
Logical Methods in Computer Science
Vol. 7 (3:10) 2011, pp. 1–29
www.lmcs-online.org

Submitted Jun.26, 2010
Published Sep. 2, 2011

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS

JYOTIRMOY DESHMUKH a, G. RAMALINGAM b, VENKATESH-PRASAD RANGANATH c,
AND KAPIL VASWANI d

a University of Texas at Austin
e-mail address: jyotirmoy@cerc.utexas.edu

b,c,d Microsoft Research, India
e-mail address: grama@microsoft.com, rvprasad@microsoft.com, kapilv@microsoft.com

Abstract. We are interested in identifying and enforcing the isolation requirements of
a concurrent program, i.e., concurrency control that ensures that the program meets its
specification. The thesis of this paper is that this can be done systematically starting from
a sequential proof, i.e., a proof of correctness of the program in the absence of concurrent
interleavings. We illustrate our thesis by presenting a solution to the problem of making
a sequential library thread-safe for concurrent clients. We consider a sequential library
annotated with assertions along with a proof that these assertions hold in a sequential
execution. We show how we can use the proof to derive concurrency control that ensures
that any execution of the library methods, when invoked by concurrent clients, satisfies
the same assertions. We also present an extension to guarantee that the library methods
are linearizable or atomic.

1. Introduction

A key challenge in concurrent programming is identifying and enforcing the isolation re-
quirements of a program: determining what constitutes undesirable interference between
different threads and implementing concurrency control mechanisms that prevent this. In
this paper, we show how a solution to this problem can be obtained systematically from
a sequential proof : a proof that the program satisfies a specification in the absence of
concurrent interleaving.

Problem Setting. We illustrate our thesis by considering the concrete problem of making
a sequential library safe for concurrent clients. Informally, given a sequential library that
works correctly when invoked by any sequential client, we show how to synthesize concur-
rency control code for the library that ensures that it will work correctly when invoked by
any concurrent client.

1998 ACM Subject Classification: D.1.3, D.2.4, F.3.1.
Key words and phrases: concurrency control, program synthesis.

a Work done while at Microsoft Research India.

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (3:10) 2011
c© J. Deshmukh, G. Ramalingam, V.-P. Ranganath, and K. Vaswani
CC© Creative Commons

http://creativecommons.org/about/licenses

2 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

Part I: Ensuring Assertions In Concurrent Executions. Consider the example in
Figure 1(a). The library consists of one procedure Compute, which applies an expensive
function f to an input variable num. As a performance optimization, the implementation
caches the last input and result. If the current input matches the last input, the last
computed result is returned.

1: int lastNum = 0;

2: int lastRes = f(0);

3: /* @returns f (num) */

4: Compute(num) {
5: /* acquire (l); */

6: if(lastNum==num) {
7: res = lastRes;

8: } else {
9: /* release (l); */

10: res = f(num);

11: /* acquire (l); */

12: lastNum = num;

13: lastRes = res;

14: }
15: /* release (l); */

16: return res;

17: }

(a) (b)

Figure 1: (a) Procedure Compute (excluding Lines 5,9,11,15) applies
a (side-effect free) function f to a parameter num and caches
the result for later invocations. Lines 5,9,11,15 contain
a lock-based concurrency control generated by our tech-
nique. (b) The control-flow graph of Compute, its edges
labeled by statements of Compute and nodes labeled by
proof assertions.

This procedure works correctly when used by a sequential client, but not in the presence
of concurrent procedure invocations. E.g., consider an invocation of Compute(5) followed
by concurrent invocations of Compute(5) and Compute(7). Assume that the second invo-
cation of Compute(5) evaluates the condition in Line 6, and proceeds to Line 7. Assume a
context switch occurs at this point, and the invocation of Compute(7) executes completely,
overwriting lastRes in Line 13. Now, when the invocation of Compute(5) resumes, it will
erroneously return the (changed) value of lastRes.

In this paper, we present a technique that can detect the potential for such interfer-
ence and synthesize concurrency control to prevent the same. The (lock-based) solution
synthesized by our technique for the above example is shown (as comments) in Lines 5, 9,
11, and 15 in Figure 1(a). With this concurrency control, the example works correctly even
for concurrent procedure invocations while permitting threads to perform the expensive
function f concurrently.

The Formal Problem. Formally, we assume that the correctness criterion for the library is
specified as a set of assertions and that the library satisfies these assertions in any execution

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 3

of any sequential client. Our goal is to ensure that any execution of the library with any
concurrent client also satisfies the given assertions. For our running example in Figure 1(a),
Line 3 specifies the desired functionality for procedure Compute: Compute returns the value
f (num).

Logical Concurrency Control From Proofs. A key challenge in coming up with concurrency
control is determining what interleavings between threads are safe. A conservative solution
may reduce concurrency by preventing correct interleavings. An aggressive solution may
enable more concurrency but introduce bugs.

The fundamental thesis we explore is the following: a proof that a code fragment satisfies
certain assertions in a sequential execution precisely identifies the properties relied on by
the code at different points in execution; hence, such a sequential proof clearly identifies
what concurrent interference can be permitted; thus, a correct concurrency control can be
systematically (and even automatically) derived from such a proof.

We now provide an informal overview of our approach by illustrating it for our running
example. Figure 1(b) presents a proof of correctness for our running example (in a sequential
setting). The program is presented as a control-flow graph, with its edges representing
program statements. (The statement “num = *” at the entry edge indicates that the initial
value of parameter num is unknown.) A proof consists of an invariant µ(u) attached to
every vertex u in the control-flow graph (as illustrated in the figure) such that: (a) for
every edge u → v labelled with a statement s, execution of s in a state satisfying µ(u) is
guaranteed to produce a state satisfying µ(v), (b) The invariant µ(entry) attached to the
entry vertex is satisfied by the initial state and is implied by the invariant µ(exit) attached
to the exit vertex, and (c) for every edge u → v annotated with an assertion ϕ, we have
µ(u)⇒ ϕ. Condition (b) ensures that the proof is valid over any sequence of executions of
the procedure.

The invariant µ(u) at vertex u indicates the property required (by the proof) to hold
at u to ensure that a sequential execution satisfies all assertions of the library. We can
reinterpret this in a concurrent setting as follows: when a thread t1 is at point u, it can
tolerate changes to the state by another thread t2 as long as the invariant µ(u) continues
to hold from t1’s perspective; however, if another thread t2 were to change the state such
that t1’s invariant µ(u) is broken, then the continued execution by t1 may fail to satisfy the
desired assertions.

Consider the proof in Figure 1(b). The vertex labeled x in the figure corresponds to the
point before the execution of Line 7. The invariant attached to x indicates that the proof of
correctness depends on the condition lastRes==f(num) being true at x. The execution of
Line 10 by another thread will not invalidate this condition. But, the execution of Line 13
by another thread can potentially invalidate this condition. Thus, we infer that, when one
thread is at point x, an execution of Line 13 by another thread should be avoided.

We prevent the execution of a statement s by one thread when another thread is at
a program point u (if s might invalidate a predicate p that is required at u) as follows.
We introduce a lock `p corresponding to p, and ensure that every thread holds `p at u and
ensure that every thread holds `p when executing s.

Our algorithm does this as follows. From the invariant µ(u) at vertex u, we compute a
set of predicates pm(u). (For now, think of µ(u) as the conjunction of predicates in pm(u).)
pm(u) represents the set of predicates required at u. For any edge u → v, any predicate p
that is in pm(v)\pm(u) is required at v but not at u. Hence, we acquire the lock for p along

4 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

this edge. Dually, for any predicate that is required at u but not at v, we release the lock
along the edge. As a special case, we acquire (release) the locks for all predicates in pm(u) at
procedure entry (exit) when u is the procedure entry (exit) vertex. Finally, if the execution
of the statement on edge u→ v can invalidate a predicate p that is required at some vertex,
we acquire and release the corresponding lock before and after the statement (unless it
is already a required predicate at u or v). Note that our approach conservatively assumes
that any two statements in the library may be simultaneously executed by different threads.
If an analysis can identify that certain statements cannot be simultaneously executed (by
different threads), this information can be exploited to improve the solution, but this is
beyond the scope of this paper.

Our algorithm ensures that the locking scheme does not lead to deadlocks by merging
locks when necessary, as described later. Finally, we optimize the synthesized solution using
a few simple techniques. E.g., in our example whenever the lock corresponding to lastRes

== res is held, the lock for lastNum == num is also held. Hence, the first lock is redundant
and can be eliminated.

Figure 1 shows the resulting library with the concurrency control we synthesize. This
implementation satisfies its specification even in a concurrrent setting. The synthesized
solution permits a high degree to concurrency since it allows multiple threads to compute f
concurrently. A more conservative but correct locking scheme would hold the lock during
the entire procedure execution.

A distinguishing aspect of our algorithm is that it requires only local reasoning and
not reasoning about interleaved executions, as is common with many analyses of concurrent
programs. Note that the synthesized solution depends on the proof used. Different proofs
can potentially yield different concurrency control solutions (all correct, but with potentially
different performance).

We note that our approach has a close connection to the Owicki-Gries [18] approach
to computing proofs for concurrent programs. The Owicki-Gries approach shows how the
proofs for two statements can be composed into a proof for the concurrent composition
of the statements if the two statements do not interfere with each other. Our approach
detects potential interference between statements and inserts concurrency-control so that
the interference does not occur (permitting a safe concurrent composition of the statements).

Implementation. We have implemented our algorithm, using an existing software model
checker to generate the sequential proofs. We used the tool to successfully synthesize con-
currency control for several small examples. The synthesized solutions are equivalent to
those an expert programmer would use.

Part II: Ensuring Linearizability. The above approach can be used to ensure that con-
current executions guarantee desired safety properties, preserve data-structure invariants,
and meet specifications (e.g., given as a precondition/postcondition pair). Library imple-
mentors may, however, wish to provide the stronger guarantee of linearizability with respect
to the sequential specification: any concurrent execution of a procedure is guaranteed to
satisfy its specification and appears to take effect instantaneously at some point during its
execution. In the second half of the paper, we show how the techniques sketched above can
be extended to guarantee linearizability.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 5

Contributions. We present a technique for synthesizing concurrency control for a library
(e.g., developed for use by a single-threaded client) to make it safe for use by concurrent
clients. However, we believe that the key idea we present – a technique for identifying and
realizing isolation requirements from a sequential proof – can be used in other contexts as
well (e.g., in the context of a whole program consisting of multiple threads, each with its
own assertions and sequential proofs).

Sometimes a library designer may choose to delegate the responsibility for concurrency
control to the clients of the library and not make the library thread-safe1. Alternatively,
library implementers could choose to make the execution of a library method appear atomic
by wrapping it in a transaction and executing it in an STM (assuming this is feasible). These
are valid options but orthogonal to the point of this paper. Typically, a program is a software
stack, with each level serving as a library. Passing the buck, with regards to concurrency
control, has to stop somewhere. Somewhere in the stack, the developer needs to decide
what degree of isolation is required by the program; otherwise, we would end up with a
program consisting of multiple threads where we require every thread’s execution to appear
atomic, which could be rather severe and restrict concurrency needlessly. The ideas in this
paper provide a systematic method for determining the isolation requirements. While we
illustrate the idea in a simplified setting, it should ideally be used at the appropriate level
of the software stack.

In practice, full specifications are rarely available. We believe that our technique can
be used even with lightweight specifications or in the absence of specifications. Consider
our example in Fig. 1. A symbolic analysis of this library, with a harness representing a
sequential client making an arbitrary sequence of calls to the library, can, in principle, infer
that the returned value equals f(num). As the returned value is the only observable value,
this is the strongest functional specification a user can write. Our tool can be used with
such an inferred specification as well.

Logical interference. Existing concurrency control mechanisms (both pessimistic as well as
optimistic) rely on a data-access based notion of interference: concurrent accesses to the
same data, where at least one access is a write, is conservatively treated as interfence. A
contribution of this paper is that it introduces a more logical/semantic notion of interference
that can be used to achieve more permissive, yet safe, concurrency control. Specifically,
concurrency control based on this approach permits interleavings that existing schemes
based on stricter notion of interference will disallow. Hand-crafted concurrent code often
permits “benign interference” for performance reasons, suggesting that programmers do
rely on such a logical notion of interference.

2. The Problem

In this section, we introduce required terminology and formally define the problem. Rather
than restrict ourselves to a specific syntax for programs and assertions, we will treat them
abstractly, assuming only that they can be given a semantics as indicated below, which is
fairly standard.

1 This may be a valid design option in some cases. However, in examples such as our running example,
this could be a bad idea.

6 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

2.1. The Sequential Setting. Sequential Libraries. A library L is a pair (P, VG), where
P is a set of procedures (defined below), and VG is a set of variables, termed global variables,
accessible to all and only procedures in P. A procedure P ∈ P is a pair (GP, VP), where GP

is a control-flow graph with each edge labeled by a primitive statement, and VP is a set of
variables, referred to as local variables, restricted to the scope of P. (Note that VP includes
the formal parameters of P as well.) To simplify the semantics, we will assume that the set
VP is the same for all procedures and denote it VL.

Every control-flow graph has a unique entry vertex NP (with no predecessors) and a
unique exit vertex XP (with no successors). Primitive statements are either skip state-
ments, assignment statements, assume statements, return statements, or assert state-
ments. An assume statement is used to implement conditional control flow as usual. Given
control-flow graph nodes u and v, we denote an edge from u to v, labeled with a primitive

statement S, by u
S−→ v.

To reason about all possible sequences of invocations of the library’s procedures, we
define the control graph of a library to be the union of the control-flow graphs of all the
procedures, augmented by a new vertex w, as well as an edge from every procedure exit
vertex to w and an edge from w to every procedure entry vertex. We refer to w as the
quiescent vertex. Note that a one-to-one correspondence exists between a path in the
control graph of the library, starting from w, and the execution of a sequence of procedure
calls. The edge w → NP from the quiescent vertex to the entry vertex of a procedure P
models an arbitrary call to procedure P. We refer to these as call edges.

Sequential States. A procedure-local state σ` ∈ Σs
` is a pair (pc, σd) where pc, the program

counter, is a vertex in the control graph and σd is a map from the local variables VL to their
values. (We use “s” as a superscript or subscript to indicate elements of the semantics of
sequential execution.) A global state σg ∈ Σs

g is a map from global variables VG to their
values. A library state σ is a pair (σ`, σg) ∈ Σs

` × Σs
g. We define Σs to be Σs

` × Σs
g. We

say that a state is a quiescent state if its pc value is w and that it is an entry state if its pc
value equals the entry vertex of some procedure.

Sequential Executions. We assume a standard semantics for primitive statements that can
be captured as a transition relation s ⊆ Σs × Σs as follows. Every control-flow edge e

induces a transition relation
e
 s, where σ

e
 sσ

′ iff σ′ is one of the possible outcomes of the
execution of (the statement labeling) the edge e in state σ. The edge w → NP from the
quiescent vertex to the entry vertex of a procedure P models an arbitrary call to procedure
P. Hence, in defining the transition relation, such edges are treated as statements that
assign a non-deterministically chosen value to every formal parameter of P and the default
initial value to every local variable of P. Similarly, the edge XP → w is treated as a skip

statement. We say σ s σ
′ if there exists some edge e such that σ

e
 sσ

′.
A sequential execution is a sequence of states σ0σ1 · · ·σk where σ0 is the initial state

of the library and we have σi s σi+1 for 0 ≤ i < k. A sequential execution represents
the execution of a sequence of calls to the library’s procedures (where the last call’s exe-
cution may be incomplete). Given a sequential execution σ0σ1 · · ·σk, we say that σi is the
corresponding entry state of σj if σi is an entry state and no state σh is an entry state for
i < h ≤ j.

Sequential Assertions. We use assert statements to specify desired correctness properties of
the library. Assert statements have no effect on the execution semantics and are equivalent

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 7

to skip statements in the semantics. Assertions are used only to define the notion of well-
behaved executions as follows.

An assert statement is of the form assert θ where, θ is a 1-state assertion ϕ or a
2-state assertion Φ. A 1-state assertion, which we also refer to as a predicate, makes an
assertion about a single library state. Rather than define a specific syntax for assertions,
we assume that the semantics of assertions are defined by a relation σ |=s ϕ denoting that
a state σ satisfies the assertion ϕ.

1-state assertions can be used to specify the invariants expected at certain program
points. In general, specifications for procedures take the form of two-state assertions, which
relate the input state to output state. We use 2-state assertions for this purpose. The
semantics of a 2-state assertion Φ is assumed to be defined by a relation (σin, σout) |=s Φ
(meaning that state σout satisfies assertion Φ with respect to state σin). In our examples,
we use special input variables vin to refer to the value of the variable v in the first state.
E.g., the specification “x == xin + 1” asserts that the value of x in the second state is one
more than its value in the first state.

Definition 2.1. A sequential execution is said to satisfy the library’s assertions if for any

transition σi
e
 sσi+1 in the execution, where e is labelled by the statement “assert θ”,

we have (a) σi |=s θ if θ is a 1-state assertion, and (b) (σin, σi) |=s θ where σin is the
corresponding entry state of σi, otherwise. A sequential library satisfies its specifications if
every execution of the library satisfies its specifications.

2.2. The Concurrent Setting. Concurrent Libraries. A concurrent library L is a triple
(P, VG, Lk), where P is a set of concurrent procedures, VG is a set of global variables, and
Lk is a set of global locks. A concurrent procedure is like a sequential procedure, with the
extension that a primitive statement is either a sequential primitive statement or a locking
statement of the form acquire(`) or release(`) where ` is a lock.

Concurrent States. A concurrent library permits concurrent invocations of procedures.
We associate each procedure invocation with a thread (representing the client thread that
invoked the procedure). Let T denote an infinite set of thread-ids, which are used as unique
identifiers for threads. In a concurrent execution, every thread has a private copy of local
variables, but all threads share a single copy of the global variables. Hence, the local-state in
a concurrent execution is represented by a map from T to Σs

` . (A thread whose local-state’s
pc value is the quiescent point represents an idle thread, i.e., a thread not processing any
procedure invocation.) Let Σc

` = T → Σs
` denote the set of all local states.

At any point during execution, a lock lk is either free or held by one thread. We
represent the state of locks by a partial function from Lk to T indicating which thread, if
any, holds any given lock. (A lock that is not held by any thread will not be in the domain
of the partial function.) Let Σc

lk = Lk ↪→ T represent the set of all lock-states. Let Σc
g =

Σs
g × Σc

lk denote the set of all global states. Let Σc = Σc
` × Σc

g denote the set of all states.
Given a concurrent state σ = (σ`, (σg, σlk)) and thread t, we define σ[t] to be the sequential
state (σ`(t), σg).

Concurrent Executions. The concurrent semantics is induced by the sequential semantics as
follows. Let e be any control-flow edge labelled with a sequential primitive statement, and

t be any thread. We say that (σ`, (σg, σlk))
(t,e)
 c (σ′`, (σ

′
g, σlk)) iff (σt, σg)

e
 s(σ

′
t, σ
′
g) where

8 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

σt = σ`(t) and σ′` = σ`[t 7→ σ′t]. The transitions corresponding to lock acquire/release are
defined in the obvious way. We say that σ c σ

′ iff there exists some (t, e) such that

σ
(t,e)
 cσ

′.
A concurrent execution is a sequence σ0σ1 · · ·σk, where σ0 is the initial state of the

library and σi
`i cσi+1 for 0 ≤ i < k, where the label `i = (ti, ei) identifies the executing

thread and executed edge. We say that `0 · · · `k−1 is the schedule of this execution. A
sequence `0 · · · `m is a feasible schedule if it is the schedule of some concurrent execution.
Consider a concurrent execution σ0σ1 · · ·σk. We say that a state σi is a t-entry-state if it
is generated from a quiescent state by thread t executing a call edge. We say that σi is the
corresponding t-entry state of σj if σi is a t-entry-state and no state σh is a t-entry-state for
i < h ≤ j.

We note that our semantics uses sequential consistency. Extending our results to sup-
port weaker memory models is future work.

Interpreting Assertions In Concurrent Executions. In a concurrent setting, assertions are
evaluated in the context of the thread that executes the corresponding assert statement.
We say that state σ satisfies a 1-state assertion ϕ in the context of thread ti (denoted
by (σ, ti) |=c ϕ) iff σ[ti] |=s ϕ. For any 2-state assertion Φ, we say that a given pair of
states (σin, σout) satisfies Φ in the context of thread t (denoted by ((σin, σout), t) |=c Φ) iff
(σin[t], σout[t]) |=s Φ.

Definition 2.2. A concurrent execution π is said to satisfy an assertion “assert θ” la-

belling an edge e if for any transition σi
(t,e)
 cσi+1 in the execution, we have (a) (σi, t) |=c θ,

if θ is a 1-state assertion, and (b) ((σin, σi), t) |=c θ where σin is the corresponding t-entry
state of σi, otherwise. The execution is said to satisfy the library’s specification if it satisfies
all assertions in the library. A concurrent library satisfies its specification if every execution
of the library satisfies its specification.

Frame Conditions. Consider a library with two global variables x and y and a procedure
IncX that increments x by 1. A possible specification for IncX is (x == xin + 1) && (y == yin).
The condition y == yin is IncX’s frame condition, which says that it will not modify y. Ex-
plicitly stating such frame conditions is unnecessarily restrictive, as a concurrent update to
y by another procedure, when IncX is executing, would be considered a violation of IncX’s
specification. Frame conditions can be handled better by treating a specification as a pair
(S,Φ) where S is the set of all global variables referenced by the procedure, and Φ is a spec-
ification that does not refer to any global variables outside S. For our above example, the
specification will be ({x}, x == xin + 1)). In the sequel, however, we will restrict ourselves
to the simpler setting and ignore this issue.

2.3. Goals. Our goal is: Given a sequential library L with assertions satisfied in every
sequential execution, construct L̂, by augmenting L with concurrency control, such that
every concurrent execution of L̂ satisfies all assertions. In Section 6, we extend this goal to
construct L̂ such that every concurrent execution of L̂ is linearizable.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 9

3. Preserving Single-State Assertions

In this section we describe our algorithm for synthesizing concurrency control, but restrict
our attention to single-state assertions.

3.1. Algorithm Overview. A sequential proof is a mapping µ from vertices of the control

graph to predicates such that (a) for every edge e = u
t−→ v, {µ(u)}t{µ(v)} is a valid Hoare

triple σ1 |=s µ(u) and σ1
e
 sσ2 implies σ2 |=s µ(v)), and (b) for every edge u

assert ϕ−−−−−−→ v,
we have µ(u)⇒ ϕ. Note that condition (a) requires {µ(u)}t{µ(v)} to be partially correct.
The execution of statement t in a state satisfying µ(u) does not have to succeed. This is
required primarily for the case when t represents an assume statement. If we want to ensure
that the execution of a statement t does not cause any runtime error, we can simply replace
t by “assert p; t” where p is the condition required to ensure that t does not cause any
runtime error.)

Note that the invariant µ(u) attached to a vertex u by a proof indicates two things:
(i) any sequential execution reaching point u will produce a state satisfying µ(u), and (ii)
any sequential execution from point u, starting from a state satisfying µ(u) will satisfy the
invariants labelling other program points (and satisfy all assertions encountered during the
execution).

A procedure that satisfies its assertions in a sequential execution may fail to do so in a
concurrent execution due to interference by other threads. E.g., consider a thread t1 that
reaches a program point u in a state that satisfies µ(u). At this point, another thread t2 may
execute some statement that changes the state to one where µ(u) no longer holds. Now,
we no longer have a guarantee that a continued execution by t1 will successfully satisfy its
assertions. The preceding paragraph, however, hints at the interference we must avoid to
ensure correctness: when a thread t1 is at point u, we should ensure that no other thread t2
changes the state to one where t1’s invariant µ(u) fails to hold. Any change to the state by
another thread t2 can be tolerated by t1 as long as the invariant µ(u) continues to hold. We
can achieve this by associating a lock with the invariant µ(u), ensuring that t1 holds this
lock when it is at program point u, and ensuring that any thread t2 acquires this lock before
executing a statement that may break this invariant. An invariant µ(u), in general, may
be a boolean formula over simpler predicates. We could potentially get different locking
solutions by associating different locks with different sub-formulae of the invariant. We
elaborate on this idea below.

A predicate mapping is a mapping pm from the vertices of the control graph to a set
of predicates. A predicate mapping pm is said to be a basis for a proof µ if every µ(u)
can be expressed as a boolean formula (involving conjunctions, disjunctions, and negation)
over pm(u). A basis pm for proof µ is positive if every µ(u) can be expressed as a boolean
formula involving only conjunctions and disjunctions over pm(u).

Given a proof µ, we say that an edge u
s−→ v sequentially positively preserves a predicate

ϕ if {µ(u) ∧ ϕ}s{ϕ} is a valid Hoare triple. Otherwise, we say that the edge may sequentially
falsify the predicate ϕ. Note that the above definition is in terms of the Hoare logic for our
sequential language. However, we want to formalize the notion of a thread t2’s execution
of an edge falsifying a predicate ϕ in a thread t1’s scope. Given a predicate ϕ, let ϕ̂ denote
the predicate obtained by replacing every local variable x with a new unique variable x̂.

We say that an edge u
s−→ v may falsify ϕ iff the edge may sequentially falsify ϕ̂. (Note

10 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

that this reasoning requires working with formulas with free variables, such as x̂. This is
straightforward as these can be handled just like extra program variables.)

E.g., consider Line 13 in Fig. 1. Consider predicate lastRes==f(num). By renaming
local variable num to avoid naming conflicts, we obtain predicate lastRes == f(ˆnum). We
say that Line 13 may falsify this predicate because the triple {res == f(num) ∧ lastNum
== num ∧ lastRes == f(ˆnum)} lastRes = res {lastRes == f(ˆnum)} is not a valid
Hoare triple.

Let pm be a positive basis for a proof µ and R = ∪upm(u). For any program point u,
if a predicate ϕ is in pm(u), we say that ϕ is relevant at program point u. In a concurrent
execution, we say that a predicate ϕ is relevant to a thread t in a given state if t is at a
program point u in the given state and ϕ ∈ pm(u). Our locking scheme associates a lock
with every predicate ϕ in R. The invariant it establishes is that a thread, in any state,
will hold the locks corresponding to precisely the predicates that are relevant to it. We will
simplify the initial description of our algorithm by assuming that distinct predicates are
associated with distinct locks and later relax this requirement.

Consider any control-flow edge e = u
s−→ v. Consider any predicate ϕ in pm(v) \ pm(u).

We say that predicate ϕ becomes relevant2 at edge e. In the motivating example, the
predicate lastNum == num becomes relevant at Line 12

We ensure the desired invariant by acquiring the locks corresponding to every predicate
that becomes relevant at edge e prior to statement s in the edge. (Acquiring the lock after
s may be too late, as some other thread could intervene between s and the acquire and
falsify predicate ϕ.)

Now consider any predicate ϕ in pm(u) \ pm(v). We say that ϕ becomes irrelevant at
edge e. E.g., predicate lastRes == f(lastNum) becomes irrelevant once the false branch
at Line 8 is taken. For every p that becomes irrelevant at edge e, we release the lock
corresponding to p after statement s.

The above steps ensure that in a concurrent execution a thread will hold a lock on all
predicates relevant to it. The second component of the concurrency control mechanism is
to ensure that any thread acquires a lock on a predicate before it falsifies that predicate.

Consider an edge e = u
s−→ v in the control-flow graph. Consider any predicate ϕ ∈ R that

may be falsified by edge e. We add an acquire of the lock corrresponding to this predicate
before s (unless ϕ ∈ pm(u)), and add a release of the same lock after s (unless ϕ ∈ pm(v)).

Managing locks at procedure entry/exit. We will need to acquire/release locks at procedure
entry and exit differently from the scheme above. Our algorithm works with the control
graph defined in Section 2. Recall that we use a quiescent vertex w in the control graph.
The invariant µ(w) attached to this quiescent vertex describes invariants maintained by

the library (in between procedure calls). Any return edge u
return−−−−→ v must be augmented

to release all locks corresponding to predicates in pm(u) before returning. Dually, any
procedure entry edge w → u must be augmented to acquire all locks corresponding to
predicates in pm(u).

However, this is not enough. Let w → u be a procedure p’s entry edge. The invariant
µ(u) is part of the library invariant that procedure p depends upon. It is important to ensure
that when a thread executes the entry edge of p (and acquires locks corresponding to the

2 Frequently it will be the case that the execution of statement s makes predicate ϕ true. This is true if
every invariant µ(v) is a conjunction of the basis predicates in pm(u). Since we allow disjunctions as well,
this is not, however, always true.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 11

basis of µ(u)) the invariant µ(u) holds. We achieve this by ensuring that any procedure
that invalidates the invariant µ(u) holds the locks on the corresponding basis predicates
until it reestablishes µ(u). We now describe how this can be done in a simplified setting
where the invariant µ(u) can be expressed as the conjunction of the predicates in the basis
pm(u) for every procedure entry vertex u. (Disjunction can be handled at the cost of extra
notational complexity.) We will refer to the predicates that occur in the basis pm(u) of
some procedure entry vertex u as library invariant predicates.

We use an obligation mapping om(v) that maps each vertex v to a set of library invari-
ant predicates to track the invariant predicates that may be invalid at v and need to be
reestablished before the procedure exit. We say a function om is a valid obligation mapping
if it satisfies the following constraints for any edge e = u→ v: (a) if e may falsify a library
invariant ϕ, then ϕ must be in om(v), and (b) if ϕ ∈ om(u), then ϕ must be in om(v) unless

e establishes ϕ. Here, we say that an edge u
s−→ v establishes a predicate ϕ if {µ(u)}s{ϕ} is

a valid Hoare triple. Define m(u) to be pm(u) ∪ om(u). Now, the scheme described earlier
can be used, except that we use m in place of pm.

Locking along assume edges. Recall that we model conditional branching, based on a con-
dition p, using two edges labelled “assume p” and “assume !p”. Any lock to be acquired
along an assume edge will need to be acquired before the condition is evaluated. If the lock
is required along both assume edges, this is sufficient. If the lock is not required along all
assume edges out of a vertex, then we will have to release the lock along the edges where it
is not required.

Deadlock Prevention. The locking scheme synthesized above may potentially lead to a
deadlock. We now show how to modify the locking scheme to avoid this possibility. For
any edge e, let mbf(e) be (a conservative approximation of) the set of all predicates that
may be falsified by the execution of edge e. We first define a binary relation � on the
predicates used (i.e., the set R) as follows: we say that p� r iff there exists a control-flow

edge u
s−→ v such that p ∈ m(u) ∧ r ∈ (m(v) ∪ mbf(u

s−→ v)) \ m(u). Note that p� r holds
iff it is possible for some thread to try to acquire a lock on r while it holds a lock on p. Let
�∗ denote the transitive closure of �.

We define an equivalence relation � on R as follows: p� r iff p�∗ r ∧ r�∗ p. Note
that any possible deadlock must involve an equivalence class of this relation. We map all
predicates in an equivalence class to the same lock to avoid deadlocks. In addition to the
above, we establish a total ordering on all the locks, and ensure that all lock acquisitions
we add to a single edge are done in an order consistent with the established ordering. (Note
that the ordering on the locks does not have to be total; a partial ordering is fine, as long
as any two locks acquired along a single edge are ordered.)

Improving The Solution. Our scheme can sometimes introduce redundant locking. E.g.,
assume that in the generated solution a lock `1 is always held whenever a lock `2 is acquired.
Then, the lock `2 is redundant and can be eliminated. Similarly, if we have a predicate ϕ
that is never falsified by any statement in the library, then we do not need to acquire a lock
for this predicate. We can eliminate such redundant locks as a final optimization pass over
the generated solution.

Using Reader-Writer Locks. Note that a lock may be acquired on a predicate ϕ for one of
two reasons in the above scheme: either to “preserve” ϕ or to “break” ϕ. These are similar
to read-locks and write-locks. Note that it is safe for multiple threads to simultaneously

12 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

hold a lock on the same predicate ϕ if they want to “preserve” it, but a thread that wants
to “break” ϕ needs an exclusive lock. Thus, reader-writer locks can be used to improve
concurrency, but space constraints prevent a discussion of this extension. However, since it
is unsafe for a thread that holds a read-lock on a predicate ϕ to try to acquire a write-lock ϕ,
using this optimization also requires an extension to the basic deadlock avoidance scheme.

Specifically, it is unsafe for a thread that holds a read-lock on a predicate ϕ to try to
acquire a write-lock ϕ, as this can lead to a deadlock. Hence, any acquisition of a lock
on a predicate ϕ (to preserve it) should be made an exclusive (write) lock if along some
execution path it may be necessary to promote this lock to a write lock before the lock is
released.

Generating Proofs. The sequential proof required by our scheme can be generated using
verification tools such as SLAM [2], BLAST [11, 12] or Yogi [10]. Predicate abstraction [2]
is a program analysis technique that constructs a conservative, finite state abstraction of a
program with a large (possibly infinite) state space using a set of predicates over program
variables. Tools such as SLAM and BLAST use predicate abstraction to check if a given
program P satisfies a specification φ. The tools start with a simple initial abstraction and
iteratively refine the abstraction until the abstraction is rich enough to prove the absence
of a concrete path from the program’s initial state to an error state (or a real error is
identified).

For programs for which verification succeeds, the final abstraction produced, as well as
the result of abstract interpretation using this abstraction, serve as a good starting point
for constructing the desired proof. The final abstraction consists of a predicate map pm
which maps each program point to a set of predicates and as well as a mapping from each
program statement to a set of abstract predicate transformers which together define an
abstract transition system. Furthermore, abstract interpretation utilizing this abstraction
effectively computes a formula µ(u) over the set of predicates pm(u) at every program point
u that conservatively describes all states that can arise at program point u.

The map µ constitutes a proof of sequential correctness, as required by our algorithm,
and the predicate map pm is a valid basis for the proof. The map pm can be extended
into a positive basis for the proof easily enough. Since a minimal proof can lead to better
concurrency control, approaches that produce a “parsimonious proof” (e.g., see [12]) are
preferable. A parsimonious proof is one that avoids the use of unnecessary predicates at
any program point.

3.2. Complete Schema. We now present a complete outline of our schema for synthesizing
concurrency control.

(1) Construct a sequential proof µ that the library satisfies the given assertions in any
sequential execution.

(2) Construct positive basis pm and an obligation mapping om for the proof µ.
(3) Compute a map mbf from the edges of the control graph to R, the range of pm, such

that mbf(e) (conservatively) includes all predicates in R that may be falsified by the
execution of e.

(4) Compute the equivalence relation � on R.
(5) Generate a predicate lock allocation map lm : R → L such that for any ϕ1 � ϕ2, we

have lm(ϕ1) = lm(ϕ2).

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 13

(6) Compute the following quantities for every edge e = u
s−→ v, where we use lm(X) as

shorthand for { lm(p) | p ∈ X } and m(u) = pm(u) ∪ om(u):

BasisLocksAcq(e) = lm(m(v)) \ lm(m(u))
BasisLocksRel(e) = lm(m(u)) \ lm(m(v))
BreakLocks(e) = lm(mbf(e)) \ lm(m(u)) \ lm(m(v))

(7) We obtain the concurrency-safe library L̂ by transforming every edge u
s−→ v in the

library L as follows:

(a) ∀ p ∈ BasisLocksAcq(u
s−→ v), add an acquire(lm(p)) before s;

(b) ∀ p ∈ BasisLocksRel(u
s−→ v), add a release(lm(p)) after s;

(c) ∀ p ∈ BreakLocks(u
s−→ v), add an acquire(lm(p)) before s and a release(lm(p))

after s.
All lock acquisitions along a given edge are added in an order consistent with a total
order established on all locks.

3.3. Correctness. We now present a formal statement of the correctness claims for our
algorithm. Let L be a given library with a set of embedded assertions satisfied by all

sequential executions of L. Let L̂ be the library obtained by augmenting L with concurrency
control using the algorithm presented in Section 3.2. Let µ, pm, and om be the proof, the

positive basis, and the obligation map used to generate L̂.
Consider any concurrent execution of the given library L. We say that a thread t is safe

in a state σ if (σ, t) |=c µ(u) where t’s program-counter in state σ is u. We say that thread
t is active in state σ if its program-counter is something other than the quiescent vertex.
We say that state σ is safe if every active thread t in σ is safe. Recall that a concurrent

execution is of the form: σ0
`0−→ σ1

`1−→ · · ·σn, where each label `i is an ordered pair (t, e)
indicating that the transition is generated by the execution of edge e by thread t. We say
that a concurrent execution is safe if every state in the execution is safe. It trivially follows
that a safe execution satisfies all assertions of L.

Note that every concurrent execution π of L̂ corresponds to an execution π′ of L if
we ignore the transitions corresponding to lock acquire/release instructions. We say that

an execution π of L̂ is safe if the corresponding execution π′ of L is safe. The goal of the

synthesized concurrency control is to ensure that only safe executions of L̂ are permitted.

We say that a transition σ
(t,e)−−→ σ′ preserves the basis of an active thread t′ 6= t whose

program-counter in state σ is u if for every predicate ϕ ∈ pm(u) the following holds: if

(σ, t′) |=c ϕ, then (σ′, t′) |=c ϕ. We say that a transition σ
(t,e)−−→ σ′ ensures the basis of

thread t if either e = x → y is not the procedure entry edge or for every active thread
t′ 6= t whose program-counter in state σ is u and for every predicate ϕ ∈ pm(u) none of the
predicates in pm(y) are in om(u).

We say that a transition σ
(t,e)−−→ σ′ is basis-preserving if it preserves the basis of every

active thread t′ 6= t and ensures the basis of thread t. A concurrent execution is said to be
basis-preserving if all transitions in the execution are basis-preserving.

Lemma 3.1. (a) Any basis-preserving concurrent execution of L is safe. (b) Any concurrent

execution of L̂ corresponds to a basis-preserving execution of L.

14 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

Proof. (a) We prove that every state in a basis-preserving execution of L is safe by induction
on the length of the execution.

Consider a thread t in state σ with program-counter value u. Assume that t is safe
in σ. Thus, (σ, t) |=c µ(u). Note that µ(u) can be expressed in terms of the predicates in
pm(u) using conjunction and disjunction. Let SP denote the set of all predicates ϕ in pm(u)
such that (σ, t) |=c ϕ. Let σ′ be any state such that (σ′, t) |=c ϕ for every ϕ ∈ SP. Then, it
follows that t is safe in σ′. Thus, it follows that after any basis-preserving transition every
thread that was safe before the transition continues to be safe after the transition.

We now just need to verify that whenever an inactive thread becomes active (represent-
ing a new procedure invocation), it starts off being safe. We can establish this by inductively
showing that every library invariant must be satisfied in a given state or must be in om(u)
for some active thread t at vertex u.

(b) Consider a concurrent execution of L̂. We need to show that every transition in
this execution, ignoring lock acquires/releases, is basis-preserving. This follows directly

from our locking scheme. Consider a transition σ
(t,e)−−→ σ′. Let t′ 6= t be an active thread

whose program-counter in state σ is u. For every predicate ϕ ∈ pm(u)∪ om(u), our scheme
ensures that t′ holds the lock corresponding to ϕ. As a result, both the conditions for
preserving basies are satisfied.

Theorem 3.2. (a) Any concurrent execution of L̂ satisfies every assertion of L. (b) The

library L̂ is deadlock-free.

Proof. (a) This follows immediately from Lemma 3.1.
(b) This follows from our scheme for merging locks and can be proved by contradiction.

Assume that a concurrent execution of L̂ produces a deadlock. Then, we must have a set
of threads t1 to tk and a set of locks `1 to `k such that each ti holds lock `i and is waiting
to acquire lock `i⊕1, where i ⊕ 1 denotes (i mod k) + 1. In particular, ti must hold lock
`i because it wants a lock on some predicate pi, and must be trying to acquire lock `i⊕1
because of some predicate qi⊕1. Thus, we must have qi � pi and pi � qi⊕1 for every i.
This implies that all of pi and qi must be in the same equivalence class of � and, hence, `1
through `k must be the same, which is a contradiction (since we must have k > 1 to have
a deadlock).

As mentioned earlier, our synthesis technique has a close connection to Owicki-Gries [18]
approach to verifying concurrent programs. An alternative approach to proving Theo-
rem 3.2(a) would be to construct a suitable Owicki-Gries style proof for the library. We
believe that this is doable.

4. Handling 2-State Assertions

The algorithm presented in the previous section can be extended to handle 2-state assertions
via a simple program transformation that allows us to treat 2-state assertions (in the original
program) as single-state assertions (in the transformed program). We augment the set of
local variables with a new variable ṽ for every (local or shared) variable v in the original
program and add a primitive statement LP at the entry of every procedure, whose execution
essentially copies the value of every original variable v to the corresponding new variable ṽ.

Let σ′ denote the projection of a transformed program state σ′ to a state of the original
program obtained by forgetting the values of the new variables. Given a 2-state assertion Φ,

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 15

Library Description

compute.c See Figure 1
reduce.c See Figure 3
increment.c See Figure 4
average.c Two procedures that compute the running sum and average of a

sequence of numbers
device cache.c One procedure that reads data from a device and caches the data

for subsequent reads [7]. The specification requires quantified pred-
icates.

server store.c A library derived from a Java implementation of Simple Authen-
tication and Security Layer (SASL). The library stores security
context objects for sessions on the server side.

Table 1: Benchmarks used in our evaluation.

let Φ̃ denote the single-state assertion obtained by replacing every vin by ṽ. As formalized
by the claim below, the satisfaction of a 2-state assertion Φ by executions in the origi-
nal program corresponds to satisfaction of the single-state assertion Φ̃ in the transformed
program.

Lemma 4.1.

(1) A schedule ξ is feasible in the transformed program iff it is feasible in the original
program.

(2) Let σ′ and σ be the states produced by a particular schedule with the transformed and
original programs, respectively. Then, σ = σ′.

(3) Let π′ and π be the executions produced by a particular schedule with the transformed and
original program, respectively. Then, π satisfies a single-state assertion ϕ iff π′ satisfies
it. Furthermore, π satisfies a 2-state assertion Φ iff π′ satisfies the corresponding one-
state assertion Φ̃.

Synthesizing concurrency control. We now apply the technique discussed in Section 3 to
the transformed program to synthesize concurrency control that preserves the assertions
transformed as discussed above. It follows from the above Lemma that this concurrency
control, used with the original program, preserves both single-state and two-state assertions.

5. Implementation

We have built a prototype implementation of our algorithm. Our implementation takes a
sequential library and its assertions as input. It uses a pre-processing phase to combine the
library with a harness that simulates the execution of any possible sequence of library calls
to get a complete C program. (This program corresponds to the control graph described
in Section 2.) It then uses a verification tool to generate a proof of correctness for the
assertions in this program. We use the predicate-abstraction based software verification
tool Yogi described in [3] to generate the required proofs. We modified the verifier to emit
the proof from the final abstraction, which associates every program point with a boolean
formula over predicates. It then uses the algorithm presented in this paper to synthesize
concurrency control for the library. It utilizes the theorem prover Z3 [5] to identify the
statements in the program whose execution may falsify relevant predicates.

16 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

We used a set of benchmark programs to evaluate our approach (Table 1). We also
applied our technique manually to two real world libraries, a device cache library [7], and
a C implementation of the Simple Authentication and Security Layer (SASL). The proofs
for the device cache library and the SASL library require quantified predicates, which were
beyond the scope of the verifier we used.

In all these programs, the concurrency control scheme we synthesized was identical to
what an experienced programmer would generate. The concurrency control we synthesized
required one lock for all libraries, with the exception of the SASL library, where our solution
uses two locks. Our solutions permit more concurrency as compared to a naive solution
that uses one global lock or an atomic section around the body of each procedure. For
example, in case of the server store library, our scheme generates smaller critical sections
and identifies a larger number of critical sections that acquire different locks as compared
to the default implementation. For these examples, the running time of our approach is
dominated by the time required to generate the proof; the time required for the synthesis
algorithm was negligible.

The source code for all our examples and their concurrent versions are available online
at [1]. Note that our evaluation studies only small programs. We leave a more detailed
evaluation of our approach as future work.

6. Concurrency Control For Linearizability

6.1. The Problem. In the previous section, we showed how to derive concurrency control
to ensure that each procedure satisfies its sequential specification even in a concurrent
execution. However, this may still be too permissive, allowing interleaved executions that
produce counter-intuitive results and preventing compositional reasoning in clients of the
library. E.g., consider the procedure Increment shown in Fig. 2, which increments a shared
variable x by 1. The figure shows the concurrency control derived using our approach to
ensure specification correctness. Now consider a multi-threaded client that initializes x

to 0 and invokes Increment concurrently in two threads. It would be natural to expect
that the value of x would be 2 at the end of any execution of this client. However, this
implementation permits an interleaving in which the value of x at the end of the execution is
1: the problem is that both invocations of Increment individually meet their specifications,
but the cumulative effect is unexpected3.

This is one of the difficulties with using pre/post-condition specifications to reason
about concurrent executions.

One solution to this problem is to apply concurrency control synthesis to the code (li-
brary) that calls Increment. The synthesis can then detect the potential for interference
between the two calls to Increment and prevent them from happening concurrently. An-
other possible solution, which we explore in this section, is for the library to guarantee a
stronger correctness criteria called linearizability [13]. Linearizability gives the illusion that
in any concurrent execution, (the sequential specification of) every procedure of the library
appears to execute instantaneously at some point between its call and return. This illusion
allows clients to reason about the behavior of concurrent library compositionally using its

3 We conjecture that such concerns do not arise when the specification does not refer to global variables.
For instance, the specification for our example in Fig. 1 does not refer to global variables, even though the
implementation uses global variables.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 17

1 int x = 0;

2 //@ensures x == xin + 1 ∧ returns x
3 Increment () {

4 int tmp;

5 acquire(l(x==xin)); tmp = x; release(l(x==xin));

6 tmp = tmp + 1;

7 acquire(l(x==xin)); x = tmp; release(l(x==xin));

8 return tmp;

9 }

Figure 2: A non-linearizable implementation of the procedure Increment

sequential specifications. In this section, we show how our approach presented earlier for
synthesizing a logical concurrency control can be adapted to derive concurrency control
mechanisms that guarantee linearizability.

6.1.1. Linearizability. We now extend the earlier notation to define linearizability. Lineariz-
ability is a property of the library’s externally observed behavior. A library’s interaction
with its clients can be described in terms of a history, which is a sequence of events, where
each event is an invocation event or a response event. An invocation event is a tuple con-
sisting of the procedure invoked, the input parameter values for the invocation, as well as a
unique identifier. A response event consists of the identifier of a preceding invocation event,
as well as a return value. Furthermore, an invocation event can have at most one matching
response event. A complete history has a matching response event for every invocation
event. Note that an execution, as defined in Section 2, captures the internal execution steps
performed during a procedure execution. A history is an abstraction of an execution that
captures only procedure invocation and return steps.

A sequential history is an alternating sequence inv1, r1, · · · , invn, rn of invocation events
and corresponding response events. We abuse our earlier notation and use σ+invi to denote
an entry state corresponding to a procedure invocation consisting of a valuation σ for the
library’s global variables and a valuation invi for the invoked procedure’s formal parameters.
We similarly use σ+ ri to denote a procedure exit state with return value ri. Let σ0 denote
the value of the globals in the library’s initial state. Let Φi denote the specification of
the procedure invoked by invi. A sequential history is legal if there exist valuations σi,
1 ≤ i ≤ n, for the library’s globals such that (σi−1 + invi, σi + ri) |=s Φi for 1 ≤ i ≤ n.

A complete interleaved history H is linearizable if there exists some legal sequential
history S such that (a) H and S have the same set of invocation and response events
and (b) for every return event r that precedes an invocation event inv in H, r and inv
appear in that order in S as well. An incomplete history H is said to be linearizable if
the complete history H ′ obtained by appending some response events and omitting some
invocation events without a matching response event is linearizable.

Finally, a library L is said to be linearizable if every history produced by L is lineariz-
able.

The concept of a linearization point is often used in explanations and proofs of correct-
ness of linearizable algorithms. Informally, a linearization point is a point (or control-flow
edge) inside the procedure such that the procedure appears to execute atomically when it
executes that point. Our eventual goal is to parameterize our synthesis algorithm with a

18 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

linearization point specification (a description of the point or points we wish to serve as
the linearization point). In this paper, however, we treat the procedure entry edge as the
linearization point and will refer to it as the linearization point.

6.1.2. Implementation As A Specification and Logical Serializability. The techniques we
present in this section actually guarantee linearizability with respect to the given sequential
implementation (i.e., treating the sequential implementation as a sequential specification).
In particular, this approach guarantees that the concurrent execution will return the same
values as some sequential execution. (The word atomicity is sometimes used to describe this
behavior.) Such an approach has both advantages as well as disadvantages. The advantage
is that the technique is more broadly applicable, in practice, as it does not require a user-
provided specification. The disadvantage is that, in theory, the sequential implementation
may be more restrictive than the intended specification. Hence, preserving the sequential
implementation behavior may unnecessarily restrict concurrency.

The properties of atomicity and linearizability relate to the externally observed behavior
of the library (i.e., the behavior as seen by clients of the library). The implementation
technique we use also guarantees certain properties about the internal (execution) behavior
of the library, which we explain now.

Recall that an execution, as defined in Section 2, captures the internal execution steps
performed during a procedure execution while a history is an abstraction of an execution
that captures only procedure invocation and return steps.

Recall that every transition σ
(t,e)
 sσ

′ is labelled by a pair (t, e), indicating that the tran-
sition was created by the execution of edge e by thread t. We refer to a pair of the form
(t, e) as a step. A schedule ζ is a sequence of steps `1, · · · , `k. We say that a schedule

`1, · · · , `k is feasible if there exists an execution σ0
`1 cσ1 · · ·

`k cσk, where σ0 is the initial

program state. Given an execution π = σ0
`1 cσ1 · · ·

`k cσk, the sub-schedule of t in π is the
sequence `s1 , · · · , `sn of steps executed by t in π.

A procedure invocation t1 is said to precede another procedure invocation t2 in an
execution if t1 completes before t2 begins.

Two complete executions are said to be observationally-equivalent if they consist of
the same set of procedure invocations and for each procedure invocation the return values
are the same in both executions. An execution π1 is said to be a permutation of another
execution π2 if for every thread (procedure invocation) t the sub-schedule of t in π1 and π2
are the same. An execution π1 is said to be topologically consistent with another execution
π2 if for every pair of procedure invocations t1 and t2, if t1 precedes t2 in π1 then t1 precedes
t2 in π2 as well.

Our goal is to synthesize a concurrency control mechanism that permits only executions
that are observationally-equivalent, topologically consistent, permutations of sequential ex-
ecutions. We note that this concept is similar to various notions of serializability [25] (com-
monly used in database transactions). The new variant we exploit may be thought of as
logical serializability: corresponding points in the compared executions satisfy equivalence
with respect to certain predicates of interest, as determined by the basis.

6.1.3. Terminology. In this section, we will use a modified notion of basis introduced in
Section 3.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 19

The key idea we explore in this paper is that of precisely characterizing what is relevant
to a thread at a particular point and using this information to derive a concurrency control
solution. In the previous sections, we captured the relevant information as an invariant or
set of predicates (the basis). In this section, we will find it necessary to mark certain values
(e.g., the value of a variable at a particular program point) as relevant as well. In order
to seamlessly reason about such relevant values (e.g., of type integer) along with relevant
predicates, we utilize symbolic predicates to encode the relevance of values.

In the sequel, note that we consider two predicates to be equal only if they are syntac-
tically equal.

A symbolic predicate is one that utilizes auxiliary (logical) variables. As an example,
given program variable x and a logical variable w, we will make use of predicates such
as “x = w”. Such symbolic predicates can be manipulated just like normal predicates
(e.g., in computing weakest-precondition). Conceptually, such a symbolic predicate can be
interpreted as a short-hand notation for the (possibly infinite) family of predicates obtained
by replacing the logical variable w by every possible value it can take. Thus, if x and w are
of type T , then the above symbolic predicate represents the set of predicates {x = c | c ∈ T}.
Note that this set of predicates captures the value of x: i.e., we know the value of every
predicate in this set iff we know the value of x. This trick lets us use the symbolic predicate
“x = w” to indicate that the value of x is relevant to a thread (and, hence, should not be
modified by another thread).

Given any predicate ϕ, let ϕ∗ denote the set of predicates it represents (obtained by
instantiating the logical variables in ϕ as explained above). (Thus, for a non-symbolic
predicate ϕ, ϕ∗ = {ϕ}.) We say that ϕ1 and ϕ2 are equivalent if ϕ∗1 = ϕ∗2. E.g., if w
ranges over all integers, then “x = w” and “x = w+ 1” are equivalent predicates. Predicate
equivalence can be used to simplify a set of predicates or a basis. Given a set of predicates
S, let S∗ represent the set of predicates ∪{ϕ∗ | ϕ ∈ S}. If S∗1 = S∗2 , then it is safe, in the
sequel, to replace the set S1 by the set S2 in a basis. This may be critical in creating finite
representations of certain basis.

We say that a predicate ϕ is covered by a set of predicates S if ϕ can be expressed as
a boolean formula over the predicates in S using conjunctions and disjunctions.

Recall that a predicate mapping is a mapping pm from the vertices of the control graph
to a set of predicates.

We say that a predicate mapping pm is wp-closed if for every edge e = u
s−→ v and for

every ϕ ∈ pm(v), (a) If e is not the entry edge of a procedure, then the weakest-precondition
of ϕ with respect to s, wp(s, ϕ) is covered by pm(u), and (b) If e is the edge w → NP from the
quiescent vertex to the entry vertex of P, then ϕ′ is covered by pm(w), where ϕ′ is obtained
by replacing the occurrence of any procedure parameter xi by a new logical variable x′i.

Finally, we say that a predicate mapping is closed if it is wp-closed and if for every vertex
u and every predicate ϕ in pm(u), the negation of ϕ is also in pm(u). The later condition
helps us reuse the algorithm description from Section 3 in spite of some differences in the
context.

Without loss of generality, we assume that each procedure Pj returns the value of a
special local variable retj .

6.2. The Synthesis Algorithm. We now show how our approach can be extended to
guarantee linearizability or atomicity. We use a few tricky cases to motivate the adaptations
we use of our previous algorithm.

20 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

We start by characterizing non-linearizable interleavings permitted by our earlier ap-
proach. We classify the interleavings based on the nature of linearizability violations they
cause. For each class of interleavings, we describe an extension to our approach to generate
additional concurrency control to prohibit these interleavings. Finally, we prove correctness
of our approach by showing that all interleavings we permit are linearizable.

6.2.1. Delayed Falsification. The first issue we address, as well as the solution we adopt,
are not surprising from a conventional perspective. (This extension is, in fact, the analogue
of two-phase locking: i.e., the trick of acquiring all locks before releasing any locks to avoid
interference.) Informally, the problem with the Increment example can be characterized as
“dirty reads” and “lost updates”: the second procedure invocation executes its linearization
point later than the first procedure invocation but reads the original value of x, instead
of the value produced by the the first invocation. Dually, the update done by the first
procedure invocation is lost, when the second procedure invocation updates x. From a
logical perspective, the second invocation relies on the invariant x == xin early on, and
the first invocation breaks this invariant later on when it assigns to x (at a point when the
second invocation no longer relies on the invariant). This prevents us from reordering the
execution to construct an equivalent sequential execution (while preserving the proof). To
achieve linearizability, we need to avoid such “delayed falsification”.

The extension we now describe prevents such interference by ensuring that instructions
that may falsify predicates and occur after the linearization point appear to execute atomi-
cally at the linearization point. We achieve this by modifying the strategy to acquire locks
as follows.

• We generalize the earlier notion of may-falsify. We say that a path may-falsify a predicate
ϕ if some edge in the path may-falsify ϕ. We say that a predicate ϕ may-be-falsified-after
vertex u if there exists some path from u to the exit vertex of the procedure that does
not contain any linearization point and may-falsify ϕ.
• Let mf be a predicate map such that for any vertex u, mf(u) includes any predicate that

may-be-falsified-after u.

• We generalize the original scheme for acquiring locks. We augment every edge e = u
S−→ v

as follows:
(1) ∀ ` ∈ lm(mf(v))\lm(mf(u)), add an “acquire(`)” before S
(2) ∀ ` ∈ lm(mf(u))\lm(mf(v)), add an “release(`)” after S

This extension suffices to produce a linearizable implementation of the example in Fig. 2.

6.2.2. Return Value Interference. We now focus on interference that can affect the actual
value returned by a procedure invocation, leading to non-linearizable executions.

Consider procedures IncX and IncY in Fig. 3, which increment variables x and y re-
spectively. Both procedures return the values of x and y. However, the postconditions of
IncX (and IncY) do not specify anything about the final value of y (and x respectively). Let
us assume that the linearization points of the procedures are their entry points. Initially,
we have x = y = 0. Consider the following interleaving of a concurrent execution of the two
procedures. The two procedures execute the increments in some order, producing the state
with x = y = 1. Then, both procedures return (1, 1). This execution is non-linearizable
because in any legal sequential execution, the procedure executing second is obliged to re-
turn a value that differs from the value returned by the procedure executing first. The

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 21

int x, y;

IncX() {
acquire(lx==xin);

x = x + 1;

(ret11,ret12)=(x,y);
release(lx==xin);

}
IncY() {

acquire(ly==yin);

y = y + 1;

(ret21,ret22)=(x,y);
release(ly==yin);

}

(a)

int x, y;

@ensures x = xin + 1

@returns (x, y)

IncX() {
[ret′11==x+1 ∧ ret′12==y]
LP : x = xin

[x==xin ∧ ret′11==x+1 ∧ ret′12=y]
x = x + 1;

[x==xin+1 ∧ ret′11==x ∧ ret′12= y]

(ret11,ret12)=(x,y);
[x==xin+1 ∧ ret11==ret

′
11

∧ ret12==ret
′
12]

}

(b)

int x, y;

IncX() {
acquire(lmerged);
x = x+1;

(ret11,ret12)=(x,y);
release(lmerged);

}
IncY() {
acquire(lmerged);
y = y+1;

(ret21,ret22)=(x,y);
release(lmerged);

}

(c)

Figure 3: An example illustrating return value interference. Both procedures
return (x,y). retij refers to the jth return variable of the ith proce-
dure. Figure 3(a) is a non-linearizable implementation synthesized
using the approach described in Section 3. Figure 3(b) shows the
extended proof of correctness of the procedure IncX and Figure 3(c)
shows the linearizable implementation.

left column in Figure 3 shows the concurrency control derived using our approach with
previously described extensions. This is insufficient to prevent the above interleaving. This
interference is allowed because the specification for IncX allows it to change the value of y
arbitrarily; hence, a concurrent modification to y by any other procedure is not seen as a
hindrance to IncX.

To prohibit such interferences within our framework, we need to determine whether
the execution of a statement s can potentially affect the return-value of another procedure
invocation. We do this by computing a predicate φ(ret ′) at every program point u that
captures the relation between the program state at point u and the value returned by the
procedure invocation eventually (denoted by ret ′). We then check if the execution of a
statement s will break predicate φ(ret ′), treating ret ′ as a free variable, to determine if the
statement could affect the return value of some other procedure invocation.

Formally, we assume that each procedure returns the value of a special variable ret .
(Thus, “return exp” is shorthand for “ret = exp”.) We introduce a special auxiliary
variable ret ′. We say that a predicate map pm covers return statements if for every edge
u → v labelled by a return statement “return exp” the set pm(u) covers the predicate
ret ′ == ret . (See the earlier discussion in Section 6.1.3 about such symbolic predicates and
how they encode the requirement that the value of ret at a return statement is relevant and
must be preserved.)

By applying our concurrency-control synthesis algorithm to a closed basis that covers
return statements, we can ensure that no return-value interference occurs.

The middle column in Figure 3 shows the augmented sequential proof of correctness of
IncX. The concurrency control derived using our approach starting with this proof is shown
in the third column of Fig. 3. The lock lmerged denotes a lock obtained by merging locks
corresponding to multiple predicates simultaneously acquired/released. It is easy to see
that this implementation is linearizable. Also note that if the shared variables y and x were

22 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

1 int x, y;

2 //@ensures y = yin + 1

3 IncY() {

4 [true] LP : yin = y

5 [y == yin] y = y + 1;

6 [y == yin + 1]

7 }

1 //@ensures x < y

2 ReduceX () {

3 [true] LP
4 [true] if (x ≥ y) {

5 [true] x = y - 1;

6 }

7 [x < y]

8 }

Figure 4: An example illustrating interference in control flow. Each line is annotated (in
square braces) with a predicate the holds at that program point.

not returned by procedures IncX and IncY respectively, we will derive a locking scheme
in which accesses to x and y are protected by different locks, allowing these procedures to
execute concurrently.

6.2.3. Control Flow Interference. An interesting aspect of our scheme is that it permits
interference that alters the control flow of a procedure invocation if it does not cause the
invocation to violate its specification. Consider procedures ReduceX and IncY shown in
Fig. 4. The specification of ReduceX is that it will produce a final state where x < y, while
the specification of IncY is that it will increment the value of y by 1. ReduceX meets its
specification by setting x to be y − 1, but does so only if x ≥ y.

Now consider a client that invokes ReduceX and IncY concurrently from a state where
x = y = 0. Assume that the ReduceX invocation enters the procedure. Then, the invocation
of IncY executes completely. The ReduceX invocation continues, and does nothing since
x < y at this point.

Figure 4 shows a sequential proof and the concurrency control derived by the scheme
so far, assuming that the linearization points are at the procedure entry. A key point to
note is that ReduceX’s proof needs only the single predicate x < y. The statement y = y+1
in IncY does not falsify the predicate x < y; hence, IncY does not acquire the lock for this
predicate. This locking scheme permits IncY to execute concurrently with ReduceX and
affect its control flow. While our approach guarantees that this control flow interference
will not cause assertion violations, proving linearizability in the presence of such control
flow interference, in the general case, is challenging (and an open problem).

We now describe how our technique can be extended to prevent control flow interference,
which suffices to guarantee linearizability.

We ensure that interference by one thread does not affect the execution path another
thread takes. We say that a basis pm covers the branch conditions of the program if for

every branch edge u
s−→ v, the set pm(u) covers the assume condition in s. If we synthesize

concurrency control using a closed basis pm that covers the branch conditions, we can ensure
that no control-flow interference happens.

In the current example, this requires predicate x ≥ y to be added to the basis for
ReduceX. As a result, ReduceX will acquire lock lx≥y at entry, while IncY will acquire the
same lock at its linearization point and release the lock after the statement y = y+ 1. It is
easy to see that this implementation is linearizable.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 23

6.2.4. The Complete Schema. In summary, our schema for synthesizing concurrency control
that guarantees linearizability is as follows.

First, we determine a closed basis for the program that covers all return statements and
branch conditions in the program. (Such a basis is the analogue of the proof and basis used
in Section 3. An algorithm for generating such a basis is beyond the scope of this paper.
Such a basis can be computed by iteratively computing weakest-preconditions, but, in the
general case, subsumption and equivalence among predicates will need to be utilized to
simplify basis sets to ensure termination.) We then apply the extended concurrency control
synthesis algorithm described in Section 6.2.1.

6.3. Correctness. The extensions described above to the algorithm of Sections 3 and 4
for synthesizing concurrency control are sufficient to guarantee linearizability, as we show
in this section.

Let σ be a program state. We define TBP(σ, t) to be the set {ϕ ∈ (pm(u))∗ | (σ, t) |=c ϕ}
where t’s program-counter in state σ is u. (See Section 6.1.3 for the definition of S∗ for any
set of predicates S.)

Lemma 6.1. Let pm be a wp-closed predicate map. Consider transitions σ1
(t,e)
 cσ2 and

σ3
(t,e)
 cσ4. If TBP(σ1, t) ⊇ TBP(σ3, t), then TBP(σ2, t) ⊇ TBP(σ4, t).

Proof. Let e be the edge u
S−→ v. Note that for every predicate ϕ ∈ pm(v), the weakest-

precondition of ϕ with respect to the statement S can be expressed in terms of the predicates
in pm(u) using conjunction and disjunction (by definition of a wp-closed predicate map).
The result follows.

Consider any concurrent execution π1 produced by a schedule ξ. We assume, without
loss of generality, that every procedure invocation is executed by a distinct thread. Let
t1, . . . , tk denote the set of threads which complete execution in the given schedule, ordered
so that ti executes its linearization point before ti+1. We show that ξ is linearizable by
showing that ξ is equivalent to a sequential execution of the specifications of the threads
t1, . . . , tk executed in that order.

Let ξi denote a projection of schedule ξ consisting only of execution steps by thread ti.
Let ζ denote the schedule ξ1 · · · ξk.

Lemma 6.2. ζk is a feasible schedule. Furthermore, for any corresponding execution steps

σj
(t,e)
 cσj+1 and σ′k

(t,e)
 cσ

′
k+1 of the two executions, we have TBP(σj , t) ⊇ TBP(σ′k, t).

Proof. Proof by induction over the execution steps of ζ.
The claim is trivially true for the first step of ζ, since the initial state in the same in

both executions.

Now, consider any pair of “candidate” successive execution steps σ′k−1
(t,e′)
 c σ

′
k

(t,e)
 cσ

′
k+1 of

ζ. That is, we assume, from our inductive hypothesis, that the first execution step above is
feasible, but we need to establish that the second step is a feasible execution step.

Let σm−1
(t,e′)
 c σm and σj

(t,e)
 cσj+1 be the two corresponding execution steps in the original

execution.
Our inductive hypothesis guarantees that TBP(σm, t) ⊇ TBP(σ′k, t). But any concur-

rent execution is guaranteed to be interference-free. Hence, it follows that TBP(σj , t) ⊇
TBP(σm, t). Hence, it follows that TBP(σj , t) ⊇ TBP(σ′k, t).

24 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

Now, if e is a conditional branch statement labelled with the statement “assume ϕ”,
then we must have (σj , t) |=c ϕ. It follows that (σ′k, t) |=c ϕ. (This follows because we use
a basis that covers all branch conditions.) Thus, the second candidate execution step of ζ
is indeed a feasible execution step.

It then follows from Lemma 6.1 that TBP(σj+1, t) ⊇ TBP(σ′k+1, t).

Now, consider any pair of successive execution steps σ′k−1
(th−1,e

′)
 c σ′k

(th,e) c σ
′
k+1 of ζ. Thus,

we consider the first step executed by thread th after thread th−1 executes its last step.
Note that TBP(σ′k, th−1) = TBP(σ′k, th) (since none of the basis predicates at the

quiescent vertex involve thread-local variables).

Let σp
(th−1,e)
 c σp+1 denote the corresponding, last, execution step performed by th−1 in

the interleaved execution. Let σj
(th,e) c σj+1 denote the corresponding, first, execution step

performed by th in the interleaved execution. By the inductive hypothesis, TBP(σp, th−1) ⊇
TBP(σ′k, th−1).

Note that in the interleaved execution p may be less than or greater than j: th−1 may
or may not have completed execution by the time th performs its first execution step. Yet,
we can establish that TBP(σj , th) ⊇ TBP(σ′k, th−1). This is because no thread can execute
a step that will change the value of any predicate in TBP(σp, th−1) between the last step of
th−1 and the first step of th (no matter how these two steps are ordered during execution).

Lemma 6.3. For t ∈ {t1, · · · , tk}, the value returned by procedure invocation t in π1 is the
same as the value returned by t in the sequential execution π2 corresponding to schedule ζ.

Proof. Let σj
(t,e)
 cσj+1 and σ′k

(t,e)
 cσ

′
k+1 denote the execution of the return statements by t in

π1 and π2 respectively. it follows from Lemma 6.2 that TBP(σj , t) ⊇ TBP(σ′k, t). Suppose
that t returns a value c in the sequential execution π2. Note that we use a basis that covers
all return statements. Hence, the predicate c == ret must be in TBP(σ′k, t). It follows that
c == ret must be in TBP(σj , t) as well. Hence, t returns c in π1 as well.

Theorem 6.4. Given a library L that is totally correct with respect to a given sequential

specification, the library L̂ generated by our algorithm is linearizable with respect to the given
specification.

Proof. Follows immediately from Lemma 6.3.

The above theorem requires total correctness of the library in the sequential setting.
E.g., consider a procedure P with a specification ensures x==0. An implementation that
sets x to be 1, and then enters an infinite loop is partially correct with respect to this spec-
ification (but not totally correct). In a concurrent setting, this can lead to non-linearizable
behavior, since another concurrent thread can observe that x has value 1, which is not a
legally observable value after procedure P completes execution.

6.4. Discussion. In this section, we have presented a logical approach to synthesizing
concurrency control to ensure linearizability/atomicity. In particular, we use predicates to
describe what is relevant to ensure correctness (or desired properties). Predicates enable
us to describe relevance in a more fine-grained fashion, creating opportunities for more
concurrency.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 25

We believe that this approach is promising and that there is significant scope for im-
proving our solution and several interesting research directions worth pursuing. Indeed,
some basic optimizations to the scheme presented may be critical to getting reasonable so-
lutions. One example is an optimization relating to frame conditions, hinted at in Section 2.
As an example, assume that x > 0 is an invariant that holds true in between procedure
invocations in a sequential execution. (Thus, this is a library invariant.) A procedure that
neither reads or writes x will, nevertheless, have the invariant x > 0 at every program point
(to indicate that it never breaks this invariant). Our solution, as sketched, will require
the procedure to acquire a lock on this predicate and hold it during the entire procedure.
However, this is not really necessary, and can be optimized away. In general, the invariant
or the basis at any program point may be seen as consisting of two parts, the frame and
the footprint. The footprint relates to predicates that are relevant and/or may be modified
by the procedure, while the frame simply indicates predicates that are irrelevant and left
untouched by the procedure. We need to consider only the footprint in synthesizing the
concurrency control solution. We leave fleshing out the details of such optimizations as
future work.

We conjecture that the extensions presented in this section to avoid control-flow inter-
ference is not necessary to ensure linearizability. Indeed, note that if we can ensure that
any concurrent execution is observationally equivalent and topologically equivalent to some
sequential execution, this is sufficient. Our current technique ensures that the concurrent
execution is also a permutation of the sequential execution: i.e., every procedure invocation
follows the same execution path in both the concurrent and sequential execution. However,
our current proof of correctness relies on this property. Relaxing this requirement is an
interesting open problem.

We believe that our technique can be adapted in a straight-forward fashion to work
with linearization points other than the procedure entry (as long as the linearization point
satisfies certain constraints). Different linearization points can potentially produce different
concurrency control solutions.

We also believe that with various of these improvements, we can synthesize the so-
lution presented in Fig. 1 as a linearizable and atomic implementation, starting with no
specification whatsoever.

7. Related Work

Synthesizing Concurrency Control: Vechev et al. [24] present an approach for synthe-
sizing concurrency control for a concurrent program, given a specification in the form of
assertions in the program. This approach, Abstraction Guided Synthesis, generalizes the
standard counterexample-guided abstraction refinement (CEGAR) approach to verification
as follows. The algorithm attempts to prove that the concurrent program satisfies the de-
sired assertions. If this fails, an interleaved execution that violates an assertion is identified.
This counterexample is used to either refine the abstraction (as in CEGAR) or to restrict
the program by adding some atomicity constraints. An atomicity constraint indicates that
a context-switch should not occur at a given program point (thus requiring the statements
immediately preceding and following the program point to be in an atomic-block) or is a
disjunction of such constraints. Having thus refined either the abstraction or the program,
the algorithm repeats this process.

26 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

Our work has the same high-level goal and philosophy as Vechev et al.: derive a con-
currency control solution automatically from a specification of the desired correctness prop-
erties. However, there are a number of differences between the two approaches. Before we
discuss these differences, it is worth noting that the concrete problem addressed by these
two papers are somewhat different: while our work focuses on making a sequential library
safe for concurrent clients, Vechev et al. focus on adding concurrency control to a given
concurrent program to make it safe. Thus, neither technique can be directly applied to the
other problem, but we can still observe the following points about the essence of these two
approaches.

Both approaches are similar in exploiting verification techniques for synthesizing con-
currency control. However, our approach decouples the verification step from the synthesis
step, while Vechev et al. present an integrated approach that combines both. Our verifi-
cation step requires only sequential reasoning, while the Vechev et al. algorithm involves
reasoning about concurrent (interleaved) executions. Specifically, we exploit the fact that
a sequential proof indicates what properties are critical at different program points (for a
given thread), which allows us to determine whether the execution of a particular statement
(by another thread) constitutes (potentially) undesirable interference.

We present a locking-based solution to concurrency control, while Vechev et al. present
the solution in terms of atomic regions. Note that if our algorithm is parameterized to use
a single lock (i.e., to map every predicate to the same lock), then the generated solution is
effectively one based on atomic regions.

Raza et al. [19] present an approach for automatically parallelizing a program that
makes use of a separation logic proof. This approach exploits the separation logic based
proof to identify whether candidate statements for parallelization access disjoint sets of
locations. Like most classical approaches to automatic parallelization, this approach too
relies on a data-based notion of interference, while our approach identifies a logical notion
of interference.

Several papers [9, 4, 8, 16, 14, 21] address the problem of inferring lock-based synchro-
nization for atomic sections to guarantee atomicity. These existing lock inference schemes
identify potential conflicts between atomic sections at the granularity of data items and
acquire locks to prevent these conflicts, either all at once or using a two-phase locking ap-
proach. Our approach is novel in using a logical notion of interference (based on predicates),
which can permit more concurrency.

[20] describes a sketching technique to add missing synchronization by iteratively ex-
ploring the space of candidate programs for a given thread schedule, and pruning the search
space based on counterexample candidates. [15] uses model-checking to repair errors in a
concurrent program by pruning erroneous paths from the control-flow graph of the inter-
leaved program execution. [23] is a precursor to [24], discussed above, that considers the
tradeoff between increasing parallelism in a program and the cost of synchronization. This
paper allows users to specify limitations on what may be used as the guard of conditional
critical regions (the synchronization mechanism used in the paper), thus controlling the
costs of synchronization. [6] allows users to specify synchronization patterns for critical
sections, which are used to infer appropriate synchronization for each of the user-identified
region. Vechev et al. [22] address the problem of automatically deriving linearizable ob-
jects with fine-grained concurrency, using hardware primitives to achieve atomicity. The
approach is semi-automated, and requires the developer to provide algorithm schema and
insightful manual transformations. Our approach differs from all of these techniques in

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 27

exploiting a proof of correctness (for a sequential computation) to synthesize concurrency
control that guarantees thread-safety.

Verifying Concurrent Programs: Our proposed style of reasoning is closely related
to the axiomatic approach for proving concurrent programs of Owicki & Gries [18]. While
they focus on proving a concurrent program correct, we focus on synthesizing concurrency
control. They observe that if two statements do not interfere, the Hoare triple for their
parallel composition can be obtained from the sequential Hoare triples. Our approach
identifies statements that may interfere and violate the sequential Hoare triples, and then
synthesizes concurrency control to ensure that sequential assertions are preserved by parallel
composition.

Prior work on verifying concurrent programs [17] has also shown that attaching in-
variants to resources (such as locks and semaphores) can enable modular reasoning about
concurrent programs. Our paper turns this around: we use sequential proofs (which are
modular proofs, but valid only for sequential executions) to identify critical invariants and
create locks corresponding to such invariants and augment the program with concurrency
control that enables us to lift the sequential proof into a valid proof for the concurrent
program.

8. Limitations, Extensions, and Future Work

In this paper, we have explored the idea that proofs of correctness for sequential compu-
tations can yield concurrency control solutions for use when the same computations are
executed concurrently. We have adopted simple solutions in a number of dimensions in
order to focus on this central idea. A number of interesting ideas and problems appear
worth pursuing in this regard, as explained below.

Procedures. The simple programming language presented in Section 2 does not include
procedures. The presence of procedure calls within the library gives rise to a different set
of challenges. Verification tools often compute procedure summaries to derive the overall
proof of correctness. Our approach could use summaries as proxies for procedure calls and
derives concurrency control schemes where locks are acquired and released only in the top-
level procedures. A more aggressive approach could analyze the proofs bottom up and infer
nested concurrency control schemes where locks are acquired and released in procedures
that subsume the lifetimes of the corresponding predicates.

Relaxed Memory Models. The programming language semantics we use and our proofs
assume sequential consistency. We believe it should be possible to extend the notion of
logical interference to relaxed memory models. Under a relaxed model, reads may return
more values compared to sequential consistent executions. Therefore, we may have to
consider these additional behaviors while determining if a statement can interfere with (the
proof of) a concurrent thread. We leave this extension for future work.

Optimistic Concurrency Control. Optimistic concurrency control is an alternative to pes-
simistic concurrency control (such as lock-based techniques). While we present a lock-based
pessimistic concurrency control mechanism, it would be interesting to explore the possibil-
ity of optimistic concurrency control mechanisms that exploit a similar weaker notion of
interference.

28 J. DESHMUKH, G. RAMALINGAM, V.-P. RANGANATH, AND K. VASWANI

Choosing Good Solutions. This paper presents a space of valid locking solutions that guar-
antee the desired properties. Specifically, the locking solution generated is dependent on
several factors: the sequential proof used, the basis used for the proof, the mapping from
basis predicates to locks, the linearization point used, etc. Given a metric on solutions,
generating a good solution according to the given metric is a direction for future work.
E.g., one possibility is to evaluate the performance of candidate solutions (suggested by our
framework) using a suitable test suite to choose the best one. Integrating the concurrency
control synthesis approach with the proof generation approach, as done by [24], can also
lead to better solutions, if the proofs themselves can be refined or altered to make the
concurrency control more efficient.

Fine-Grained Locking. Fine-grained locking refers to locking disciplines that use an un-
bounded number of locks and associate each lock with a small number of shared objects
(typically one). Programs that use fine-grained locking often scale better because of re-
duced contention for locks. In its current form, the approach presented in this paper does
not derive fine-grained locking schemes. The locking schemes we synthesize associate locks
with predicates and the number of such predicates is statically bounded. Generalizing our
approach to infer fine-grained locking from sequential proofs of correctness remains an open
and challenging problem.

Lightweight Specifications. Our technique relies on user-provided specifications for the li-
brary. Recently, there has been interest in lightweight annotations that capture commonly
used correctness conditions in concurrent programs (such as atomicity, determinism, and
linearizability). As we discuss in Section 1, we believe that there is potential for profitably
applying our technique starting with such lightweight specifications (or even no specifica-
tions).

Class invariants. In our approach, a thread holds a lock on a predicate from the point the
predicate is established to the point after which the predicate is no longer used. While this
approach ensures correctness, it may often be too pessimistic. For example, it is often the
case that a library is associated with class/object invariants that characterize the stable
state of the library’s objects. Procedures in the library may temporarily break and then
re-establish the invariants at various points during their invocation. If class invariants are
known, it may be possible to derive more efficient concurrency control mechanisms that
release locks on the class invariants at points where the invariants are established and
re-acquire these locks when the invariants are used. Such a scheme works only when all
procedures “co-operate” and ensure that the locks associated with the invariants are released
only when the invariant is established.

References

[1] WYPIWYG examples. http://research.microsoft.com/en-us/projects/wypiwyg/ wypi-
wyg examples.zip, June 2009.

[2] T. Ball and S. K. Rajamani. Bebop: A symbolic model checker for Boolean programs. In SPIN 00:
SPIN Workshop, pages 113–130. 2000.

[3] Nels E. Beckman, Aditya V. Nori, Sriram K. Rajamani, Robert J. Simmons, SaiDeep Tetali, and
Aditya V. Thakur. Proofs from tests. IEEE Trans. Software Eng., 36(4):495–508, 2010.

[4] Sigmund Cherem, Trishul Chilimbi, and Sumit Gulwani. Inferring locks for atomic sections. In Proc. of
PLDI, 2008.

LOGICAL CONCURRENCY CONTROL FROM SEQUENTIAL PROOFS 29

[5] Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In TACAS, pages
337–340, 2008.

[6] Xianghua Deng, Matthew B. Dwyer, John Hatcliff, and Masaaki Mizuno. Invariant-based specification,
synthesis, and verification of synchronization in concurrent programs. In Proc. of ICSE, pages 442–452,
2002.

[7] Tyfun Elmas, Serdar Tasiran, and Shaz Qadeer. A calculus of atomic sections. In Proc. of POPL, 2009.
[8] Michael Emmi, Jeff Fischer, Ranjit Jhala, and Rupak Majumdar. Lock allocation. In Proc. of POPL,

2007.
[9] Cormac Flanagan and Stephen N. Freund. Automatic synchronization correction. In Proc. of SCOOL,

2005.
[10] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and Sriram K. Rajamani.

Synergy: A new algorithm for property checking. In Proc. of FSE, November 2006.
[11] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Proc. of POPL, pages

58–70, 2002.
[12] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Abstractions from

proofs. In Proc. of POPL, pages 232–244, 2004.
[13] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condition for concurrent

objects. Proc. of ACM TOPLAS, 12(3):463–492, 1990.
[14] Michael Hicks, Jeffrey S. Foster, and Polyvios Pratikakis. Lock inference for atomic sections. In First

Workshop on Languages, Compilers, and Hardware Support for Transactional Computing, 2006.
[15] Muhammad Umar Janjua and Alan Mycroft. Automatic correcting transformations for safety property

violations. In Proc. of Thread Verification, pages 111–116, 2006.
[16] Bill McCloskey, Feng Zhou, David Gay, and Eric A. Brewer. Autolocker: Synchronization inference for

atomic sections. In Proc. of POPL, 2006.
[17] Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci., 375(1-3):271–307,

2007.
[18] Susan Owicki and David Gries. Verifying properties of parallel programs : An axiomatic approach. In

Proc. of CACM, 1976.
[19] Mohammad Raza, Cristiano Calcagno, and Philippa Gardner. Automatic parallelization with separation

logic. In ESOP, pages 348–362, 2009.
[20] Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concurrent data

structures. In Proc. of PLDI, pages 136–148, 2008.
[21] Mandana Vaziri, Frank Tip, and Julian Dolby. Associating synchronization constraints with data in an

object-oriented language. In Proc. of POPL, pages 334–345, 2006.
[22] Martin Vechev and Eran Yahav. Deriving linearizable fine-grained concurrent objects. In In Proc. of

PLDI, pages 125–135, 2008.
[23] Martin Vechev, Eran Yahav, and Greta Yorsh. Inferring synchronization under limited observability. In

Proc. of TACAS, 2009.
[24] Martin T. Vechev, Eran Yahav, and Greta Yorsh. Abstraction-guided synthesis of synchronization. In

POPL, pages 327–338, 2010.
[25] Gerhard Weikum and Gottfried Vossen. Transactional Information Systems: Theory, Algorithms, and

the Practice of Concurrency Control. Morgan Kaufmann, 2001.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	Part I: Ensuring Assertions In Concurrent Executions
	Part II: Ensuring Linearizability
	Contributions

	2. The Problem
	2.1. The Sequential Setting
	2.2. The Concurrent Setting
	2.3. Goals

	3. Preserving Single-State Assertions
	3.1. Algorithm Overview
	3.2. Complete Schema
	3.3. Correctness

	4. Handling 2-State Assertions
	5. Implementation
	6. Concurrency Control For Linearizability
	6.1. The Problem
	6.2. The Synthesis Algorithm
	6.3. Correctness
	6.4. Discussion

	7. Related Work
	8. Limitations, Extensions, and Future Work
	References

