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Abstract. Non-volatile memory (NVM), also known as persistent memory, is an emerging
paradigm for memory that preserves its contents even after power loss. NVM is widely
expected to become ubiquitous, and hardware architectures are already providing support
for NVM programming. This has stimulated interest in the design of novel concepts
ensuring correctness of concurrent programming abstractions in the face of persistency and
in the development of associated verification approaches.

Software transactional memory (STM) is a key programming abstraction that supports
concurrent access to shared state. In a fashion similar to linearizability as the correctness
condition for concurrent data structures, there is an established notion of correctness for
STMs known as opacity. We have recently proposed durable opacity as the natural extension
of opacity to a setting with non-volatile memory. Together with this novel correctness
condition, we designed a verification technique based on refinement. In this paper, we
extend this work in two directions. First, we develop a durably opaque version of NOrec (no
ownership records), an existing STM algorithm proven to be opaque. Second, we modularise
our existing verification approach by separating the proof of durability of memory accesses
from the proof of opacity. For NOrec, this allows us to re-use an existing opacity proof and
complement it with a proof of the durability of accesses to shared state.
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1. Introduction

Non-volatile memory (NVM) promises the combination of the density and non-volatility
of NAND Flash-based solid-state disks (SSDs) with the performance of volatile memory
(RAM). The term persistent memory is used to describe an NVM technology that presents
two characteristics: (1) directly byte-addressable access from the user space by using byte-
addressable operations and (2) preservation of its contents even after system crashes and
power failures. NVM is intended to be used as an intermediate layer between traditional
volatile memory (VM) and secondary storage, and has the potential to vastly improve system
speed and stability. Speed-ups of 2-3 orders of magnitude are likely to be feasible over and
above hard disks. Furthermore, software that uses NVM has the potential to be more robust;
in case of a crash, a system state before the crash may be recovered using contents from
NVM, as opposed to being restarted from secondary storage. For these reasons alone, NVM
is widely expected to become ubiquitous, and hardware architectures are already providing
support for NVM programming.

However, writing correct NVM programs is extremely difficult, as the semantics of
persistency can be unclear. Furthermore, because the same data is stored in both a volatile
and non-volatile manner, and because NVM is updated at a slower rate than VM, recovery to
a consistent state may not always be possible. This is particularly true for concurrent systems,
where coping with NVM requires introduction of additional synchronisation instructions
into a program. Such instructions are already supported by Intel-x86 and ARMv8.

This has led to work on the design of the first persistent concurrent programming
abstractions, so far mainly concurrent data structures [ZFS+19, FHMP18, FPR21, VTS11,
VTRC11]. To support the reasoning about correctness for these abstractions working
over NVM, a coherent notion of correctness is needed. Such a notion for concurrent data
structures has been defined by Izraelevitz et al. [IMS16] (known as durable linearizability)
which naturally generalises the standard linearizability correctness condition [HW90]. A
first proof technique for showing durable linearizability has been proposed by Derrick et
al. [DDD+19].

In this paper we investigate another key programming abstraction known as Software
Transactional Memory (STM) that supports concurrent access to shared state. STM is a
mechanism that provides an illusion of atomicity in concurrent programs and aims to reduce
the burden on programmers of implementing complicated synchronisation mechanisms. The
analogy of STM is with database transactions, which perform a series of accesses/updates to
shared data (via read and write operations) atomically in an all-or-nothing manner. Similarly
with an STM, if a transaction commits, all its operations succeed, and in the aborting case,
all its operations fail. STMs are now part of mainstream programming, e.g., the ScalaSTM
library, a new language feature in Clojure that uses an STM implementation internally for
all data manipulation and the G++ 4.7 compiler (which supports STM features directly in
the compiler).

In a fashion similar to linearizability as the correctness condition for concurrent data
structures, there is an established notion of correctness for STMs known as opacity [GK08].
Overall, opacity guarantees that committed transactions appear as if they are executed
atomically, at some unique point in time, and aborted transactions, as if they did not execute
at all. Amongst other things, opacity also guarantees that all reads that a transaction
performs are valid with respect to a single memory snapshot.
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Figure 1: Original proof of opacity (left) vs. proof of durable opacity (right)

A fundamental challenge when developing STMs for persistent memory is to ensure
a correct recovery after a crash. This requires that, at any point in the execution of the
program, the persistent state must be sufficient to enable the recovery procedure to recreate
an appropriate consistent state. Verification of STMs has to show that this is achieved
by the proposed algorithm, i.e., that enough data is persisted and the recovery procedure
correctly uses this data to guarantee opacity.

In this paper, we investigate STMs and their correctness via opacity on non-volatile
memory architectures. Doing this entails a number of steps. First, the correctness criterion
of opacity has to be adapted to cope with crashes in system executions. Second, STM
algorithms have to be extended to deal with the coexistence of volatile and non-volatile
memory during execution and need to be equipped with recovery operations. Third, proof
techniques for opacity need to be re-investigated to make them usable for durable opacity.

In our prior work [BDD+20], we have addressed the steps above as follows. The first
step is addressed by defining a notion of correctness called durable opacity, which generalises
opacity in the same way that durable linearizability [IMS16] generalises linearizability for
NVM architectures. Durable opacity requires executions of STMs to be opaque even if they
are interspersed with crashes. The second step is addressed by developing a durable version
of the Transactional Mutex Lock [DDS+10]. Finally, the third step is addressed by proving
durable opacity of this new algorithm using a refinement-based approach.

This paper extends prior work [BDD+20] via the development of a modular approach to
verifying durable opacity. Our new approach is inspired by the modularised verification of a
filesystem for flash memory [PEB+17, BSR22]. The proof technique separates the proof of
opacity (perceived atomicity of transactions) from the proof of durability (correct handling
of non-volatile memory). Our proof technique assumes the existence of an STM that has
been verified to be opaque by proving that it refines the specification TMS2 [DGLM13]
(which itself has been shown to satisfy opacity [LLM12a]). This refinement proof is then
re-used to construct a durably opaque version of the STM. We exemplify our technique
by extending the No-Ownership-Records (NOrec) STM of Dalessandro et al. [DSS10] to
create a durable NOrec.

Figure 1 illustrates our approach. The original NOrec algorithm is shown to the left.
It has already been proven opaque by showing that it refines (dashed lines) the TMS2
automaton by Lesani et al. [LLM12a] using the PVS prover. The algorithm can be thought
of as having an implicit interface to main memory mem (indicated by the symbol),
which allows to read and write memory cells. Since NOrec is a lazy algorithm, writing is
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confined to committing a write set to ensure that two transactions cannot commit their
write set at the same time, producing a mixed result that would contradict opacity. NOrec
enforces that there is at most one transaction committing a write set any time. Our approach
will first make this interface with operations LibRead and LibWriteSet explicit and call it
AM. The tricky bit in defining the interface is the enforcement of the constraint of a single
committer as an ownership annotation for AM1. (This annotation parallels the use of an
auxiliary variable in the original PVS proof of NOrec [LLM12a].)

It can then be observed that if a) all reads and writes to memory were directly to
persistent memory and b) committing a write set is atomic, then the resulting algorithm
is already durable opaque since the content of memory is preserved on a crash. Crashes
in the middle of commits that could lead to a state that is not compatible with durable
opacity are then avoided. As a consequence, we can reuse the original opacity proof with
only minor adjustments. The main change is that using the abstract dTMS2 automaton
(Figure 1, right) to express durable opacity adds the proof obligation that a crash does
indeed not have any relevant effect. Since the original opacity proof is by far the most
complex proof needed, reusing it saves a lot of work compared to verification from scratch.
Of course, assumptions a) and b) above are not realistic assumptions when viewing AM as an
implementation. However, AM can also be viewed as a specification of a library that can be
refined to a non-atomic, concurrent implementation. We define such an implementation CM.
It basically uses volatile memory vmem as a cache for persistent memory pmem. A logging
mechanism ensures that a recovery procedure that runs on restarting from a crash can undo
the effects of a partially completed transaction. The correctness proof for the refinement
then is completely separate from the main proof. It shows that CM is a durable linearizable
implementation of AM. We then prove in general, that two refinements constructed in this
way together always give a proof of durable opacity for an algorithm which combines the
two implementations shown in grey in the figure (written dNOrec[CM] for our case).

The approach of this paper therefore can be viewed as a blueprint for a modular strategy,
that allows to transform an STM implementation that is opaque to a durably opaque one.
In particular, we believe our modularisation technique can be used on any transactional
memory algorithm that uses a write-log and serialises commits [DSS10, DSS06, SMvP08a].

The difficult bit for each algorithm will be the definition of an interface AM with
suitable ownership conditions, that ensure that its implemenation CM only has to deal
with a suitably restricted form of concurrency (here: no two commits at the same time).
However such restrictions must have already been relevant for proving opacity of the original
algorithm, so similar to our case it should be possible to move them to constraints on AM,
to reuse the original proof and to construct a separate refinement to CM.

We mechanise the proof of durable linearizability of the library in the theorem prover
KIV [SBBR22]. KIV is also used to mechanise a general result on using refinement in a
context which specialises to the result that the two refinement proofs together imply durable
opacity of the final algorithm with library calls. These proofs are available online [BDD+21].

Overview. This paper is organised as follows. In section 2, we give background for this
paper, and present the execution model and the formal definitions of (durable) linearizability
and (durable) opacity. In section 3, we present the use of IOA to verify correctness of durable

1Other algorithms, like TL2 enforce disjoint write sets to ensure that there are no conflicts, which would
result in a similar interface with a modified concept of ownership (in this case about memory locations).
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concurrent objects. Our modular proof technique is described in section 4, which describes
the transformation of an opaque algorithm to satisfy durable opacity, the modularisation of
memory accesses using an abstract library and its fine-grained refinement of the abstract
library to a concrete library. Both the modularisation and library refinement steps are
guaranteed to preserve durable opacity. We cover related work in section 5.

2. Foundations

We start by explaining some basic assumptions we make about the memory model and by
explaining how persistent and volatile memory interact. We then define the correctness
conditions relevant for our approach. These are linearizability [HW90] and opacity [GK08].
Linearizability (or better to say, its adaption for NVM) is part of our proof method, and the
NVM-version of opacity, durable opacity, is the concurrent correctness criterion we intend
to prove for STMs. Both correctness conditions formalise some form of atomicity in which a
block of code executes seemingly atomically in an all-or-nothing manner. The difference
lays in the level of atomicity: for linearizability blocks of code describe one operation of a
concurrent data structure; for opacity we also have blocks of code for specific operations,
and in addition group such operations into transactions.

2.1. Memory model, crashes and recovery. We assume that the shared state consists
of a set Loc of locations and contains values from a set V al. Threads can concurrently access
locations, and we assume these accesses to be sequentially consistent (SC [Lam79]).

Algorithms running on NVM architectures operate on two versions of memory: persis-
tent and volatile memory (later denoted as pmem and vmem, respectively). In an NVM
architecture, a write to some location l ∈ Loc first of all only modifies vmem(l). Volatile
memory is then occasionally flushed to persistent memory by the system. This updates the
value of persistent memory to the value currently in volatile memory for location l . The
programmer can also enforce such a flush to location l by executing flush(l)2, which is
modelled by an update that sets pmem(l) to vmem(l).

When a crash occurs, the contents of volatile memory is lost and that of persistent
memory is kept. We assume that immediately after a crash vmem is (re)set to pmem, thus
any writes to vmem that have not been flushed will be lost.

The implementations of concurrent data structures or STM algorithms have to ensure
that shared memory is kept in a consistent state, despite these losses. To this end, they
need to persist enough data (i.e., flush it) to be able to bring shared memory back to a
consistent state after crashes. For our implementations, we assume that such a recovery
step is automatically executed by the algorithms after every crash. In our models of the
algorithms, we formalise this by a single atomic operation crashRecovery . Note that this is
not a strict requirement of durable opacity, i.e., durable opacity (like durable linearizability)
admits other algorithms in which the crash and recovery occur as two separate steps.

The execution with persistent and volatile memory applies to actual implementations,
i.e., the low-level descriptions of STM algorithms with all the implementation details filled
in. Implementations are one conceptual entity within our reasoning technique based on
refinement [DB14]. Refinement compares abstract specifications to concrete implementations.
The purpose of an abstract specification is to fix the allowed execution traces. Abstract

2We use typewriter font to refer to program code.
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invocations possible matching responses
invt(TMBegin) rest(TMBegin(ok)), rest(TMBegin(abort))

invt(TMCommit) rest(TMCommit(commit)), rest(TMCommit(abort))

invt(TMRead(x )) rest(TMRead(v)), rest(TMRead(abort))

invt(TMWrite(x , v)) rest(TMWrite(ok)), rest(TMWrite(abort))

Table 1: Events appearing in transactional histories, where t ∈ T is a transaction identifier,
x ∈ Loc is a location, and v ∈ V al a value

specifications are hence not subject to specific forms of execution with volatile and persistent
memory; they are allowed to (and should) abstract from implementation details. Thus,
we often develop intermediate models that interact directly to NVM (bypassing volatile
memory), with more realistic interactions between volatile and persistent memory only
appearing in the final implementation (see Figure 11).

2.2. Histories. Both correctness conditions are formalised in terms of a history, which is a
sequence of events. An event is either (1) an invocation (inv) or (2) a response (res) of an
operation op out of a set of operations Σ or (3) a system-wide crash event c. Like durable
linearizability, although crash events appear in the history, separate recovery operations do
not explicitly appear in the histories. Invocation and response events of the same operation
are said to match. Events are furthermore parameterised by thread or transaction identifiers
from a set T . For simplicity, we do not distinguish between threads and transactions here.
Invocation events may have input parameters and response events output parameters. We
use the following notation on histories: for a history h, h � t is the projection onto the events
of transaction or thread t only, and h[i ..j ] the subsequence of h from h(i) to h(j ) inclusive.
We write hh ′ for the concatenation of two histories h and h ′. We say that two histories h and
h ′ are equivalent, denoted h ≡ h ′, if h � t = h ′ � t for all t ∈ T . For a response event e, we let
rval(e) denote the value returned by e. If e is not a response event, then we let rval(e) = ⊥.
We furthermore let Res be the set of all response and Inv the set of all invocation events.

We consider two types of histories, transactional and non-transactional histories. A
transactional history only contains the invocation and response events of Table 1. STM
algorithms allow for a concurrent access to shared memory (a set of locations Loc). Every
transaction consists of an operation TMBegin followed by a number of operations TMWrite or
TMRead and finally an operation TMCommit. All of these operations may also return abort

meaning that the operation has not succeeded. We say that a transaction t is committed
in a history h if rest(TMCommit(commit)) is contained in h. In non-transactional histories
we only have invocations and responses of operations on an object (e.g., a data structure),
where invocations appear before their corresponding responses, and there is no grouping of
operations into transactions.

A (non-transactional) history is sequential if every invocation event (except for possibly
the last event) is directly followed by its matching response. A transactional history is
transaction sequential if it is sequential and there are no overlapping transactions. A history
is complete if there are no pending operations, i.e., no invocations without a matching
return. The function complete removes all pending operations from a history. A history
is well-formed if h � t is sequential for every t ∈ T . A well-formed transactional history
is furthermore transaction well-formed if for every t , h � t = 〈e0, . . . , em〉 is a sequential



Vol. 18:3 MODULARISING VERIFICATION OF DURABLE OPACITY 7:7

history such that e0 = invt(TMBegin), and for all 0 < i ≤ m, event ei 6= invt(TMBegin) and
for all 0 < i < m, rval(ei) 6∈ {commit, abort}. This, in particular, implies that transaction
identifiers cannot be re-used.

For a history h and events e1, e2
3, we write (1) e1 <h e2 whenever h = h0e1h1e2h2,

and (2) e1 �h e2 if e1 <h e2 and e1 ∈ Res, e2 ∈ Inv (real-time order of operations). In a
transactional history h, we furthermore write t1 ≺h t2 if the commit operation of transaction
t1 completes before transaction t2 starts (real-time order of transactions).

2.3. Linearizability and Durable Linearizability. Linearizability of concurrent data
structures is defined by comparing the (possibly concurrent) histories arising in usages of
the data structure to sequential legal histories. Legality is defined by specifying sequential
objects S, i.e., sequential versions of a data structure (see Definition 3.3). These sequential
versions define the “correct” behaviour, e.g. a queue data structure adhering to a FIFO
protocol or not losing elements. For now, in the formal definition of linearizability, we
simply assume that we are given the set of sequential legal histories HS (as generated by a
sequential object). Later, we will give an abstract data type in the form of an IOA [LT87]
as a specification of a sequential object.

A concurrent data structure is linearizable if all of its histories arising in usages of the
data structure are linearizable.

Definition 2.1 (Linearizability [HW90]). A (concurrent) history h is linearizable (w.r.t. some
set of sequential histories HS) iff there exists some h0 ∈ Res∗ (completing some of the pending
operations) such that for h ′ = complete(hh0) there exists some hs ∈ HS such that

L1 : h ′ ≡ hs and
L2 : e �h ′ e ′ implies e �hs e ′.

In this definition, we assume the history does not contain any crash events. Linearizability
only considers executions of data structures without intervening system crashes.

For durable linearizability, we need to consider histories with crash events. Given a
history h, we let ops(h) denote h restricted to non-crash events. The crash events partition
a history into h = h0c1h1c2...hn−1cnhn , such that n is the number of crash events in h, ci
is the ith crash event and ops(hi) = hi (i.e., hi contains no crash events). We call the
subhistory hi the i -th era of h. For well-formedness of histories we now also require every
thread identifier to appear in at most one era.

These definitions allow us to lift linearizability to durable linearizability.

Definition 2.2 (Durable Linearizability [IMS16]). A history h is durably linearizable iff it
is well formed and ops(h) is linearizable.

Durable linearizability will later be used to establish correctness of a library implementation
that provides synchronised access to shared memory in the presence of NVM.

3Following Herlihy and Wing [HW90], we assume events are unique in a history by equipping them with a
unique tag. For simplicity, these details are elided in our formalisation.
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2.4. Opacity and Durable Opacity. Opacity [GK10, GK08] compares concurrent his-
tories generated by an STM implementation to sequential histories. The difference to
linearizability is that we need to (a) consider entire transactions and (b) deal with aborted
transactions. The correctness criterion opacity guarantees that values written by aborted
transactions (i.e., transactions with events with abort as response value) cannot be read by
other transactions.

For opacity, we again compare concurrent histories against a set of legal sequential
ones, but now we employ transaction sequential histories. Again, we assume the set of legal
sequential transactional histories THS to be given, and out of these define the valid ones.

Definition 2.3 (Valid History). Let hs be a sequential history and i an index of hs. Let hs ′

be the projection of hs [0..(i − 1)] onto all events of committed transactions plus the events of
the transaction to which hs(i) belongs. Then we say hs is valid at i whenever hs ′ is legal.
We say hs is valid iff it is valid at each index i.

We let VHS be the set of transaction sequential valid histories. With this at hand, we can
define opacity similar to linearizability.

Definition 2.4 (Opacity [GK08, GK10]). A (concurrent) history h is end-to-end opaque
iff there exists some h0 ∈ Res∗ (completing some of the pending operations) such that for
h ′ = complete(hh0) there exists some hs ∈ VHS such that

O1 : h ′ ≡ hs , and
O2 : t1 ≺h t2 implies t1 ≺hs t2.

A history h is opaque iff each prefix h ′ of h is end-to-end opaque.

An STM algorithm itself is opaque iff its set of histories occuring during executions of the
STM is opaque. For durable opacity, we simply lift this definition to histories with crashes.

Like durable linearizability, the purpose of durable opacity is to ensure that histories
with crashes leave the shared state in a consistent state as defined by opacity. This means
that any live transaction that has not yet started its commit operation will be treated as an
aborting transaction. If a transaction has started its commit, then the commit could be
completed by either a successful commit or an abort. For well-formedness of TM histories,
we now also require every transaction identifier to appear in at most one era. This means
that no transaction survives a crash.

Definition 2.5 (Durable Opacity [BDD+20]). A history h is durably opaque iff it is
transaction well-formed and ops(h) is opaque.

One of the guarantees of durable opacity (again like durable linearizability) is that it
ensures every committed transaction is persisted. Thus, if a transaction’s effects are globally
visible, then this transaction is guaranteed to also survive any subsequent crashes. In other
words, durable opacity ensures that for committed transactions, the visibility order (the
order in which transactions are seen by other transactions) and the persistent order (the
order in which transactions become durable) coincide.

Furthermore, durable opacity aims to transfer the atomicity property of opacity to the
NVM setting. For opacity, this property has been shown via a study of a specification called
TMS1 [DGLM13]. It is well known that TMS1 is both necessary and sufficient to ensure
transactions are atomic [AGHR14]. Opacity is known to be stronger than TMS1 [LLM12b],
thus also guarantees the sufficiency property. Durable opacity ensures transactional atomicity
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even in the presence of crashes, thus ensures the same guarantees. However, the precise
formulation of the atomicity problem in the setting of NVM deserves further study.

In this paper, we aim to develop a method for proving durable opacity of STM algorithms.
For the proof, we develop a modular proof technique, which requires us to show durable
linearizability of some library data structure providing access to shared memory.

3. Using IOA to Prove Durable Opacity

Previous works [ADD17, DDD+16, DD15, AD17] have considered proofs of opacity us-
ing the operational TMS2 specification [DGLM13], which has been shown to guarantee
opacity [LLM12b]. The proofs show refinement of the implementation against the TMS2
specification using either forward or backward simulation. In this, both implementation
and specification are given as Input/Output automata (IOA) to enable use of a standard
simulation-based proof technique. For durable opacity, we follow a similar strategy. We
develop the dTMS2 operational specification, a durable version of the TMS2 specification,
that we prove satisfies durable opacity. By proving a simulation relation to hold between a
(durable) STM implementation and dTMS2 we can establish durable opacity of an STM.

In the following, we will first of all shortly explain IOA and simulations in general and
thereafter develop dTMS2.

3.1. IOA, Refinement and Simulation. We use Input/Output Automata (IOA) [LT87]
to model both STM implementations and the specification, dTMS2.

Definition 3.1 (Input/Output Automaton (IOA)). An Input/Output Automaton (IOA)
is a labeled transition system A with a set of states states(A), a set of actions acts(A), a
set of start states start(A) ⊆ states(A), and a transition relation trans(A) ⊆ states(A)×
acts(A)× states(A) (so that the actions label the transitions).

The set acts(A) is partitioned into input actions input(A), output actions output(A) and
internal actions internal(A). The internal actions represent events of the system that are
not visible to the external environment. The input and output actions are externally visible,
representing the IOA’s interactions with its environment. Thus, we define the set of external

actions, external(A) = input(A) ∪ output(A). We write s
a−→A s ′ iff (s, a, s ′) ∈ trans(A).

An execution of an IOA A is a sequence σ = s0a0s1a1s2 . . . snansn+1 of alternating states

and actions, such that s0 ∈ start(A) and for all states si , si
ai−→A si+1. We write exec(A)

for the set of all executions of A and first(σ) = s0 for the initial state of an execution σ.
Whenever we have several IOAs, we use indices to distinguish between them, e.g. σA is used
to denote an execution of A.

A reachable state of A is a state appearing in an execution of A. We let reach(A) denote
the set of all reachable states of A. An invariant of A is any superset of the reachable states
of A (equivalently, any predicate satisfied by all reachable states of A). A trace of A is any
sequence of (external) actions obtained by projecting the external actions of any execution
of A. The set of traces of A, denoted traces(A), represents A’s externally visible behaviour.

For IOA C and A, we say that C is a refinement of A, denoted C ≤ A, iff traces(C ) ⊆
traces(A). Note that refinement is transitive. We typically show that C is a refinement
of A by proving the existence of a forward simulation, which enables one to check step
correspondence between the transitions of C and those of A. The definition of forward
simulation we use is adapted from that of Lynch and Vaandrager [LV95].
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Definition 3.2 (Forward Simulation). A forward simulation from a concrete IOA C to an
abstract IOA A is a relation R ⊆ states(C )× states(A) such that each of the following holds.

Initialisation. ∀ cs ∈ start(C ). ∃ as ∈ start(A). R(cs, as)

External step correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ external(C ), cs ′ ∈ states(C ).

R(cs, as) ∧ cs
a−→C cs ′ ⇒ ∃ as ′ ∈ states(A). R(cs ′, as ′) ∧ as

a−→A as ′

Internal step correspondence.
∀ cs ∈ reach(C ), as ∈ reach(A), a ∈ internal(C ), cs ′ ∈ states(C ).

R(cs, as) ∧ cs
a−→C cs ′ ⇒

R(cs ′, as) ∨ ∃ a ′ ∈ internal(A), as ′ ∈ states(A). R(cs ′, as ′) ∧ as
a ′
−→A as ′

Forward simulation is sound in the sense that if there is a forward simulation between A
and C , then C refines A [LV95, Mül98].

3.2. Canonical IOA for (durable) linearizability. To prove linearizability the relevant
set of sequential histories HS are given as the histories of a sequential object S, that defines
a set atomic operations opi that receive input, modify a state and return output.

Definition 3.3 (Sequential Object). A sequential object S is a 4-tuple (Σ,Val ,State, Init)
where

• State is a set of states, Init ⊆ State is a set of initial states,
• Val is a set of values used as input and output,
• Σ is a set of atomic operations opi for some i ∈ I .

Each operation is specified as a relation opi ⊆ Val × State × State ×Val.

Some operations may have no inputs/outputs and others may have several. This can be
accommodated by including tuples including the empty tuple ε in Val . We drop an empty
input or output when writing an event. A sequential history of S has the form

inv(opk1(in1)), res(opk1(out1)), . . . , inv(opkn (inn)), res(opkn (outn))

The history is a legal sequential history in HS , iff there is a sequence s0 . . . sn of states, such
that s0 ∈ Init and (inm , sm , sm+1, outm) ∈ opkm for all m < n.

To prove durable linearizability of a concurrent implementation we will specify the
concurrent program as an IOA C that generates a set of concurrent histories. Note that–as
to mimic execution of an NVM architecture–this implementation IOA C would need to
explicitly model persistent and volatile memory as well as its flushing discipline, i.e., when
the implementation wants an update to a location to reach persistent memory. To prove that
C is durably linearizable to HS, it is then sufficient to prove that C refines the canonical
durable IOA DurAut(S) shown in Fig. 2 (see [DDD+19]). This IOA serves as an abstract
specification of durable linearizability in the refinement proof: its traces are exactly the
durably linearizable histories (of some sequential object).

The state of this IOA incorporates the state s of the sequential object S and adds a
program counter pct for every transaction t ∈ T . The possible values of this program counter
include notStarted, ready and crashed to indicate that the transaction has not started (its
initial value), is running but not currently executing an operation, or has crashed. The
execution of an operation op is split into three steps: an invocation and a response of the
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invt(op(in))
Pre: pct = ready
Eff: pct := doOp(in)

dot(op)
Pre: pct = doOp(in)
Eff: (s, out) := SOME (s ′, out ′).

op(in, s, s ′, out ′)
pct := resOp(out)

rest(op(out))
Pre: pct = resOp(out)
Eff: pct := ready

runt

Pre: pct = notStarted
Eff: pct := ready

crash
Pre: true
Eff: pc := λ t : T .

if pct 6= notStarted
then crashed else pct

Figure 2: Durable IOA DurAut(S)

operation plus a do-step (where the actual effect of the operation takes place). Note that
both run and do are internal actions and thus do not appear in the traces of the IOA.

• First, when pct = ready an invoke step with action invt(op(in)) is executed. The input
value of this step is arbitrary and gets stored in pct by setting it to doOp(in).
• Second, a step with internal action dot(op) is executed. This step will correspond to the

linearization point of an implementation. The step modifies the state of op by choosing a
new state and an output according to the specification of op (the step is not possible if
there is no s ′, out ′ with op(in, s, s ′, out ′)). The computed output is again stored in pct by
setting it to resOp(out).
• Finally, a response step, that returns the out value that was stored in pct by emitting an

action resOp(out). This step finishes the execution of op by setting pct to ready.

The durable canonical IOA (more details are in [DDD+19]) is an extension of the
canonical IOA from [Lyn96] for linearizability to accommodate durable linearizability. It
is the most general specification of concurrent runs that still allows us to construct an
equivalent sequential history: the sequential history can be constructed as a sequence of
invoke-response pairs from the sequence of executed dot(op) steps. The IOA guarantees that
this sequential history is obviously in HS.

The following theorem establishes a correspondence between the durable IOA and
durable linearizability. For a sequential object S, we let DurLin(S) be the set of histories
that are durably linearizable with respect to S.

Theorem 3.4 [DDD+21]. Let S be a sequential object. Then traces(DurAut(S)) =
DurLin(S).

As the durable IOA has durably linearizable histories only, it can serve as an abstract
specification in a proof of durable linearizability via refinement.

Lemma 3.5. Let C be an implementation IOA. If C refines DurAut(S), then C is durably
linearizable to S.

Summarising, this gives us the following: Whenever we have an algorithm Alg which
runs on an NVM architecture and the implementation IOA C models the executions of
this algorithm on NVM (i.e., adequately represents persistent and volatile memory) and C
refines DurAut(S), then the algorithm Alg is durably linearizable.
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3.3. Refinement in context. For our modular proof technique, we will let an STM
algorithm call a library in order to manage access to shared state. As both STM and library
will be formalised in terms of an IOA, we need some notion of a context IOA (i.e., the
STM IOA) using a library IOA. To this end, we employ the following definition of product
IOA [Lyn96], which requires synchronisation of two IOA on shared external actions.

Definition 3.6 (Product IOA). Let A, B be two IOA with no shared internal actions. Then
the product IOA A× B is defined to have

• states(A× B) = states(A)× states(B),
• start(A× B) = start(A)× start(B),
• acts(A× B) = acts(A) ∪ acts(B),

• (as, bs)
a−→A×B (as ′, bs ′) iff the following two properties hold:

if a ∈ actions(A), then as
a−→A as ′, else as ′ = as;

if a ∈ actions(B), then bs
a−→B bs ′, else bs ′ = bs.

In the following we will use this product construction in an asymmetric way: the shared
external actions of A (the library) and B [·] (the STM algorithm) are the invocations and
responses of library calls, and the library is required to have no further external actions. In
such a setting, we write B [A] for the product of A and B [·] (i.e., where IOA B [·] uses library
IOA A).

Later we will develop two versions of the library which provides access to shared memory:
one with and one without volatile memory. These two versions are shown to be a refinement
of each other (more precisely, one version is shown to be durably linearizable w.r.t. the
other), and we need to lift this result to STMs using the libraries. It is folklore knowledge
that refinement of an abstract object by a concrete object implies refinement between an
algorithm (a context) using the abstract object and the same algorithm using the concrete
one. Theorems stating such a property have been proven in many settings, e.g. for data
refinement in [dRE98]. The fundamental paper on linearizability [HW90] implicitly uses such
a result when it assumes that the individual steps of algorithms are linearizable operations
as well. We could however not find a formal proof of refinement in context for IOA, and
thus both state and prove it in this setting.

Theorem 3.7. If C ≤ A, then B [C ] ≤ B [A].

Note that C ≤ A and B [C ] ≤ B [A] implies that the external actions of C and A are the
same and that they are a subset of external actions of B .

To prove refinement, we need to construct an execution σB [A] of B [A] with the same
trace (i.e., the same external events) when given an execution σB [C ] of B [C ]. The idea
is shown in Fig. 3 with an execution that executes three events a1, a2, a3. The execution
of B [C ] contains an execution σC of C by projecting to the states of C and removing all
steps (here: a1) where C is not involved. This execution can be split into finite segments of
internal C -steps that each end with an external shared action (with possibly a final sequence
of internal C -steps that is not used). In the example, there is one segment consisting of
one internal action a2, ending with the external action a3. By refinement, there exists an
execution σA of A with the same external actions. This execution can be split in the same
way: in the example the new segment consists of internal actions α, and ends with a3. Now
delete the internal C -steps from the combined execution of B [C ], and replace the C -step in
each combined step of C and B with the corresponding A-step from the abstract execution.
Add the sequence of internal A-steps (here: α) that leads to this step (here: a3) right before
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(bs0, as0)

as0

cs0

(bs0, cs0)

(bs1, as0)

(bs1, cs0)

(bs1, as1)

as1

cs1

(bs1, cs1)

(bs2, as2)

as2

cs2

(bs2, cs2)

...

...

...

...

∈ exec(B [A])

∈ exec(A)

∈ exec(C )

∈ exec(B [C ])

a1 α a3

α a3

a2 a3

a1 a2 a3
πC

refine

repl

Figure 3: Construction of an execution of B [A] from an execution of B [C ]. a1 ∈ acts(B) \
external(C ), a2 ∈ interal(C ), a3 ∈ external(C ) (= external(A), ⊆ external(B)),
α ∈ internal(A)∗.

the combined step in the combined execution. The result is an execution σB [A] of B [A]
which has the same trace as the original execution. Formally, the two steps are done by a
projection function πC and a repl function.

Proof of Theorem 3.7: To show that traces(B [C ]) ⊆ traces(B [A]) choose an arbitrary trace
from traces(B [C ]). For this trace an execution σB [C ] of the form (bs0, cs0) a0 (bs1, cs1) . . .
an (bsn+1, csn+1) must exist. For such an execution the projection πC : exec(B [C ]) →
exec(C ) to an execution of C can be defined recursively over its length n.

πC ((bs0, cs0)) = cs0

πC ((bs0, cs0) a0 σ
′
B [C ]) = cs0 a0 πC (σ′B [C ]) when a0 ∈ acts(C )

πC ((bs0, cs0) a0 σ
′
B [C ]) = πC (σ′B [C ]) when a0 ∈ acts(B) \ external(C )

In the second and third line σ′B [C ] is the rest of trace (of length n) with the first

state and action removed. The actions of πC (σB [C ]) are those of σB [C ] which are in
acts(C). Refinement then guarantees the existence of an execution σA ∈ exec(A) with
trace(πC (σB [C ])) = trace(σA).

This allows to define a function repl : exec(B [C ])×exec(A)→ exec(B [A]). The result
of repl(σB [C ], σA) is defined when trace(πC (σB [C ])) = trace(σA). It replaces the steps of C
in σB [C ] with the corresponding ones in σA. Again, repl is defined recursively. For n = 0
we simply have

repl((bs0, cs0), σA) = (bs0, first(σA)) (3.1)

When n > 0 there are two cases: When a0 ∈ Acts(B) \ external(C ) then

repl((bs0, cs0) a0 σ
′
B [C ], σA) = (bs0, first(σA)) a0 repl(σ′B [C ], σA) (3.2)

Note that the first component of the pair first(σ′B [C ]) is bs0 in this case, and that

trace(πC (σ′B [C ])) = trace(σA) is still true for the recursive call. Otherwise, when a0 ∈
external(C ) then a0 is in external(A) and external(B) as well, since the external actions
of C and A are the same and shared with B. The trace of πC (σB [C ]) then contains a0 as
its first external action. By trace equality, the first external action of σA must be a0 as
well. σA therefore has the form σA = as0 a ′1 as1 a ′2 . . . a ′m asm a0 σ

′
A where m ≥ 0, and

a ′1 . . . a ′m ∈ internal(A)∗ is a sequence of internal actions. The sequence α in the example
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of Fig. 3 is this sequence of actions. The resulting execution now first executes the internal
steps, and finally the combined step, so repl is defined in this case as

repl((bs0, cs0) a0 σ
′
B [C ], σA) =

(bs0, as0) a ′1 (bs0, as1) . . . a ′m (bs0, asm) a0 repl(σ′B [C ], σ
′
A) (3.3)

Again, trace(πC (σ′B [C ])) = trace(σ′A) is still true for the recursive call. It is now easy to

check inductively that repl(σB [C ], σA) returns an execution of B [A], since all steps of the
constructed execution are steps of B [A].The first step of (3.2) is a step of B with an unshared
action of B that does not change the state of A, so it is a step of the product B[A] (last
clause of Definition 3.6). The first m steps of (3.3) are steps with unshared internal actions
of A that do not change the state of B, so they are steps of B[A] too. Finally, step m+1 of
(3.3) executes shared action a0 and changes both states according to the definition of A and
B, so it is a step of B[A] too.

When first(σB [C ]) = (bs0, cs0), then the first state of repl(σB [C ], σA) is (bs0, first(σA)),
which is initial, if the first states of σB [C ] and σA are. The result repl(σB [C ], σA) has the
same trace as σB [C ] since all external actions are preserved. This implies that the original
trace(σB [C ]) the construction started with is also a trace of B [A], finishing the proof.

Remark: Although we do not need this generalisation here, the result holds as well if
refinement is defined as trace inclusion for finite as well as infinite traces (see [LV95]). Both
πC and repl are prefix-monotone, so the result of applying the functions to infinite traces
can be defined as the limit of applying them to finite prefixes. The proof for this extended
scenario has been formalised in KIV [BDD+21].

3.4. IOA for dTMS2. In this section, we describe the dTMS2 specification, an opera-
tional model that ensures durable opacity, which is based on TMS2 [DGLM13]. TMS2
itself has been shown to imply opacity [LLM12b], and hence has been widely used as an
intermediate abstract specification in the verification of transactional memory implementa-
tions [ADD17, DDS+15, AD17, DDD+16]. dTMS2 is thus designed to play the rôle of an
abstract specification for refinement proofs of durable opacity like DurAut(S) is for proofs
of durable linearizability.

In the following, we let f ⊕ g denote functional override of f by g , where we define
f ⊕ g = λ k ∈ dom(f ). if k ∈ dom(g) then g(k) else f (k).

Formally, dTMS2 is specified by the IOA in Figure 4, which describes the required
ordering constraints, memory semantics and prefix properties. Recall that we assume a
set Loc of locations and a set V al of values. Thus, a memory is modelled by a function of
type Loc→ V al. A key feature of dTMS2 (like TMS2) is that it keeps track of a sequence
of memory states, one for each committed writing transaction. This makes it simpler to
determine whether reads are consistent with previously committed write operations. Each
committing transaction containing at least one write adds a new memory version to the end
of the memory sequence. Note that dTMS2 is an IOA used for abstract specification in a
refinement proof only; it is not an implementation that has to keep track of persistent and
volatile memory.

The state space of dTMS2 has several components. The first, mems is a nonempty
sequence of memory states, which initially contains one state. The original specification of
TMS2 is parameterised by some initialisation predicate describing this initial memory state,
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State variables:
mems : seq(Loc→ V al), initially satisfying dom mems = {0}
pct : PCVal , for each t ∈ T , initially pct = notStarted for all t ∈ T
beginIdxt : N for each t ∈ T , unconstrained initially
rdSett : Loc 7→ V al, initially empty for all t ∈ T , where 7→ denotes a partial function
wrSett : Loc 7→ V al, initially empty for all t ∈ T

Transition relation:

invt(TMBegin)
Pre: pct = notStarted
Eff: pct := beginPending

beginIdxt := len(mems)− 1

rest(TMBegin(ok))
Pre: pct = beginPending
Eff: pct := ready

invt(TMRead(l))
Pre: pct = ready
Eff: pct := doRead(l)

rest(TMRead(v))
Pre: pct = resRead(v)
Eff: pct := ready

invt(TMWrite(l , v))
Pre: pct = ready
Eff: pct := doWrite(l , v)

rest(TMWrite(ok))
Pre: pct = resWrite
Eff: pct := ready

invt(TMCommit)
Pre: pct = ready
Eff: pct := doCommit

rest(TMCommit(commit))
Pre: pct = resCommit
Eff: pct := committed

rest(op(abort))
Pre: pct 6∈ {notStarted, ready,

resCommit, committed, aborted}
Eff: pct := aborted

DoWritet(l , v)
Pre: pct = doWrite(l , v)
Eff: pct := resWrite

wrSett := wrSett ⊕ {l → v}
DoCommitReadOnlyt(n)
Pre: pct = doCommit

dom(wrSett) = ∅
validIdx (t ,n)

Eff: pct := resCommit

DoCommitWritert
Pre: pct = doCommit

rdSett ⊆ last(mems)
Eff: pct := resCommit

mems := mems a (last(mems)⊕ wrSett)

DoReadt(l ,n)
Pre: pct = doRead(l)

l ∈ dom(wrSett) ∨ validIdx (t ,n)
Eff: if l ∈ dom(wrSett)

then pct := resRead(wrSett(l))
else v := mems(n)(l)

pct := resRead(v)
rdSett := rdSett ⊕ {l → v}

crashRecovery
Pre: true
Eff: pc := λ t : T .

if pct 6∈ {notStarted, committed}
then aborted
else pct

mems := 〈last(mems)〉

where PCExternal =̂ {notStarted, ready, resCommit, resWrite, committed, aborted} ∪
{resRead(v) | v ∈ V al}

PCVal =̂ PCExternal ∪ {beginPending,doCommit, cancelPending}
∪ {doRead(l) | l ∈ L} ∪ {doWrite(l , v) | l ∈ Loc, v ∈ V al}

validIdx (t ,n) =̂ beginIdxt ≤ n < len(mems) ∧ rdSett ⊆ mems(n)
op ∈ {TMBegin, TMRd, TMWr, TMCommit}

Figure 4: The state space and transition relation of dTMS2, which extends TMS2 with a
crash-recovery event
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which we elide here for simplicity (and simply assume the implementation to employ the
same initialisation). For each transaction t there is a program counter variable pct , which
ranges over a set of program counter values, which are used to ensure that each transaction
is well-formed, and to ensure that each transactional operation takes effect between its
invocation and response. There is also a begin index variable beginIdxt , that is set to the
index of the most recent memory version when the transaction begins. This variable is
critical to ensuring the real-time ordering property between transactions. Finally, there is a
read set, rdSett , and a write set, wrSett , which record the values that the transaction has
read and written during its execution, respectively.

The read set is used to determine whether the values that have been read by the
transaction are consistent with the same version of memory (using validIdx ). The write set,
on the other hand, is required because writes in dTMS2 are modelled using deferred update
semantics: writes are recorded in the transaction’s write set, but are not published to any
shared state until the transaction commits.

The crashRecovery action again models the effect of crashes and consecutive recoveries.
It sets the program counter of every in-flight transaction to aborted , which prevents these
transactions from performing any further actions in the era following the crash (for the
generated history). Note that since transaction identifiers are not reused, the program
counters of completed transactions need not be set to any special value (e.g., crashed) as
with durable linearizability [DDD+19]. Moreover, after restarting, it must not be possible
for any new transaction to interact with memory states prior to the crash. We therefore
reset the memory sequence to be a singleton sequence containing the last memory state
prior to the crash.

The external actions of dTMS2 are all invocation and response actions (invt and rest)
plus the new crashRecovery action. The latter is the crash action c of histories. Note that
the traces of dTMS2 hence take the form of histories.

The following theorem ensures that dTMS2 can be used as an intermediate specification
in our proof method.

Theorem 3.8. Each trace of dTMS2 is durably opaque.

The proof of this theorem can be found in the appendix of [BDD+20]. Like durable
linearizability, we have the following lemma, which allows us to establish durable opacity
using refinement.

Lemma 3.9. Let C be an implementation IOA. If C refines dTMS2, then C is durably
opaque.

4. A Modular Proof Technique

In this section, we present a new approach to verifying durable opacity that allows one to
leverage existing simulation-based proofs of opacity. An overview of the proof steps is shown
in Figure 5. Given an existing opacity proof (step 1 ) that uses simulation against TMS2,
the majority of the effort in the modularised proof method is the development of libraries
AM and CM that handle memory operations and a proof of durable linearizability between
the two. We exemplify this proof technique on a durable version of the STM algorithm
NOrec which we newly develop below.
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Figure 5: Overview of proof steps

Overview of the proof technique. The main idea behind the proof steps is to gradually
introduce more complex (fine-grained) interactions between persistent and volatile memory,
as outlined in Figure 5. We start with models (the implementation of the STM called IMPL
and TMS2) in which all reads and writes interact directly with persistent memory, thus
crashes have no effect.

Next, we introduce models dIMPL and dTMS2, where we assume memory is partitioned
into two sorts: locations that the transactional memory implementations read from and write
to (aka the heap), and variables that are used to implement the STM. E.g., for our running
example (NOrec in Figure 6), variables such as glb, loct and rdSett are implementation
variables. In the models dIMPL and dTMS2, we assume that the operations on the heap
are directly over persistent memory, whereas operations on implementation variables are
over volatile memory. The former are assumed to be preserved upon a system crash, whereas
the latter are lost. In our IOA models, the loss of implementation is modelled by setting
the program counter of any running transactions to aborted when a crash occurs; since
transactions are not restarted, this is equivalent to losing the local variables. Upon recovery,
shared implementation variables must be reset since they are reused. For our example, the
global counter glb is reset to 0 during recovery.

The next phase introduces dIMPL[AM], which uses a library AM that manages reads
and writes to the heap. This model is a simple refactoring of dIMPL and hence has the same
memory model: all reads and writes performed by AM are directly over persistent memory,
whereas those performed by dIMPL[·] are on the transactional memory implementation and
are hence volatile.

The final phase refines AM into CM such that CM is durably linearizable w.r.t. AM.
Here, CM is a fine-grained implementation of AM, and hence we assume that it operates
over both volatile and persistent memory.

We now describe the main steps of our proof method, as outlined in Figure 5 in more
detail.

1 Our modular proof method starts with an existing simulation-based proof between an
STM implementation, IMPL, and TMS2, which establishes opacity of IMPL. In our
example case study, we consider NOrec as our implementation, which has already been
proven correct with respect to TMS2 [LLM12a]. Our primary motivation for the new
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approach is to develop a durable version of an already opaque algorithm and avoid full
re-verification of the durable version (against dTMS2).

2 To make sense of the adaptation of IMPL to persistent memory, we start by assuming
IMPL runs directly on persistent memory, i.e., all memory accesses are persistent, and
there is no notion of volatile memory. Hence, there are no flush operations that transfer
memory contents from volatile to persistent memory. Of course, IMPL also does not
contain a recovery operation since it has been designed to be opaque as opposed to
durably opaque.

This step of the transformation therefore is to define a new version of IMPL, dIMPL,
that extends IMPL with a “crash-recovery” operation. The purpose of this operation is
to crash any live transactions so that they are no longer able to execute and to rollback
the memory to a consistent state. We will require that the crash-recovery introduced
into dIMPL is a refinement of the crashRecovery operation of dTMS2 from Figure 4.

The introduction of a crash-recovery operation must be coupled with some small
adjustments to the original algorithm. For instance, performing a write-back must be
made atomic; a crash-recovery in the middle of a non-atomic write-back would leave
the transactional memory heap in an inconsistent state. Details in the context of our
running example are given in subsection 4.2.

3 The next step is to verify that the transformed algorithm dIMPL is durably opaque. To
do this, we must adapt the existing simulation proof between IMPL and TMS2 to prove
simulation between dIMPL and dTMS2. Recall that the transformation from both
IMPL to dIMPL and TMS2 to dTMS2 involves the introduction of a crash-recovery
operation. Also recall that we assume both algorithms run directly on persistent memory,
and no volatile memory is assumed in either case. Therefore, the effect of this crash-
recovery operation in both cases is straightforward, and the adaptation of the proof is
therefore straightforward too.

4 In the next step we adapt dIMPL so that it relegates all memory operations to an
external library. We call this adapted algorithm dIMPL[·], which is dIMPL but with
calls to external operations that manage memory interactions. We must additionally
develop a data type (library IOA), AM, that handles these memory events. This enables
one to define a composition dIMPL[AM] (via a product of two IOA), where the library
used by dIMPL[·] is AM.

There are two requirements for the library AM.
(1) We must be able to show that the traces of dIMPL[AM] are a subset of the traces of

dIMPL, i.e., dIMPL[AM] is a trace refinement of dIMPL. Note that by transitivity
of refinement this means that the composition dIMPL[AM] will be durably opaque.

(2) We must allow AM to be implemented by a concrete memory library that uses both a
volatile and persistent memory so that the algorithm can ultimately be implemented
in a non-volatile memory architecture.

To satisfy both criteria while keeping the proof burden light, we make AM an atomic
object, i.e., reads and write-backs are coarse-grained atomic operations (see Figure 9).
Moreover, AM operates directly on persistent memory, i.e., it does not use volatile
memory. With these restrictions in place, it becomes straightforward to show trace
refinement between the traces of dIMPL and dIMPL[AM].

5 In the last step, we develop CM, a durably linearizable implementation of AM, comprising
a fine-grained concurrent memory library that operates over both volatile memory and
persistent memory. The library CM manages (persistent) logging to undo partially
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completed operations (in case of a crash and recovery) and flushing to ensure operations
on volatile memory are made persistent.

More importantly (see Theorem 4.3 below), we obtain a trace refinement property:
the traces of dIMPL[CM] projected onto the events of dIMPL only (i.e., ignoring the
library calls) are a subset of the traces of dIMPL[AM] projected onto the events of
dIMPL.

4.1. Step 1: NOrec. We start by instantiating IMPL to NOrec [DSS10], which is given
by the algorithm in Figure 6.4 NOrec employs a deferred update strategy: writes to shared
state are first stored in a write set and at commit time written to main memory – if there
are no conflicts with other transactions. For conflict detection, NOrec uses value-based
validation (see the operation TMValidate).

To synchronise concurrent transactions, NOrec uses a global counter glb (initially 0)
and a local variable loc, which is used to store a copy of glb. Each transaction maintains a
local write set, wrSet, and a local read set, rdSet. Inside its wrSet a transaction records
all the addresses that it attempts to update and their values. The actual update of the
memory takes place inside the commit operation. An odd glb indicates that a live writing
transaction attempts to commit. After a successful commit glb is incremented so that its
value is once again even. Thus a live transaction can determine whether another writing
transaction has performed a commit operation by checking whether the value of glb is equal
to its local copy, loc. Inside its rdSet, a transaction records the addresses that it reads and
their corresponding values. Every time a transaction attempts to read an address that is
not inside its wrSet, if loc 6= glb, then the validation method is executed. The validation
method waits until the global lock is not held (glb is even), then checks that the rdSet is
still valid (w.r.t., the current memory state). In the case of writing transactions, the validity
of rdSet is also checked at the commit stage.

Operation TMBegin copies the value of glb into its local variable loc and checks whether
glb is even. If this is so, the transaction is started. Otherwise, a writing transaction is in
progress, so the process attempts to start again by rereading loc. The operation TMValidate

checks if the transaction’s rdSet is consistent with the current state of memory to glb, and
returns time.

TMRead first checks if the transaction has already written the address it attempts to
read. In that case it returns the address’ value from its wrSet. Otherwise it checks if loc
is up to date, i.e., equal to glb. If it is not up to date, another transaction has updated
the memory and rdSet should be checked to ensure that its values are consistent with the
current state of the memory. The check is performed by calling the operation TMValidate.
If the rdSet is found consistent, the loc is updated with the value of time that TMValidate
returns (R4).The (address, value) pair is then added in rdSet for future validation (R6).
Finally, the value of the read address is returned. If the rdSet is not found consistent, the
transaction aborts.

TMWrite adds the (address, value) pair that is to be written at the wrSet of the
transaction. The memory is updated at the commit stage. The operation TMCommit first
checks if the transaction is a read-only transaction. If it is, then no further checking is
required and the transaction commits at E1. If it is not, E2 checks whether a concurrent
writing transaction has been committed. If no such commit has occured, the CAS at E2

4In [DDD+21], we describe a procedure for transforming pseudocode into IOA, which we use here.
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Init:

I1 glb := 0;

TMBegint :

B1 do loct := glb;

B2 until even(loct )

return ok;

TMReadt (addr):

R1 if addr ∈ dom(wrSett ) then

return wrSett(addr);

R2 vt := *addr;

R3 if loct 6= glb then {

R4 loct := TMValidate t ;

R5 goto R2;

}

R6 rdSett .insert(addr ,vt );

return vt ;

TMWritet (addr ,val):

W1 wrSett .insert(addr ,val);

return ok;

TMCommitt :

E1 if wrSett .isEmpty ()

then return ok;

E2 while !cas(glb , loct , loct + 1)

E3 loct := TMValidate t ;

E4 for ∀(addr ,val) ∈ wrSett
E5 *addr := val;

E6 glb := loct + 2;

return ok;

TMValidate t :

V1 while true

V2 timet := glb;

V3 if odd(timet ) then goto V2;

V4 for ∀(addr ,val) ∈ rdSett do

V5 if *addr 6= val

then abort;

V6 if timet = glb

then return timet ;

Figure 6: The NOrec algorithm. Line numbers for return statements are omitted.

succeeds, i.e., loc = glb, so glb becomes odd (meaning that the writing transaction obtains
the lock). If the CAS does not succeed a concurrent writing transaction has been committed
and rdSet needs further validation. E3 validates rdSet and updates the value of loc. By
this, it prepares the transaction for another commit attempt. When the commit has obtained
the lock by making glb odd, memory is updated with all the values from the write set in
the loop at E4 and E5. At E6 the transaction releases the lock by making the glb value even
again.

Correctness of NOrec has been verified by Lesani et al. [LLM12a] using the theorem
prover PVS. The proof proceeds via showing a refinement relationship (simulation relation)
between NOrec and TMS2 [DGLM13]. For the proof, NOrec is first of all transformed
into an IOA. Here, we only exemplify this on one operation, TMWrite with one statement
W1. The operation is split into three actions, an invocation and a response action (both
external) plus a do action (internal).

invt(TMWrite(l , v))
Pre: pct = ready
Eff: pct := doWrite(l , v)

DoWritet
Pre: pct = doWrite(l , v)
Eff: pct := resWrite

wrSett := wrSett ⊕ {l → v}

rest(TMWrite(ok))
Pre: pct = resWrite
Eff: pct := ready

The proof of refinement between NOrec and TMS2 is carried out via the construction
of a sequence of IOA in between TMS2 and NOrec, and a sequence of simulation proofs
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TMReadt (addr):

R1 if addr ∈ dom(wrSett ) then

return wrSett(addr)

R2 atomic {

if owns = t ∨ owns = ⊥
then vt := *addr

else vt := ? }

R3 if loct 6= glb then {

R4 loct := TMValidate t

R5 goto R2

}

R6 rdSett .insert(addr ,vt );

return vt

TMCommitt :

E1 if wrSett .isEmpty ()

then return ok;

E2 while !cas(glb , loct , loct + 1)

E3 loct := TMValidate t

E4 atomic {

if owns = ⊥ then owns := t }

E5 atomic {

for ∀ addr. (addr ,val) ∈ wrSett
*addr := val }

E6 atomic {

if owns = t then owns := ⊥ }

E7 glb := loct + 2;

return ok;

Recovery:

RC1 glb := 0

RC2 owns := ⊥

Figure 7: The TMRead, TMCommit and Recovery operations of dNOrec. Note that the loop
at E5 now executes atomically.

from one to the next IOA on this sequence. We will not give all the details of this proof
here, rather concentrate on the key concepts and their relationships to the durable version.

4.2. Step 2: Defining NOrec with crash and recovery. Next, we define an enhanced
algorithm dNOrec. dNOrec plays the role of dIMPL in Figure 5. It differs from NOrec
in three ways.

First, dNOrec has an additional operation which abstractly models the occurrence
of a crash and the subsequent recovery operation.5 In particular, it (1) simulates crashes
by ensuring that no transaction “survives” crashes, i.e., the currently running transactions
cannot continue their operations, and (2) performs a recovery to bring the metadata (in
dNOrec, glb) back to the initial state. As discussed above, in dNOrec, we assume that
the heap is persistent, thus the recovery part is almost empty. We give this additional
operation directly as an IOA action:

crashRecovery
Pre: true
Eff: pc := λ t ∈ T . if pct 6∈ {notStarted , committed} then aborted else pct

glb := 0
owns := ⊥

In Figure 7, we present pseudocode describing the Recovery procedure modelled by an
atomic action.

5Note that crash and recovery could be modelled as two separate operations. However, we expect recovery
to execute in our implementation immediately after a crash and before any new transactions are started, i.e.,
the crash and subsequent recovery are sequential. Thus, we simplify the model and combine the crash and
recovery operations.
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Second, dNOrec’s commit operation is different to that of NOrec to deal with the
fact that a crash can occur at any time. dNOrec must therefore update the shared memory
with its write set atomically. In a later step (see subsection 4.5) we show how the write-back
can be safely made non-atomic when using both volatile and non-volatile memory.

Third, to be compatible with the abstract library in step 4 , we introduce an ownership
variable, owns, whose value is equal to a transaction iff that transaction currently has
permission to write to the memory. In particular, owns is acquired by a transaction
immediately prior to performing a write back (E4), and released immediately after (E6). A
read from the (persistent) heap must return a random value in the presence of a concurrent
writer since this indicates a potential data race between a reader and writer. In dNOrec
(see Figure 7), the read at line R2 reads from memory only if owns = t ∨ owns = ⊥ and
otherwise returns a random value. A read returning a random value in the presence of
another writing transaction is unproblematic from the perspective of (durable) opacity since
such read operations will either be revalidated, or if a revalidation is not possible, the reading
transaction will abort. In particular, for the implementation to be (durably) opaque, a read
must never return an illegitimate value even if it reads this value from memory.

The idea of using ownership in an interface to enforce atomicity has been explored in
prior work [SBPR20]. Variables akin to ownership are typically already present in correctness
proofs of opacity since a transaction must have exclusive access to the shared memory during
write back. For NOrec the owns variable is equivalent to the already existing auxiliary
commitLock variable in the proof by Lesani et al [LLM12a].

4.3. Step 3: Checking dNOrec refines dTMS2. We prove durable opacity of dNOrec
by showing that it refines dTMS2. This is straightforward to check for three reasons. (1) We
make the write-back in TMCommit of NOrec atomic, and this trivially preserves behaviours
of a non-atomic write-back. (2) The only new operation is crashRecovery, which preserves
the original simulation relation used in the original proof by Lesani et al. (3) Reads from
memory return an undefined value only when we know that the corresponding TMRead

operation will fail.

Lemma 4.1. dNOrec ≤ dTMS2.

The proof has been mechanised in PVS [BDD+21], and is an adaptation of the mechanised
proof by Lesani et al. [LLM12a] that shows that NOrec refines TMS2. Their proof is
structured into four layers as shown in Figure 8. This structure keeps each refinement
proof small, and design details of the NOrec algorithm are incrementally introduced. The
most abstract is the TMS2 specification, which is shown to be refined by the next layer,
NOrecAtomicCommitValidate, where read validation and commit write back are atomic.
The next layer, NOrecDerived, introduces a fine-grained write back operation, but leaves
the read validation atomic. Finally, NOrec is shown to be a refinement of NOrecDerived,
where reads and validation are split into separate atomic steps.

The three changes needed between NOrec and dNOrec must be reflected in each
of these layers as shown in Figure 8, i.e., we obtain dNOrecAtomicCommitValidate
and dNOrecDerived, which are analogues of NOrecAtomicCommitValidate and
NOrecDerived, respectively. We have the following changes as highlighted in Figure 8.

• dNOrecAtomicCommitValidate is obtained from NOrecAtomicCommitValidate
by introducing a crash-recovery operation, which, like dNOrec resets glb to 0. No other
changes are necessary since transactional read and write operations are atomic.
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TMS2

NOrecAtomicCommitValidate

NOrecDerived

NOrec

≤
≤

≤

dTMS2

dNOrecAtomicCommitValidate

dNOrecDerived

dNOrec

≤
≤

≤

+ crash, recovery

+ crash, recovery

+
crash, recovery,
atomic write-back

+
crash, recovery, atomic write-back,
read ownership

Figure 8: Adapting Lesani et al’s [LLM12a] proof steps

• dNOrecDerived is derived from NOrecDerived by introducing the crash-recovery
operation described above, and additionally reintroducing an atomic write-back (since
NOrecDerived uses a fine-grained commit loop). From the perspective of the simulation
proof, this introduces a minor change to the verification, whereby the linearization point
is shifted. In NOrecDerived, the line corresponding to the successful cas at line E3

can be used as the linearization point since this is the point at which the commit lock
(aka ownership) is taken. In the context of durable opacity, linearizing the commit at a
successful cas is no longer valid since the operation could still crash even after the cas

is successful. Thus, in the revised proof, we shift the linearization point to the atomic
write-back itself.
• The differences between NOrec and dNOrec are already described above; the modified

operations TMRead and TMCommit are shown in Figure 7. Since this level splits the atomicity
of TMRead, in addition to the changes described for dNOrecDerived, we must allow
reads to return a random value if the read is destined to fail (as discussed above). This
allows one-one compatibility with the abstract library introduced in the next step. Use of
a read that returns a random value is unproblematic from the perspective of the proof
since a key invariant for NOrec is that no other transaction is performing its write back
when a transaction is reading.

4.4. Step 4: Modularising dNOrec and defining AM. Next, we modularise dNOrec
by calling a library instead of directly accessing shared memory. We start with a sequential
library specification L (Figure 9, left), which we convert into a concurrent durable IOA
(Figure 9, right) using the technique described in subsection 2.3.

The modularised algorithm dNOrec[AM] is given in Figure 10, where reads from mem-
ory occur through calls to the LibRead operation, the write-back occurs via LibWriteSet,
and acquire/release of ownership via LibAcquire and LibRelease, respectively. In the first
instance, we start with an abstract library AM (see Figure 9) that matches the code in
dNOrec exactly. Technically, moving atomic steps of dNOrec to library calls that execute
the same atomic step does not change the algorithm. Its traces are unchanged if the external
invoke and response actions calling and returning from library operations are hidden.

Note that it is crucial for the library to include operations for acquiring and releasing
ownership. The specification L directly expresses that concurrent LibWriteSet calls are
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LibAcquiret
Pre: true
Eff: if owns = ⊥ then owns := t

invt(LibRead(addr))
Pre: lpct = ready
Eff: lpct := doLibRead(addr)

LibReadt(addr ; v)
Pre: true
Eff: if owns = t ∨ owns = ⊥

then v := mem(addr)
else v := ?

DoLibReadt(addr)
Pre: lpct = doLibRead(addr)
Eff: if owns = ⊥ ∨ owns = t

then v := mem(addr)
else v := ?
lpct := resLibRead(v)

LibReleaset
Pre: true
Eff: if owns = t then owns := ⊥

rest(LibRead(v))
Pre: lpct = resLibRead(v)
Eff: lpct := ready

LibWriteSett(wrset)
Pre: owns = t
Eff: mem := mem ⊕ wrset

LibRecovery

Pre: true
Eff: lpc := λ t : T .

if lpct 6= notStarted
then crashed
else lpct

Figure 9: Sequential Specification L (left) of the library and transitions for LibRead of the
IOA AM = DurAut(L) (right)

impossible since the precondition of LibWriteSet requires that the calling thread is the
current owner. This is exploited when developing a concurrent implementation such as
CM defined in the next subsection. In particular, the correctness proof of CM does not
have to prove linearizability for two concurrent calls of LibWriteSet, which would have
been necessary for a library that only offers LibRead and LibWriteSet without mentioning
ownership. Ownership therefore is used as a way to formalise “linearizability under constraints
of not calling specific operations concurrently” as ordinary linearizability (here: durable
linearizability).

Using the notation from subsection 3.3, dNOrec[AM] denotes the program in Fig-
ure 10 using the abstract memory in Figure 9. The traces of dIMPL[AM] include, as
external actions, the external actions of both dIMPL and those of the library AM. Let
traces(dIMPL[AM])|dIMPL denote the traces restricted to just dIMPL. The next lemma
establishes durable opacity of dNOrec[AM] by stating that it refines dNOrec which we
know to refine dTMS2 (by Lemma 4.1) which itself is durably opaque (by Theorem 3.8).

Lemma 4.2. traces(dNOrec[AM])|dNOrec = traces(dNOrec).

Note that we prove that the trace sets are equal, not just subset. To do this we prove that
the preconditions of AM operations are always satisfied at their call sites in dNOrec[AM].
A client that violates the precondition of an AM call at some call site would be deadlocked
due to the semantics of IO Automata: a violated precondition of a transition means that
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TMBegint :

B1 do loct := glb;

B2 until even(loct )

return ok;

TMReadt (addr):

R1 if addr ∈ dom(wrSett ) then

return wrSett(addr)

R2 vt := LibRead t (addr)

R3 while loct 6= glb

R4 loct := TMValidate t

R5 vt := LibRead t (addr)

R6 rdSett .insert(addr ,vt );

return vt

Recovery:

RC1 atomic {

LibRecovery;

glb := 0; }

TMWritet (addr ,val):

W1 wrSett .insert(addr ,val);

return ok;

TMCommitt :

E1 if wrSett .isEmpty ()

then return ok;

E2 while !cas(glb , loct , loct + 1)

E3 loct := TMValidate t

E4 LibAcquiret
E5 LibWriteSett (wrSett )

E6 LibReleaset
E7 glb := loct + 2;

return ok;

TMValidate t :

V1 while true

V2 timet := glb

V3 if odd(timet ) then goto V2

V4 for ∀ (addr ,val) ∈ rdSett do

V5 if LibReadt (addr) 6= val

then abort

V6 if timet = glb

then return timet

Figure 10: The dNOrec[·] algorithm with library calls that relegate memory operations to
a library

it is disabled. The refinement would still be correct for such a client, since IO automata
refinement as well as (durable) linearizability/opacity does not guarantee any liveness. In the
extreme an empty implementation that has no transitions enabled at all is correct, though
not useful. Proving that preconditions of calls hold, together with the fact that a sequential
program, when translated to an IO automaton always has its next step enabled, guarantees
that deadlocks are avoided in our case study.

4.5. Step 5: Defining CM and proving durable linearizability. So far, the read/write
operations on transactional variables have existed entirely on persistent memory. Our final
task, therefore, is to develop a concrete library, CM, that is durably linearizable w.r.t. AM
and manages low-level read/write operations across volatile and persistent memory (see
Figure 5). The following theorem ensures that it is safe to perform such a replacement
without violating durable opacity.

Theorem 4.3. If (1) CM is durably linearizable w.r.t. L, (2) AM equals DurAut(L) and
(3) dIMPL[AM] is a refinement of dTMS2, then dIMPL[CM] is durably opaque.

Proof. The proof is by applying Theorem 3.7. Durable linearizability of CM to L is equivalent
to CM being a refinement of the canonical IOA, AM, which has been shown in Lemma 4.4.
dIMPL[CM] and dIMPL[AM] can be constructed as the product IOA of dIMPL[·] and
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CM/AM, respectively. The shared external actions and steps between both IOA are the invo-
cations and responses of library operations, together with the crash. We assume that the runt

action of AM and CM is synchronised with the invt(TMBegin) action of the dNOrec[·] which
starts a transaction. The theorem states that dIMPL[CM] is a refinement of dIMPL[AM],
implying that traces(dNOrec[CM])|dNOrec ⊆ traces(dNOrec[AM])|dNOrec hiding invoca-
tions and responses of library operations. Since dIMPL[AM] refines dTMS2 (Lemmas 4.1
and 4.2), and by transitivity of refinement we get that dIMPL[CM] refines dTMS2, implying
durable opacity.

We now describe the instance of CM that we use (see Figure 11). CM implements
AM on an architecture with persistent and volatile memory: instead of writing directly to
persistent memory mem (as in the case of AM), CM first writes to the concrete volatile
memory, vmem, and this is later flushed to the concrete persistent memory, pmem.

Functional correctness is not affected when all transactions read and write to vmem
instead of mem. However, after a crash the data in vmem is lost, and computation resumes
from the state of pmem. Therefore, to ensure durable opacity, we have to ensure that
pmem is updated during a commit so that the memory snapshot that results from the
successful commit is available even after a crash. For a lazy STM implementation like
NOrec, committing the write set is the only place in the code which writes to memory, so
the implementation must update both vmem and pmem during a commit write back.

In NOrec, a crash occurring partway through a commit write back may result in an
inconsistent memory state, i.e., one that is not a snapshot of the successfully completed
transactions. We treat transactions that crash during (or before) a commit write back to be
an aborted transaction, thus any memory updates performed by a partially completed write
back operation must be reverted. To make this possible, we keep a persistent log plog that
stores old values for those locations of the write set that have already been committed.

This leads to the following algorithm for committing the given write set wrSet :

for ∀ (addr , val) ∈ wrSet do

oldv := *addr;

plog := plog ⊕ {addr 7→ oldv};

*addr := val;

flush(addr);

plog := ∅;

In KIV, the abstract code “for ∀ (addr, val) ∈ wrSet” is realised as a while loop, that
iterates over the write set. Translating to steps of an IOA, this gives the steps shown in
Figure 11. The first action W 1 is the loop test, that checks whether wrSet is empty. In case
it is not, an addr is chosen in step W 2, and the four instructions of the loop body above are
executed as steps W 3 to W 6. Flushing moves vmem(addr) to pmem(addr). addr is then
removed from wrSet in step W 7 which jumps back to the loop test. When wrSet is empty,
the loop is left and step W 8 resets the persistent log. In addition to the program steps
the IO automaton for CM includes a flush(l) step (with an internal action) that models
flushing a memory location l that is possible at any time.

On a crash, the log is used to undo the partial commit6. When the write set has been
fully committed, the log is cleared, and clearing the log at W 8 becomes the linearization

6In the IOA, the recovery executes vmem := pmem ⊕ plog ; the KIV specification uses a recovery program
that writes each log entry separately in a loop.
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point of the implementation of commit. After this point the transaction has successfully
committed.

invt(LibWriteSet(wrSet))
Pre: lpct = ready ∧ owns = t
Eff: lpct := W1(wrSet)

W1t
Pre: lpct = W1(wrSet)
Eff: lpct := if (wrSet 6= ∅)

then W2(wrSet)
else W8

W2t
Pre: lpct = W2(wrSet)

SOME addr . addr ∈ dom(wrSet)
Eff: lpct := W3(wrSet , addr)

W3t
Pre: lpct = W3(wrSet , addr)
Eff: lpct := W4(wrSet , addr)

oldvt := vmem(addr)

W4t
Pre: lpct = W4(wrSet , addr)
Eff: lpct := W5(wrSet , addr)

plog := plog ⊕ {addr → oldvt}

W5t
Pre: lpct = W5(wrSet , addr)
Eff: lpct := W6(wrSet , addr)

vmem(addr) := wrSet(addr)

W6t
Pre: lpct = W6(wrSet , addr)
Eff: lpct := W7(wrSet , addr)

pmem(addr) := vmem(addr)

W7t
Pre: lpct = W7(wrSet , addr)
Eff: lpct := W1(wrSet\{(addr ,wrSet(addr))})

W8t
Pre: lpct = W8
Eff: lpct := resLibWriteSet

plog := ∅

rest(LibWriteSet())
Pre: lpct := resLibWriteSet
Eff: lpct := ready

R1t
Pre: lpct = doLibRead(addr)
Eff: v := vmem(addr)

lpct := resLibRead(v)

runt

Pre: lpct = notStarted
Eff: lpct := ready

LibRecovery

Pre: true
Eff: lpc := λ t : T . if lpct 6= ready

then crashed else lpct
owns := ⊥
vmem := pmem ⊕ plog
pmem := pmem ⊕ plog
plog := ∅

flush(l)
Pre: true
Eff: pmem(l) := vmem(l)

Figure 11: Transition relation of CM. Transitions for Acquire/Release, as well as invoke
and response transitions for read are the same as in AM.

For the concrete library CM we have shown the following result.

Lemma 4.4. CM refines AM.

Since AM is DurAut(L) for the sequential specification L of the library given in
Figure 9, we get the following corollary of Lemma 3.5.
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Corollary 4.5. CM is durably linearizable to L.

Lemma 4.4 has been mechanically proven in the theorem prover KIV [SBBR22]. Both
the IOA for AM and for CM are specified in KIV by giving labelled programs which generate
a predicate logic specification of the transition relation. Specifications and proofs are online
at [BDD+21].

The refinement from AM to CM is proven in two steps. First an invariant for CM is
proven which overapproximates the set of reachable states. The invariant is then used in
place of reach(C ) in the proof of a forward simulation according to Def. 3.2.

The invariant of CM consists of a global invariant and local assertions. The global
invariant

if owns = ⊥ then vmem = pmem ∧ plog = ∅ else vmem ⊕ plog = pmem ⊕ plog

states that as long as there is no writer that commits a write set, volatile and persistent
memory agree, and the log is empty. Otherwise overriding the volatile and persistent memory
with the log gives the same result: both result in the memory snapshot at the start of the
commit.

The local assertions give formulas that hold when a transaction t is at a specific program
counter, lpct . (We use lpc here to distinguish the library program counter.) As an example,
while t is executing the write operation (lpct is one of W 1 to W 8) it has write ownership
(owns = t). The KIV specification specifies this implication (and many more) as pairs of
a label range and a formula. The full invariant is generated as a conjunction of all local
assertions, that is universally quantified over all t , together with the global invariant. To
have a thread-modular proof of the assertions, a rely predicate rely(t , s, s ′) is specified that
the steps of all other transactions t ′ 6= t (from state s to s ′) and flush steps of the system
must satisfy. Assertions for thread t and the global invariant are shown to be stable with
respect to this predicate. In our case the rely predicate consists of three formulas.

owns = t → vmem = vmem ′ ∧ owns = owns ′ ∧ plog = plog ′

owns = t → between(pmem, pmem ′, vmem)
owns 6= t → owns ′ 6= t

The first ensures that while a transaction t is writing other transactions will leave vmem,
owns and plog unchanged. The second asserts that while a writer is running, pmem may
only be changed by system flushes: between(pmem, pmem ′, vmem) asserts that all values
pmem ′(l) will either still be pmem(l) or be the flushed value vmem(l). The third guarantees
that steps of other threads cannot make t the writer.

The specification of CM in KIV also fixes the linearization points of CM, by defining
non-τ actions for such steps. Reading linearizes at doLibRead, when the value is read from
volatile memory. Committing linearizes at W 8, when the log is set to empty.

The forward simulation between CM and AM consists of a global part and a local part
for every transaction t too. The global part simply states that owns of AM and CM are
identical and that the abstract memory mem of AM is always equal to vmem ⊕ plog (the
invariant implies that it is then equal to pmem ⊕ plog as well).

The local part of the simulation for thread t gives a mapping between program counter
values of CM and AM in the obvious way. As an example, since the linearization point of com-
mit is at W 6, all lpct values before and including W 6 are mapped to doLibWriteSet(wrSett),
while lpct = resLibWriteSet is mapped to resLibWriteSet. The local part of the simulation
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also ensures that input received by an operation of CM that is stored in a local variable is
equal to the corresponding input of AM, and similar for the outputs.

With this forward simulation, the proof has to show a commutativity for every step of
CM according to Definition 3.2. The proofs of this refinement in KIV are simple. Three
days of work were required to set up the specifications and to do the proofs, which have
ca. 300 interactive steps.

The final step is to combine the steps above instantiating Theorem 4.3, resulting in the
corollary below.

Corollary 4.6. If (1) CM is durably linearizable w.r.t. L, (2) AM equals DurAut(L) and
(3) dNOrec[AM] is a refinement of dTMS2, then dNOrec[CM] is durably opaque.

Note, that in the implementation CM the owns variable is an auxiliary variable, that
has no effect on computations. Therefore the final program code equivalent to the IOA
dIMPL[CM] can omit the variable together with the calls to LibAcquire and LibRelease.

5. Related Work

The literature around persistent memory has grown remarkably quickly. Below we provide a
snapshot of some related work, focussing in particular on correctness and atomicity.

5.1. Correctness conditions. Constructing robust shared objects for NVM requires the
development of criteria that provide meaningful guarantees in the presence of crashes.
Linearizability [HW90], is one of the most well-known, broadly used, correctness conditions
for concurrent objects. Several correctness conditions attempt to adapt linearizability to
histories that include crash events.

As mentioned before, durable linearizability [IMS16] extends the events that can appear
in an abstract concurrent history with crash events. Crashes are considered global events.
Durable linearizability expects that no thread survives after a crash, thus a thread can
operate only in one crash-free region. On the contrary, strict linearizability [AF03], consider
crashes to be local to the threads that they occur. Under this condition, operations that are
not subjected to a failure can take effect between their invocation and response. In the case
that a thread crashes while executing an operation, it requires this operation to take effect
between its invocation and the crash, but not after the crash. Operations that are disrupted
by a crash either take effect or abort when a crash occurs. Guerraoui and Levy [GL04] have
defined two more correctness conditions that extend linearizability, persistent atomicity, and
transient atomicity. Persistent atomicity requires that, in the event of a crash, every pending
operation on the crashed thread either takes effect or aborts before a subsequent operation of
the same thread is invoked, noting that an operation may take effect after a crash. Transient
atomicity relaxes this condition further, by allowing an incomplete operation to take effect
before a subsequent write response of the same thread. Berryhill et al. [BGT16] have
proposed recoverable linearizability, which requires every pending operation on a thread to
take effect or abort before the thread linearizes another operation. This condition does not
provide consistency around the crash — a thread can perform an operation on some other
object before coming back to the pending operation causing “program order inversion”. The
main disadvantage of strict linearizability, persistent atomicity and transient atomicity is
that they are not compositional. On the other hand, durable and recoverable linearizability
are compositional.
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Several models, both hardware and software specific, aim to define the correctness of the
order in which writes are persisted in NVM. Pelley et al. [PCW14] described various such
low-level models including strict persistency and relaxed persistency models such as epoch
persistency and strand persistency. Those models consider hardware to be able to track
persist dependences and perform flushes in a manner described by the persistency model.
Izraelevitz et al. [IMS16] gave formal semantics to epoch persistency which corresponds
to real-world explicit ISAs, where flushes are issued explicitly with dedicated instructions
by the respective application. Raad et al. [RWV19] developed declarative semantics that
formalise the persistency semantics of ARMv8 architecture. [RWNV20] propose persistency
semantics for the Intel-x86 Architecture and [CLRK21] provides view-based and axiomatic
persistency models for Intel-x86 and ARMv8.

On the language level, Kolli et al. [KGS+17] proposed an acquire and release persistency
model based on the acquire-release consistency of C++11. Furthermore, Raad et al. [RLV20]
and Bila et al. [BDL+22] have developed program logics for reasoning about persistent
programs on Intel-x86, based on the Owicki-Gries proof system.

Regarding transactional memory [HLR10], not many correctness conditions have been
adapted to the persistent memory setting. Raad et al [RWV19] base their framework for
formalising ARMv8 to a persistent variant of serializability (PSER) under relaxed memory.
Even though serializability provides simple intuitive semantics, it does not handle aborted
transactions. TimeStone [KKM+20] and Pisces [GYW+19] are recent persistent transactional
memories that guarantee snapshot isolation [BBG+95], which is weaker than serializability,
and hence opacity.

5.2. Persistent Transactional Memory (PTM). Mnemosyne [VTS11] provides a low-
level interface to persistent memory with high-level transactions based on TinySTM [FFR08].
The Mnemosyne transaction system combines lazy version management with the eager
conflict detection that encounter-time locking provides. The lazy version management is
implemented with a redo log, which has been chosen to reduce ordering constraints. The
new writes to persistent memory are kept in a redo log and are buffered in the volatile
memory. When a write transaction commits, it flushes the log to the persistent memory
and optionally writes back the new values. Unlike TMs that use undo logging, the write
transactions do not update the memory until they commit. This adds an overhead to read
transactions, since they should recognise the modified values, but not yet committed values,
and then return them from the buffer. Moreover, the size of the log increases proportionally
to the size of the transaction, potentially making commits time consuming. Mnemosyne uses
a global array of volatile locks to implement encounter-time locking. Every memory location
is associated with a lock. Prior to accessing a memory location, the transaction identifies its
associated lock and tries to acquire it. In the case that the operation succeeds, it adds the
lock to the lock-set. Otherwise, it aborts and releases all the locks contained in its lock-set.

NV-heaps [CCA+11] is a persistent object system that aims to integrate persistent
objects into conventional programs, and furthermore seeks to prevent safety bugs that
occur in predominantly persistent memory models, such as multiple frees, pointer errors etc.
NV-heaps only handle updates to persistent memory inside transactions and critical sections.
It uses ACID transactions to guarantee the consistency of persistent objects in the face of
system failures. Specifically, NV-heaps rely on atomic sections that log all the updates of
the non-volatile memory to provide fine-grain consistency. Each transaction keeps a volatile
read log and a non-volatile write log. NV-heaps provide eager conflict detection for writes.
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The system keeps a copy of the objects that are going to be modified by write transactions
in an undo log. In this way, the modifications to an object can be rolled back in the case of
an atomic section abort or a system failure. Each log update needs an epoch barrier, which
affects the overall performance. Before a transaction tries to modify an object, its atomic
section attempts to take ownership of the object by acquiring a volatile lock in a table of
ownership records. In case of success, the entire object is copied into the write undo log and
the transaction proceeds to modify the object. Otherwise, the atomic section retries. To
read an object, NV-heaps store a pointer to the object and its current version number in
the read log. The version numbers help in detecting read conflicts at access time.

Unlike persistent transactional memories that provide durable transactions via undo
and redo logs, Romulus [CFR18] provides durable transactions by keeping two copies (main
and back) of the data in non-volatile memory and ensuring that at any time at least one
of the copies is consistent. When a transaction begins, any modification of the data that
is caused by the user-code is immediately flushed to the main copy. Before a transaction
ends, the modifications in the main copy are copied to the back copy. If a failure occurs
when the copying from main to back takes place, then the recovery procedure copies the
contents of main to back. In the same way, if a failure occurs while the modification of main
is taking place, the recovery procedure copies the contents of back to main. In order to
avoid full replication of the data of the main to the back, Romulus introduces a volatile redo
log that tracks the addresses of the modified data. At the end of the transaction, only those
addresses are flushed to the back. There are two implementations of Romulus available, one
with a scalable reader-writer lock and another that uses a universal construct and supports
wait-free read-only transactions.

OneFile [RCFC19] is a wait-free PTM that supports durably linearizable transactions.
It uses a redo log for durability and a time based concurrency control. In this design, every
thread maintains a redo log as write set that can be read by other threads in order to help
the completion of the ongoing transaction, but does not maintain a read set. All writing
transactions are associated with a unique sequence number that allows their serialization.
A technique that is similar to TL2 [DSS06] and also uses sequence numbers is applied to
ensure consistency of read operations. The design of OneFile allows write transactions to run
concurrently with read-only transactions. There are two variants of the OneFile available:
one with lock-free progress and providing bounded wait-freedom.

QSTM [BCWS20] is a non-blocking persistent transactional memory. Its design is based
on RingSTM [SMvP08b] enhanced with a redo log based on the persistent lock-free queue
of Friedman et al. [FHMP18]. Each transaction maintains a read and a write filter. The
entries of the redo log represent the live transactions. Each entry consists of a pointer to
the transaction’s write set (this allows any thread to perform the writes of a committed
transaction), a unique timestamp associated with the represented transaction and its write
filter. The validation mechanism is taking place within the read operation. Each transaction
while reading is checking if its read filter conflicts with any write filter of the committed
transactions. If so, it aborts. Queue entries are deleted only when their respective writes
are persisted. Beadle et al [BCWS20] provide several correctness arguments of QSTM.
Specifically, they argue that QSTM is linearizable as a single concurrent object, durably
linearizable, and lock-free. Compared to OneFile, QSTM uses significantly less space due
to the fact that it does not require modifications in data declaration or the use of cas

and LL/SC instructions. However OneFile achieves higher throughput than QSTM, due to
QSTM’s global log.
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5.3. Generic Approaches to Persistency. Apart from PTMs, several generic frame-
works have been developed to tackle the problem of consistency under persistent memory.
Indicatively, Naama Ben-David et al. [BDBFW19] developed a system that can transform
programs that consist of read, write and cas operations in shared memory, to persistent
memory. The system aims to create concurrent algorithms that guarantee consistency after
a fault. This is done by introducing persist checkpoints, which record the current state of
the execution and from which the execution can continue after a fault.

Izraelevitz et al. [IKK16] develop and implement a logging mechanism based on undo
and redo log properties named JUSTDO logging and introduce the concept of FASE (failure-
atomic sections). This mechanism aims to reduce the memory size of log entries while
preserving data integrity after crash occurrences. Unlike optimistic transactions [CBB14],
JUSTDO logging resumes the execution of interrupted FASEs at their last store instruction,
and then executes them until completion. One disadvantage of this strategy is that the
FASEs cannot be rolled back after a system failure. As a consequence, there is no tolerance
of bugs inside the FASEs. In this system, it is assumed that the cache memory is persistent,
and the system also requires that all load/store instructions access persistent data. A small
log is maintained for each thread, that records its most recent store within a FASE. The
small per thread logs simplify the log management and reduce the memory requirements.

6. Conclusion

In this paper, we use durable opacity as a correctness condition for STMs running on
non-volatile hardware architectures. We have proposed an abstract specification dTMS2
which is durably opaque and have shown how this can be employed in refinement-based
proofs of durable opacity. We have furthermore developed a modular proof technique for
such refinement proofs, separating out the proof of durability from that of opacity. We
have exemplified this proof technique on the STM NOrec for which we have – to this end –
developed a version adequate for non-volatile memory.

Our proof technique is inspired by work on the verification of a Flash file system by
Schellhorn et al. [SBPR20]. Although this prior work does not target NVM or STMs, it also
uses ownership as a mechanism for restricting concurrency at the interface of a library. The
development, which refines an abstract POSIX-compatible file system specification in several
steps to the Linux interface MTD for flash hardware, uses intermediate layers (similar to
the library AM used here) to introduce caches for flash pages [PEB+17] and for file-content
[BSR22], though the correctness criteria defined in these papers are strictly weaker than
durable linearizability.

Our new proof technique (outlined in Figure 5) describes a similar technique in the
setting of STMs. In particular, we provide an abstract library that operates directly on
persistent memory and a concrete implementation that uses both volatile and persistent
memory. The original STM is placed in an execution context that could have system crashes
and uses the abstract and concrete library to perform memory operations. Given an STM
that already refines TMS2 (and hence is opaque), the bulk of the verification effort using
our method is focused on verifying durable linearizability between the abstract and concrete
libraries. This proof is the only one that has to consider the distinction between volatile and
persistent memory. In our case it is not very difficult when the correct ownership annotations
are used. In contrast, a non-modular proof would have to re-do the already complex opacity
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proof in the more complex setting where the distinction between volatile and persistent
memory is present.

Future work. We conjecture that the libraries AM and CM that we have defined could be
used to transform other opaque algorithms into durably opaque algorithms when the STMs
use a lazy write-back commit with mutual exclusion between the write-back operations.
Other types of STMs, e.g., TL2 [DSS06] (which uses a per-location lock to allow concurrent
write-backs) and TML [DDS+10] (which uses an eager write-back mechanism) cannot use
the libraries AM and CM that we have developed directly. Whether the modular library
based approach presented in this paper applies to these other algorithms as well remains a
future research topic.

The memory model that we have assumed is strong, only making a distinction between
volatile and persistent memory. The writes themselves are assumed to be sequentially
consistent, and no intra-thread reordering is possible. In reality, programs executed in
platforms such as persistent x86-TSO [RLV20, CLRK21], in which instructions may be
reordered due to the effects of both persistency and Total Store Order (TSO). In future work,
we aim to extend our methods to additionally take such effects into account. In particular,
it would be interesting to know whether CM could be further refined and integrated with
the remainder of the system in a modular manner. For the persistent TSO model, such
proofs could build on existing logics, e.g., [RLV20, BDL+22], but may require new theories
for refinement.
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