
Logical Methods in Computer Science
Vol. 4 (3:12) 2008, pp. 1–28
www.lmcs-online.org

Submitted Sep. 3, 2007
Published Sep. 26, 2008

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA WITH

ONE OR TWO CLOCKS

MARCIN JURDZIǸSKI a, FRANÇOIS LAROUSSINIE b, AND JEREMY SPROSTON c

a Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
e-mail address: mju@dcs.warwick.ac.uk

b LIAFA, Université Paris 7 & CNRS, France
e-mail address: francoisl@liafa.jussieu.fr

c Dipartimento di Informatica, Università di Torino, 10149 Torino, Italy
e-mail address: sproston@di.unito.it

Abstract. Probabilistic timed automata are an extension of timed automata with dis-
crete probability distributions. We consider model-checking algorithms for the subclasses
of probabilistic timed automata which have one or two clocks. Firstly, we show that
Pctl probabilistic model-checking problems (such as determining whether a set of tar-
get states can be reached with probability at least 0.99 regardless of how nondetermin-
ism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are
EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show
that, for one-clock probabilistic timed automata, the model-checking problem for the prob-
abilistic timed temporal logic Ptctl is EXPTIME-complete. However, the model-checking
problem for the subclass of Ptctl which does not permit both punctual timing bounds,
which require the occurrence of an event at an exact time point, and comparisons with
probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed
automata.

1. Introduction

Model checking is an automatic method for guaranteeing that a mathematical model
of a system satisfies a formally-described property [CGP99]. Many real-life systems, such
as multimedia equipment, communication protocols, networks and fault-tolerant systems,
exhibit probabilistic behaviour. This leads to the study of model checking of probabilistic
models based on Markov chains or Markov decision processes [Var85, HJ94, CY95, BdA95,

1998 ACM Subject Classification: D.2.4, F.4.1, G.3.
Key words and phrases: Probabilistic model checking, timed automata, probabilistic systems, temporal

logic.
∗ A preliminary version of this paper appeared in the Proceedings of the 13th International Conference on

Tools and Algorithms for Construction and Analysis of Systems (TACAS’07).
a Partly supported by EPSRC project EP/E022030/1.
b Partly supported by project QUASIMODO (FP7-ICT).
c Partly supported by EEC project 027513 Crutial.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (3:12) 2008

c© M. Jurdziǹski, F. Laroussinie, and J. Sproston
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

Table 1: Complexity results for model checking probabilistic timed automata

One clock Two clocks
Reachability, Pctl P-complete EXPTIME-complete

Ptctl
0/1[≤,≥] P-complete EXPTIME-complete

Ptctl
0/1 EXPTIME-complete EXPTIME-complete

Ptctl[≤,≥] P-hard, in EXPTIME EXPTIME-complete
Ptctl EXPTIME-complete EXPTIME-complete

dA97a, BK98]. Similarly, it is common to observe complex real-time behaviour in systems.
Model checking of (non-probabilistic) continuous-time systems against properties of timed
temporal logics, which can refer to the time elapsed along system behaviours, has been
studied extensively in, for example, the context of timed automata [ACD93, AD94], which
are automata extended with clocks that progress synchronously with time. Finally, certain
systems exhibit both probabilistic and timed behaviour, leading to the development of
model-checking algorithms for such systems [ACD91, HJ94, dA97a, KNSS02, BHHK03,
LS05, AB06, BCH+07, DHS07].

In this paper, we aim to study model-checking algorithms for probabilistic timed au-

tomata [Jen96, KNSS02], which can be regarded as a variant of timed automata extended
with discrete probability distributions, or (equivalently) Markov decision processes extended
with clocks. Probabilistic timed automata have been used to model systems such as the
IEEE 1394 root contention protocol, the backoff procedure in the IEEE 802.11 Wireless
LANs, and the IPv4 link local address resolution protocol [KNPS06]. The temporal logic
that we use to describe properties of probabilistic timed automata is Ptctl (Probabilistic
Timed Computation Tree Logic) [KNSS02]. The logic Ptctl includes operators that can
refer to bounds on exact time and on the probability of the occurrence of events. For exam-
ple, the property “a request is followed by a response within 5 time units with probability
0.99 or greater” can be expressed by the Ptctl property request ⇒ P≥0.99(F≤5response).
The logic Ptctl extends the probabilistic temporal logic Pctl [HJ94, BdA95], and the
real-time temporal logic Tctl [ACD93].

In the non-probabilistic setting, timed automata with one clock have recently been
studied extensively [LMS04, LW05, ADOW05]. In this paper we consider the subclasses of
probabilistic timed automata with one or two clocks. While probabilistic timed automata
with a restricted number of clocks are less expressive than their counterparts with an arbi-
trary number of clocks, they can be used to model systems with simple timing constraints,
such as probabilistic systems in which the time of a transition depends only on the time
elapsed since the last transition. Conversely, one-clock probabilistic timed automata are
more natural and expressive than Markov decision processes in which durations are asso-
ciated with transitions (for example, in [dA97b, LS05]). We note that the IEEE 802.11
Wireless LAN case study has two clocks [KNPS06], and that an abstract model of the
IEEE 1394 root contention protocol can be obtained with one clock [Sto02].

After introducing probabilistic timed automata and Ptctl in Section 2 and Section 3,
respectively, in Section 4 we show that model-checking properties of Pctl, such as the
property P≥0.99(Ftarget) (“a set of target states is reached with probability at least 0.99
regardless of how nondeterminism is resolved”), is PTIME-complete for one clock prob-
abilistic timed automata, which is the same complexity as for probabilistic reachability

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 3

properties on (untimed) Markov decision processes [PT87]. We also show that, in gen-
eral, model checking of Ptctl on one clock probabilistic timed automata is EXPTIME-
complete. However, inspired by the efficient algorithms obtained for non-probabilistic one
clock timed automata [LMS04], we also show that, restricting the syntax of Ptctl to the
sub-logic in which (1) punctual timing bounds and (2) comparisons with probability bounds
other than 0 or 1, are disallowed, results in a PTIME-complete model-checking problem.
In Section 5, we show that reachability properties with probability bounds of 0 or 1 are
EXPTIME-complete for probabilistic timed automata with two or more clocks, implying
EXPTIME-completeness of all the model-checking problems that we consider for this class
of models. Our complexity results are summarized in Table 1, where 0/1 denotes the sub-
logics of Ptctl with probability bounds of 0 and 1 only, and [≤,≥] denotes the sub-logics of
Ptctl in which punctual timing bounds are disallowed. The EXPTIME-hardness results
are based on the concept of countdown games, which are two-player games operating in
discrete time in which one player wins if it is able to make a state transition after exactly

c time units have elapsed, regardless of the strategy of the other player. We show that the
problem of deciding the winning player in countdown games is EXPTIME-complete. We
believe that countdown games are of independent interest, and note that they have been
used to show EXPTIME-hardness of model checking punctual timing properties of timed
concurrent game structures [LMO06]. Finally, in Section 6, we consider the application of
the forward reachability algorithm of Kwiatkowska et al. [KNSS02] to one-clock probabilis-
tic timed automata, and show that the algorithm computes the exact probability of reaching
a certain state set. This result is in contrast to the case of probabilistic timed automata
with an arbitrary number of clocks, for which the application of the forward reachability
algorithm results in an upper bound on the maximal probability of reaching a state set,
rather than in the exact maximal probability. Note that, throughout the paper, we restrict
our attention to probabilistic timed automata in which positive durations elapse in all loops
of the system.

2. Probabilistic Timed Automata

2.1. Preliminaries. We use R≥0 to denote the set of non-negative real numbers, Q to
denote the set of rational numbers, N to denote the set of natural numbers, and AP to
denote a set of atomic propositions. A (discrete) probability distribution over a countable
set Q is a function µ : Q→ [0, 1] such that

∑

q∈Q µ(q) = 1. For a function µ : Q→ R≥0 we

define support(µ) = {q ∈ Q | µ(q) > 0}. Then for an uncountable set Q we define Dist(Q)
to be the set of functions µ : Q → [0, 1], such that support(µ) is a countable set and µ
restricted to support(µ) is a (discrete) probability distribution. In this paper, we make the
additional assumption that distributions assign rational probabilities only; that is, for each
µ ∈ Dist(Q) and q ∈ Q, we have µ(q) ∈ [0, 1] ∩Q.

We now introduce timed Markov decision processes, which are Markov decision processes
in which rewards associated with transitions are interpreted as time durations.

Definition 2.1. A timed Markov decision process (TMDP) T = (S, s̄, → , lab) comprises
the following components:

• A (possibly uncountable) set of states S with an initial state s̄ ∈ S.

4 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

• A (possibly uncountable) timed probabilistic, nondeterministic transition relation →
⊆ S × R≥0 × Dist(S) such that, for each state s ∈ S, there exists at least one tuple
(s, ,) ∈ → .

• A labelling function lab : S → 2AP .

The transitions from state to state of a TMDP are performed in two steps: given that the
current state is s, the first step concerns a nondeterministic selection of (s, d, ν) ∈ → , where
d corresponds to the duration of the transition; the second step comprises a probabilistic
choice, made according to the distribution ν, as to which state to make the transition to
(that is, we make a transition to a state s′ ∈ S with probability ν(s′)). We often denote

such a completed transition by s
d,ν
−−→ s′.

An infinite path of the TMDP T is an infinite sequence of transitions ω = s0
d0,ν0
−−−→

s1
d1,ν1
−−−→ · · · such that the target state of one transition is the source state of the next.

Similarly, a finite path of T is a finite sequence of consecutive transitions ω = s0
d0,ν0
−−−→

s1
d1,ν1
−−−→ · · ·

dn−1,νn−1

−−−−−−→ sn. The length of ω, denoted by |ω|, is n (the number of transitions
along ω). We use Path ful to denote the set of infinite paths of T, and Pathfin the set of
finite paths of T. If ω is a finite path, we denote by last(ω) the last state of ω. For any path
ω and i ≤ |ω|, let ω(i) = si be the (i + 1)th state along ω. Let Path ful (s) and Pathfin(s)
refer to the sets of infinite and finite paths, respectively, commencing in state s ∈ S.

In contrast to a path, which corresponds to a resolution of nondeterministic and prob-
abilistic choice, an adversary represents a resolution of nondeterminism only. Formally, an
adversary of a TMDP T is a function A mapping every finite path ω ∈ Pathfin to a transition
(last(ω), d, ν) ∈ → . Let AdvT be the set of adversaries of T (when the context is clear, we
write simply Adv). For any adversary A ∈ Adv , let PathA

ful and PathA
fin denote the sets of

infinite and finite paths, respectively, resulting from the choices of distributions of A, and,
for a state s ∈ S, let PathA

ful (s) = PathA
ful ∩Pathful (s) and PathA

fin(s) = PathA
fin ∩Pathfin(s).

Note that, by defining adversaries as functions from finite paths, we permit adversaries
to be dependent on the history of the system. Hence, the choice made by an adversary
at a certain point in system execution can depend on the sequence of states visited, the
nondeterministic choices taken, and the time elapsed from each state, up to that point.

Given an adversary A ∈ Adv and a state s ∈ S, we define the probability measure
ProbAs over PathA

ful (s) in the following way. We first define the function A : PathA
fin(s) ×

PathA
fin(s) → [0, 1]. For two finite paths ωfin , ω

′
fin ∈ PathA

fin(s), let:

A(ωfin , ω
′
fin) =

{

µ(s′) if ω′
fin is of the form ωfin

d,µ
−−→ s′ and A(ωfin) = (d, µ)

0 otherwise.

Next, for any finite path ωfin ∈ PathA
fin(s) such that |ωfin | = n, we define the probability

PA
s (ωfin) as follows:

PA
s (ωfin)

def

=

{

1 if n = 0
A(ωfin(0), ωfin (1)) · . . . · A(ωfin(n−1), ωfin(n)) otherwise.

Then we define the cylinder of a finite path ωfin as:

cylA(ωfin)
def
= {ω ∈ PathA

ful (s) | ωfin is a prefix of ω} ,

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 5

and let ΣA
s be the smallest sigma-algebra on PathA

ful (s) which contains the cylinders cylA(ωfin)

for ωfin ∈ PathA
fin(s). Finally, we define ProbAs on ΣA

s as the unique measure such that

ProbAs (cyl(ωfin)) = PA
s (ωfin) for all ωfin ∈ PathA

fin(s).
An untimed Markov decision process (MDP) (S, s̄, → , lab) is defined as a finite-state

TMDP, but for which → ⊆ S × Dist(S) (that is, the transition relation → does not
contain timing information). Paths, adversaries and probability measures can be defined
for untimed MDPs in the standard way (see, for example, [BK98]).

In the remainder of the paper, we distinguish between the following classes of TMDP.

• Discrete TMDPs are TMDPs in which (1) the state space S is finite, and (2) the transition
relation → is finite and of the form → ⊆ S×N×Dist(S). In discrete TMDPs, the delays
are interpreted as discrete jumps, with no notion of a continuously changing state as time
elapses. The size |T| of a discrete TMDP T is |S|+ |→|, where |→| includes the size of
the encoding of the timing constants and probabilities used in → : the timing constants
are written in binary, and, for any s, s′ ∈ S and (s, d, ν), the probability ν(s′) is expressed
as a ratio between two natural numbers, each written in binary. We let Tu be the untimed
Markov decision process (MDP) corresponding to the discrete TMDP T, in which each
transition (s, d, ν) ∈ → is represented by a transition (s, ν). A discrete TMDP T is

structurally non-Zeno when any finite path of T of the form s0
d0,ν0
−−−→ s1 · · ·

dn,νn
−−−→ sn+1,

such that sn+1 = s0, satisfies
∑

0≤i≤n di > 0.

• Continuous TMDPs are infinite-state TMDPs in which any transition s
d,ν
−−→ s′ describes

the continuous passage of time, and thus a path ω = s0
d0,ν0
−−−→ s1

d1,ν1
−−−→ · · · describes

implicitly an infinite set of visited states. In the sequel, we use continuous TMDPs to
give the semantics of probabilistic timed automata.

2.2. Syntax of probabilistic timed automata. Let X be a finite set of real-valued
variables called clocks, the values of which increase at the same rate as real-time. The set
CC (X) of clock constraints over X is defined as the set of conjunctions over atomic formulae
of the form x ∼ c, where x, y ∈ X , ∼ ∈ {<,≤, >,≥}, and c ∈ N.

Definition 2.2. A probabilistic timed automaton (PTA) P = (L, l̄,X , inv , prob ,L) is a tuple
consisting of the following components:

• A finite set L of locations with the initial location l̄ ∈ L.
• A finite set X of clocks.
• A function inv : L→ CC (X) associating an invariant condition with each location.
• A finite set prob ⊆ L× CC (X)× Dist(2X × L) of probabilistic edges.
• A labelling function L : L→ 2AP .

A probabilistic edge (l, g, p) ∈ prob is a triple containing (1) a source location l, (2)
a clock constraint g, called a guard, and (3) a probability distribution p which assigns
probabilities to pairs of the form (X, l′) for some clock set X ⊆ X and target location l′.
The behaviour of a probabilistic timed automaton takes a similar form to that of a timed
automaton [AD94]: in any location time can advance as long as the invariant holds, and a
probabilistic edge can be taken if its guard is satisfied by the current values of the clocks.
However, probabilistic timed automata generalize timed automata in the sense that, once a
probabilistic edge is nondeterministically selected, then the choice of which clocks to reset
and which target location to make the transition to is probabilistic. We require that the

6 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

values of the clocks after taking a probabilistic edge satisfy the invariant conditions of the
target locations.

init, x<3 wait, x<8 error, x≤100
1 < x < 3

5 < x < 6

7 < x < 8

x = 100
x :=0

x :=0 (0.8) (0.2)

x :=0 (0.9) (0.1)

Figure 1: A probabilistic timed automaton P

Example 2.3. A PTA P is illustrated in Figure 1. The PTA represents a simple communi-
cation protocol, in which the sender can wait for between 5 and 6 time units before sending
the message, at which point the message is delivered successfully with probability 0.8, or
can wait for between 7 and 8 time units before sending the message, which corresponds to
the message being sent successfully with probability 0.9. From location wait , there are two
probabilistic edges: the upper one has the guard 5 < x < 6, and assigns probability 0.8 to
({x}, init) and 0.2 to (∅, error), whereas the lower one has the guard 7 < x < 8, and assigns
probability 0.9 to ({x}, init) and 0.1 to (∅, error).

The size |P| of the PTA P is |L| + |X | + |inv | + |prob |, where |inv | represents the size
of the binary encoding of the constants used in the invariant condition, and |prob | includes
the size of the binary encoding of the constants used in guards and the probabilities used in
probabilistic edges. As in the case of TMDPs, probabilities are expressed as a ratio between
two natural numbers, each written in binary.

In the sequel, we assume that at least 1 time unit elapses in all structural loops within
a PTA. Formally, a PTA is structurally non-Zeno [TYB05] if, for every sequence X0,
(l0, g0, p0),X1, (l1, g1, p1), · · · ,Xn, (ln, gn, pn), such that pi(Xi+1, li+1) > 0 for 0 ≤ i < n,
and pn(X0, l0) > 0, there exists a clock x ∈ X and 0 ≤ i, j ≤ n such that x ∈ Xi and
gj ⇒ x ≥ 1 (that is, gj contains a conjunct of the form x ≥ c for some c ≥ 1).

We also assume that there are no deadlock states in a PTA. This can be guaranteed
by assuming that, in any state of a PTA, it is always possible to take a probabilistic
edge, possibly after letting time elapse, a sufficient syntactic condition for which has been
presented in [Spr01]. First, for a set X ⊆ X of clocks, and clock constraint ψ ∈ CC (X),
let [X := 0]ψ be the clock constraint obtained from ψ by letting, for each x ∈ X, each
conjunct of the form x > c or x ≥ c′ where c′ ≥ 1 be equal to false. For a clock
constraint ψ ∈ CC (X), let upper(ψ) be the clock constraint obtained from ψ by substituting
constraints of the form x < c with x > c − 1 ∧ x < c, and constraints of the form x ≤ c
with x ≥ c ∧ x ≤ c. Then, for an invariant condition inv(l) of a PTA location, the
clock constraint upper(inv(l)) represents the set of clock valuations for which a guard of a
probabilistic edge must be enabled, otherwise the clock valuations correspond to deadlock

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 7

states from which it is not possible to let time pass and then take a probabilistic edge. Then
a PTA has non-deadlocking invariants if, for each location l ∈ L, we have upper(inv(l)) ⇒
∨

(l,g,p)∈prob(g∧
∧

(X,l′)∈support(p)[X := 0]inv(l′)). The condition of non-deadlocking invariants

usually holds for PTA models in practice [KNPS06].
We use 1C-PTA (respectively, 2C-PTA) to denote the set of structurally non-Zeno PTA

with non-deadlocking invariants, and with only one (respectively, two) clock(s).

2.3. Semantics of probabilistic timed automata. We refer to a mapping v : X → R≥0

as a clock valuation. Let RX
≥0 denote the set of clock valuations. Let 0 ∈ RX

≥0 be the clock

valuation which assigns 0 to all clocks in X . For a clock valuation v ∈ RX
≥0 and a value

d ∈ R≥0, we use v+d to denote the clock valuation obtained by letting (v+d)(x) = v(x)+d
for all clocks x ∈ X . For a clock set X ⊆ X , we let v[X := 0] be the clock valuation obtained
from v by resetting all clocks within X to 0; formally, we let v[X := 0](x) = 0 for all x ∈ X,
and let v[X := 0](x) = v(x) for all x ∈ X \ X. The clock valuation v satisfies the clock
constraint ψ ∈ CC (X), written v |= ψ, if and only if ψ resolves to true after substituting
each clock x ∈ X with the corresponding clock value v(x).

We now present formally the semantics of PTA in terms of continuous TMDPs. The
semantics has a similar form to that of non-probabilistic timed automata [AD94], but with
the addition of rules for the definition of a timed, probabilistic transition relation from the
probabilistic edges of the PTA.

Definition 2.4. The semantics of the probabilistic timed automaton P = (L, l̄,X , inv ,
prob,L) is the continuous TMDP T[P] = (S, s̄, → , lab) where:

• S = {(l, v) | l ∈ L and v ∈ RX
≥0 s.t. v |= inv(l)} and s̄ = (l̄,0);

• → is the smallest set such that ((l, v), d, µ) ∈ → if there exist d ∈ R≥0 and a
probabilistic edge (l, g, p) ∈ prob such that:
(1) v + d |= g, and v + d′ |= inv(l) for all 0 ≤ d′ ≤ d;
(2) for any (X, l′) ∈ 2X × L, we have that p(X, l′) > 0 implies (v + d)[X := 0] |= inv(l′);
(3) for any (l′, v′) ∈ S, we have that µ(l′, v′) =

∑

X∈Reset(v,d,v′) p(X, l
′), where

Reset(v, d, v′) = {X ⊆ X | (v + d)[X := 0] = v′}

• lab is such that lab(l, v) = L(l) for each state (l, v) ∈ S.

Given a path ω = (l0, v0)
d0,ν0
−−−→ (l1, v1)

d1,ν1
−−−→ · · · of T[P], for every i ∈ N, we use ω(i, d),

with 0 ≤ d ≤ di, to denote the state (li, vi + d) reached from (li, vi) after delaying d time
units. Such a pair (i, d) is called a position of ω. We define a total order on positions
of ω: given two positions (i, d), (j, d′) of ω, the position (i, d) precedes (j, d′) — denoted
(i, d) ≺ω (j, d′) — if and only if either i < j, or i = j and d < d′.

3. Probabilistic timed temporal logic

We now proceed to describe a probabilistic, timed temporal logic which can be used to
specify properties of probabilistic timed automata [KNSS02].

Definition 3.1. The formulae of Ptctl (Probabilistic Timed Computation Tree Logic)
are given by the following grammar:

Φ ::= a | Φ ∧ Φ | ¬Φ | P⊲⊳ζ(ΦU∼cΦ)

8 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

where a ∈ AP is an atomic proposition, ⊲⊳∈ {<,≤,≥, >}, ∼∈ {≤,=,≥}, ζ ∈ [0, 1] is a
probability, and c ∈ N is a natural number.

We use standard abbreviations such as true, false, Φ1∨Φ2, Φ1 ⇒ Φ2, and P⊲⊳ζ(F∼cΦ)
(for P⊲⊳ζ(trueU∼cΦ)). Formulae with “always” temporal operators G∼c can also be written;
for example P≥ζ(G∼cΦ) can be expressed by P≤1−ζ(F∼c¬Φ). The modalities U, F and G

without subscripts abbreviate U≥0, F≥0 and G≥0, respectively.
We identify the following sub-logics of Ptctl.

• Ptctl[≤,≥] is defined as the sub-logic of Ptctl in which subscripts of the form = c are
not allowed in modalities U∼c,F∼c,G∼c.

• Pctl is defined as the sub-logic of Ptctl (and Ptctl[≤,≥]) in which there is no timing
subscript ∼ c associated with the modalities U,F,G.

• Ptctl
0/1 and Ptctl

0/1[≤,≥] are the sub-logics of Ptctl and Ptctl[≤,≥], respectively,

in which probability thresholds ζ belong to {0, 1}. We refer to Ptctl
0/1 and Ptctl

0/1[≤
,≥] as the qualitative restrictions of Ptctl and Ptctl[≤,≥].

• Reachability properties are those Pctl properties of the form P⊲⊳ζ(Fa) or ¬P⊲⊳ζ(Fa).
Qualitative reachability properties are those reachability properties for which ζ ∈ {0, 1}.

The size |Φ| of a Ptctl formula Φ is defined in the standard way as the number of
symbols in Φ, with each occurrence of the same subformula of Φ as a single symbol.

We now define the satisfaction relation of Ptctl for discrete TMDPs. Given the infinite

path ω = s0
d0,ν0
−−−→ s1

d1,ν1
−−−→ · · · of the discrete TMDP T, let DiscDur(ω, i) =

∑

0≤k<i dk be

the accumulated duration along ω until (i+ 1)-th state.

Definition 3.2. Given a discrete TMDP T = (S, s̄, → , lab) and a Ptctl formula Φ, we
define the satisfaction relation |=T of Ptctl as follows:

s |=T a iff a ∈ lab(s)
s |=T Φ1 ∧ Φ2 iff s |=T Φ1 and s |=T Φ2

s |=T ¬Φ iff s 6|=T Φ

s |=T P⊲⊳ζ(ϕ) iff ProbAs {ω ∈ PathA
ful (s) | ω |=T ϕ} ⊲⊳ ζ, ∀A ∈ Adv

ω |=T Φ1U∼cΦ2 iff ∃i ∈ N s.t. ω(i) |=T φ2, DiscDur(ω, i) ∼ c,
and ω(j) |=T φ1, ∀j < i .

We proceed to define the satisfaction relation of Ptctl for continuous TMDPs. Given

the infinite path ω = s0
d0,ν0
−−−→ s1

d1,ν1
−−−→ · · · of the continuous TMDP T, let CtsDur(ω, i, d) =

d+
∑

0≤k<i dk be the accumulated duration along ω until position (i, d).

Definition 3.3. Given a continuous TMDP T = (S, s̄, → , lab) and a Ptctl formula Φ,
we define the satisfaction relation |=T of Ptctl as in Definition 3.2, except for the following
rule for Φ1U∼cΦ2:

ω |=T Φ1U∼cΦ2 iff ∃ position (i, δ) of ω s.t. ω(i, δ) |=T φ2, CtsDur(ω, i, δ) ∼ c,
and ω(j, δ′) |=T φ1, ∀ positions (j, δ′) of ω s.t. (j, δ′) ≺ω (i, δ) .

When clear from the context, we omit the T subscript from |=T. We say that the TMDP
T = (S, s̄, → , lab) satisfies the Ptctl formula Φ, denoted by T |= Φ, if and only if s̄ |= Φ.
Furthermore, the PTA P satisfies Φ, denoted by P |= Φ, if and only if T[P] |= Φ.

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 9

Complexity of Ptctl model checking for PTA. Given an arbitrary structurally non-Zeno
PTA P, model checking Ptctl formulae is in EXPTIME [KNSS02] (the algorithm consists
of executing a standard polynomial-time model-checking algorithm for finite-state proba-
bilistic systems [BdA95, BK98] on the exponential-size region graph of P). The problem
of model checking qualitative reachability formulae of the form ¬P<1(Fa) is EXPTIME-
hard for PTA with an arbitrary number of clocks [LS07]. Hence Ptctl model checking for
structurally non-Zeno PTA with an arbitrary number of clocks is EXPTIME-complete.

Example 3.4. Consider the PTA P of Figure 1. The formula P>0(F≤9error) holds for the
configuration (init , 0): for every non-deterministic choice, the probability to reach error

within 9 time units is strictly positive. The formula P<0.1(F≤6error) does not hold for
(init , 0): if the adversary chooses to delay until x = 5.4 in wait , and then performs the
probabilistic edge with the guard 5 < x < 6, then the probability to reach error is 0.2.
Note also that the formula P≥0.1(F≤6error) is not true either in (init , 0): the adversary can
choose to delay in wait until x = 7.8 and then perform the second probabilistic edge, in
which case the probability to reach error within 6 time units is zero.

4. Model Checking One-Clock Probabilistic Timed Automata

In this section we consider the case of 1C-PTA. We will see that model checking Pctl

and Ptctl
0/1[≤,≥] for 1C-PTA is P-complete, but remains EXPTIME-complete for the

logic Ptctl
0/1.

4.1. Model Checking Pctl on 1C-PTA. First we present the following result about
the model checking of Pctl formulae.

Proposition 4.1. The Pctl model-checking problem for 1C-PTA is P-complete.

Proof. The problem is P-hard because model checking formulae of the form ¬P<1(Fa) in
finite MDPs is P-hard [PT87]. Here we show P-membership. For this we adapt the encoding
for showing NLOGSPACE-membership of reachability in one-clock timed automata [LMS04]
in order to obtain an untimed MDP which is polynomial in the size of the 1C-PTA. This
untimed MDP is then subject to the established polynomial-time Pctl model-checking
algorithm [BdA95].

Let P = (L, l̄, {x}, inv , prob ,L) be a 1C-PTA. A state of P is a control location and a
value v for x. The exact value of x is not important to solve the problem: we just need to
know in which interval (with respect to the constants occurring in the guards and invariants
of P) is x. Let Cst(P) be the set of integer values used in the guards and invariants of P, and
let B = Cst(P)∪{0}. We use b0, b1, . . . , bk to range over B, where 0 = b0 < b1 < · · · < bk and
|B| = k+1. The set B defines a set IB of 2(k+1) intervals [b0; b0], (b0; b1), [b1; b1], · · · , (bk,∞).
We also define a total order on the set IB, where [b0; b0] < (b0; b1) < [b1; b1] < · · · < (bk,∞).
The configuration (l, v) is then encoded by the pair (l, n(v)) such that v belongs to the
n(v)-th interval in IB: note that the length of the binary representation of the number of
an interval is log(2(k+1)). We then build an untimed MDP M[P] whose states are the pairs
(l, n(v)) and the transitions simulate those of P. Note that we can easily decide whether a
guard is satisfied by the clock values of the n(v)-th interval. A step of P from (l, v) consists
in choosing a duration d and a distribution µ (as represented by the transition ((l, v), d, µ)),
and finally making a probabilistic choice. Such a step is simulated in M[P] by a transition

10 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

((l, n(v)), ν), which corresponds to choosing the appropriate interval n(v + d) in the future
(i.e., n(v + d) ≥ n(v)), then making a probabilistic choice according to the distribution ν
from (l, n(v + d)), where ν(l′, n(v′)) = µ(l′, v′) for each state (l′, v′) of T[P].

For a clock constraint ψ ∈ CC ({x}), let [[ψ]] = {v ∈ R≥0 | v |= ψ}. For an interval
I ⊆ R≥0, let I[{x} := 0] = [0; 0] and I[∅ := 0] = I. The MDP for Pctl of the PTA P is
the untimed MDP M[P] = (SM, s̄M, → M, labM) where:

• SM = {(l, B) | l ∈ L,B ∈ IB and B ⊆ [[inv(l)]]} and s̄M = (l̄, [0, 0]);
• → M is the least set such that ((l, B), ν) ∈ → M if there exists an interval B′ ∈ IB and
a probabilistic edge (l, g, p) ∈ prob such that:
(1) B′ ≥ B, B′ ⊆ [[g]], and B′′ ⊆ [[inv (l)]] for all B ≤ B′′ ≤ B′;
(2) for any (X, l′) ∈ {{x}, ∅} × L, we have that p(X, l′) > 0 implies (B′ ∩ [[g]])[X := 0]

⊆ [[inv(l′)]];
(3) for any (l′, B′′) ∈ SM, we have that ν(l

′, B′′) = ν0(l
′, B′′)+νB′(l′, B′′), where ν0(l

′, B′′) =
p({x}, l′) if B′′ = [0, 0] and ν0(l

′, B′′) = 0 otherwise, and where νB′(l′, B′′) = p(∅, l′)
if B′ = B′′ and νB′(l′, B′′) = 0 otherwise.

• labM is such that labM(l, B) = L(l) for each state (l, B) ∈ SM.

Given a Pctl formula Φ and a state (l, v) of T[P], we then have that (l, v) |=T[P] Φ
if and only if (l, n(v)) |=M[P] Φ, which can be shown by induction on the length of the
formula. The cases of atomic propositions and boolean combinators are straightforward,
and therefore we concentrate on the case of a formula P⊲⊳λ(Φ1UΦ2). We can show that,
for each adversary A of T[P], it is possible to construct an adversary A′ of M[P] such
that, for each state (l, v) of T[P], we have ProbA(l,v){ω ∈ PathA

ful (l, v) | ω |=T[P] Φ1UΦ2} =

ProbA
′

(l,n(v)){ω ∈ PathA′

ful (l, n(v)) | ω |=M[P] Φ1UΦ2}. Conversely, we can show that, for

each adversary A of M[P], it is possible to construct an adversary A′ of T[P] such that,
for each state (l, v) of T[P], we have ProbA(l,n(v)){ω ∈ PathA

ful (l, n(v)) | ω |=M[P] Φ1UΦ2} =

ProbA
′

(l,v){ω ∈ PathA′

ful (l, v) | ω |=T[P] Φ1UΦ2}. By the definition of the semantics of Pctl,

given (l, v), we have (l, v) |=T[P] P⊲⊳λ(Φ1UΦ2) if and only if (l, n(v)) |=M[P] P⊲⊳λ(Φ1UΦ2).
The size of M is in O(|P| · 2 · |B|) and |B| is in O(2 · |prob|). Because Pctl model

checking is polynomial in the size of the MDP [BdA95], we have obtained a polynomial-
time algorithm for Pctl model checking for PTA.

4.2. Model checking Ptctl
0/1[≤,≥] on 1C-PTA. In this section, inspired by related

work on discrete-time concurrent game structures [LMO06], we first show that model-

checking Ptctl
0/1[≤,≥] properties of discrete TMDPs can be done efficiently. Then, in

Theorem 4.3, using ideas from the TMDP case, we show that model checking Ptctl0/1[≤,≥]
on 1C-PTA can also be done in polynomial time.

Proposition 4.2. Let T = (S, s̄, → , lab) be a structurally non-Zeno discrete TMDP and Φ

be a Ptctl
0/1[≤,≥] formula. Deciding whether T |= Φ can be done in time O(|Φ|·|S|·|→|).

Proof sketch. The model-checking algorithm is based on several procedures to deal with
each modality of Ptctl0/1[≤,≥]. The boolean operators and the Pctl modalities (without
timed subscripts) can be handled in the standard manner, with the Pctl properties verified
on the untimed MDP Tu corresponding to T. For formulae P⊲⊳ζ(Φ1U∼cΦ2), we assume that
the truth values of subformulae Φ1 and Φ2 are known for all states of T. First, given that

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 11

the TMDP is structurally non-Zeno, we have the equivalences:

P≤0(Φ1U∼cΦ2) ≡ ¬E(Φ1U∼cΦ2)
P≥1(Φ1U≤cΦ2) ≡ A(Φ1U≤cΦ2)
P≥1(Φ1U≥cΦ2) ≡ A(Φ1U≥c(P≥1(Φ1UΦ2)))

where E (respectively, A) stands for the existential (respectively, universal) quantifica-
tion over paths which exist in the logic Tctl. Thus we can apply the procedure pro-
posed for model checking Tctl formulae – running in time O(|S| · | → |) – over weighted
graphs [LMS05] (in the case of P≥1(Φ1U≥cΦ2), by first obtaining the set of states satisfying
P≥1(Φ1UΦ2), which can be done on Tu in time O(|Edges(→)|), where |Edges(→)| =
∑

(s,d,ν)∈→ |support(ν)|).

The problem of verifying the remaining temporal properties of Ptctl
0/1[≤,≥] can

be considered in terms of turn-based 2-player games. Such a game is played over the
space S ∪ → , and play proceeds as follows: from a state s ∈ S, player Pn (representing
nondeterministic choice) chooses a transition (s, d, ν) ∈ → ; then, from the transition
(s, d, ν), player Pp (representing probabilistic choice) chooses a state s′ ∈ support(ν). The
duration of the move from s to s′ via (s, d, ν) is d. Notions of strategy of each player, and
winning with respect to (untimed) path formulae of the form Φ1UΦ2, are defined as usual
for 2-player games.

For the four remaining formulae, namely P⊲⊳ζ(Φ1U∼cΦ2) for ⊲⊳ζ ∈ {> 0, < 1}, and
∼∈ {≤,≥}, we consider the functions α, β, γ, δ : S → N, for representing minimal and
maximal durations of interest. Intuitively, for a state s ∈ S, the value α(s) (respectively,
γ(s)) is the minimal (respectively, maximal) duration that player Pp can ensure, regardless
of the counter-strategy of Pn, along a path prefix from s satisfying Φ1UΦ2 (respectively,
Φ1U(P>0(Φ1UΦ2))). Similarly, the value β(s) (respectively, δ(s)) is the minimal (respec-
tively, maximal) duration that player Pn can ensure, regardless of the counter-strategy of
Pp, along a path prefix from s satisfying Φ1UΦ2 (respectively, Φ1U(¬P<1(Φ1UΦ2))).

If there is no strategy for player Pp (respectively, player Pn) to guarantee the satisfaction
of Φ1UΦ2 along a path prefix from s, then we let α(s) = ∞ (respectively, β(s) = ∞).
Similarly, if there is no strategy for player Pp (respectively, player Pn) to guarantee the
satisfaction of Φ1U(P>0(Φ1UΦ2)) (respectively, Φ1U(¬P<1(Φ1UΦ2))) along a path prefix
from s, then we let γ(s) = −∞ (respectively, δ(s) = −∞).

Using the fact that the TMDP is structurally non-Zeno, for any state s ∈ S, we can
obtain the following equivalences:

• s |= P>0(Φ1U≤cΦ2) if and only if α(s) ≤ c;
• s |= P<1(Φ1U≤cΦ2) if and only if β(s) > c;
• s |= P>0(Φ1U≥cΦ2) if and only if γ(s) ≥ c;
• s |= P<1(Φ1U≥cΦ2) if and only if δ(s) < c.

The functions α, β, γ, δ can be computed on the 2-player game by applying the same methods
as in [LMO06] for discrete-time concurrent game structures: for each temporal operator
P⊲⊳ζ(Φ1U∼cΦ2), this computation runs in time O(|S| · | → |). We decompose the proof into
the following four cases, which depend on the form of the formula to be verified.

Φ = P>0(Φ1U≤cΦ2). To compute the value α(s), we introduce the coefficients αi(s) defined
recursively as follows. Let α0(s) = 0 if s |= Φ2, let α

0(s) = ∞ otherwise, and let:

12 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

αi+1(s) =

0 if s |= Φ2

∞ if s |= ¬Φ1 ∧ ¬Φ2

max
(s,d,ν)∈→

{d+ min
s′∈support(ν)

{αi(s′)}} if s |= Φ1 ∧ ¬Φ2.

Fact 1. If αi(s) < ∞, the value αi(s) is the minimal duration that player Pp can ensure
from s with respect to Φ1UΦ2 in at most 2i turns. If αi(s) = ∞, player Pp cannot ensure
Φ1UΦ2 in 2i turns.

Proof of Fact 1. The proof proceeds by induction over i. The result is immediate for i = 0.
Now assume the property holds up to i.

Consider αi+1(s). The cases for αi+1(s) = 0, and αi+1(s) = ∞ with s |= ¬Φ1 ∧ ¬Φ2,
are trivial. Now assume αi+1(s) = ∞ and s |= Φ1 ∧¬Φ2: by the definition of αi+1(s), there
exists a transition (s, , ν) from s such that any possible successor s′ ∈ support(ν) verifies
αi(s′) = ∞. By the induction hypothesis this entails that there is no strategy for Pp to
ensure Φ1UΦ2 in less than 2i turns from any s′ ∈ support(ν), and then there is no strategy
for Pp from s for games with 2(i+ 1) turns.

Assume αi+1(s) ∈ N. Let θ be the minimal duration that player Pp can ensure with
respect to Φ1UΦ2, for games with at most 2(i+1) turns. This duration θ is obtained from a
choice of transition (s, d, ν) of Pn and a choice of state s′ ∈ support(ν) of Pp, where, by the
induction hypothesis, we have θ = d+αi(s′). We also have that this s′ is the best (minimal)
choice for Pp among all states in support(ν); that is, αi(s′) = mins′′∈support(ν){α

i(s′′)}. Given

the definition of αi+1(s), we have that αi+1(s) equals:

max
(s,d′,ν′)∈→

{d′ + min
s′′∈support(ν′)

{αi(s′′)}} ≥ {d+ min
s′′∈support(ν)

{αi(s′′)}} = d+ αi(s′) = θ ,

However, as θ corresponds to the best (maximal) choice for Pn, we cannot have α
i+1(s) > θ,

and therefore αi+1(s) = θ.

We claim that α|S|(s) = α(s). First note that we clearly have α|S|(s) ≥ α(s). Now

assume α(s) < α|S|(s): this value α(s) is obtained by a strategy (for Pp) that uses more
than 2|S| turns. Therefore, along some path generated by this strategy there will be at
least one occurrence of a state s′. However, as the TMDP is structurally non-Zeno, this
loop has a duration strictly greater than 0, and it can be removed by applying earlier in the
path the last choice done for state s′ along the path1. Such a looping strategy is clearly not
optimal for Pp and need not be considered when computing α(s). Hence the computation

of α|S|, and thus α, can be done in time O(|S| · |→|).

Φ = P>0(Φ1U≥cΦ2). In order to establish the set of states satisfying Φ, we first compute the
sets of states satisfying two untimed, auxiliary formulae. The first formula we consider is
P>0(Φ1UΦ2): obtaining the set of states satisfying this formula relies on qualitative Pctl

analysis of the underlying untimed MDP Tu of T, which can be done in time O(|Edges(→)|).
The second formula we consider is P>0(Φ1U

≥1Φ2), where, for any infinite path ω ∈ Path ful ,
we have ω |= Φ1U

≥1Φ2 if and only if there exists i ≥ 1 such that ω(i) |= Φ2, and ω(j) |= Φ1

for all j < i. The set of states satisfying P>0(Φ1U
≥1Φ2) can be obtained through a combi-

nation of the usual “next” temporal operator of Pctl (see [HJ94, BdA95]) and the formula
P>0(Φ1UΦ2), and can be computed in time O(|Edges(→)|).

1Note that as α(s) 6= ∞, the path induced by the strategy of player Pp is finite.

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 13

We then proceed to compute, for each state s of T satisfying P>0(Φ1UΦ2), the maximal
duration γ(s) that player Pp can ensure with respect to Φ1U(P>0(Φ1UΦ2)). We compute γ
using the following recursive rules:

γ0(s) =

−∞ if s |= ¬P>0(Φ1UΦ2)
0 if s |= P>0(Φ1UΦ2) ∧ ¬P>0(Φ1U

≥1Φ2)
∞ if s |= P>0(Φ1U

≥1Φ2)

γi+1(s) =

−∞ if s |= ¬P>0(Φ1UΦ2)
0 if s |= P>0(Φ1UΦ2) ∧ ¬P>0(Φ1U

≥1Φ2)

min
(s,d,ν)∈→

{d+ max
s′∈support(ν)

{γi(s′)}} if s |= P>0(Φ1U
≥1Φ2)

We have the following fact, the proof of which is similar to that of Fact 1.

Fact 2. If −∞ < γi(s) <∞, then γi(s) is the maximal duration that player Pp can ensure
from s with respect to Φ1U(P>0(Φ1UΦ2)) in at most 2i turns. If γi(s) = ∞ (respectively,
γi(s)) = −∞), then player Pp can ensure P>0(Φ1U

≥1Φ2) continuously during 2i turns
(respectively, cannot ensure Φ1UΦ2).

Proof of Fact 2. Consider γi+1(s). The cases for γi+1(s) = 0, and γi+1(s) = −∞ are
immediate.

Assume γi+1(s) = ∞. Then for any distribution from s, there is a probabilistic choice
leading to some s′ with γi(s′) = ∞. By the induction hypothesis, we deduce that player Pp

can ensure P>0(Φ1U
≥1Φ2) during 2(i + 1) turns from s.

Assume γi+1(s) ∈ N. Let θ be the maximal duration that player Pp can ensure with
respect to Φ1UΦ2, for games with at most 2(i+ 1) turns. This duration θ is obtained from
a choice of (s, d, ν) of Pn and a choice of s′ ∈ support(ν) of Pp, where, by the induction
hypothesis, we have θ = d + γi(s′). We also have that this s′ is the best (maximal) choice
for Pp among all states in support(ν); that is, γi(s′) = maxs′′∈support(ν){γ

i(s′′)}. We have

that γi+1(s) equals:

min
(s,d′,ν′)∈→

{d′ + max
s′′∈support(ν′)

{γi(s′′)}} ≤ {d+ max
s′′∈support(ν)

{γi(s′′)}} = d+ γi(s′) = θ .

However, as θ corresponds to the best (minimal) choice for Pn, we cannot have γ
i+1(s) < θ,

and therefore γi+1(s) = θ.

As in the case of the function α, we claim that γ|S|(s) = γ(s). We clearly have

γ|S|(s) ≥ γ(s) (indeed we can prove by induction over i that γi(s) ≥ γ(s) for any i ≥ 0).

Assume that γ(s) < γ|S|(s); then as in the case of α, the value γ(s) is obtained by a strategy
for Pp which generates a path whose length is greater than |S| along which a state is visited
twice. The assumption of structural non-Zenoness means that, if the strategy can choose
to repeat s′ an arbitrary number of times, the elapsed duration along the path becomes
arbitrarily large and γ(s) = γ|S|(s) = ∞. Hence, there is no need to explore further the

path. Therefore the computation of γ|S|, and thus γ, can be done in time O(|S| · | → |).

Φ = P<1(Φ1U≤cΦ2). This case can be treated in a similar manner as the case of Φ =
P>0(Φ1U≤cΦ2). Here we aim at computing the minimum duration β(s) that player Pn can
ensure with respect to Φ1UΦ2. Then Φ holds for s if and only if β(s) > c. We compute the

14 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

following values βi(s) with β0(s) = 0 if s |= Φ2, β
0(s) = ∞ otherwise, and:

βi+1(s) =

0 if s |= Φ2

∞ if s |= ¬Φ1 ∧ ¬Φ2

min
(s,d,ν)∈→

{d+ max
s′∈support(ν)

{βi(s′)}} otherwise.

Fact 3. If βi(s) < ∞, the value βi(s) is the minimal duration that player Pn can ensure
from s with respect to Φ1UΦ2 in at most 2i turns. If βi(s) = ∞, player Pn cannot ensure
Φ1UΦ2 in 2i turns.

The proof of Fact 3 proceeds in a similar manner to that of Fact 1, but with the roles of
players Pn and Pp reversed, and therefore we omit it. Furthermore, we have β|S|(s) = β(s)

for similar reasons that we had α|S| = α(s) (again, with the roles of Pn and Pp reversed),
and hence the computation of β can be done in time O(|S| · | → |).

Φ = P<1(Φ1U≥cΦ2). This property is true when player Pn has no strategy to ensure
Φ1U≥cΦ2. Similarly to the case of P>0(Φ1U≥cΦ2), we first compute the sets of states
satisfying two untimed formulae, namely P<1(Φ1UΦ2) and P<1(Φ1U

≥1Φ2), the complexity

of which is in O(|Edges(→)|
√

|Edges(→)|) [CJH03]. We then compute, for each state s
of T satisfying ¬P<1(Φ1UΦ2), the maximal duration δ(s) that player Pn can ensure with
respect to Φ1U(P<1(¬Φ1UΦ2)). Then s |= Φ if and only if δ(s) < c. We compute δ using
the following recursive rules:

δ0(s) =

∞ if s |= ¬P<1(Φ1U
≥1Φ2)

0 if s |= ¬P<1(Φ1UΦ2) ∧ P<1(Φ1U
≥1Φ2)

−∞ if s |= P<1(Φ1UΦ2)

δi+1(s) =

−∞ if s |= P<1(Φ1UΦ2)
0 if s |= ¬P<1(Φ1UΦ2) ∧ P<1(Φ1U

≥1Φ2)

max
(s,d,ν)∈→

{d+ min
s′∈support(ν)

{δi(s′)}} if s |= ¬P<1(Φ1U
≥1Φ2)

Fact 4. If −∞ < δi(s) <∞, then δi(s) is the maximal duration that player Pn can ensure
from s with respect to Φ1U(P>0(Φ1UΦ2)) in at most 2i turns. If δi(s) = ∞ (respectively,
δi(s) = −∞), then player Pn can ensure ¬P<1(Φ1U

≥1Φ2) during 2i turns (respectively,
cannot ensure Φ1U(¬P<1(Φ1UΦ2))) from s.

We can adapt the reasoning used in Fact 2 to prove this fact (as in the case of Fact 3).
Finally, with similar reasoning to that used in the case of P>0(Φ1U≥cΦ2), we can show that

δ|S|(s) = δ(s), and therefore δ can be computed in time O(|S| · | → |).
Finally we obtain an algorithm running in time O(|Φ| · |S| · | → |).

We use Proposition 4.2 to obtain an efficient model-checking algorithm for 1C-PTA.

Theorem 4.3. Let P = (L, l̄,X , inv , prob,L) be a 1C-PTA and Φ be a Ptctl
0/1[≤,≥]

formula. Deciding whether P |= Φ can be done in polynomial time.

Proof sketch. Our aim is to label every state (l, v) of T[P] with the set of subformulae of Φ
which it satisfies (as |X | = 1, recall that v is a single real value). For each location l ∈ L and
subformula Ψ of Φ, we construct a set Sat[l,Ψ] ⊆ R≥0 of intervals such that v ∈ Sat[l,Ψ] if
and only if (l, v) |= Ψ. We write Sat[l,Ψ] =

⋃

j=1,...,k〈cj ; c
′
j〉 with 〈∈ {[, (} and 〉 ∈ {],)}. We

consider intervals which conform to the following rules: for 1 ≤ j ≤ k, we have cj < c′j and

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 15

cj , c
′
j ∈ N∪{∞}, and for 1 ≤ j < k, we have c′j < cj+1. We will see that |Sat[l,Ψ]| – i.e., the

number of intervals corresponding to a particular location – is bounded by |Ψ| · 2 · |prob |.
The cases of obtaining the sets Sat[l,Ψ] for boolean operators and atomic propositions

are straightforward, and therefore we concentrate on the verification of subformulae Ψ of
the form P⊲⊳ζ(Φ1U∼cΦ2). Assume that we have already computed the sets Sat[,] for Φ1

and Φ2. Our aim is to compute Sat[l,Ψ] for each location l ∈ L.
There are several cases depending on the constraint “⊲⊳ ζ”. The equivalence

P≤0(Φ1U∼cΦ2) ≡ ¬ (EΦ1U∼cΦ2), which holds from the structural non-Zenoness property,
can be used to reduce the “≤ 0” case to the appropriate polynomial-time labeling procedure
for ¬ (EΦ1U∼cΦ2) on one-clock timed automata [LMS04], where the 1C-TA is obtained by
converting the probabilistic choice of prob to nondeterministic choice. In the “≥ 1” case,
the equivalence P≥1(Φ1U∼cΦ2) ≡ A (Φ1U∼c(P≥1(Φ1UΦ2))) relies on first computing the
state set satisfying P≥1(Φ1UΦ2), which can be handled using a qualitative Pctl model-
checking algorithm, applied to a discrete TMDP built from P, Sat[l,Φ1] and Sat[l,Φ2], in
time O(|P| · |prob | · (|Φ1|+ |Φ2|)), and second verifying the formula A (Φ1U∼c(P≥1(Φ1UΦ2)))
using the aforementioned method for one-clock timed automata.

For the remaining cases, our aim is to construct a (finite) discrete TMDP Tr = (Sr, ,
→r, labr), which represents partially the semantic TMDP T[P], for which the values of the
functions α, β, γ and δ of the proof of Proposition 4.2 can be computed, and then use these
functions to obtain the required sets Sat[,Ψ] (the initial state of Tr is irrelevant for the
model-checking procedure, and is therefore omitted). The TMDP Tr will take a similar
form to the region graph MDP of PTA [KNSS02], but, as in the case of the MDP M[P]
constructed in the proof of Proposition 4.1, will be of reduced size. More precisely, the size
of Tr will be independent of the magnitude of the constants used in invariants and guards,
and will ensure a procedure running in time polynomial in |P|.

We now describe the construction of Tr. In the following we assume that the sets
Sat[l,Φi] contain only closed intervals (and possibly intervals of the form [b;∞)) and that
the guards and invariant of the PTA contain non-strict comparisons: the general case is
explained in Appendix A.

Formally we let C = {0} ∪ Cst(P) ∪
⋃

i∈{1,2}

⋃

l∈L Cst(Sat[l,Φi]), where, as in the proof

of Proposition 4.1, Cst(P) is the set of constants occurring in the clock constraints of P,
and where Cst(Sat[l,Φi]) is the set of constants occurring as endpoints of the intervals in
Sat[l,Φi]. Moreover for any right-open interval [b;∞) occurring in some Sat[l,] we add the
constant b + c + 1 to C. We enumerate C as b0, b1, ..., bM with b0 = 0 and bi < bi+1 for
i < |C|. Note that |C| is bounded by 4 · |Ψ| · |prob |.

State space of Tr: We consider first the definition of Sr, the state space of Tr. Considering
the discrete TMDP corresponding to T[P] restricted to states (l, bi), with bi ∈ C, is
sufficient to compute the values of functions α, β, γ and δ in any state (l, bi). However, this
does not allow us to deduce the value for any intermediate states in (bi; bi+1): indeed some
probabilistic edges enabled from bi may be disabled throughout the interval (bi; bi+1).
Therefore, in Tr, we have to consider also (l, b+i) and (l, b−i+1) corresponding respectively
to the leftmost and rightmost points in (bi; bi+1) (when i < M). Then Sr is defined as
the set including the pairs (l, bi) with bi ∈ C and bi |= inv(l), and (l, b+i) and (l, b−i+1)
with bi ∈ C, i < M and (bi; bi+1) ⊆ [[inv(l)]]. Note that the truth value of any invariant is
constant over such intervals (bi; bi+1). Moreover note that all T[P] states of the form (l, v)
with v ∈ (bi; bi+1) satisfy the same boolean combinations of Φ1 and Φ2, and enable the

16 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

same probabilistic edges. For any (l, g, p) ∈ prob , we write b+i |= g (and b−i+1 |= g) when

(bi; bi+1) ⊆ [[g]]. Similarly, we write b+i |= inv(l) (and b−i+1 |= inv(l)) when (bi; bi+1) ⊆

[[inv (l)]]. For an interval I ⊆ R≥0, we write b+i ∈ I and b−i+1 ∈ I when (bi; bi+1) ⊆ I. We

also consider the ordering b0 < b+0 < b−1 < b1 < b+1 < · · · < b−M < bM < b+M .
Transitions of Tr: We now define the set →r of transitions of Tr as the smallest set such

that ((l, λ), d, ν) ∈→r, where λ ∈ {b−i , bi, b
+
i } for some bi ∈ C, if there exists λ′ ≥ λ,

where λ′ ∈ {b−j , bj , b
+
j } for some bj ∈ C, and (l, g, p) ∈ prob such that:

• d = bj − bi, λ
′ |= g, and both λ′′ |= inv(l) and λ′′ ⊆ Sat[l,Φ1] \ Sat[l,Φ2] for any

λ ≤ λ′′ ≤ λ′;
• for each (X, l′) ∈ support(p), we have 0 |= inv(l′) if X = {x}, and λ′ |= inv(l′) if X = ∅;
• for each (l′, λ′′) ∈ Sr, we have ν(l′, λ′′) = ν0(l

′, λ′′) + νλ(l
′, λ′′), where ν0(l

′, λ′′) =
p(l′, {x}) if λ′′ = [0, 0] and ν0(l

′, λ′′) = 0 otherwise, and νλ(l
′, λ′′) = p(l′, ∅) if λ′′ = λ′

and νλ(l
′, λ′′) = 0 otherwise.

Labelling function of Tr: To define labr, for a state (l, bi), we let aΦj
∈ labr(l, bi) if and

only if bi ∈ Sat[l,Φj], for j ∈ {1, 2}. The states (l, b+i) and (l, b−i+1) are labeled depending
on the truth value of the Φj’s in the interval (bi; bi+1): if (bi; bi+1) ⊆ Sat[l,Φj], then aΦj

∈

labr(l, b+i) and aΦj
∈ labr(l, b−i+1). Note that, given the “closed intervals” assumption

made on Sat[l,Φj], we have labr(l, b+i) ⊆ labr(l, bi) and labr(l, b−i+1) ⊆ labr(l, bi).

Note that the fact that P is structurally non-Zeno means that Tr is structurally non-Zeno.
The size of Tr is in O(|P|2 · |Ψ|).

Now we can apply the algorithms defined in the proof of Proposition 4.2 and obtain
the value of the coefficients α, β, γ or δ for the states of Tr. Our next task is to define
functions α, β, γ, δ : S → R≥0, where S is the set of states of T[P], which are analogues of
α, β, γ or δ defined on T[P]. Our intuition is that we are now considering an infinite-state
2-player game with players Pn and Pp, as in the proof of Proposition 4.2, over the state

space of T[P]. Consider location l ∈ L. For b ∈ C, we have α(l, b) = α(l, b), β(l, b) = β(l, b),
γ(l, b) = γ(l, b) and δ(l, b) = δ(l, b). For intervals of the form (bi; bi+1), the functions α and
δ decrease (with slope -1) throughout the interval, because, for all states of the interval, the
optimal choice of player Pn is to delay as much as possible inside any interval. Hence, the
value α(l, v) for v ∈ (bi; bi+1) is defined entirely by α(l, b−i+1) as α(l, v) = α(l, b−i+1)+bi+1−v.

Similarly, δ(l, v) = δ(l, b−i+1) + bi+1 − v.

Next we consider the values of β and γ over intervals (bi; bi+1). In this case, the
functions will be constant over a portion of the interval (possibly an empty portion, or
possibly the entire interval), then decreasing with slope -1. The constant part corresponds
to those states in which the optimal choice of player Pn is to take a probabilistic edge,
whereas the decreasing part corresponds to those states in which it is optimal for player Pn

to delay until the end of the interval. The value β(l, v) for v ∈ (bi; bi+1) is defined both by
β(l, b+i) and β(l, b−i+1) as β(l, v) = β(l, b+i) if bi < v ≤ bi+1 − (β(l, b+i) − β(l, b−i+1)), and as

β(l, v) = β(l, b−i+1)− (v − β(l, b+i)) otherwise. An analogous definition holds also for γ.

From the functions α, β, γ and δ defined above, it becomes possible to define Sat[l,Ψ]
by keeping in this set of intervals only the parts satisfying the thresholds ≤ c, > c, ≥ c
and < c, respectively, as in the proof of Proposition 4.2. We can show that the number of
intervals in Sat[l,Ψ] is bounded by 2 · |Ψ| · |prob|. For the case in which a function α, β, γ
or δ is decreasing throughout an interval, then an interval in Sat[l,Φ1] which corresponds
to several consecutive intervals in Tr can provide at most one (sub)interval in Sat[l,Ψ],

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 17

because the threshold can cross at most once the function in at most one interval. For the
case in which a function β or γ combines a constant part and a part with slope -1 within
an interval, the threshold can cross the function in several intervals (bi; bi+1) contained in
a common interval of Sat[l,Φ1]. However, such a cut is due to a guard x ≥ k of a given
transition, and thus the number of cuts in bounded by |prob|. Moreover a guard x ≤ k may
also add an interval. Thus the number of new intervals in Sat[q,Ψ] is bounded by 2 · |prob|.

In addition to these cuts, any interval in Sat[l,Φ2] may provide an interval in Sat[l,Ψ].
This gives the 2 · |Ψ| · |prob| bound for the size of Sat[l,Ψ].

Corollary 4.4. The Ptctl
0/1[≤,≥] model-checking problem for 1C-PTA is P-complete.

4.3. Model checking Ptctl
0/1 on 1C-PTA. We now consider the problem of model-

checking Ptctl
0/1 properties on 1C-PTA. An EXPTIME algorithm for this problem exists

by the definition of an MDP analogous to the region graph used in non-probabilistic timed
automata verification [KNSS02]. We now show that the problem is also EXPTIME-hard by
the following three steps. First we introduce countdown games, which are a simple class of
turn-based 2-player games with discrete timing, and show that the problem of deciding the
winner in a countdown game is EXPTIME-complete. Secondly, we reduce the countdown
game problem to the Ptctl

0/1 model-checking problem on TMDPs. Finally, we adapt
the reduction to TMDPs to reduce also the countdown game problem to the Ptctl

0/1

model-checking problem on 1C-PTA.
A countdown game C consists of a weighted graph (S, T), where S is the set of states

and T ⊆ S × N \ {0} × S is the transition relation. If t = (s, d, s′) ∈ T then we say that
the duration of the transition t is d. A configuration of a countdown game is a pair (s, c),
where s ∈ S is a state and c ∈ N. A move of a countdown game from a configuration (s, c)
is performed in the following way: first player 1 chooses a number d, such that 0 < d ≤ c
and (s, d, s′) ∈ T, for some state s

′ ∈ S; then player 2 chooses a transition (s, d, s′) ∈ T of
duration d. The resulting new configuration is (s′, c− d). There are two types of terminal

configurations, i.e., configurations (s, c) in which no moves are available. If c = 0 then
the configuration (s, c) is terminal and is a winning configuration for player 1. If for all
transitions (s, d, s′) ∈ T from the state s, we have that d > c, then the configuration (s, c) is
terminal and it is a winning configuration for player 2. The algorithmic problem of deciding
the winner in countdown games is, given a weighted graph (S, T) and a configuration (s, c),
where all the durations of transitions in (S, T) and the number c are given in binary, to
determine whether player 1 has a strategy to reach a winning configuration, regardless of
the strategy of player 2, from the configuration (s, c). If the state from which the game
is started is clear from the context then we sometimes specify the initial configuration by
giving the number c alone.

Theorem 4.5. Deciding the winner in countdown games is EXPTIME-complete.

Proof sketch. Observe that every configuration of a countdown game played from a given
initial configuration can be written down in polynomial space and every move can be com-
puted in polynomial time; hence the winner in the game can be determined by a straight-
forward alternating PSPACE algorithm. Therefore the problem is in EXPTIME because
APSPACE = EXPTIME.

We now prove EXPTIME-hardness by a reduction from the problem of the accep-
tance of a word by a linearly-bounded alternating Turing machine [CKS81]. Let M =

18 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

(Σ, Q, q0, qacc , Q∃, Q∀,∆) be an alternating Turing machine, where Σ is a finite alphabet,
Q = Q∃∪Q∀ is a finite set of states partitioned into existential states Q∃ and universal states
Q∀, q0 ∈ Q is an initial state, qacc ∈ Q is an accepting state, and ∆ ⊆ Q×Σ×Q×Σ×{L,R}
is a transition relation. Let us explain the interpretation of elements of the transition rela-
tion. Let t = (q, σ, q′, σ′,D) ∈ ∆ be a transition. If machine M is in state q ∈ Q and its
head reads letter σ ∈ Σ, then it rewrites the contents of the current cell with the letter σ′,
it moves the head in direction D (either left if D = L, or right if D = R), and it changes
its state to q′.

Let G > 2 · |Q× Σ| be an integer constant and let w ∈ Σn be an input word. Without
loss of generality, we can assume that the alternating Turing machine M uses exactly n
tape cells when started on the word w, and hence a configuration of machine M is a word
b0b1 · · ·bn−1 ∈ (Σ ∪Q × Σ)n. Let 〈·〉 : (Σ ∪ Q× Σ) → { 0, 1, . . . , G − 1 } be an injection.
For every a ∈ Σ ∪ Q × Σ, it is convenient to think of 〈a〉 as a G-ary digit, and we can
encode a configuration u = b0b1 · · ·bn−1 ∈ (Σ ∪ Q × Σ)n of machine M as the number

N(u) =
∑n−1

i=0 〈bi〉 ·G
i.

We first define countdown games which have the role of checking the contents of the
tape; these countdown games will be used as gadgets later in the overall reduction. Let
i ∈ N, 0 ≤ i < n, be a tape cell position, and let a ∈ Σ∪Q×Σ. We define a countdown game
Checki,a, such that for every configuration u = b0 · · ·bn−1 of machine M , player 1 has a

winning strategy from the configuration (si,a0 , N(u)) of the countdown game Checki,a if and

only if bi = a. The game Checki,a has states { si,a0 , . . . , si,an }, and for every k, 0 ≤ k < n,

we have a transition (si,ak , d, si,ak+1) ∈ T, if:

d =

{

〈a〉 ·Gk if k = i,

〈b〉 ·Gk if k 6= i and b ∈ Σ ∪ S × Σ.

There are no transitions from the state si,an . Observe that if bi = a then the winning strategy

for player 1 in game Checki,a from N(u) is to choose the transitions (si,ak ,bk ·G
k, si,ak+1), for

all k, 0 ≤ k < n. If, however, bi 6= a then there is no way for player 1 to count down from
N(u) to 0 in the game Checki,a.

Now we define a countdown game CM , such that machine M accepts a word w =
σ0σ1 . . . σn−1 if and only if player 1 has a winning strategy in CM from configuration
(q0, N(u)), where u = (q0, σ0)σ1 . . . σn−1 is the initial configuration of tape contents of
machine M with input w. The main part of the countdown game CM is a gadget that
allows the countdown game to simulate one step of the Turing machine M . Note that one
step of a Turing machine makes only local changes to the configuration of the machine: if
the configuration is of the form u = a0 . . . an−1 = σ0 . . . σi−1(q, σi)σi+1 . . . σn−1, then per-
forming one step of M can only change entries in positions i− 1, i, or i+1 of the tape. For
every tape position i, 0 ≤ i < n, for every triple τ = (σi−1, (q, σi), σi+1) ∈ Σ× (Q×Σ)×Σ,
and for every transition t = (q, σ, q′, σ′,D) ∈ ∆ of machine M , we now define the number

di,τt , such that if σi = σ and performing transition t at position i of configuration u yields

configuration u′ = b0 . . .bn−1, then N(u) − di,τt = N(u′). For example, assume that i > 0
and that D = L; from the above comment about locality of Turing machine transitions we
have that bk = ak = σk, for all k 6∈ { i− 1, i, i + 1 } and bi+1 = ai+1 = σi+1. Moreover we

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 19

have that bi−1 = (q′, σi−1), and bi = σ′. We define di,τt as follows:

di,τt = (〈bi−1〉 − 〈ai−1〉) ·G
i−1 + (〈bi〉 − 〈ai〉) ·G

i

= (〈(q′, σi−1)〉 − 〈σi−1〉) ·G
i−1 + (〈σ′〉 − 〈(q, σi)〉) ·G

i.

The gadget for simulating one transition of Turing machineM from a state q ∈ Q\{qacc}
has three layers. In the first layer, from a state q ∈ Q\{qacc }, player 1 chooses a pair (i, τ),
where i, 0 ≤ i < n, is the position of the tape head, and τ = (a,b, c) ∈ Σ× (Q×Σ)×Σ is
his guess for the contents of tape cells i−1, i, and i+1. In this way the state (q, i, τ) of the
gadget is reached, where the duration of this transition is 0. Intuitively, in the first layer
player 1 has to declare that he knows the position i of the head in the current configuration
as well as the contents τ = (a,b, c) of the three tape cells in positions i − 1, i, and i + 1.
In the second layer, in a state (q, i, τ) player 2 chooses between four successor states: the

state (q, i, τ, ∗) and the three subgames Checki−1,a, Checki,b, and Checki+1,c. The four
transitions are of duration 0. Intuitively, in the second layer player 2 verifies that player 1
declared correctly the contents of the three tape cells in positions i−1, i, and i+1. Finally,
in the third layer, if q ∈ Q∃ (respectively, q ∈ Q∀), then from a state (q, i, τ, ∗) player 1
(respectively, player 2) chooses a transition t = (q, σ, q′, σ′,D) of machine M , such that

b = (q, σ), reaching the state q′ ∈ Q of the gadget, with a transition of duration di,τt .
Note that the gadget described above violates some conventions that we have adopted

for countdown games. Observe that durations of some transitions in the gadget are 0 and

the duration di,τt may even be negative, while in the definition of countdown games we
required that durations of all transitions are positive. In order to correct this we add the
number Gn to the durations of all transitions described above. This change requires a minor

modification to the subgames Checki,a: we add an extra transition (si,an , Gn, si,an). We need
this extra transition because instead of starting from (q0, N(u)) as the initial configuration
of the countdown game CM , where u is the initial configuration of M running on w, we
start from the configuration (q0, G

3n+N(u)). In this way the countdown game can perform
a simulation of at least Gn steps of machine M ; note that Gn is an upper bound on the
number of all configurations of machine M .

Without loss of generality, we can assume that whenever the alternating Turing ma-
chine M accepts an input word w then it finishes its computation with blanks in all tape
cells, its head in position 0, and in the unique accepting state qacc ; we write uacc for this
unique accepting configuration of machine M . Moreover, assume that there are no transi-
tions from the accepting state qacc in machine M . In order to complete the definition of
the countdown game GM , we add a transition of duration N(uacc) from the state qacc of
game CM .

Proposition 4.6. The Ptctl0/1 model-checking problem for structurally non-Zeno discrete

TMDPs is EXPTIME-complete.

Proof. An EXPTIME algorithm can be obtained by employing the algorithms of [LS05].

We now prove EXPTIME-hardness of Ptctl0/1 model checking on discrete TMDPs by a
reduction from countdown games. Let C = (S, T) be a countdown game and (s, c) be its
initial configuration. We construct a TMDP TC,(s,c) = (S, s̄, → , lab) such that player 1
wins C from (s, c) if and only if TC,(s,c) |= ¬P<1(F=ctrue). Let S = S and s̄ = s. We
define → to be the smallest set satisfying the following: for each s ∈ S and d ∈ N>0, if
(s, d, s′) ∈ T for some s

′ ∈ T, we have (s, d, ν) ∈ → , where ν is an arbitrary distribution

20 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

over S such that support(ν) = {s′ | (s, d, s′) ∈ T}. The labelling condition lab is arbitrary.
Then we can show that player 1 wins C from the configuration (s, c) if and only if there
exists an adversary of TC,(s,c) such that a state is reached from s̄ = s after exactly c time
units with probability 1. The latter is equivalent to s̄ |= ¬P<1(F=ctrue).

We now show that the proof of Proposition 4.6 can be adapted to show the EXPTIME-
completeness of the analogous model-checking problem on 1C-PTA.

Theorem 4.7. The Ptctl
0/1 model-checking problem for 1C-PTA is EXPTIME-complete.

Proof. Recall that there exists an EXPTIME algorithm for model-checking Ptctl
0/1 prop-

erties on structurally non-Zeno PTA [KNSS02]; hence, it suffices to show EXPTIME-

hardness for Ptctl
0/1 and 1C-PTA. Let C be a countdown game with an initial config-

uration (s, c). We construct the 1C-PTA P1C
C,(s,c) = (L, l̄, {x}, inv , prob ,L) which simulates

the behaviour of the TMDP TC,(s,c) of the proof of Proposition 4.6 in the following way.

Each state s ∈ S of TC,(s,c) corresponds to two distinct locations l1
s
and l2

s
of P1C

C,(s,c).

Let Li = {li
s
| s ∈ S} for i ∈ {1, 2}, let L = L1 ∪ L2, and let l̄ = l1

s
. For every transition

(s, d, ν) ∈ → of TC,(s,c), we have the probabilistic edges (l
1
s
, x = 0, p1), (l2

s
, x = d, p2) ∈ prob,

where p1({x}, l2
s
) = 1, and p2({x}, l1

s
′) = ν(s′) for each location s

′. For each state s ∈ S, let

inv(l1
s
) = (x ≤ 0) and inv(l2

s
) = true. Therefore the PTA P1C

C,(s,c) moves from the location

l1
s
to l2

s
instantaneously. Locations in L1 are labelled by the atomic proposition a, whereas

locations in L2 are labelled by ∅. Then we can observe that P1C
C,(s,c) |= ¬P<1(F=ca) if and

only if TC,(s,c) |= ¬P<1(F=ctrue). As the latter problem has been shown to be EXPTIME-

hard in the proof of Proposition 4.6, we conclude that model checking Ptctl
0/1 on 1C-PTA

is also EXPTIME-hard.

In Figure 2, we illustrate the transformation from countdown games to TMDP, then to
1C-PTA, for a fragment of a countdown game. For simplicity, we omit guards of the form
x = 0 and invariant conditions of the form true.

5. Model Checking Two-Clocks Probabilistic Timed Automata

We now show EXPTIME-completeness of the simplest problems that we consider on
2C-PTA.

Theorem 5.1. Qualitative probabilistic reachability problems for 2C-PTA are EXPTIME-
complete.

Proof. EXPTIME algorithms exist for probabilistic reachability problems on structurally
non-Zeno PTA [KNSS02], and therefore it suffices to show EXPTIME-hardness. We pro-
ceed by reduction from deciding the winner in countdown games. Let C be a count-
down game with initial configuration (s, c), and let P1C

C,(s,c) = (L, l̄, {x}, inv , prob,L) be

the 1C-PTA constructed in the proof of Theorem 4.7. We define the 2C-PTA P2C
C,(s,c) =

(L ∪ {l⋆}, l̄, {x, y}, inv ′, prob ′,L′) from P1C
C,(s,c) in the following way. The set of probabilistic

edges prob ′ is obtained by adding to prob the following: for each location l ∈ L1, we extend
the set of outgoing probabilistic edges of l with (l, y = c, pl

⋆

), where pl
⋆

(∅, l⋆) = 1; we also
add (l⋆, true, pl

⋆

) to prob ′. For each l ∈ L, let inv ′(l) = inv(l), and let inv ′(l⋆) = true.
Finally, we let L′(l⋆) = a, and L(l) = ∅ for all l ∈ L. Then P2C

C,(s,c) |= ¬P<1(Fa) if and only

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 21

s s2

s1

s3

s s2

s1

s3

l1
s1

x ≤ 0

l1
s2

x ≤ 0

l1
s3

x ≤ 0

l2
s

l2
s1

l2
s2

l2
s3

l1
s

x ≤ 0

l1
s

x ≤ 0

l2
s

l1
s2

x ≤ 0

l2
s2

l2
s1

l2
s3

l1
s1

x ≤ 0

l1
s3

x ≤ 0

l⋆

d

d

d′

d

d′

x := 0

x := 0

x := 0

x := 0

x := 0

x := 0

x = d

x = d′

x = d

x = d′

y = c

y = c y = c

y = c

Countdown game TMDP

1C-PTA

2C-PTA

Figure 2: Reduction from countdown games

if P1C
C,(s,c) |= ¬P<1(F=ca). The EXPTIME-hardness of the latter problem has been shown in

the proof of Theorem 4.7, and hence checking qualitative probabilistic reachability proper-
ties such as ¬P<1(Fa) on 2C-PTA is EXPTIME-hard.

22 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

In Figure 2 we illustrate the reduction from countdown games to 2C-PTA (via the
reduction to TMDPs and 1C-PTA).

Corollary 5.2. The Pctl, Ptctl0/1[≤,≥], Ptctl0/1, Ptctl[≤,≥] and Ptctl model-

checking problems for 2C-PTA are EXPTIME-complete.

6. Forward Reachability for One-Clock Probabilistic Timed Automata

Model-checking tools for non-probabilistic timed automata such as Uppaal [BDL+06]
are generally based on algorithms for forward reachability through the state space: such
algorithms start from the initial state and explore the state space by executing transitions
either in a depth-first or breadth-first manner, and representing sets of clock valuations sym-
bolically using zones. Forward reachability algorithms can be used for verifying reachability
properties, such as “the location error is reachable from the initial state”.

We recall that the zone-based forward reachability approach has been adapted for PTA
by Kwiatkowska et al. [KNSS02], and can be used to reason about the maximal probability
of reaching a certain set of locations. More precisely, an (untimed) MDP is constructed by
exploring the state space of the PTA from its initial state. Then the maximal probability
of reaching a set of locations is computed on the MDP. The appeal of this approach is its
practical applicability [DKN04]. A disadvantage of the approach is that, in general, it can
be used only to obtain an upper bound on the maximal probability of reaching a set of
locations of a PTA, rather than the actual maximal probability of reaching the locations.
In particular, Kwiatkowska et al. [KNSS02] present an example of a 2C-PTA in which the
forward reachability approach does not compute the actual maximal probability of reaching
a set of locations.

In this section, we consider the application of the forward reachability approach of
Kwiatkowska et al. [KNSS02] to 1C-PTA, and show that the maximal and minimal prob-
abilities computed on the untimed MDP corresponds to the actual maximal and minimal
probabilities of reaching a set of locations of the 1C-PTA.2

First we introduce some notation. Consider the 1C-PTA P = (L, l̄, {x}, inv , prob,L),
which we assume to be fixed throughout this section. As in the proof of Proposition 4.1,
we use B = Cst(P) ∪ {0} to refer to the set of constants used in the guards and invariants
of P (and 0). Let IFR be the set of intervals of the form 〈b; b′〉, where b ∈ B, b′ ∈ B ∪ {∞},
〈∈ {(, [} and 〉 ∈ {),]}. The aim of forward exploration is to compute state sets represented
by pairs of the form (l, I), where l ∈ L is a location and I ∈ IFR is an interval of the above
form. The pair (l, I) represents all states (l, v) of T[P] such that v ∈ I.

We define the operator post, which maps a location-interval pair, a probabilistic edge, a
reset set and a location, to a location-interval pair. Intuitively, post returns the set of states
obtained after executing a probabilistic edge (including making the probabilistic choice
concerning the target location and clock reset) and then letting time pass. First consider
a clock constraint ψ ∈ CC ({x}), and recall that [[ψ]] = {v ∈ R≥0 | v |= ψ}. By definition

[[ψ]] ∈ IFR. For all I, I
′ ∈ IFR, note that I∩I

′ ∈ IFR. Furthermore, let I↑l = 〈b;∞)∩[[inv(l)]],
and recall that I[{x} := 0] = [0; 0] and I[∅ := 0] = I. Let (l, I) ∈ L×IFR, let (l, g, p) ∈ prob,

and let (X, l′) ∈ support(p). Then post((l, I), (l, g, p),X, l′) = (l′, (([[g]] ∩ I)[X := 0])↑l′).

2Readers familiar with Kwiatkowska et al. [KNSS02] will note that the presentation below is simplified
with regard to that for PTA with an arbitrary number of clocks. In particular, to ease notation, we consider
that forward reachability can consider states reached after reaching the target set of locations.

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 23

We now proceed to define formally an untimed MDP, the states of which are intervals
of the form (l, I) ∈ L× IFR and which are obtained by forward exploration from the initial
state of P. The probabilistic transition relation of the untimed MDP is derived from the
probabilistic edge relation of P.

Definition 6.1. The forward reachability MDP of the PTA P is the untimed MDP FR[P] =
(SFR, s̄FR, → FR, labFR) where:

• SFR ⊆ L× IFR is the least set of location-interval pairs such that:

{(l̄, [0; 0]↑
l̄
)} ∪

⋃

(l,I)∈SFR

⋃

(l,g,p)∈prob

⋃

(X,l′)∈support(p)

post((l, I), (l, g, p),X, l′) ⊆ SFR .

• s̄FR = (l̄, [0, 0]↑
l̄
) is the initial state.

• → FR is the least set such that ((l, I), ρ) ∈ → FR if there exists a probabilistic edge
(l, g, p) ∈ prob such that:
(1) I ∩ [[g]] 6= ∅;
(2) for any (X, l′) ∈ {{x}, ∅} × L, we have that p(X, l′) > 0 implies (I ∩ [[g]])[X := 0] ∩

[[inv(l′)]] 6= ∅;
(3) for any (l′, I ′) ∈ SFR, we have that ρ(l′, I ′) = ρ0(l

′, I ′) + ρI(l
′, I ′), where ρ0(l

′, I ′) =
p({x}, l′) if (l′, I ′) = post((l, I), (l, g, p), {x}, l′) and ρ0(l

′, I ′) = 0 otherwise, and where
ρI(l

′, I ′) = p(∅, l′) if (l′, I ′) = post((l, I), (l, g, p), ∅, l′) and ρI(l
′, I ′) = 0 otherwise.

• labFR is such that labFR(l, I) = L(l) for each state (l, I) ∈ SFR.

We now show that reachability properties can be verified on FR[P]. The overall proof
of this results proceeds by relating FR[P] to the untimed MDP M[P] of Proposition 4.1,
which we have established can be used to verify reachability properties (because the set
of reachability properties is a subset of Pctl). Recall the definition of the set of intervals
IB and the untimed MDP M[P] = (SM, s̄M, → M, labM) of Proposition 4.1. We define the
function 1stInt : IFR → IB in the following way: given I ∈ IFR, let 1stInt(I) = min{B ∈ IB |
B ⊆ I}. We define a restricted version of M[P], namely 1st[P] = (S1st, s̄M, → 1st, labM),
where S1st = {(l, 1stInt(I)) | (l, I) ∈ SFR}, and where → 1st ⊆ → M is defined as the least
set such that ((l, B), ν) ∈ → 1st if conditions (1), (2) and (3) of the definition of → M are
satisfied, and additionally (4) B = 1stInt(I) for some I ∈ IFR such that (l, I) ∈ SFR. The
untimed MDP 1st[P] will be used as an intermediate model to relate FR[P] to M[P]. First
we consider the relationship between FR[P] and 1st[P].

Lemma 6.2. (1) For each ((l, I), ρ) ∈ → FR, there exists ((l, 1stInt(I)), ν) ∈ → 1st such

that, for all (l′, I ′) ∈ SFR, we have ρ(l′, I ′) = ν(l′, 1stInt(I ′)).
(2) For each (l, I) ∈ SFR, and for each ((l, 1stInt(I)), ν) ∈ → 1st, there exists ((l, I), ρ) ∈

→ FR such that, for all (l′, I ′) ∈ SFR, we have ν(l′, 1stInt(I ′)) = ρ(l′, I ′).

Proof. We prove part (1), noting that part (2) can be shown in a similar manner. Let
((l, I), ρ) ∈ → FR. Then there exists a probabilistic edge (l, g, p) ∈ prob satisfying the
conditions of Definition 6.1. We identify the transition ((l, 1stInt(I)), ν) ∈ → 1st in the
following way. Noting that I ∩ [[g]] 6= ∅ (condition (1) of Definition 6.1), we let B =
1stInt(I ∩ [[g]]). Therefore B ≥ 1stInt(I). Furthermore, we have that B′ ⊆ [[inv (l)]] for all
1stInt(I) ≤ B′ ≤ B, satisfying condition (1) of the definition of M[P] (see Proposition 4.1).
Furthermore, condition (2) for → FR of Definition 6.1 implies condition (2) of the definition
of M[P].

24 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

It remains to show that, for all (l′, I ′) ∈ SFR, we have ρ(l′, I ′) = ν(l′, 1stInt(I ′)). By
definition, it suffices to show that for all (l′, I ′) ∈ SFR, we have ρ0(l

′, I ′) = ν0(l
′, 1stInt(I ′))

and ρI(l
′, I ′) = ν1stInt(I)(l

′, 1stInt(I ′)).

If (l′, I ′) = post((l, I), (l, g, p), {x}, l′), then 1stInt(I ′) = [0; 0], and by definition we
have ρ0(l

′, I ′) = p({x}, l′) = ν0(l
′, 1stInt(I ′)). If (l′, I ′) 6= post((l, I), (l, g, p), {x}, l′), then

1stInt(I ′) 6= [0; 0], and ρ0(l
′, I ′) = 0 = ν0(l

′, 1stInt(I ′)).
If (l′, I ′) = post((l, I), (l, g, p), ∅, l′), then, by definition of post, we have I ′ =

(([[g]] ∩ I)[∅ := 0])↑l′ = ([[g]] ∩ I)↑l′ . We then conclude that 1stInt(I ′) = 1stInt(I ∩ [[g]]).
Hence, by definition of M[P], we have that ν1stInt(I)(l

′, 1stInt(I ′)) = p(∅, l′). By Defini-
tion 6.1, we have ρI(l

′, I ′) = p(∅, l′), and therefore ρI(l
′, I ′) = ν1stInt(I)(l

′, 1stInt(I ′)). If
(l′, I ′) 6= post((l, I), (l, g, p), ∅, l′), then we obtain ρI(l

′, I ′) = 0 = ν1stInt(I)(l
′, 1stInt(I ′)).

We conclude that ρ(l′, I ′) = ν(l′, 1stInt(I ′)) for all (l′, I ′) ∈ SFR.

We say that two untimed MDPs Mu
1 = (S1, s̄1, → 1, lab1) and Mu

2 = (S2, s̄2, → 2, lab2)
are isomorphic if there exists a bijection f : S1 → S2 such that:

(1) for each state s ∈ S1, we have lab1(s) = lab2(f(s));
(2) f(s̄1) = s̄2;
(3) (s, ν) ∈ → 1 if and only if (f(s), f(ν)) ∈ → 2, where f(ν) ∈ Dist(S2) is the distribution

defined by f(ν)(s′) = ν(f−1(s′)) for each s′ ∈ S2.

Lemma 6.3. The untimed MDPs FR[P] and 1st[P] are isomorphic.

Proof. We consider the bijection f : SFR → S1st such that f(l, I) = (l, 1stInt(I)) for each
(l, I) ∈ SFR. First we have that labFR(l, I) = L(l) = labM(l, 1stInt(I)). Second we have that

f(s̄FR) = f((l̄, [0; 0]↑
l̄
)) = (l̄, 1stInt([0; 0]↑

l̄
)) = (l̄, [0; 0]) = s̄M. Third, Lemma 6.2 establishes

that ((l, I), ρ) ∈ → FR if and only if ((l, 1stInt(I), f(ρ)) ∈ → 1st.

Given that isomorphism is as least as strict as probabilistic bisimilarity [SL95], and
that, for any adversary A of an MDP, we can define a corresponding adversary A′ of a
probabilistically bisimilar MDP such that A and A′ have the same reachability probabilities,
we obtain the following corollary.

Corollary 6.4. Let a ∈ AP . For any adversary A ∈ AdvFR[P], there exists an adversary

A′ ∈ Adv1st[P] such that:

ProbAs̄FR{ω ∈ PathA
ful (s̄FR) | ω |=FR[P] Fa}=ProbA

′

s̄1st{ω ∈ PathA′

ful (s̄1st) | ω |=1st[P] Fa}.(6.1)

Conversely, for any adversary A′ ∈ Adv1st[P], there exists an adversary A ∈ AdvFR[P] such

that Equation 6.1 holds.

It remains to relate 1st[P] to M[P]. The intuition underlying the following results is the
following: while 1st[P] is a restriction of M[P], the additional transitions of M[P] only result
in states from which the ability to enable probabilistic edges is weakened. For any two
states (l, B), (l, B′) of M[P], we write (l, B) � (l′, B′) if l = l′ and B ≤ B′. Furthermore, for
the distribution ν ∈ Dist(S1st) and ν

′ ∈ Dist(SM), we write ν � ν ′ if there exists a bijection
f : support(ν) → support(ν ′) such that f(ν) = ν ′, and, for each (l, B) ∈ support(ν), we have
(l, B) � f(l, B). The following lemma can be derived directly from the definitions of 1st[P]
and M[P].

Lemma 6.5. Let (l, B) ∈ S1st and (l, B′) ∈ SM be such that (l, B) � (l′, B′). Then, for

each ((l, B′), ν ′) ∈ → M, there exists ((l, B), ν) ∈ → 1st such that ν � ν ′.

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 25

Lemma 6.5 then allows us to construct, for any adversary A of M[P], an adversary
A′ of 1st[P] such that the probability of reaching a given set of locations from the initial
state is the same for A and A′ (this fact also follows by noting that (�)−1 is a probabilistic
simulation [SL95]). The converse result, which states that, for any adversary A of 1st[P],
an adversary A′ of M[P] such that the probability of reaching a given set of locations from
the initial state is the same for A and A′, follows from the fact that 1st[P] is a restriction
of M[P]. We then obtain the following corollary.

Corollary 6.6. Let a ∈ AP . For any adversary A ∈ Adv1st[P], there exists an adversary

A′ ∈ AdvM[P] such that:

ProbAs̄1st{ω ∈ PathA
ful (s̄1st) | ω |=1st[P] Fa}=ProbA

′

s̄M
{ω ∈ PathA′

ful (s̄M) | ω |=M[P] Fa} . (6.2)

Conversely, for any adversary A′ ∈ AdvM[P], there exists an adversary A ∈ Adv1st[P] such

that Equation 6.2 holds.

Combining Corollary 6.4 and Corollary 6.6, and using the proof of Proposition 4.1,
which states that the results of model checking a Pctl formula (including reachability
properties of the form P∼λ(Fa)) on M[P] correspond to the satisfaction of the formula on
T[P], we conclude with the following corollary.

Corollary 6.7. Let a ∈ AP , ∼∈ {<,≤,≥, >} and λ ∈ [0, 1]. We have FR[P] |= P∼λ(Fa) if
and only if T[P] |= P∼λ(Fa).

7. Conclusion

We have shown that probabilistic model-checking problems for 1C-PTA can be per-
formed efficiently if qualitative properties with non-punctual timing bounds are considered.
If the temporal logic features punctual timing bounds, the problem becomes EXPTIME-
complete. We have also shown that the forward reachability algorithm of Kwiatkowska
et al. [KNSS02] can be used to compute the exact probability of reaching a state set for
1C-PTA. For future work, we intend to consider the complexity of model checking 1C-
PTA against quantitative properties without punctual timing bounds (that is, properties of
Ptctl[≤,≥]). On the other hand, we have shown that model-checking problems for 2C-
PTA are EXPTIME-complete, regardless of the probability threshold and timing bounds
used.

References

[AB06] R. Alur and M. Bernadsky. Bounded model checking for GSMP models of stochastic real-time
systems. In Proc. of the 9th International Workshop on Hybrid Systems Computation and Con-
trol (HSCC’06), volume 3927 of LNCS, pages 19–33. Springer, 2006.

[ACD91] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking for probabilistic real-time systems.
In Proc. of the 18th International Conference on Automata, Languages and Programming
(ICALP’91), volume 510 of LNCS, pages 115–136. Springer, 1991.

[ACD93] R. Alur, C. Courcoubetis, and D. L. Dill. Model-checking in dense real-time. Information and
Computation, 104(1):2–34, 1993.

[AD94] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science, 126(2):183–
235, 1994.

26 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

[ADOW05] P. A. Abdulla, J. Deneux, J. Ouaknine, and J. Worrell. Decidability and complexity results
for timed automata via channel machines. In Proc. of the 32nd International Colloquium on
Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pages 1089–1101.
Springer, 2005.

[ATP04] R. Alur, S. La Torre, and G. Pappas. Optimal paths in weighted timed automata. Theoretical
Computer Science, 318(3):297–322, 2004.

[BCH+07] C. Baier, L. Cloth, B. Haverkort, M. Kuntz, and M. Siegle. Model checking action- and state-
labelled Markov chains. IEEE Transactions on Software Engineering, 33(4):209–224, 2007.

[BdA95] A. Bianco and L. de Alfaro. Model checking of probabilistic and nondeterministic systems. In
Proc. of the 15th Conference on Foundations of Software Technology and Theoretical Computer
Science (FSTTCS’95), volume 1026 of LNCS, pages 499–513. Springer, 1995.

[BDL+06] G. Behrmann, A. David, K. G. Larsen, J. H̊akansson, P. Pettersson, W. Yi, and M. Hendriks.
UPPAAL 4.0. In Proc. of the 3rd International Conference on Quantitative Evaluation of Sys-
tems (QEST’06), pages 125–126. IEEE Computer Society Press, 2006.

[BHHK03] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model-checking algorithms for
continuous-time Markov chains. IEEE Transactions on Software Engineering, 29(6):524–541,
2003.

[BK98] C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time logic with
fairness. Distributed Computing, 11(3):125–155, 1998.

[CGP99] E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press, 1999.
[CJH03] K. Chatterjee, M. Jurdziński, and T. Henzinger. Simple stochastic parity games. In Proc. of

the 12th International Conference on Computer Science Logic (CSL’03), volume 2803 of LNCS,
pages 100–113. Springer, 2003.

[CKS81] A. K. Chandra, D. Kozen, and L. J. Stockmeyer. Alternation. Journal of the ACM, 28(1):114–
133, 1981.

[CY95] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic verification. Journal of the
ACM, 42(4):857–907, 1995.

[dA97a] L. de Alfaro. Formal verification of probabilistic systems. PhD thesis, Stanford University, De-
partment of Computer Science, 1997.

[dA97b] L. de Alfaro. Temporal logics for the specification of performance and reliability. In Proc. of the
14th Annual Symposium on Theoretical Aspects of Computer Science (STACS’97), volume 1200
of LNCS, pages 165–176. Springer, 1997.

[DHS07] S. Donatelli, S. Haddad, and J. Sproston. CSLTA: an expressive logic for continuous-time Markov
chains. In Proceedings of the 4th International Conference on Quantitative Evaluation of Systems
(QEST’07), pages 31–40. IEEE Computer Society Press, 2007.

[DKN04] C. Daws, M. Kwiatkowska, and G. Norman. Automatic verification of the IEEE 1394 root
contention protocol with KRONOS and PRISM. Software Tools for Technology Transfer, 5(2–
3):221–236, 2004.

[HJ94] H. A. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects
of Computing, 6(5):512–535, 1994.

[Jen96] H. E. Jensen. Model checking probabilistic real time systems. In Proc. of the 7th Nordic Work-
shop on Programming Theory, pages 247–261. Chalmers Institute of Technology, 1996.

[KNPS06] M. Kwiatkowska, G. Norman, D. Parker, and J. Sproston. Performance analysis of probabilistic
timed automata using digital clocks. Formal Methods in System Design, 29:33–78, 2006.

[KNSS02] M. Kwiatkowska, G. Norman, R. Segala, and J. Sproston. Automatic verification of real-time sys-
tems with discrete probability distributions. Theoretical Computer Science, 286:101–150, 2002.

[LMO06] F. Laroussinie, N. Markey, and G. Oreiby. Model checking timed ATL for durational concurrent
game structures. In Proc. of the 4th International Conference on Formal Modelling and Analysis
of Timed Systems (FORMATS’06), volume 4202 of LNCS, pages 245–259. Springer, 2006.

[LMS04] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Model checking timed automata with one or two
clocks. In Proc. of the 15th International Conference on Concurrency Theory (CONCUR’04),
volume 3170 of LNCS, pages 387–401. Springer, 2004.

[LMS05] F. Laroussinie, N. Markey, and Ph. Schnoebelen. Efficient timed model checking for discrete-time
systems. Theoretical Computer Science, 353(1–3):249–271, 2005.

MODEL CHECKING PROBABILISTIC TIMED AUTOMATA 27

[LS05] F. Laroussinie and J. Sproston. Model checking durational probabilistic systems. In Proc. of the
8th International Conference on Foundations of Software Science and Computation Structures
(FoSSaCS’05), volume 3441 of LNCS, pages 140–154. Springer, 2005.

[LS07] F. Laroussinie and J. Sproston. State explosion in almost-sure probabilistic reachability. Infor-
mation Processing Letters, 102(6):236–241, June 2007.

[LW05] S. Lasota and I. Walukiewicz. Alternating timed automata. In Proc. of the 8th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS’05),
volume 3441 of LNCS, pages 299–314. Springer, 2005.

[PT87] C. Papadimitriou and J. Tsitsiklis. The complexity of Markov decision processes. Mathematics
of Operations Research, 12(3):441–450, 1987.

[SL95] R. Segala and N. A. Lynch. Probabilistic simulations for probabilistic processes. Nordic Journal
of Computing, 2(2):250–273, 1995.

[Spr01] J. Sproston. Model checking for probabilistic timed and hybrid systems. PhD thesis, University
of Birmingham, School of Computer Science, 2001.

[Sto02] M. Stoelinga. Alea jacta est: verification of probabilistic, real-time and parametric systems. PhD
thesis, University of Nijmegen, the Netherlands, April 2002.

[TYB05] S. Tripakis, S. Yovine, and A. Bouajjani. Checking timed Büchi automata emptiness efficiently.
Formal Methods in System Design, 26(3):267–292, 2005.

[Var85] M. Y. Vardi. Automatic verification of probabilistic concurrent finite-state programs. In Proc. of
the 16th Annual Symposium on Foundations of Computer Science (FOCS’85), pages 327–338.
IEEE Computer Society Press, 1985.

Appendix A. Model checking Ptctl
0/1[≤,≥] over PTAs with strict

constraints

Here we describe briefly the general case for the model-checking algorithm of Theo-
rem 4.3, that is when the guards and invariants of P may be strict and when the intervals in
Sat[l,Φi] may be open (or half-open). This makes the algorithm more difficult to describe
even if the complexity remains polynomial. Here we will only give the main idea about how
to deal with these kind of constraints.

First note that an optimal strategy of either of the players Pn or Pp cannot always be
restricted to perform transitions at integer points: if a transition has to be performed as
soon as possible and if it has a guard x > d, then it is not possible to perform it from the
position d, and in some cases it is not optimal to wait until d+1. In fact, sometimes there
is even no optimal strategy corresponding to the optimal values (for α, β, γ and δ). The
same remark holds for the notion of optimal (timed) path in timed automata [ATP04]. We
have to define the optimal value as a constant k such that there exist strategies with a cost
arbitrarily close (above or below) to k. Thus the optimal value will be denoted as “ǫ k”
with ǫ ∈ {<,=, >}. For example, “< 2” will mean that the optimal value is less than 2 but
arbitrarily close to 2.

The method proposed for the simple case has to be modified in order to handle the
(non)strict value. For each Ptctl

0/1[≤,≥] modality, we can use a variant of the finite
discrete TMDP Tr defined in the proof of Theorem 4.3: again we consider the singular
states (l, bi) and the “symbolic states” (l, (bi; bi+1)) with bi ∈ B, with the two special
positions b+i and b−i+1.

Consider the case of subformulae of the form P>0(Φ1U≤cΦ2). Then we want to compute
the function α for any configuration (l, v) of T[P]. Figure 3 shows two simple examples
where the value for α is indicated for every integer point and for the left and right side
of the intervals. Note that in these examples, we just assume that prob contains the two
probabilistic edges (l, x > 1, p) (respectively, (l, x = 2, p)) where p({x}, l′), and (l′, x = 1, p′)

28 M. JURDZIǸSKI, F. LAROUSSINIE, AND J. SPROSTON

where p′({x}, l′′). Moreover the only state satisfying Φ2 is (l′′, 0), and all states satisfy Φ1.
The value α corresponds to the duration between the current state and (l′′, 0). This example
is sufficient to illustrate the problem of strict and non-strict values.

Let us consider the structure of the function α. For the singular points (l, bi) the value
can be of the form “< k”, “= k”, “> k”, or ∞ when there exists a strategy for Pn to
avoid Φ2 forever. Note that the case “> k” can occur for a state (l, bj) when the property
Φ2 holds for an interval (l, (bi; bi+1)): reaching this interval from (l, bj) can be done by a
duration strictly greater than bi − bj . The other cases are illustrated on Figure 3.

l
<3 <2

<3 >2 <2 >1

l′
=1 =0

<1 >0

Φ2
l′′
=0

l
=3 =2 =1

<3 >2 <2 >1

l′
=1 =0

<1 >0

Φ2
l′′
=0

Figure 3: Example of optimal value for α

Now consider the case of symbolic states (l, (bi; bi+1)). The structure of α over such an
interval is always decreasing: indeed either the best strategy for Pn consists in performing
a distribution from the current interval, in which case it is always better to delay until the
last point (b−i+1) of the interval, or the best strategy consists in delaying until a future state
or interval. We can see that the value of the rightmost position inside the interval will be
always of the form “> k”: indeed it depends either on the value in bi+1 (if the strategy
goes through this point) or on the value in some (l′, b0) if there is transition with a reset
of clock x. Assume that this value is “ǫ k” and consider a point (l, v) with v ∈ (bi; bi+1).
Then any duration in (0; bi+1− v) is sufficient to reach Φ2 in more than k time units in case
of an optimal strategy: note that this fact does not depend on ǫ. Given a value “> k” for
the rightmost position of (bi; bi+1), we can deduce the function α for any position v in the
interval: it is bi+1 − v + k.

Therefore (1) the optimal strategies use only the singular points and the rightmost
positions b−i+1 in the intervals, and (2) the function α over an interval can be derived from
the value in the rightmost position. Thus we will restrict the computation of coefficients α
to these points.

Thus the algorithm consists in computing the function α by using values of the form
“< k”, “= k” or “> k”. This is slightly more technical than the basic case.

Finally similar techniques can be used also for the other functions (β, γ and δ).

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

	1. Introduction
	2. Probabilistic Timed Automata
	2.1. Preliminaries
	2.2. Syntax of probabilistic timed automata
	2.3. Semantics of probabilistic timed automata

	3. Probabilistic timed temporal logic
	4. Model Checking One-Clock Probabilistic Timed Automata
	4.1. Model Checking Pctl on 1C-PTA
	4.2. Model checking Ptctl0/1[,] on 1C-PTA
	4.3. Model checking Ptctl0/1 on 1C-PTA

	5. Model Checking Two-Clocks Probabilistic Timed Automata
	6. Forward Reachability for One-Clock Probabilistic Timed Automata
	7. Conclusion
	References
	Appendix A. Model checking Ptctl0/1[,] over PTAs with strict constraints

