints on descendant nodes can be
expressed by graded µ-calculus formulas, this comes at an exponential cost in the formula
size. This implies that, even at the logical level, hardcoding in-depth numerical constraints
produces an exponential blow-up. In contrast, we show in this paper, that our logic can
express descendant constraints without an extra cost with respect to the µ-calculus. In
addition, backward constraints, such as on ancestor nodes, can also be expressed for free.

Seidl et al. [SSM03] showed that the extension of monadic second order logic (MSOL)
with Presburger arithmetic is undecidable. In other works [DL10, DZLM04, SSMH04],
decidable extensions of tree logics with Presburger arithmetical constraints on children are
broadly studied. Demri and Lugiez [DL10] provide a PSPACE bound on the decidability
of modal logic extended with Presburger constraints on children nodes. When proving
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decidability of a fragment of ambient logic, Dal-Zilio et al. [DZLM04] introduced a modal
tree logic with Presburger arithmetic and regular constraints. In an independent work, Seidl
et al. [SSMH04] introduced a decidable extension to the logic of Dal-Zilio et al. [DZLM04].
The extension consists of a fixed-point operator.

In this paper we choose a different trade-off, we propose a tree logic with less general
cardinality constraints (with respect to binary constants) on more extensive tree regions
(descendants, ancestors, etc.). In the same vein, it has been recently proposed Bianco et
al. [BMM09] a graded version of the computation tree logic CTL . This logic can pose
constraints on the number of paths expressed by CTL formulas. Constraints are made
with respect to constants written in unary form. In [BMM10], the same result was later
extended with constants coded in binary. This approach however does not support backward
navigation, neither in the graded formulas, nor in the non-graded ones. One consequence
is that cardinality constraints can only be expressed on downward tree regions, as children
or descendants of a given node. It should also be recalled that CTL is not as expressive
as MSOL. This implies that some regular properties, as the ones in XML schemas, cannot
be expressed by CTL formulas. Besides expressing numerical constraints on any multi-
directional regular path, our logic is as expressive as MSOL and can concisely capture
regular tree languages (XML schemas).

The notion of global constraints has been also subject of recent study in [BCG`10,
BCG`13]. Burgoño et al. [BCG`10, BCG`13] introduced an automata model capable
to test (dis)equality modulo a given flat equational theory. In addition, global numerical
constraints (with respect to constants) can also be tested. It is proven emptiness decidability
without a further complexity analysis. In this paper, besides showing decidability of a logic
resulting from the addition of global numerical constraints to a alternation-free two-way
µ-calculus for trees, we provide an optimal satisfiability algorithm for the logic.

Contributions and Outline. We introduce in Section 2 an extension of the µ-calculus (for
trees) with global counting constructs called µTLIN. These constructs restrict the number
of nodes (with respect to binary constants) occurring in any region of the tree models.

In Section 3, we describe a useful application of µTLIN in the context of XML. It is
shown that an extension of XPath with counting constructs on multi-directional regular
paths can be linearly embedded by the logic.

Analogously as in Section 3, we provide in Section 4 a linear embedding for regular tree
languages (XML schemas) with counting constructs.

Section 5 is about succinctness. It is shown that the logic with global constraints is at
least exponentially more succinct than the graded µ-calculus.

Section 6 is devoted to show that the proposed logic is decidable. With this result we
can thus use the logic as a reasoning framework for XPath queries with schema and counting
constraints. However, the time complexity bound set for decidability is doubly exponential.

We improve the complexity bound for the logic in Section 8. It is described a satisfi-
ability algorithm for the logic, and it is shown that the time complexity of the algorithm
is single exponential. Before the description of the algorithm, we provide some preliminar-
ies in Section 7. The complexity bound for the satisfiability algorithm, together with the
linear embedding in Sections 3 and 4, imply EXPTIME characterizations of regular path
queries (XPath) and regular tree languages (XML schemas) extended with global numer-
ical constraints. Moreover, due to the fact that reasoning on regular tree languages is in



4 E. BÁRCENAS AND J. LAVALLE

EXPTIME-complete, the logic then represents an optimal reasoning framework for XPath
queries and XML schemas with counting.

We conclude in Section 9 with a summary of the paper and a discussion of further
research directions.

2. A Modal Tree Logic with Global Numerical Constraints

We consider through the paper labeled unranked trees. The tree logic with global numerical
constraints (µTLIN) is a modal tree logic (TL) with a least fixed-point (µ), inverse modali-
ties (I), and global numerical constructs (N). In contrast with graded modalities, where the
number of nodes can be restricted only if they are immediate successors of a given node,
the counting constructs in our logic can restrict the number of nodes occurring in any part
of the tree model.

2.1. Syntax and semantics. In the context of tree models, modalities m in modal for-
mulas are defined by M “ t�,�, �,�u. � and � stand for the children and right sibling
relations, respectively. � and � are the corresponding inverse modalities, that is, the parent
and left sibling relations. For a modality m, its inverse is written m.

Definition 2.1 (Syntax). We define the set of µTLIN formulas with the following grammar:

φ :“p | x |  φ | φ_ φ | xmyφ | µx.φ | φą k

Numerical constraints k in counting formulas are assumed to be integer numbers in
binary form. We use the following notation: φ ^ ψ instead of  p φ _  ψq, J instead of
φ _  φ, and φď k instead of  pφą kq. In the sequel, we often write counting formulas
φ#k for # P tď,ąu. We define the size (length) of a formula |φ| as usual: |p| “ |x| “ 1;
| φ| “ |xmyφ| “ |µx.φ| “ 1` |φ|; |φ_ ψ| “ 1` |φ| ` |ψ|; and |φą k| “ log pk ` 1q ` |φ|.

We consider the traditional assumption that variables can only occur in the scope of
a modality or a counting operator. In addition, we assume variables do not occur in the
scope of both, a modality and its converse. For instance, µx.x�yx_ x�yx is not allowed1.

In a given tree, formulas are interpreted as subsets of tree nodes. Propositions serve
as node labels. Negation is interpreted as set complement. Conjunctions and disjunctions
are interpreted as the intersection and union of sets, respectively. Modal formulas xmyφ
are true in a node when there is an accessible node, through m, such that the formula φ
holds. The µ operator is interpreted as a least fixpoint. The formula φą k holds in every
node of the tree model, if and only if, φ holds in at least k ` 1 nodes in the entire tree (see
Definition 2.3).

We now give a formal description of the formula semantics. Finite tree structures are
defined in the style of Kripke transition systems.

Definition 2.2 (Trees). A tree structure, or simply a tree, is a tuple T “ pP,N ,R,Lq,
such that:

‚ P is the set of propositions;
‚ N is the finite set of nodes;
‚ R is a transition relation pN ˆMq ˆ N (M is the set of modalities) forming a tree
structure, we write n1 P Rpn,mq when pn,m, n1q P R; and

1If variables do not occur in the scope of both, a modality and its converse, the greatest and least
fixed-points coincide in the context of finite trees [GLS07].
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‚ L is a left-total labeling relation on N ˆ P, written p P Lpnq.

Definition 2.3 (Semantics). Given a tree T and a valuation V : V ar ÞÑ 2N , where V ar is
a fixed set of variables, the formula semantics is defined as follows:

rrpssTV “ tn | p P Lpnqu rrxssTV “ V pxq

rr φssTV “ N zrrφssTV rrφ_ ψssTV “ rrφss
T
V Y rrψss

T
V

rrxmyφssTV “ tn | Rpn,mq X rrφss
T
V ‰ Hu rrµx.φssTV “

č

!

N
1 | rrφssT

V rN 1{xs
Ď N

1
)

rrφ ą kssTV “

"

N if |rrφssTV | ą k

H otherwise

If the interpretation of a formula φ is not empty for a given tree T , i.e. rrφssTV ‰ H, we say
the tree T satisfies the formula φ. This is often written T |ù φ. A formula is said to be
satisfiable if there is a tree satisfying it. Two formulas φ and ψ are equivalent, if and only
if, for every tree T , T satisfies φ, if and only if, T satisfies ψ.

Example 2.4. We can express existential statements with counting formulas. For instance,
if we want to select the nodes expressed by a formula ψ, only if there is a node satisfying φ,
then we write:

pφą 0q ^ ψ

Universality can also be expressed. The following formula selects the ψ nodes when every
node satisfies φ:

rp φqď 0s ^ ψ

Note that with counting formulas it is also possible to restrict the number of nodes occurring
in a particular region. First, consider for instance the descendants region. This can be
expressed as follows:

µx.x�ypp0 _ xq

This formula denotes the descendants of the p0 nodes. Recall that � denotes the parent
relation. Hence, the formula holds in nodes from where, by recursive navigations through
parents, nodes named p0 are accessible. Then, if we want to restrict the number of descen-
dants of the p0 nodes in a tree, then we write:

rµx.x�ypp0 _ xqsď 6

Now, if we want to restrict the number of some descendants, say descendants named p1,
then we write:

prµx.x�ypp0 _ xqs ^ p1qď 6

Notice that µx.x�ypp0 _ xq ^ p1 holds in all p1 descendants of each p0 node. Hence, if in a
model there are 2 nodes named p0 with 2 and 3 descendants named p1, respectively, then
the formula prµx.x�ypp0 _ xq _ x�yxs ^ p1qď 6 holds due to all 6 descendants of both p0
nodes (see Figure 1). However, one may also want to restrict the number of descendants
of a particular node. This can be done by isolating the origin node from where navigation
starts (during counting). For this purpose we first define the following formula:

poď 1q ^ poą 0q

In this formula, proposition o occurs exactly once in a model. If we want to indentify where
o occurs, then we write:

po“ 1q ^ o
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φ
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φ
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φ

Figure 1: Tree model example: descendant region of p0 nodes is denoted by the formula
φ ” µx.x�ypp0_xq; formula pφ^ p1qď 6 holds because the p0 nodes have exactly
6 descendants labeled with p1; pµx.rpp0 ^ o^ o “ 1q _ x�yxs ^ p1qď 2 is true be-
cause there is a p0 node, the one marked with o, with 2 descendants named p1.

where o“ 1 stands for poď 1q ^ poą 0q. Note that formula po“ 1q ^ o selects an node
only if the formula is true in exactly that node, then this formula can be seen as a nomi-
nal [BLMV06]. Now that we can isolate a single node in a model, we can thus restrict the
counting from a particular node, consider for instance the following formula:

rµx.x�yprpo“ 1q ^ o^ p0s _ xqsď 2

This formula is true in models where there is single node with no more than 2 descendants.
If in addition, we want to name the descendants, say p1, then we write:

rµx.x�yprpo“ 1q ^ o^ p0s _ xq ^ p1sď 2

A graphical respresentation of the examples above is depicted in Figure 1.

3. Counting Regular Path Queries

The navigation core of the XPath query language (for XML documents) has been formalized
as regular path queries, and it is known to correspond to FOL2 [tCM09, Mar05]. In this
Section, we introduce an extension of regular path queries with counting constructs. In
contrast with the counting extension of regular path queries reported in [BGLS11], where
counting is limited to children paths only, the counting constructs described in this work
are able to constrain arbitrary regular paths. We also provide in this Section a linear
characterization of the counting extension of regular path queries into µTLIN.

3.1. Syntax and semantics. We first describe the extension of regular paths with counting
constructs on multi-directional paths. We call this extension CPath.

Definition 3.1 (Syntax). The syntax of CPath queries ρ is given as follows:

α :“ �|�|�|�|�‹|�‹ ̺ :“J | α | p | α : p | ̺{̺ | ̺rβs

β :“̺ ą k | β _ β |  β ρ :“̺ | {ρ | ρY ρ | ρX ρ | ρzρ

where p is a proposition, and k is a positive integer in binary.
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We also consider the following syntatic sugar: ̺ď k is written instead of  p̺ą kq; ̺
instead of ̺ą 0; β1 ^ β2 instead of  p β1 _ β2q; and ̺rβ1srβ2s instead of ̺rβ1 ^ β2s.

The CPath expressions are interpreted as node-selection queries on tree structures. In
particular, the axis relations α are interpreted as follows: children �, following sibling �,
parent �, previous sibling �, descendants �

‹, and ancestors �
‹. Step paths α : p selects the p

nodes reachable by α. Symbol { is used to compose paths. A qualified path ̺rβs selects the
nodes denoted by ̺ that satisfies the boolean condition β. A qualified path r̺ ą ks is true
when ̺ selects at least k nodes. The boolean combination of qualifiers β are interpreted in
the obvious manner. The path {ρ selects the nodes denoted by ρ that are reachable from
the root. Union, intersection and difference of paths are interpreted as expected. Before
given a formal description of the CPath semantics (inspired from [tCM09]), we introduce

the following notation: in a Kripke structure, n1
α
Ñ n2 means than n1 is related by means

of α with n2, where α can be any axis relation (�,�, �,�, �‹, �‹).

Definition 3.2 (Semantics). The semantics of CPath queries is defined by a function rr¨ss¨

from CPath queries with respect to a tree T , to pairs of nodes in T .

rrJssT “ N ˆN rrpssT “ tpn, nq | p P Lpnqu

rrαssT “ tpn1, n2q | n1
α
Ñ n2u rrα : pssT “ tpn1, n2q P rrαss

T | p P Lpn2qu

rr̺1{̺2ss
T “ rr̺1ss

T ˝ rr̺2ss
T rr̺rβsssT “ tpn1, n2q P rr̺ss

T | n2 P rrrβsss
T u

rrr̺ ą ksssT “ tn1 | |tn2 | pn1, n2q P rr̺ss
T u| ą ku rrr βsssT “ N zrrrβsssT

rrrβ1 _ β2sss
T “ rrrβ1sss

T Y rrrβ2sss
T rr{̺ssT “ tpr, nq P rr̺ssT | r is the rootu

rrρ1 Y ρ2ss
T “ rrρ1ss

T Y rrρ2ss
T rrρ1 X ρ2ss

T “ rrρ1ss
T X rrρ2ss

T

rrρ1zρ2ss
T “ rrρ1ss

T zrrρ2ss
T

Notice that the function rrr¨sss¨ is introduced to distinguish the interpretation of paths inside
qualifiers.

Example 3.3. Consider for instance the following composition of paths:

�
‹: p1{ �

‹: p2

This query, evaluated from some context (a node subset), navigates to the p1 ancestors
of the context, and from there, it selects the p2 descendants. Now consider the following
qualified path:

�
‹: p1r�

‹: p2s

In constrast with the previous example, this query selects the p1 ancestors with at least 1
descendant named p2.

Proposition 3.4 (Succinctness). For any tree T and CPath expression ρ, there is a regular
path (CPath without counting) ρ1, such that

‚ rrρssT “ rrρ1ssT , and
‚ the size of ρ1 is exponentially greater than the size of ρ.

Proof. Given an expression ̺ ą k (k ą 0), we will show that that there is an equivalent
path expression ̺1 without counting. We proceed by induction on the structure of ̺.
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For the base cases, we consider the following replacements:

�: pr

k times
hkkkkkkkikkkkkkkj

�: pr�: pr. . .sss instead of �: p ą k;

k ` 1 times
hkkkkkkkikkkkkkkj

�: pr�: pr. . .sss instead of �: p ą k;

k ` 1 times
hkkkkkkkikkkkkkkj

�: pr�: pr. . .sss instead of �: p ą k;

�
‹: pr

k times
hkkkkkkkkkkkikkkkkkkkkkkj

�
‹
�: pr�‹�: pr. . .sss instead of �

‹: p ą k; and

�
‹: pr

k times
hkkkkkkkkkkkikkkkkkkkkkkj

�
‹
�: pr�‹�: pr. . .sss instead of �

‹: p ą k;

where �
‹
�: prβs and �

‹
�: prβs are syntactic sugar for �

‹: prβs _ �: prβs and �
‹: prβs _ �:

prβs, respectively.
Consider now the case p̺1{̺2q ą k, this expression is replaced by ̺11{̺

1
2, where by

induction we know that ̺11and ̺12 are the counting-free expressions equivalent to ̺1 and
̺2 ą k, respectively.

Expression ̺1r̺2 ą k2s ą k1 is replaced by ̺11r̺
1
2s, such that by induction ̺11 and ̺12 are

the counting-free expressions equivalent to ̺1 ą k1 and ̺2 ą k2, respectively.
Cases ̺rβ1 _ β2s and ̺r βs are also immediate by induction.
In the replacement described above, notice that numerical restrictions (in binary) are

replaced by explicit path occurrences, it is hence easy to see the exponential blow-up in the
size of the counting-free expression.

Definition 3.5 (Reasoning problems). We define the emptiness, contaiment and equiva-
lence problems of CPath queries as follows.

‚ We say a query ρ is empty, if and only if, for every tree T , its interpretation is empty,
that is, rrρssT “ H;

‚ It is said that a query ρ1 is contained in a query ρ2, if and only if, for every tree T , each pair
of nodes in the interpretation of ρ1 is in the intepretation of ρ2, that is, rrρ1ss

T Ď rrρ2ss
T ;

and
‚ Two queries ρ1 and ρ2 are equivalent, if and only if, for every tree T , ρ1 is contained in
ρ2 and the other way around, that is, rrρ1ss

T Ď rrρ2ss
T and rrρ2ss

T Ď rrρ1ss
T .

3.2. Logic characterization. Regular path queries (without counting) can be written in
terms of the µ-calculus [BGLS11]. For instance, the query �

‹: p, evaluated in the root r,
selects the p descendants of r. This can be written as follows:

rµx.x�ypr _ xqs ^ p

If we want to evaluate the query in another context (node subset), represented by a C

formula, then we simply replace the occurrence of r by C. For instance, let us say the
context represented by all the nodes named p0, then the p ancestors of p0 nodes can be
written as follows:

rµx.x�ypp0 _ xqs ^ p
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In [BGLS11], it was also shown that an extension of regular path queries with counting on
children paths can be expressed in terms of the two-way graded µ-calculus. Children paths
are of the forms �: p and �: pr̺s. In this paper, we show that the µTLIN counting constructs
can describe more general counting constructs on arbitrary regular path queries, such as
�
‹: p1{ �

‹: p2r̺s.

Definition 3.6 (CPath queries into µTLIN formulas). Given a context formula C, the
translation F from CPath queries into µTLIN formulas is defined as follows:

F p�, Cq “ x�yC F p�, Cq “ x�yC

F p�, Cq “ x�yC F p�, Cq “ x�yC

F p�‹, Cq “ µx.x�ypC _ xq F p�‹, Cq “ µx.x�ypC _ xq

F pα : p,Cq “ F pα,Cq ^ p F p̺1{̺2, Cq “ F p̺2, F p̺1, Cqq

F p̺rβs, Cq “ F p̺,Cq ^ o^ F pβ, ro“1s^oq F p̺ ą k,Cq “ F p̺,Cqą k

F p β,Cq “ F 1pβ,Cq F pβ1 _ β2, Cq “ F pβ1, Cq _ F pβ2, Cq

F p{̺,Cq “F p̺,C^ px�yJ^x�yJqq F pρ1 X ρ2, Cq “ F pρ1, Cq ^ F pρ2, Cq

F pρ1 Y ρ2, Cq “ F pρ1, Cq _ F pρ2, Cq F pρ1zρ2, Cq “F pρ1, Cq^F
1pρ2, Cq

where

F 1pρq “

#

F 1p̺,C ^ rx�yJ ^ x�yJsq if ρ has the form {̺,

 F pρq otherwise.

F 1p̺q “

#

 F p̺1, Cq _ ro^ F pβ, ro“1s ^ oqs if ̺ has the form ̺1rβs,

 F p̺q otherwise.

In general F 1 represent the negation of F , however in the case where there is a counting
operator, the fresh proposition o, which serves to fix an origin node, is not negated. Note
that the constraint o“1^ o is not affected by negation because it always occur in the scope
of a counting operator.

Example 3.7. Consider the following query evaluated in a context C:

�: p1r�
‹: p2 ą ks

The query selects the p1 children of C with at least k ` 1 descendants named p2. The first
part of the query �: p1 is translated as follows:

p1 ^ x�yC

That is, the p1 nodes with C as parent. The translation of the counting expression �
‹: p2 ą k

is
o^ rp2 ^ µx.x�ypro“1^ os _ xqsą k

This formula holds, if and only if, there are more than k descendant nodes, named p2, of a
single node named o. Then, the translation of the entire query is the following:

F p�: p1r�
‹: p2 ą ksq “ pp1 ^ x�yCq ^ po^ rp2 ^ µx.x�y pro“1^ os _ xqsąkq

The proposition o is used to fix a context for the counting subformula. o holds in a single
p1 node, then the p2 descendants of that particular p1 node are the only ones counted.
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With the translation function F , we can now use the logic as a reasoning framework to
solve emptiness, containment and equivalence of CPath queries, moreover, since translation
F does not introduce duplications, it is easy to see that the formula resulting from the
translation has linear size with respect to the input query.

Theorem 3.8 (Query reasoning). For any CPath queries ρ, ρ1, ρ2, tree T and valuation V ,
the following holds:

‚ rrρssT “ H if and only if rrF pρ,JqssTV “ H;

‚ rrρ1ss
T Ď rrρ2ss

T if and only if rrF pρ1,Jq ^ F
1pρ2,Jqss

T
V “ H; and

‚ F pρ,Jq has linear size with respect to ρ and F 1pρ1,Jq ^ F pρ2,Jq has linear size with
respect to ρ1 and ρ2.

Proof. For the first item, we proceed by structural induction on ρ.
In order to proof the case when ρ has the form ̺, we will proof the following: ̺ evaluated

in a context C is satisfiable by a tree T , if and only if, F p̺,Cq is satisfiable by T .
Consider ρ is the basic query �

‹: p, then F p�‹: p,Cq “ p^µx.x�ypC _xq, which clearly
selects exactly the same nodes than ρ evaluated in C. The proof for the cases with the
other axes (�, �,�,�, �‹) is similar.

Now let the input query be a composition of paths, that is, ρ has the form ̺1{̺2.
Intuitively, ̺1{̺2 selects the nodes denoted by ρ2 evaluated from the nodes satisfying ̺1,
that is, ̺1 is the context. That is precisely what it means F p̺2, F p̺1, Cqq. By induction
F p̺1, Cq corresponds to ̺1, and then also by induction F p̺2, F p̺1, Cqq corresponds ̺1{̺2
evaluated in C.

Before proving the case when the input query has the form ̺1r̺2 ą ks, we need first
to proof that ̺2 ą k is satisfiable by T , if and only if, F p̺2, o “ 1 ^ oq ą k is satisfiable
by T . This is achieved by induction on the structure of ̺2. Consider ̺2 has the form
�: p. Then F p�: p,Jq “ p ^ x�yJ. This formula selects all the p children of the model.
However according to the semantics of CPath queries (Definition 3.2), we need to count
the p children of a single node. This is achieved by fixing the context with a new fresh
proposition o occurring only once in the model o “ 1. Hence rp^ x�y pro “ 1s ^ oqs ą k is
satisfiable by T , if and only if, �: p ą k is satisfiable by T . We proceed analogously for the
other axes. For the other cases of ̺2, that is, when ̺2 is a composition of paths (̺12{̺

2
2) and

a qualified path (̺12rβ
1s), the proof goes straightforward by induction.

Now that we know that ̺2 ą k is satisfiable by T , if and only if, F p̺2q ą k is satisfiable
by T , and that by induction, ̺1 evaluated in C is satisfiable by T , if and only if, F p̺1, Cq
is satisfiable T , we can thus infer that F p̺1, Cq ^ o^ F p̺2, ro “ 1s ^ oq is satisfiable by T ,
if and only if, ̺1r̺2 ą ks is satisfiable in context C by T . Note that o is used to select a
single ̺1 node.

When ̺ has the form ̺1rβs, the cases when β is a disjunction or a negation are immediate
by induction. In the case of negation, it is important to notice that the negation of F p̺1, ro “
1s ^ oq ą k does not affect the context, that is, negation never goes inside the formula
ro “ 1s ^ o.

Consider now the case when the input query has the form ρ1zρ2. The only interesting
case is when ρ2 has the form ̺1r̺2 ą ks. It is easy to see, by induction, that F pρ1, Cq is
satisfiable by T , if and only if, ρ1 is satisfiable by T . Also by induction we also know that
 F p̺1, Cq_po^ F p̺2, ro “ 1s ^ oqq is satisfiable by T , if and only if, ̺1r̺2 ą ks is not sat-
isfiable by T . We can hence conclude that F pρ1, Cq^r F p̺1, Cq _ po^ F p̺2ro “ 1s ^ oqqs
is satisfiable by T , if and only if, ρ1zp̺1r̺2 ą ksq also does.
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The cases when the input query has the forms ρ1Yρ2, ρ1Xρ2, and {ρ1 are straightforward
by induction.

For the second item, we proceed analogously as in the first item in the case when the
input query has the form ρ1zρ2.

The third item is proven immediately by structural induction on the input query and
by noticing that function F does not introduce duplications.

4. Regular Tree Languages with Counting

Regular tree language expressions (types, schemas) can be seen as the arborescent version
of regular expressions. These expressions are used to describe sets of trees, and they en-
compass most common XML schema languages, such as DTDs, XML schema and RelaxNG
[MLMK05]. Consider for instance the following expression:

p1rp
‹
2s

This expression is interpreted as the set of trees (XML documents) rooted by p1 with 0 or
more contiguous children named p2.

In this paper, we consider an extension of regular tree languages with counting con-
structs. These constructs serve to constrain the number of children occurrence. For exam-
ple, if one wants to describe the trees rooted by p1 with at most 5 children named p2, one
may write:

p1rp
ď5
2 s

4.1. Syntax and semantics. We now give a precise definition of the regular tree types
with counting.

Definition 4.1 (CTypes syntax). The syntax of CTypes expressions is defined by:

e :“ ǫ | x | e ¨ e | e` e | let x.e in e | preąks | preďks

We often write pres instead of pre ą 0s. Variables cannot occur free, that is, variables
always occur under the scope of a fixpoint operator.

ǫ is used for the empty tree. Concatenation and alternation are expressed as usual with
the respective symbols ¨ and `. The binder is used for recursion. The Kleene star and other
common notation for regular languages are defined as follows: e‹ “ let x.pe ¨ xq ` ǫ in x,
e` “ e ¨ e‹, and e? “ ǫ` e. Counting expressions pre#ks denote the set of trees rooted at p
such that the number of children subtrees matching with e satisfy the numerical constraint
#k. In contrast with other forms of counting in regular tree languages [Gel10], we do not
force the counted nodes to be contiguous siblings.

Definition 4.2 (CTypes semantics). Given a valuation V into trees, the interpretation of
CTypes expressions is given as follows:

rrǫssV “ tHu rrxssV “ V pxq

rre1 ¨ e1ssV “ rre1ssV ¨ rre2ssV rre1 ` e2ssV “ rre1ssV Y rre2ssV

rrlet x.e in essV “ rresslfp(V ) rrpre#ksssV “ tT | the root of T is labeled by p and the number

of children subtrees in rressT satisfies #ku
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where lfp(f) is the least fixpoint of f defined lfppV 1q “ V
”

x{
rress

V 1

ı

. Note that V is monotone

according to subset ordering, hence it always has a fixpoint due to the Fixpoint Theorem
[Tar55].

It was shown in [BGLS11] that any CTypes expression can be written in terms of µ-
calculus formulae. We also know that the graded µ-calculus is as expressive as the plain
µ-calculus [Bar11]. It is also well-known that the plain µ-calculus and regular tree languages
(types) are equally expressive [JW96]. It is then easy to see that counting operators (CTypes)
do not introduce more expressive power in regular tree languages. Also, by Theorem 6.3,
we can conclude that µTLIN and CTypes are equally expressive.

4.2. Logic characterization. CTypes without counting can be linearly characterized by
the simple µ-calculus [BGLS11]. Moreover, in the same work it is also shown that the
counting constructs of CTypes can be captured by the graded µ-calculus. We now show
that µTLIN can also capture CTypes expression and hence be used as a reasoning framework.
For instance, the above example p1rp

‹
2s can be expressed as follows:

p1 ^ p x�yJ _ x�y r x�yJ ^ µx.p2 ^ px�yx_ x�yJqsq

We now give a general translation function.

Definition 4.3 (CTypes expressions into µTLIN formulas). The translation function F

from CTypes expressions to µTLIN formulas is given as follows:

F pǫq “  J F pe1 ` e2q “ F pe1q Y F pe2q

F pe1 ¨ e2q “ F pe1q ^ x�yF pe2q F plet x.e in eq “ µx.F peq in F peq

F ppre#ksq “ p^ o^ pF peq ^ x�y ro“1^ osq#k

Formula µx.φ in φ is a generalization of the least fixpoint. Its formal semantics is
defined as follows:

rrµx.φ in φssTV “ rrφss
T

V
”

N2{x

ı, where N2 “
č

#

N 1 | rrφssT
V
”

N1{x

ı Ď N 1

+

.

Note that this generalization does not provide more expressive power and it is only used
for a succinct translation of his analogous operator in CTypes expressions.

Now consider an example for the translation function. The expression above p1rp
ď
2 5s is

translated as follows:

F pp1rp
ďk
2 sq “ p1 ^ o^ pp2 ^ x�y ro“1^ osqď 5

Notice that the fresh proposition o is used to count from a fixed context in an analogous
manner as done for regular path queries. It is then necessary to define a safe negation for
the translation F in order to properly model the containment and equivalence of CTypes
expressions. Safe negation of F is defined by F 1 as follows.

Definition 4.4. We define the following translation function from CTypes expressions into
µTLIN formulas.

F 1peq “

#

 p_ po^ rpF pe0q ^ µx.x�y ro“1^ os _ x�yxq#ksq if e has the form pre#k0 s,

 F peq otherwise.
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We can now define the reasoning problems of CTypes expressions in terms of µTLIN
formulas.

Theorem 4.5 (CTypes reasoning). For any CTypes expressions e, e1 and e2, tree T and
valuation V , we have that:

‚ rressV “ H, if and only if, rrF peqssTV “ H;

‚ rre1ssV Ď rre2ssV , if and only if, rrF pe1q ^ F
1pe2qss

T
V “ H; and

‚ F peq, F pe1q and F
1pe2q have linear size with respect to e, e1 and e2, respectively.

Proof. The proof goes by structural induction on the input CTypes expressions in an anal-
ogous manner as the proof of Theorem 3.8. We will only show the case when the CTypes
expression has the form pre#ks for the first item. By induction we know F peq is satisfiable
by a tree T , if and only if, e is satisfiable. Then the formula rF peq ^ x�ypo “ 1 ^ oqs#k is
satisfiable by T , if and only if, there is a node with children matching F peq and satisfying
the numerical constraint #k. Therefore p ^ o^ rF peq ^ x�ypo “ 1^ oqs#k is satisfiable by
T , if and only if, pre#ks is satisfiable by T .

5. Succincteness

We show in this Section that µTLIN is at least exponentially more succinct that the graded
µ-calculus [BLMV06]. This is done via a GCTL embedding. We know from Bianco et al.
[BMM10, BMM12] that the Graded Computation Tree Logic (GCTL) is at least exponen-
tially more succinct than the graded µ-calculus. We then describe a linear embedding of
GCTL into µTLIN. A precise definition of GCTL formulas is first given.

Definition 5.1 (Syntax). The set of Graded Computation Tree Logic formulas is induc-
tively defined by the following grammar.

φ :“ p |  φ | φ_ φ | EąkXφ | EąkGφ | EąkφUφ

Formulas are also interpreted as node subsets of finite tree structures. Proposition are
also used as node labels, and the boolean operators are interpreted as expected. Formula
EąkXφ is true in nodes with more than k children where φ holds. EąkGφ holds in nodes
with more than k downward paths leading to a leaf, such that φ is true in each path node.
And formula EąkφUψ holds in nodes n0 with more than k downward paths n0, . . . , nk, such
that ψ holds in nk and φ is true in ni for every i ă k.

The all but graded operator Aďk is defined as follows:

AďkXφ ”  EąkX φ, AďkGφ ”  EąkF φ,

EąkFφ ” EąkJUφ, AďkφUψ ”
ł

k1`k2“k

 
´

Eąk1 r ψUp φ^ ψqs _ Eąk2G ψ
¯

.

AďkXφ selects nodes with at most k children where φ does not hold; AďkGφ restricts to
at most k the number of downward paths leading to a leaf, such that φ does not hold in
each path node; EąkFφ counts at least k paths where φ holds at least once; and AďkφUψ
constrains to at most k the number of downward paths such that the following does not
hold: φ and  ψ are true and in each path node except the last one where ψ is true.

In order to give a precise GCTL semantics we first describe some useful notations about
downward paths.
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Definition 5.2 (Children path). Given a tree structure T , a children path αnk
n0

starting at
node n0 and ending at node nk is a finite set of nodes tn0, n1, . . . , nku, such that ni`1 P
Rpni, �q for i “ 0, . . . , k. If the ending node nk is a leaf, that is, Rpnk, �q “ H, then we
may avoid to write the ending node αn0

. If the starting and the ending node is the same,
then the path is defined as the singleton αnn “ tnu.

Definition 5.3 (Semantics). Given a tree structure T , the interpretation of GCTL formulas
is given as follows.

rrpssT “tn P Lppqu

rr φssT “N zrrφssT

rrφ_ ψssT “rrφssTV Y rrψss
T
V

rrEąkXφssT “
 

n | |Rpn, �q X rrφssT | ą k
(

rrEąkGφssT “
 

n |
ˇ

ˇ

 

αn | αn Ď rrφss
T
(ˇ

ˇ ą k
(

rrEąkφUψssT “
 

n0 |
ˇ

ˇ

 

αnk

n0
‰ H | nk P rrψss

T , α
nk´1

n0
Ď rrφssT

(ˇ

ˇ ą k
(

As expected, GCTL formulas can be described in terms of µTLIN formulas. We now
give a precise definition of this embedding.

Definition 5.4 (GCTL embedding). The function F from GCTL formulas to µTLIN for-
mulas is defined as follows:

F ppq “ p F p φq “  F pφq

F pφ_ ψq “ F pφq _ F pψq F pEąkXφq “ o^ pF pφq ^ x�y ro^ o “ 1sqąk

F pEąkGφq “o^ p x�yJ ^ µx.F pφq ^ rx�yx_ po^ o “ 1qsqąk

F pEąkφUψq “o^ pψ ^ ro_ x�yµx.F pφq ^ px�yx_ ro^ o “ 1sqsqąk

Theorem 5.5 (Embedding). For any GCTL formula φ, tree T and valuation V , we have
that:

rrφssT ‰ H if and only if rrF pφqssTV ‰ H

and F pφq has linear size with respect to φ.

Proof. By induction on the structure of the input formula.
The base case, when the formula is a proposition, is trivial. The cases of disjunction

and negation are immediate by induction.
Consider now the case when the input formula has the form EąkXφ. By induction we

know that φ is satisfiable by T , if and only if, F pφq also does. Now, it is easy to see that
F pφq^x�yJ selects all the children nodes where φ is true. Then pF pφq ^ x�y ro^ o “ 1sqąk
is true when the single node marked by o has more than k children where φ holds. Therefore
F pEąkXφq is satisfiable by T , if and only if, EąkXφ also does.

Consider now the case for EąkGφ. By induction we know that T satisfies φ, if and
only if, T also satisfies F pφq. Now, recall that EąkGφ is actually counting children paths
where φ is true in each node of the paths. Since each node can have one parent only, then
each path in T can be distinguished by the leaf nodes. We can count leaf nodes, and hence
paths, with formula p x�yJq ą k. Paths starting at a node o where φ is true at each node
can be denoted by µx.F pφq ^ rx�yx_ po^ o “ 1qs. It is now easy to see that T satisfies
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F pEąkGφq, if and only if, there are at least k children paths starting at node o, such that
φ holds at each node of the paths.

The remaining case is analogous.
Regarding the size of translation, it is clear that F does not introduce duplications, and

the proof also goes straightforward by induction on the structure of the input formula.

In order to show that µTLIN is at least exponentially more succinct than the graded
µ-calculus, we then first define the logic.

Definition 5.6 (Graded µ-calculus). The set of formulas of the graded µ-calculus is defined
by the following grammar.

φ :“ p | x |  φ | φ_ φ | xmyφ | µx.φ | EąkXφ

Modalities does not include two-way navigation, that is, m P t�,�u. Formulas are inter-
preted as node subsets of a given tree structure. The interpretation in the formula fragment
corresponding to µTLIN is the same as in µTLIN. The formula EąkXφ is interpreted as in
GCTL.

We now recall a Theorem from Bianco et al. regarding the exponential succinctness of
GCTL with respect to the graded µ-calculus.

Theorem 5.7 (GCTL succinctness [BMM10, BMM12]). There is a GCTL formula φ, such
that every equivalent graded µ-calculus formula has exponential size with respect to φ.

From Theorems 5 and 5.7, it is then easy to infer an exponential succinctness of µTLIN
formulas with respect to the graded µ-calculus.

Corollary 5.8 (µTLIM succinctness). For any tree T and valuation V , there is a µTLIN
formula φ, such that every graded µ-calculus formula ψ is that if

rrφssTV ‰ H if and only if rrψssTV ‰ H,

then ψ has exponential size with respect to φ.

6. Decidability

In this Section, we show that the µTLIN is decidable. This is achieved by a reduction to
the two-way µ-calculus [Var98]. Before describing the reduction, we first need to recall a
well-known bijection between binary and n-ary trees.

6.1. Binary trees. There is well-known bijection between n-ary unranked trees and binary
unranked trees [HVP05]. One of the edges in the binary trees represents the first child
relation, whereas the other edge represent the following sibling relation. In Figure 2 there
is a graphical representation of this bijection. Therefore, from now on, without loss of
generality, we will consider binary trees only.

At the logic level, we now reinterpret the modal formula xmyφ as follows:

‚ formula x�yφ selects the nodes where φ holds in its first child;
‚ formula x�yφ selects the nodes whose parent satisfy φ;
‚ x�yφ holds in nodes where φ is satisfied by its following sibling; and
‚ x�yφ satisfies nodes such that φ holds in its previous sibling.
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Figure 2: Example of the bijection between n-ary and binary trees.

Proposition 6.1. Consider a bijection f from n-ary trees to binary trees, as the one in
[HVP05]. We have the following:

‚ for any n-ary tree T , valuation V , and µTLIN formula φ, there is a µTLIN formula ψ
such that

rrφssTV “ rrψss
fpT q
V ;

‚ and for any binary tree B, valuation V , and µTLIN formula ψ, there is a µTLIN formula
φ such that

rrψssBV “ rrφss
f´1pBq
V .

Proof. Consider the first item. We proceed by induction on the structure of φ. The base
and most inductive cases are immediate. We consider the modal case only. If the input
formula has the form x�yϕ, then ψ is x�yµx.ϕ1 _ x�yx, where ϕ1 is the equivalence (by
induction) of ϕ. When the input formula is x�yϕ, then ψ is µx.x�yϕ1 _ x�yx. The cases for
x�yϕ and x�yϕ are analogous. The second item is trivial: ψ is defined as φ.

6.2. Reduction. We now provide a reduction from µTLIN to the two-way µ-calculus, that
is, we will describe an encoding of counting formulas φą k into plain µ-calculus formulas.
For this purpose, we first define a µ-calculus formula counting from the root.

Definition 6.2. We define the following formulas for i ą 1:

C
φ
0 “µx.φ_ x�yx_ x�yx

C
φ
1 “µx.

´

φ^
´

x�yCφ0 _ x�yC
φ
0

¯¯

_
´

 φ^ x�yCφ0 ^ x�yC
φ
0

¯

_ x�yx_ x�yx

C
φ
i “µx.

˜

φ^

˜

x�yCφi´1 _ x�yC
φ
i´1 _

ł

k1`k2“i´2

x�yCφk1 ^ x�yC
φ
k2

¸¸

_

˜

 φ^
ł

k1`k2“i´1

x�yCφk1 ^ x�yC
φ
k2

¸

_ x�yx_ x�yx

From the root node, Cφk counts at least k ` 1 nodes satisfying φ. In Figure 3 there is
an example model for Cp13 holding at the root. Cp13 counts at least 4 nodes named p1.

Recall that, in a tree, the root is the only node without a parent, hence the root r can
be denoted by the formula  x�yJ ^  x�yJ. We can thus reach the root from any other
node with the following formula:

µx.r _ x�yx_ x�yx
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Figure 3: Example model for Cp13 holding at the root

Now, with the help of Cφk , we can now show how to encode counting formulas into the
simple µ-calculus (without counting constructs).

Lemma 1. For any tree T and valuation V , we have the following:

rrφą kssTV “rrµx.pC
φ
k ^ rq _ x�yx_ x�yxss

T
V

Proof. The proof goes by induction on k in Cφk . The base cases Cφ0 and Cφ1 are trivial. For
the induction step we distinguish two cases:

‚ Assume φ holds at the root, we have then 1 occurrence of φ. It is then easy to see by
induction that

x�yCφk´1 _ x�yC
φ
k´1 _

ł

k1`k2“k´2

x�yCφk1 ^ x�yC
φ
k2

counts k occurrences of φ. There are then k ` 1 occurrence of φ.
‚ Assume φ does not hold at the root. Then there are two subcases:
– There are occurrences of φ in both subtrees, in which cases by induction we know that

ł

k1`k2“k´1

x�yCφk1 ^ x�yC
φ
k2

counts k ` 1 occurrence of φ.
– The other case is when there are not occurrences of φ in one of the subtrees. We then

apply recursion on the subtrees (x�yx _ x�yx). The rest of the proof is immediate by
induction on the height of the tree model.

Now that we can encode the counting formulas into plain two-way µ-calculus, then we can
infer that µTLIN is decidable due to the fact that µ-calculus is decidable. However, the
encoding of counting formulas results in exponentially larger µ-calculus formulas.

Theorem 6.3. µTLIN is decidable in double exponential time.

Proof. Observe in Definition 6.2 that Cφk encodes numerical constraints by nesting k modal-

ities on φ. That is, xmyCφk´1, xmyxmyC
φ
k´2, . . . , xmy . . . xmyC

φ
0 are all subformulas of Cφk .

Since k is in binary form, this implies that there are 2k different occurrences of φ in C
φ
k .

That is, the size of Cφk is exponentially greater than the sum of the sizes of φ and k. Now,
by the fact that the µ-calculus is EXPTIME-complete [BLMV06], and by Lemma 1, we
conclude the doubly exponential time complexity bound.
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The graded µ-calculus [KSV02] was also shown to be decidable by a reduction to the
plain two-way µ-calulculus by Bárcenas in [Bar11], then the expressive power of µTLIN,
the graded µ-calculus and the plain two-way µ-calculus all coincide.

Being µTLIN decidable, and by Theorems 3.8 and 4.5, we can then use as a reasoning
framework for XPath queries with schema and counting constraints. However, the complex-
ity bound for decidability can be improved. In the rest of the paper, we will describe a
satisfiability algorithm with single exponential time complexity. Before defining the algo-
rithm, we first describe a Fischer-Ladner representation of tree models.

7. Fischer-Ladner Trees

This is a section of preliminaries for the satisfiability algorithm. It is described a syntactic
representation of tree models.

For the algorithm, we consider formulas in negation normal form (NNF) only.

Definition 7.1 (Negation Normal Form). In the negation normal form nnfpφq of a formula
φ, negation occurs only immediately above of propositions, J and modal subformulas xmyJ.
This is obtained by the following rules together with the usual DeMorgan’s:

 xmyφ “xmy φ_ xmyJ,  pφą kq “φď k,

 pφď kq “φą k,  µx.φ “µx. φ rx{ xs .

Note that, for technical convenience, we consider an extension of formulas. This exten-
sion consists of less than counting formulas φď k and the true formula J with the obvious
semantics.

We require some notation before defining the Fischer-Ladner closure.
Since integers associated to counting constraints are assumed to be in binary form, we

thus define counter formulas as a boolean combination of propositions denoting an integer
number. For example, for a sequence of propositions p1, p2, . . ., the integer 1 is written
p1 ^

Ź

ią1 pi, and the integer 5 (101 in binary) is written p3 ^ p2 ^ p1 ^
Ź

ią4 pi. The
amount of propositions required to define the counters of formula φ is bounded bymaxKpφq.

Definition 7.2. We define maxKpφq as follows:

maxKppq “ maxKpxq “ maxKpJq “ 0

maxKpxmyφq “ maxKp φq “ maxKpµx.φq “ maxKpφq

maxKpφ1 _ φ2q “ maxKpφ1 ^ φ2q “ maxKpφ1q `maxKpφ2q

maxKpφ#kq “ maxKpφq ` pk ` 1q

When clear from the context, we often simply write maxK.

Definitions of counters and flags is now given.

Definition 7.3 (Counters and flags). For a counting subformula φ#k of a given formula:

‚ a counter φk
1

set to k1 is a sequence of fresh propositions occurring positively in the binary
coding of the integer k1; and

‚ a flag φ#k is a fresh proposition.

For instance, for the integer 5 coded as c2^ c1^c0, we write φ
5 to denote c2, c0, where

ci are the corresponding propositions for the counting formula φ#k.
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The Fischer-Ladner closure of a given formula is the set of its subformulas together with
their negation normal form, such that the fixed-points are expanded once. Additionally, a
counter and a flag for each counting subformula are also considered in the closure. All these
information is obtained with the help of the relation RFL.

Definition 7.4. We define the following binary relation RFL over formulas for i “ 1, 2:

RFLpφ,nnfpφqq RFLpφ1 ^ φ2, φiq RFLpφ1 _ φ2, φiq

RFLpxmyφ, φq RFLpµx.φ, φ
”

µx.φ{x

ı

q RFLpφ#k, φq

RFLpφ#k, φmaxKq RFLpφ#k, φ#kq RFLpφ#k, ψq

where ψ “ µx1.pµx2.φ_x�yx2_x�yx2q_x�yx1_x�yx1. Notice that if φ is true in a model,
then ψ is true in every node of the model. We use ψ to provide the necessary information
for φ to navigate through the entire model.

We are now ready to define the Fischer-Ladner closure.

Definition 7.5 (Fischer-Ladner Closure). The Fischer-Ladner closure of a given formula
φ is defined as FLpφq “ FLpφqk, such that k is the smallest integer satisfying FLpφqk`1 “
FLpφqk, where:

FLpφq0 “ tφu

FLpφqi`1 “ FLpφqi Y tψ
1 | RFLpψ,ψ1q, ψ P FLpφqiu

The lean set of a given formula contains propositions, modal and counting subformulas,
together with counters and flags.

Definition 7.6 (Lean). Given a formula φ and a proposition p1 not occurring in φ, we
define the lean as follows for all m PM :

leanpφq “ tp, xmyψ,ψ#k, ψmaxK , ψ#k P FLpφqu Y txmyJ, p1u

The lean set contains all the required information to define tree nodes: propositions
serve as labels, modal subformulas define the topology of the tree, and counters and flags
serve to verify counting subformulas.

As in [BGLS11, CGLV10, GLS07], the single exponential time complexity of the satis-
fiability algorithm mainly relies in the size of the lean set (tree nodes are defined as subsets
of the lean). Since counters are coded in binary, it is then easy to see that the size of the
lean set is not significantly increased with respect to the original formula.

Lemma 2. The cardinality of leanpφq is linear with respect to the size of φ.

Proof. The proof goes by structural induction on φ.
We consider only the case for counting subformuals RFLpφ1#k, ψq. Now recall that a

counter is defined in terms of a boolean combination of propositions, that is, for each count-
ing subformula φ1#k only logpmaxKq (maxK in binary) new propositions are introduced
in the lean. Since the size of φ1#k is defined by |φ1| ` logpk ` 1q, and by the definition of
maxK, the counters then produce no increment in the size of the lean.
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Example 7.7. Consider the following formulas for m P t�,�, �,�u:

φ “rpp1ą 1q ^ p2są 4 ψ “pp1ą 1q ^ p2

φ0 “µx.ψ _
ł

@m

xmyx ψ0 “µx.p1 _
ł

m

xmyx

The lean of φ is thus defined as follows for m P t�,�, �,�u:

leanpφq “tp1, p2, φ, p1ą 1, ψ7, p71, ψ
ą4, pą11 , xmyφ0, xmyψ0, p

1, xmyJu

maxK “ 7. Now recall that φ7 denote 3 propositions that serve to express the binary
coding of the integers from 0 to 7.

We are now ready to define the syntactic notion of tree nodes.

Definition 7.8 (φ-Nodes). Given a formula φ, a φ-node nφ is defined as a subset of leanpφq,
such that:

‚ at least one proposition of φ occurs;
‚ if xmyψ occurs, then xmyJ also does;
‚ both x�yJ and x�yJ can not occur;
‚ counting formulas are always present;
‚ exactly one counter for each counting formula is present, i.e., if φ#k P nφ, then φk

1

P nφ;
‚ counters must be consistent with counting formulas and flags, i.e., ψk0 , ψď k P n, if and
only if, k0 ď k, and ψk0 , ψąk P n, if and only if, k0 ą k.

The set of φ-nodes is written Nφ. If the context is clear, we often call a φ-node simply
a node, and we write n instead of nφ.

We now define trees as triples pn,X1,X2q, where n is the root of the tree and X1 and
X2 are the respective left and right subtrees.

Definition 7.9 (Fischer-Ladner trees). Given a formula, a Fischer-Ladner tree, or simply
a tree, is inductively defined as follows:

‚ the empty set H is a tree;
‚ the triple pnφ,X1,X2q is also a tree, provided that X1 and X2 are also trees.

Example 7.10. Consider φ,ψ, φ0, ψ0 from Example 7.7. We define the following syntactic
tree model for φ:

T “pn0, pn1, pn3,H,Hq, pn4,H,Hqq, pn2, pn5,H,Hq, pn6,H,Hqq

where

n0 “tp2, φ, p1ą 1, p21, p
ą1
1 , ψ5, ψą4, x�yψ0, x�yψ0, x�yφ0, x�yφ0, x�yJ, x�yJu

n1 “tp2, φ, p1ą 1, p21, p
ą1
1 , ψ1, x�yψ0, x�yψ0, x�yψ0, x�yφ0, x�yφ0, x�yφ0, x�yJ, x�yJ, x�yJu

n2 “tp2, φ, p1ą 1, p21, p
ą1
1 , ψ3, x�yψ0, x�yψ0, x�yψ0, x�yφ0, x�yφ0, x�yφ0, x�yJ, x�yJ, x�yJu

n3 “tp1, φ, p1ą 1, p11, x�yφ0, x�yψ0, x�yJu

n4 “tp1, φ, p1ą 1, p11, x�yφ0, x�yψ0, x�yJu

n5 “tp2, φ, p1ą 1, ψ1, x�yφ0, x�yψ0, x�yJu

n6 “tp2, φ, p1ą 1, ψ1, x�yφ0, x�yψ0, x�yJu

Figure 4 depicts a graphical representation of T .
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Figure 4: Fischer-Ladner tree model for φ “ rpp1ą 1q ^ p2są 4

8. Satisfiability

In this Section, we introduce a satisfiability algorithm for µTLIN in the style of Fischer-
Ladner [BGLS11, DL10]. Tree nodes are defined from an extension of the classical Fischer-
Ladner closure. The extension consists of counters (boolean combination of fresh propo-
sitions encoding integer values in binary) that are used to verify counting formulas. Tree
models are built in a bottom-up manner, that is, starting from the leaves, parent nodes are
consistently added until a witness tree for the formula in question is found. At each step
in this process, counters must be consistent with the counters of children nodes and the
formulas that hold in the current parent node.

8.1. The algorithm. The satisfiability algorithm, described in Algorithm 1, builds candi-
date trees in a bottom-up manner: iteratively, starting from leaf nodes, we check at each
step if the input formula is satisfied by candidate trees, in case the formula is not satisfied,
we consistently add parents to previously built trees. The algorithm returns 1 if a satisfying
tree is found. In case a satisfying tree could not be found, and no more candidate trees can
be built, then the algorithm returns 0.

Example 8.1. Consider the formula φ defined in Example 7.7. Then the Fischer-Ladner
tree defined in Example 7.10 is built by the algorithm in 3 steps. In the first step, all the
leaves are considered, that is, nodes without children, such that the counters are properly
initialized (Definition 8.3). It is then easy to see that n3, n4, n5, n6 are all leaves. Since p1 is
occurring in both, n3 and n4, then the counter p11 is also in the same nodes. Since both p2
and p1ą 1 are in n5 and n6, then ψ “ p2 ^ p1ą 1 is true in both nodes, and consequently
ψ1 is also in n5 and n6. However, none of the leaves satisfies φ, then, in the second step, n1
is added as parent to both n3 and n4. n2 is also added as parent to n5 and n6. Since ψ is
true in n1 and n2, then the counter for ψ is incremented in both nodes. Resulting that in
n1 we have ψ1, and in n2 we have ψ3. However, none of the trees built in step 2 satisfies
φ. In step 3, n0 is then added as parent of n1 and n2. Since ψ holds in n0, then we update
the counter to ψ5, and φ is then finally satisfied. This process is depicted in Figure 4.

We now provide a precise description of the algorithm components.
If a tree T is a model for a formula φ, it is said that T satisfies (entails) φ. We now

give a precise definition of this entailment relation.
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Algorithm 1 Satisfiability Algorithm

Y Ð Nφ

X Ð LeavespY q
X0 ÐH
while X ‰ X0 do

if X , φ then

return 1
end if

X0 Ð X

pX , Y q Ð UpdatepX , Y q
end while

return 0

Definition 8.2. The entailment of a formula by a node is defined by:

n $ J

φ P n

n $ φ

φ R n

n $  φ

n $ φ n $ ψ

n $ φ^ ψ

n $ φ

n $ φ_ ψ

n $ ψ

n $ φ_ ψ

n $ φ
“

µx.φ{x
‰

n $ µx.φ

The entailment relation is now extended for trees and formulas. A formula φ is satisfied by
a tree X, written X , φ, if and only if,

‚ there is a node n in X, such that n $ φ;
‚ formulas of the forms x�yψ and x�yψ do not occur in the root of X; and
‚ all the flags are in the root.

A set of trees X entails a formula φ, written X , φ, if and only if, there is a tree X in X

s.t. X , φ.
The relation . is defined as expected.

The sef of leaves contains nodes without children. In the leaves, counters are also
properly initialized.

Definition 8.3 (Leaves). Given set of nodes X, the set of leaves is defined as follows:

LeavespXq “
 

pn,H,Hq | n P X, x�yφ, x�yφ R n,
“

pφ1 P n, n $ φq or pφ0 P n, n & φq
‰(

Recall that counting formulas are true in the entire model when satified, then counting
formulas are always present in every φ-node. The corresponding counters will be updated
each time they find a witness. Notice that counting subformulas with the form ψą k may
not be true at earlier steps of the algorithm. We then use flags to identify when those
formulas become true, that is, when we find more than k witnesses of ψ, we then turn on
the flag ψąk. Once a flag is turned on, it is copied to parents at each further step. It is
then required to have all the flags in the root in order to ensure that counting subformulas
ψą k are all satisfied.

For the step case in the algorithm, if newly built trees do not satisfy the formula, then
new candidate trees are constructed by adding a parent to previously built trees. This
is done by the Update function, which is defined with the help of the following auxiliary
functions.
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A node n containing a modal formula xmyψ can be linked to another node n1 through
a modality m, if and only if, there is a witness of ψ in n1, that is, n1 $ ψ. This notion is
defined by the relation ∆m.

Definition 8.4. Given two nodes n1, n2 and formula φ, we say that the nodes are modally
consistent with respect to the formula ∆mpn1, n2q for m P t�,�u, if and only if, for all
formulas xmyψ1, xmyψ2 P leanpφq, we have that:

‚ xmyψ1 P n1 if and only if n2 $ ψ1, and
‚ xmyψ2 P n2 if and only if n1 $ ψ2.

Example 8.5. Consider the algorithm execution described in Example 8.1. In the second
step, when linking n1 with n3 and n4, note that ∆�pn1, n3q and ∆�pn1, n4q. This is because
φ0 and ψ0 are both true in n3 and n4, that is, n3 $ φ0, n3 $ ψ0, n4 $ φ0, and n4 $ ψ0.

When adding parents, it is also necessary to ensure that counting formulas are satisfied.
Recall that, according to the definition of φ-nodes, counting formulas and flags are consistent
with counters. It is then only required to update the counters and to copy the flags that
are already in the subtrees. We have two cases. The first one is when we add a parent to
both, a left and a right subtrees. The second case is when a parent is added to one subtree
only. Consider the first case.

Definition 8.6. It is said that three nodes n0, n1, n2 are consistent with respect to their
counters, denoted by #pn0, n1, n2q, if and only if,

‚ ψk0 P n0 and n0 $ ψ, if and only if, ψk1 P n1, ψ
k2 P n2 and k0 “ k1`k2`1 if k0 ď maxK,

otherwise k0 “ maxK;
‚ ψk0 P n0 and n0 & ψ, if and only if, ψk1 P n1, ψ

k2 P n2 and k0 “ k1 ` k2 if k0 ď maxK,
otherwise k0 “ maxK; and

‚ if ψąk P ni for any i P t1, 2u, then ψ
ąk P n0.

The second case (#pn0, niq) is defined in an analogous manner.

Example 8.7. Consider again the execution described in Example 8.1. Since ψ1 P n1,
ψ3 P n2 and n0 $ ψ, it is then consistent that ψ5 P n0, and hence #pn0, n1, n2q.

Recall that the Update function is used to consistently add parents to previously built
trees. Now, with the notions of modal and counter consistency (Definitions 8.4 and 8.6)
already defined, we are now ready to give a precise description of the Update function.

Definition 8.8. Given a set of trees X and a set of nodes Y , the function UpdatepX , Y q is
defined as the tuple pX 1, Y 1q, such that:

‚ X 1 “ tpn,X�,X�q | n P Y,Xi P X ,∆ipn, niq,#pn, n1, n2qu, where i “�,� and ni is the
root of Xi; or

‚ X 1 “ tpn,X�,X�q | n P Y,Xi P X ,∆ipn, niq,#pn, niqu in case Xj “ H with i ‰ j; and
‚ Y 1 “ Y ztnu.

We now prove that the algorithm is correct. We also describe a single exponential
bound in the time complexity of the algorithm.
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8.2. Correctness and Complexity. It is easy to see that the algorithm has a finite
number of steps if we notice that the number of nodes is finite and that the Update function
is monotone.

In order to show that the algorithm is correct, we then prove it to be sound and
complete.

Theorem 8.9 (Soundness). If the algorithm returns 1 for the input formula φ, then there
is tree model satisfying φ.

Proof. By assumption, there is a triple X such that X , φ. We will now construct a tree
model T from X.

‚ The set of propositions P are the ones in leanpφq.
‚ The nodes of T are N φ.
‚ We now define the edges of T . For every triple pn,X1,X2q of X, we define Rpn, �q “ n1
and Rpn,�q “ n2, provided that n1 and n2 are the respective roots of X1 and X2.

‚ We label the nodes in the obvious manner: if p P n, then p P Lpnq.

It is now shown by structural induction on φ that T satisfies φ. All cases are straightforward.
For the case of fixed-point subformulas, recall that there is an equivalent finite unfolding,
that is: µx.ψ ” φ

“

µx.φ{x
‰

[BLMV06, BGLS11].

For completeness it is assumed that there is a satisfying tree T for the formula φ, and
then it is shown that the algorithm returns 1. The proof comes in two steps: we first
construct an equivalent lean labeled version of T , and then we show that the algorithm can
actually construct such lean labeled tree.

Definition 8.10. Given a satisfying tree T of a formula φ, we define its lean version XT

as follows:

‚ XT has the same nodes and shape than T ;
‚ each node n in XT is labeled with the formulas ψ in leanpφq such that
– n in T satisfies ψ, and
– the labels corresponding to the counters are pinned up in a similar manner as the

algorithm does, that is, in an increasing order (with bound maxK) from bottom-up in
the tree.

Lemma 3. If a tree T satisfies a formula φ, then φ is entailed by XT .

Proof. We proceed by induction on the derivation of n $ φ. Most cases are immediate by
induction and the construction of XT .

For the fixpoint case µx.ψ, we test ψ
“

µx.ψ{x
‰

. We then proceed by structural induction
again. This is also straightforward since variables, and hence unfolded fixed-points, can
only occur in the scope of a modality or a counting formula.

One crucial point in the completeness proof is to show that Nφ contains enough nodes
to satisfy φ. It is well-known that the standard Fischer-Ladner construction of models
provides the required amount of nodes for simple µ-calculus formulas without counting
[BLMV06]. Since counting subformulas impose bounds on the number of certain nodes, it
may be required to duplicate φ-nodes. Counters are then introduced in the Fischer-Ladner
construction in order to distinguish potentially identical nodes. We now show that counters
are introduced in a consistent manner.
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Lemma 4. Given a satisfying tree T of a formula φ, there is a tree entailing φ, such that
for every path from its root to a leave, there are not identical φ-nodes.

Proof. If every path in XT does not contain identical nodes, then we are done.
Consider now the case when we have two identical nodes n1 and n2 in a path of XT .

Without loss of generality, we assume that n1 is above n2. We then proceed to build a
tree X from XT , such that n2 is grafted upon n1. That is, the path between n1 and n2 is
removed, not including n1 but including n2. n1 is then linked to the subtrees of n2. X can
then be seen as the pruned version of XT .

We now show that X also entails φ by induction on the derivation of X $ φ. Most
cases are immediate by the construction of X and by induction.

Consider now the case of counting subformulas. Since these subformulas are true in
every node, then the only important thing is to be sure that the counted nodes are not part
of the pruned path. This is not possible since the counters in n2 are the same than the ones
in n1, that is, the counters are not increased between n1 and n2.

Theorem 8.11 (Completeness). If a formula φ is satisfiable, then the algorithm returns 1.

Proof. By assumption, there is a (Kripke) tree T satisfying φ. By Lemma 4, we know there
is a Fischer-Ladner tree XT , obtained from T , entailing φ, and whose nodes are all in Nφ.
In order to show that XT is produced by the algorithm, we now proceed by induction on
the height of XT .

The base case is immediate.
For the induction step, we know that the right and left subtrees of XT , say X� and

X�, are already produced by the algorithm, that is, X�,X� P X . In order to show that
UpdatepX , Y q “ pX 1, Y 1q, such that XT P X 1, please note that ∆�pn,X�q and ∆pn,X�q,
where n is the root of X. The fact that n P Y comes from the consistency of maxK
with respect to satisfaction of φ, which is easily proved by an immediate induction on the
structure of φ.

As in [BGLS11, CGLV10, GLS07], the time complexity of the satisfiability algorithm
is single exponential on the number of nodes (automaton states) introduced by the Fischer-
Ladner construction.

Theorem 8.12 (Complexity). µTLIN satisfiability is EXPTIME-complete.

Proof. By Lemma 2, the size of the lean is at most polynomial with respect to the formula
size. We then show that the complexity of the algorithm is at most exponential with respect
to the lean size.

First notice that the size of Nφ is exponentially bounded by the lean size. Then, in the
loop there is at most an exponential number of steps.

Computing the set Leaves takes exponential time since Nφ is traversed once.
Now note that testing the relation $ costs linear time with respect to the size of the

node. Then the entailments , and . take at the most exponential time .
The Update function costs at the most exponential time by the following facts: traver-

sals on X and Y take exponential time; and the costs of the relations ∆ and # are linear.
Since each step in the loop takes at the most exponential time, we conclude that the overall
complexity is single exponential.

Finally, since µTLIN can encode all finite tree automata and is closed under negation,
satisfiability is hard for EXPTIME, and hence complete.
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Recall that regular path queries (XPath) and regular tree expressions (XML schemas),
extended with counting contructs, can be encoded in terms of the logical formulas with
linear size with respect to the original queries and types (Theorems 3.8 and 4.5). We can
then conclude that the logic can be used as an optimal query reasoning framework for XML
trees.

Corollary 8.13. The emptiness, containment and equivalence of CPath queries and CTypes
are decidable in EXPTIME.

9. Conclusions

We introduced a modal tree logic with counting and multi-directional navigation. We also
showed that the logic can linearly characterize counting extensions of regular path queries
(XPath) and regular tree types (XML schemas). The logic was also shown to be satisfiable
in single exponential time even if the numerical constraints are coded in binary. In con-
sequence, the logic serves as reasoning framework for XML queries and schemas extended
with counting constructs. These constructs restrict the number of multi-directional regular
paths. Since the logic is closed under negation, we can then decide in EXPTIME typical
reasoning problems such as emptiness, containment, and equivalence of XML queries and
schemas. We are currently working on the implementation of the satisfiability algorithm de-
scribed in the present work with the use of Binary Decision Diagrams (BDD’s), as previously
described in [GLS07, TTH08].

Proving correctness of programs is a crucial part in the verification of software, such
as operating or real-time systems. The implementation of efficient high level program
structures are often based on balanced tree structures, such as AVL trees, red-black trees,
splay trees, etc. Reasoning frameworks with in-depth counting constraints, such as the ones
described in this work, play a major role in the verification of balanced tree structures, as
already described in Habermehl et al. [HIV10] and Manna et al. [MSZ07]. Therefore, we
believe it is possible to study the field of applications of the reasoning frameworks developed
in this work in the context of the verification of balanced tree structures. Also in the formal
verification side, the behavior of reactive systems has been extensively studied by means
of the model checking problem for the µ-calculus [FM07, CGLV10]. We also consider the
model checking problem for µTLIN as as a further research direction.

Acknowledgments. This work benefited from the support of Pierre Genevès, Nabil Layäıda,
Denis Lugiez and Alan Schmitt.
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