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Abstract. We present a finitary version of Moss’ coalgebraic logic for T -coalgebras, where
T is a locally monotone endofunctor of the category of posets and monotone maps. The
logic uses a single cover modality whose arity is given by the least finitary subfunctor of
the dual of the coalgebra functor T Bω , and the semantics of the modality is given by relation
lifting. For the semantics to work, T is required to preserve exact squares. For the finitary
setting to work, T Bω is required to preserve finite intersections. We develop a notion of a
base for subobjects of TωX. This in particular allows us to talk about the finite poset of
subformulas for a given formula. The notion of a base is introduced generally for a category
equipped with a suitable factorisation system.

We prove that the resulting logic has the Hennessy-Milner property for the notion of
similarity based on the notion of relation lifting. We define a sequent proof system for the
logic, and prove its completeness.

1. Introduction

Shortly after the theory of coalgebras emerged as a useful conceptual tool for a uniform study
of various kinds of dynamic systems, there has been an interest in finding logics expressive
enough to describe the behaviour of the coalgebras up to bisimilarity.

For the case of coalgebras for endofunctors T : Set ÝÑ Set preserving weak pullbacks,
this goal has been achieved by Larry Moss in his pioneering paper [Mos99], where he
introduces a coalgebraic logic expressive for bisimulation, uniformly in the choice of the
coalgebra functor T . The language of the logic contains a single cover modality ∇T , whose
arity is given by the coalgebra functor T , and whose semantics is given by relation lifting. The
original Moss’ logic is infinitary: not only it allows for infinite conjunctions and disjunctions,
but also modal formulas ∇α for α P TL can be infinitary, depending on the functor T .
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After that, attention turned to the question how to obtain expressive coalgebraic
languages based on more standard modalities [Jac01, Kur01], the current mainstream
approach being based on modalities described by predicate liftings [Pat03, Sch08].

Moss’ logic itself has soon become a lively field of study. Using similar ideas as Moss,
Baltag in [Bal00] describes an infinitary coalgebraic logic capturing both the notion of
bisimulation and simulation for Set coalgebras. Neither Moss nor Baltag provide a complete
axiomatization for their respective infinitary logics, as completeness might not be available
in general, depending again on the coalgebra functor.

A finitary version of Moss’ logic has consequently been explored by various authors,
resulting in an almost full picture, including (among others) its axiomatization and complete-
ness proof parametric in the coalgebra functor [KKV12b], a structural Gentzen-style proof
theory [BPV14], applications to automata theory [KV05, KV08, KV09], and applications
to fixpoint logics [SV10, Ven06]. The two formalisms, languages based on predicate liftings
and Moss’ finitary languages, have been compared in detail in [KL12].

Much of the theory that has been built around Moss’ idea uses heavily that endofunctors
of Set are well understood. This is not quite the case for the endofunctors on the categories
of preorders and posets. One encounters them naturally when interested in similarity alone,
rather then bisimilarity [KKV12a, Lev11]. For this reason (among others), poset extensions
and liftings of set functors were investigated in [BK11, BKV13]. Also a coalgebraic logic for
poset coalgebras, based on monotone predicate liftings, has been considered and proved to
be expressive in [KKV12a].

It therefore seems natural to investigate the possibilities of extending the above mentioned
techniques and results on finitary Moss’ logic for set coalgebras beyond the category of sets.
This paper is a step in this direction, developing Moss’ logic in the the category Pos of posets
and monotone maps, building mainly on results obtained in [BKPV11]. Namely, we use the
existence of a functorial relation lifting for functors preserving exact squares in the category
Pos. This provides us, as we show below, with the technical background for the development
of Moss’ logic for poset coalgebras.

Since the results about relation lifting in [BKPV11] were further generalised in [BKPV13]
to the enriched case of V -categories, where V is a commutative quantale, it is also possible
to define Moss’ logic in this level of generality. However, the commitment to the enriched
setting in particular means that everything, including the language, forms a V -category and
if we are to be truly general, we deal with a highly unusual syntax. We feel that restricting to
the case of preorderes (V -categories where V “ 2) or posets is the right level of enrichment
for presentation of Moss’ coalgebraic logic in full detail at the moment.

The commitment to the enriched setting of the category Pos has similar consequences
worth mentioning out front. First, every object we work with is going to be a poset, including
a poset of atomic propostions or the poset of formulas. Arities of connectives and of the
modality will be given by finitary poset functors. This alone opens possibilities to a rather
unusual definition of syntax. Second, the usual notion of finite objects will be replaced by
that of finitely generated objects. This affects notions of formulas, sequents and proofs.

Contribution of this paper. We present a finitary Moss’ coalgebraic language for coal-
gebras for a locally monotone functor T : Pos ÝÑ Pos that preserves exact squares. The
logic is based on the language of logic of distributive lattices equipped with a single cover
modality ∇ (and for the sake of proof theory later also with its dual modality ∆). The
arity of both cover modalities is the least finitary subfunctor T Bω of the dual of the coalgebra
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functor T , and the semantics of the cover modalities essentially uses the notion of relation
lifting, proven to exist for our choice of coalgebra functors in [BKPV11].

For the finitary setting to work, we need to adopt an appropriate notion of a base. In
the “classical” case of a finitary coalgebraic functor T : Set ÝÑ Set, the base is a natural
transformation from T to the finitary powerset functor. In the context of Moss’ coalgebraic
language, it in particular allows us to consider subformulas of objects in TL. Bases of
endofunctors, in a more general categorial setting, have recently been studied in the context
of reachability in automata (see e.g. the approach taken in [BKR19, WMKJD19]). We have
independently developed an appropriate notion of base of a locally monotone finitary functor
Tω : Pos ÝÑ Pos. Some additional assumptions on the category Pos and the functor Tω
seem inevitable. First of all, one has to choose a suitable factorisation system pE ,Mq on
the category Pos and the functor T should behave well with regard to the factorisation
system. We prove that if we equip Pos with the factorisation system pE ,Mq of monotone
surjections and order embeddings, then a base can be computed for every finitary functor
Tω that preserves order embeddings and their finite intersections. In particular, bases can
be used to produce, for each subobject of the poset TωX, a finite poset of its “generators”,
e.g., a poset of subformulas of a formula of arity Tω, or a poset of successors of a state in a
coalgebra for Tω.

The resulting finitary Moss’ logic has the Hennessy-Milner property — it is expressive for
a notion of simulation and similarity based on the relation lifting. This notion of similarity
coincides with the notion of similarity given, e.g., in [Wor00, HJ04, BK11, Lev11]. The
result matches the similar result for Moss’ logic for coalgebras on the category of sets and
bisimilarity. It can also be seen as a counterpart to the result proved in [KKV12a] for
positive coalgebraic logics in the category of posets, stating that the logic of all monotone
predicate liftings is expressive for any endofunctor of posets that satisfies our conditions.

We present the resulting logic in a form of a cut-free two-sided sequent proof calculus,
and we prove its completeness. To be able to define such a proof system, we essentially use
a dual cover modality delta and its semantical relation to the nabla modality. This part of
the paper very closely follows previous work of the first author [BPV14] on proof theory of
classical Moss’ logic in Set.

Comparison to related work. The work we present in this paper is firmly rooted in
previous work on various Moss’ logics. From the original work [Mos99] of Moss it takes
the idea of a modality whose arity is given by the coalgebra functor and whose semantics
by the relation lifting. There are differences worth mentioning: Moss’ language does not
use propositional variables, and it is inherently infinitary. Moss does not provide any proof
calculus for the logic. In this sense, our work is much closer to the finitary version of Moss’
logic studied in detail in [KKV12b], and can be understood as the poset-based version of
this logic. [KKV12b] addressed an important open problem at the time and provided a
sound and complete derivation system for the finitary Moss’ logic in terms of a Hilbert-style
calculus parametric in the coalgebra functor, and proven completeness in a one-step manner.
We differ from this approach and opt to present the logic in terms of a cut-free sequent
calculus. In this we closely follow previous work by the first author on Gentzen style proof
theory for Moss’ logic of Kripke frames [BPV08], and consequently proof theory for general
Moss’ logic parametric in the coalgebra functor [BPV14]. One difference is that [BPV14]
assumes the coalgebra functor to be finitary, while we, following [KKV12b], do not do so and
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use finitary functors on the syntactic side of matters only. In Section 7 we briefly describe
how our approach relates to positive fragments of logics covered in [BPV14].

One possible motivation to move from Set to Pos is to study similarity. This can be done
in Set [Bal00] in case one is interested in studying bisimilarity and similarity together (first
one is represented by equality on the final coalgebra, while the other by a preorder on the final
coalgebra). However, as argued by Levy [Lev11], if we are exclusively interested in similarity,
we would want the universe of final coalgebra to be a poset: if two nodes are mutually
similar, they should be equal. We employ the notion of similarity given by relation lifting of
monotone relation between posets studied in [BKPV11]. This coincides with the notion of
similarity given elsewhere in literature, in particular in [Wor00, HJ04, BK11, Lev11].

Comparing with the logic for similarity developed in Baltag’s paper [Bal00], we can,
not surprisingly, find striking resemblances. The functorial relation lifting (called strong
relator in [Bal00]) is weakened to capture similarity. For example, while the strong relator
extending the powerset funstor yields the lifting pattern of the Egli-Milner lifting, the relator
pP,Ďq extending the powerset functor yields the same lifting pattern as the L-relation lifting
by the lowerset functor developed in [BKPV11] and used in this paper, namely, the first
half of Egli-Milner lifting. Similarly, the relator pP,Ěq yields the same lifting pattern as
the U-relation lifting by the upperset functor, namely, the second half of Egli-Milner lifting.
Similarly, the cover operator in [Bal00] corresponds the the modality ∇P of Moss, and
can be somewhat related the the modality ∇Pc for the convex powerset functor of this
paper, the box operator in [Bal00] can be related to the modality ∇L of this paper, and
the diamond operator can be related to the modality ∇U of this paper. The similarities
are not surprising because the Set powerset functor P and the Pos functors L,U,Pc can
meaningfully be related [BK11]: while the finitary convex powerset functor is the canonical
extension (the posetification) of the powerset functor, the functors L,U can be obtained
as quotients of certain liftings of the powerset functor to the category of preorders and
monotone maps. However, the obvious differences between [Bal00] and this paper are that
the logic of this paper is finitary, genuinely developed in Pos, and equipped with a sound
and complete derivation system.

As for the techniques applied in this paper, we rely on: (1) the results on relation lifting
of monotone relation between posets developed in [BKPV11], and do not provide new results
in this respect, (2) an appropriate notion of base of a locally monotone finitary functor
Tω : Pos ÝÑ Pos developed in this paper in a slightly more general categorial setting. Bases
of endofunctors have recently been studied in the context of reachability in automata (see
e.g. the approach taken in [BKR19, WMKJD19]), and we relate to their work in detail
throughout the Section 3.

Organisation of the paper.

‚ We start by listing examples of poset endofunctors and examples of ordered coalgebras in
Section 2.

‚ In Section 3 we study the notion of a base in a general category equipped with a factorisation
system. We describe the conditions under which an endofunctor of a category K admits
a base, and we show that a large class of Pos-endofunctors admits a base.

‚ Section 4 introduces monotone relations and the notion of relation lifting of monotone
relations. It states the main result of [BKPV11], that is, the characterisation of locally
monotone Pos-endofunctors that admit a relation lifting.
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‚ We define the syntax and semantics of Moss’ logic for ordered coalgebras in Section 5.
The syntax and semantics of this logic is parametric in the type of coalgebras involved.
We prove that the logic has Hennessy-Milner property for the notion of a simulation of
coalgebras defined by relation lifting.

‚ In Section 6 we develop a sequent calculus for Moss’ logic that is again parametric in
the type of coalgebras involved. We give a proof of soundness and completeness of the
calculus.

‚ Section 7 concludes with possible topics for future study, and clarifies how the current
setting can capture positive fragments of finitary Moss’ logic in Set studied in [BPV14].

Acknowledgements. We would like to thank Jǐŕı Velebil for his substantial help. His
insights were crucial in the development of the paper. We are also thankful for the helpful
comments of the three anonymous referees.

2. Functors and coalgebras in Pos

In this section we fix the basic notation and introduce the running examples that are used
throughout the paper. Firstly we introduce an important class of endofunctors of posets,
namely the locally monotone Kripke polynomial functors. In the second part of this section
we introduce the notion of a coalgebra and show several examples of coalgebras for Kripke
polynomial functors.

2.A. Basic notions and Kripke polynomial functors. We denote by Pos the category
of all posets and all monotone maps, i.e. maps f satisfying x ď y implies fpxq ď fpyq. A
monotone map f is an order embedding if moreover fpxq ď fpyq implies x ď y. For a poset
pX,ďq, we denote by Xop the opposite poset pX,ěq. For every pair X and Y of posets, the
hom-set PospX,Y q of monotone maps from X to Y carries a natural partial order: given two
monotone maps f and g in PospX,Y q, we define that f ď g holds if and only if fpxq ď gpxq
holds for every x P X (i.e. we introduce a pointwise order). The category Pos therefore can
be seen as enriched in posets. In cases where we need to emphasise this extra structure of
Pos, we will speak of Pos as of a 2-category.

A functor T : Pos ÝÑ Pos is then called a locally monotone functor (or a 2-functor), if it
preserves the additional structure present in Pos: that is, if for any pair f , g of comparable
morphisms in Pos the inequality f ď g implies that the inequality T pfq ď T pgq holds.

The Kripke polynomial endofunctors of Pos are those defined by the following grammar:

T ::“ E | Id | T ` T | T ˆ T | TE | T B | LT. (2.1)

We give an explanation of the building blocks of the grammar.

(1) Let E be an arbitrary poset. Slightly abusing the notation, we denote by E the
constant-at-E functor. The functor Id is the identity functor.

(2) Given two Kripke polynomial functors, their product and coproduct (in the category of
poset endofunctors) is again a Kripke polynomial functor.

(3) Given a poset E, we define that TEpXq “ pTXqE is the poset of all monotone maps
from E to TX with the pointwise ordering. The obvious action on morphisms makes
TE into a functor.
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(4) Given a functor T , the functor T B is the dual of T , defined by putting

T BX “ pTXopqop

and again extending to the obvious action on morphisms. (Recall that Xop denotes
the opposite poset with the same underlying set satisfying x ď y in Xop precisely when
y ď x in X.)

(5) We denote by L the lowerset functor, with LX “ rXop , 2s being the poset of all lowersets
on the poset X, and the order is given by inclusion. (By 2 we denote the two-element
chain.) The lowerset functor L acts on morphisms as the direct image followed by closure:
given f : X ÝÑ Y , a lowerset l P LX is mapped by Lf to Óf rls, i.e., to the lowerset
generated by the image f rls of l.

All Kripke polynomial endofunctors of Pos are locally monotone, as seen by a routine
induction.

Observe that the dual of L is the upperset functor U: for any poset X we have that
LBX “ rX,2sop , and the latter is the set of all uppersets on X, ordered by reversed inclusion.
Therefore, the upperset functor U is Kripke polynomial as well. For a monotone map
f : X ÝÑ Y , the map Uf : UX ÝÑ UY sends an upperset u P UX to the upperset Òf rus
generated by the image f rus of u.

Apart from Kripke polynomial functors, we will list an additional functor we will briefly
need at the very end of the paper: the convex powerset functor Pc. For a poset X, PcX is
the poset of convex subsets of X (i.e. subsets w such that if x, y P w and x ď z ď y, then
z P w) partially ordered by the Egli-Milner preorder: w ďEM w1 iff

@x P w Dx1 P w1px ď x1q and @x1 P w1 Dx P wpx ď x1q.

Its action on morphisms Pcf is the direct image map. Observe that this functor is self-dual:
pPcqB “ Pc. This functor comes from the powerset functor P : Pre ÝÑ Pre in the category
of preorders and monotone maps, via the Q % I adjunction (of the quotient and inclusion
functors) as QPI [BKPV11].

We will systematically use finitary functors on the syntactic side of the logics, i.e.
functors that are completely determined by their action on finite posets. Formally, finitary
functors are those preserving filtered colimits (see [Kel82b]), but we will use the following
elementary definition in this paper:

For a functor T , let Tω be its least finitary subfunctor, with νT : Tω // //T being the
natural inclusion. Categorically, Tω is the finitary coreflection of the functor T . It can
be defined in an elementary manner as follows: let m range through finite subobjects
m : Z // //X of X (i.e. with Z being a finite poset) and put

TωX :“
ď

m : Z // //X

imgpTmq.

For a map f : X ÝÑ Y , Tωf is the restriction of Tf to TωY .

TωX //
νTX

//

��

Tωf
��

TX
��

Tf
��

TωY //
νTY

// TY

The functors T and Tω agree on finite posets (i.e., the corresponding natural inclusion is the
identity on finite posets). We say that T is finitary if T and Tω coincide.
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We will often explicitly use the finitary lowerset functor Lω. For a poset X, the poset
LωX consists of finitely generated lowersets on X ordered by inclusion. Analogously, the
finitary upperset functor Uω assigns to a poset X the poset of its finitely generated uppersets,
ordered by reversed inclusion. Both functors are finitary subfunctors of the usual lowerset
and upperset functors. We will use the notation gplq for the minimal discrete finite poset (i.e.
finite set) of generators of the lowerset l P LωX, and in the same way gpuq will denote the
minimal finite set of generators for the upperset u P UωX. When a lowerset is generated by
a single element, we call it a principal lowerset and denote such principal loweset generated
by x by xÓ. Similarly, principal upperset generated by x is denoted by xÒ.

Similarly, the finitary convex powerset functor Pcω assigns, to a poset pX,ďq, the poset
of the finitely generated convex subsets of X ordered by the Egli-Milner partial order ďEM .
The functor Pcω is the natural counterpart — the posetification — of the finitary powerset
functor Pω : Set ÝÑ Set (see [BK11]).

2.B. Coalgebras for a functor. Given a (not necessarily locally monotone) functor T :
Pos ÝÑ Pos, we define coalgebras and their homomorphisms in the usual manner.

Explicitly, a coalgebra for T is a monotone map c : X ÝÑ TX, and a monotone map
h : X ÝÑ Y is a homomorphism from c : X ÝÑ TX to d : Y ÝÑ TY if the following square

X
c
//

h
��

TX

Th
��

Y
d
// TY

commutes.
There are various interesting structures from computer science and logic that can be

modelled as coalgebras for a suitable Kripke polynomial functor. We show some of the
examples below.

Example 2.1. Examples of ordered coalgebraic structures.

(1) Consider the functor T “ Aˆ Id for some fixed poset A. Coalgebras for the functor T
are the monotone maps c “ xout ,nexty : X ÝÑ AˆX that can be seen as a particularly
trivial kind of automata with the set of states X and an (ordered) output alphabet A.
Hence the monotone map out : X ÝÑ A produces an output in A for every state in X
and the monotone map next : X ÝÑ X produces the next state of the automaton.

(2) A complete deterministic ordered automaton (as considered in Chapter 2 of [PP04]) is a
Büchi automaton pX,A,E, I, F q where X is equipped with a partial order ď, A is the
alphabet, E the set of A-labelled (deterministic) transitions on X of the form x ¨ a “ y,
and F is an order-ideal of final states. For each x, y, y1 P X and a P A, x ď y and y ¨ a is
defined, implies x ¨ a is defined and x ¨ a ď y ¨ a.

In a Büchi automaton, the words in the semigroup A` can bee seen to generate
a morphism to the semigroup of binary relations on X, mapping a word w to the
accessibility relation labelled by (the letters) of w. We can think of a state x as accepting
w if there is a w-labelled path from x to a final state. In this sense, the partial order on
the states of automata from this example corresponds to the reverse inclusion of the
accepted languages: if x ď y and y accepts w, then x accepts w. The order on states in
a precise technical sense generates a congruence order on the semigroup A`.
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A complete deterministic ordered automaton can be seen as a coalgebra of the form
c : X ÝÑ XAˆ2 where X is a partial order of states, A the (discrete) input alphabet, the
left-hand component of the monotone map c is a monotone transition map x ÞÑ pa ÞÑ x¨aq
and its right-hand component is a monotone map from X to the two-element chain 2,
determining the accepting states. (In the poset setting, there would be no problem in
considering the more general case of ordered automata with an ordered input alphabet;
we however stick to the definition already used in literature for this example.)

Ordered automata have been considered as a counterpart of ordered semigroups
in [PP04], to deal with some natural classes of recognizable sets of words closed under
finite unions and intersection, but not under complement.

(3) Consider the functor T “ LAω ˆ 2 (with A being discrete). A coalgebra c : X ÝÑ

pLωXqA ˆ 2 is a nondeterministic automaton consisting of an upperset F Ď X of
accepting states, and a set C of transitions of the form px, a, yq with x, y P X and a P A,
satisfying two confluence properties:
(a) Whenever px, a, yq P C and x ď x1 in X, it follows that px1, a, yq P C.
(b) Whenever px, a, yq P C and y ď y1 in X, it follows that px, a, y1q P C.
Let moreover d : Z ÝÑ pLωZqA ˆ 2 be an automaton with an upperset G Ď Z of
accepting states and a set D of transitions. A monotone map h : X ÝÑ Z is a
homomorphism between c and d if the following three conditions are satisfied:
(a) hrF s “ G and hrXzF s XG “ H (h preserves the set of accepting states).
(b) For every transition px, a, yq P C there is a transition phpxq, a, hpyqq P D.
(c) For every transition phpxq, a, zq P D there is a transition px, a, yq P C with z ď hpyq.

We will call coalgebras for the functor LAω ˆ 2 lowerset automata.
(4) Frames for distributive substructural logics [Res00] are frames consisting of a poset X

of states, together with a ternary relation on X, satisfying the following monotonicity
condition:

Rpx, y, zq and x1 ď x and y1 ď y and z ď z1 implies Rpx1, y1, z1q.

In the notation of monotone relations of Section 4 below, R is a monotone relation of
the form R : X � //X ˆX .

Given a set At of atomic formulas and a monotone valuation X ˆ At ÝÑ 2 of the
atomic formulas, we can interpret the fusion and implication connectives as follows:

x , a0 b a1 iff pDx0qpDx1qpRpx0, x1, xq and x0 , a0 and x1 , a1q

x , aÑ b iff p@yqp@zq ppRpx, y, zq and y , aq implies z , bq

It has been shown in [BHV12] that such frames can be treated as coalgebras in a
natural way so that the coalgebraic morphisms coincide with the frame morphisms.
In particular, R generates a natural coalgebraic structure cb : X ÝÑ LpX ˆXq for a
locally monotone functor LpId ˆ Idq, when we understand R as interpreting the fusion
connective. We call R finitary when the generated coalgebraic structure is in fact of the
form cb : X ÝÑ LωpX ˆXq, i.e. when we can use the finitary lowerset functor.

(5) Consider a poset X equipped with a monotone relation R : X � //X . This can be seen
as a frame for modal logic with adjoint modalities. More in detail, such frames with a
monotone valuation enable one in principle to interpret conjunction, disjunction, and
two monotone modalities: a forward-looking l and a backward-looking �. We put

x , la iff p@yq pRpx, yq implies y , aq

x , �a iff pDyq pRpy, xq and y , aq
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The modalities l and � are adjoint in a sense that will be explained in Remark 5.9.
The relation R generates two coalgebras

c : X ÝÑ UX and d : X ÝÑ LX

defined by cpxq “ ty | Rpx, yqu and dpxq “ ty | Rpy, xqu. We say that the frame pX,Rq
is finitary if R in fact generates coalgebras

c : X ÝÑ UωX and d : X ÝÑ LωX

for the finitary functors Uω and Lω.
While the U-coalgebras can be seen as models of the box fragment of positive modal

logic (i.e. the logic one obtains by extending the logic of distributve lattices with a box
operator), the L-coalgebras can be seen as models of the logic of distributive lattices
extended with a backward looking diamond operator (which is the common fragment of
substructural epistemic logics considered in [BMP16]).

(6) Consider a Pc-coalgebra c : X ÝÑ Pc, assigning to a state x a convex subset cpxq so
that whenever x ď y, we have cpxq ďEM cpyq. Equipped with a monotone valuation
X ˆ At ÝÑ 2 assigning uppersets to the atomic formulas, it enables us to interpret
(conjunction and disjunction and) the box and diamond modalities:

x , la iff p@yq pRpx, yq implies y , aq

x , 3a iff pDyq pRpx, yq and y , aq,

creating the following operations on UX:

lRpuq :“ tx | cpxq Ď uu

3Rpuq :“ tx | cpxq X u ‰ Hu

When seen as a relational assignment on the underlying set given by xRy :“ y P cpxq,
the above monotonicity condition does not make R monotone per se, but translates to
the following two conditions on R, familiar from the theory of partially ordered frames
pX,ďq with valuations taking values in UX (see e.g. [Pal04]):

ď ¨R Ď R¨ ď and ě ¨R Ď R¨ ě .

The first condition corresponds to UX being closed under lR, the second condition
corresponds to UX being closed under 3R, thus ensuring the persistence of the semantics.

It is not hard to work out that this is an alternative semantics to the positive modal
logic, i.e. the positive fragment of modal logic K.

(7) Semantics for description logic EL. The small description logic EL is a lite description
logic whose language allows for conjunction, existential restrictions, and the top-concept
(see e.g. [Baa03]). While its semantics itself is not based on a poset, the syntax employs
concept and role subsumptions in the form of inclusions.

In a simple case, and when formulated in the poset setting, the syntax works as
follows: we fix a poset N c of concept names ordered by concept subsumptions of the
form A Ď B, a poset N r of role names ordered by role subsumptions of the form r Ď s,
and generate the following grammar of concepts:

C :“ A | J | C [D | Dr.C

The semantics is based on a discrete poset (i.e. a set) ∆ together with: (ii) interpretations
CI of concept names by lowersets of ∆ (i.e. subsets of ∆) respecting their order: C Ď D
implies CI Ď DI , (ii) interpretations rI of role names by binary relations on ∆, again
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respecting their order: r Ď s implies rI Ď sI . We can see each structure of this kind as
a coalgebra

c : ∆ ÝÑ pL∆qN
r
ˆ 2N

c

which, for each d P ∆, assigns: for each role name r the lowerset (i.e. subset) te | pd, eq P
rIu, and for each concept name C the value 1 if d P CI , and the value 0 otherwise. Both
assignments are monotone.

We shall use some of the above coalgebras as running examples to illuminate concretely
the general theory.

3. Base in a category K with a factorisation system

When studying finitary coalgebraic logics for finitary endofunctors of Set, the notion of a
base is of central importance. On the level of models, the base allows us to produce a finite
set of successors of a state of the model. On the level of the logical syntax, the base yields a
finite set of subformulas of a given formula.

Technically, given a functor T : Set ÝÑ Set, a base is a natural transformation baseTX :
TX ÝÑ PωX, assigning to each element α of TX a finite subset of X, called the base of α.
The idea is to define baseTXpαq as the smallest finite Z Ď X such that α P TZ holds. For
this idea to work, T has to satisfy additional conditions: it has been shown in [Gum05]
that when T preserves intersections and weakly preserves inverse images, then the base
exists and it is natural. For various properties of bases for endofunctors of Set we refer to,
e.g., [KKV12b].

In this section we explain how to define and compute a base for an endofunctor
T : K ÝÑ K of an arbitrary category K that is equipped with a factorisation system
pE ,Mq for morphisms. The factorisation system is used in order to be able to imitate the
powerset: the set of all subsets is going to be replaced by the poset of M-subobjects.

Remark 3.1 (Comparison to related work). In [WMKJD19, BKR19], the notion of base has
been used to relate reachability within a coalgebra to a monotone operator on the (complete)
lattice of subobjects of the carrier of the coalgebra. [BKR19] assumes the category K
to be complete (which may limit applications), while [WMKJD19] (and us) do not do so.
Both [WMKJD19, BKR19] however define base for any f : X ÝÑ TY , while we do so only
for M-subobjects α : Z // //TX .

Both [WMKJD19, BKR19] developed the notion independently, almost at the same
time: the relation is described in Remark 5.17 in [WMKJD19]. We have developed the notion
independently of the two (a preliminary version of the current paper has been available
on arXiv since 2019), and only got aware of their related work recently. Credit for our
contribution should go mainly to J. Velebil, who closely cooperated on a previous version of
this paper.

By applying our definition of a base to the epi-mono factorisation system on the category
of sets and mappings, we then obtain the above notion of a base, see Example 3.14. By
applying our definition of a base to the category of all posets and all monotone maps,
equipped with a suitable factorisation system, we will be able to speak of bases in the
ordered case as well. See Examples 3.4 and 3.16 below.
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3.A. Factorisation systems. For more details on the general theory of factorisation
systems we refer to the book [AHS06].

Definition 3.2. Suppose K is a category and let E and M be classes of morphisms in K .
We say that pE ,Mq is a factorisation system on K (and that K is an pE ,Mq-category),
provided the following conditions are satisfied:

(1) The classes E and M are closed under composition with isomorphisms.
(2) Every morphism in K can be factorised as a morphism in E followed by a morphism in

M.
(3) K has the pE ,Mq-diagonalisation property, i.e., for every commutative square

A
e
//

u
��

B

v
��

X m
// Y

where e is in E and m is in M, there exists a unique diagonal d : B ÝÑ X, making both
triangles in the diagram

A
e
//

u
��

B

v
��

d

~~

X m
// Y

commutative.

A factorisation system pE ,Mq is called proper if members of E are (some) epimorphisms
and members of M are (some) monomorphisms.

Remark 3.3. Any factorisation system pE ,Mq on any category K satisfies the following
(see Proposition 14.6 of [AHS06]):

(1) The classes E and M are closed under composition.
(2) The intersection E XM is the class of all isomorphisms in K .

Example 3.4. The following are examples of pE ,Mq-categories K :

(1) K is the category Set of all sets and mappings, E is the class of all epis (=surjections)
and M is the class of all monos (=injections).

(2) K is the category Pos of all posets and monotone mappings, E is the class of all monotone
surjections and M is the class of all monotone maps that reflect the order.

(3) If K is the category Pre of all preorders and monotone mappings, one can choose from
at least one of the following three prominent factorisation systems:
(a) E is the class of all monotone maps that are bijective on the level of elements and

M is the class of all monotone maps that reflect the order.
(b) E is the class of all monotone surjections and M is the class of all monotone

injections that reflect the order.
(c) M is the class of monotone injections. The class M is the class of all monomor-

phisms, hence the corresponding E necessarily coincides with the class of all strong
epimorphisms, see [AHS06].

All of the above cases, except for (3a), are proper factorisation systems.

(4) If K is an pE ,Mq-category, then K op is an pM, Eq-category. If the factorisation system
pE ,Mq on K is proper, so is the factorisation system pM, Eq on K op .
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For a factorisation system pE ,Mq on K , the morphisms in M will serve as “subobjects”.
It is however more useful to define subobjects as equivalence classes. More precisely: we fix
an object X and we denote a morphism in M into X by m : Z // //X . We define a preorder
on such morphisms by putting m Ď m1 if there is a factorisation

Z // //

��

m
��

Z 1
��

m1
��

X

The preorder defines an equivalence m „ m1 iff m Ď m1 and m1 Ď m. We denote the
equivalence classes by rms. If the category K has a final object 1, we denote the situation

1 // //

��

x
��

Z
��

m
��

X

by writing that x P m holds.

Definition 3.5. The equivalence class rms of m : Z // //X is called an M-subobject of X.
The class of all subobjects of X is denoted by

SubMpXq

and we consider it ordered by rms Ď rm1s if m Ď m1.

Definition 3.6. We say that an pE ,Mq-category K is M-wellpowered, if every SubMpXq
has a set of elements. And K is E-cowellpowered, if K op (equipped with the factorisation
system pM, Eq, see Example 3.4) is E-wellpowered.

Remark 3.7.

(1) We will abuse the notation and write m instead of rms, and m Ď m1 instead of rms Ď rm1s.
(2) An pE ,Mq-category need not be M-wellpowered, even for a proper factorisation system

pE ,Mq. Indeed, suppose K is the class of all ordinals with the reversed order (so that
the ordinal 0 becomes the top element) and consider K as a category. Put E to be
the class of identity morphisms, M to be the class of all morphisms. The factorisation
system pE ,Mq on K is proper, since every morphism in K is both a monomorphism
and an epimorphism. Then it follows that SubMp0q is a proper class.

(3) If SubMpXq has a set of elements, then it is a complete lattice whenever K has enough
limits. In fact, it suffices to establish the existence of infima in SubMpXq. The infima
can be computed as limits of diagrams of the form

...

Zi '' mi
''... X pi, j P Iq

Zj
88 mj

88

...

that are called wide pullbacks of M-morphisms (or, intersections of M-subobjects).
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We denote by pi : Z // //Zi the limit cone. Every pi belongs to M by the general
properties of (proper) factorisation systems, see [AHS06], Proposition 14.15. The
composite mi ¨ pi : Z // //X represents the M-subobject that is the intersection of mi’s.
We denote the intersection by

Ş

iPI mi : Z // // X

The existence of suprema in SubMpXq then follows from the existence of infima by the
usual argument.

(4) When, moreover, coproducts exist in K , suprema in SubMpXq can be computed by
an explicit formula. Namely, the supremum

Ť

iPI mi (called the union of mi’s) can be
computed as the M-part

Ť

iPI mi : C // //X

of the pE ,Mq-factorisation of the unique cotupling morphism m :
š

iPI Zi ÝÑ X as
follows:

...

Zi
inj i
%%

//
mi

��...
š

iPI

Zi // // C //
Ť

iPI mi
// X

Zj

inj j

99

//
mj

OO

...

(5) When dealing with a pair m : Z // //X , n : Z // //X of subobjects of X, we denote their
intersection and union as mX n and mY n, respectively.

3.B. General bases.

Assumption 3.8. For the rest of this section we assume the following three conditions:

(1) K is an pE ,Mq-category for a proper factorisation system pE ,Mq.
(2) K is M-wellpowered (i.e., we assume that every SubMpXq has a set of elements).
(3) T : K ÝÑ K is a functor which preserves M-morphisms.

The reader might compare our assumption 3.8 (and what we have said in the item (6)
of Remark 3.7 above) with Assumption 5.1 of [WMKJD19], where K is assumed to be
complete, wellpowered, with arbitrary (small) coproducts, equipped with a factorisation
system pE ,Mq where M is a class of monomorphisms.

Also, compare with Assumption of Proposition 12 in [BKR19], where K is assumed to
be complete and well-powered.

Definition 3.9. An M-subobject baseXpαq : rZ // //X is called a base of an M-subobject

α : Z // //TX provided that the following holds for every m : Z 1 // //X

baseXpαq Ď m holds in SubMpXq
iff

α Ď Tm holds in SubMpTXq.
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Again, the reader might compare this with Definition 5.7 of [WMKJD19], where T is
assumed to preserve monos (like we do here), but base is defined for every arrow f : X ÝÑ TY ,
while we do so only for subobjects. For the class of all monomorphisms such notion was first
introduced by Alwin Block [Blo12] and called a base.

Compare also with [BKR19, Proposition 12], where for any endofunctor T which
preserves (wide) intersections, base of every arrow f : X ÝÑ TY is shown to exist.

Remark 3.10. Since SubMpXq is a poset, the base baseXpαq is determined uniquely,
whenever it exists. The base satisfies the unit property

α Ď TbaseXpαq

for every α in SubMpTXq, and satisfies the counit property

baseXpTmq Ď m

for every m in SubMpXq. These properties are immediate consequences of the definition of
base.

We shall characterise functors admitting a base in Proposition 3.12. Before we state the
result, let us show that some functors do not admit a base.

Example 3.11. Consider the category Pos equipped with the factorisation system of
Example 3.4 (2), and the lowerset functor L : Pos ÝÑ Pos. We claim that

α : 1 // //LZ , ˚ ÞÑ Z,

where Z is the poset of integers with the usual order, does not admit a base.
Indeed, for any m : Z 1 // //Z , the inequality α Ď Lm states that (the image of) Z 1 is a

cofinal subset of Z. Had basepαq : r1 // //Z existed, its image would yield the least cofinal
subset of Z — a contradiction.

Recall that meet-preserving maps between complete lattices have left adjoints. The
proof of the following characterisation is a simple application of this fact (cf. Proposition 5.9
of Wissmann et al [WMKJD19]).

Proposition 3.12. Suppose K has intersections of M-subobjects. For T : K ÝÑ K , the
following are equivalent:

(1) For every X and every α : Z // //TX , the base baseXpαq : rZ // //X exists.
(2) T preserves intersections of M-subobjects.

Moreover, under any of the above conditions, baseXpαq can be computed as the intersection
č

αĎTm

m

of all M-subobjects m : Z 1 // //X such that α Ď Tm holds in SubMpTXq.

Proof. Observe that the assignment f ÞÑ Tf induces a monotone map

TX : SubMpXq ÝÑ SubMpTXq

since T is assumed to preserve M-morphisms. The assignment α ÞÑ baseXpαq is then simply
the value of a left adjoint

baseX : SubMpTXq ÝÑ SubMpXq
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to TX at a point α. Moreover, SubMpXq and SubMpTXq are complete lattices, since K is
assumed to have intersections of M-subobjects.

Then (1) is equivalent to (2), since (1) asserts that baseX % TX holds for any X and (2)
asserts that TX preserves infima for any X.

The final assertion is true since the value of the left adjoint baseX can be computed by
the formula

baseXpαq “
č

αĎTm

m.

In practical applications it may be the case that one is interested in the existence of
baseXpαq only for particular α’s. For example, in [Ven06] the base is computed only for
finite subsets of TX for functors T : Set ÝÑ Set.

We imitate this approach here. Namely, besides our standing assumptions, we assume
further that a full subcategory Kλ of K is given, where λ is a regular cardinal. We want to
think of the objects of Kλ as being “smaller than λ”. Our goal is to construct the value of

a left adjoint baseXpαq : rZ // //X only for those M-subobjects α : Z // //TX with Z in Kλ,

and such that rZ is in Kλ as well.
For every X, denote by

IX : SubM,λpXq ÝÑ SubMpXq

the inclusion of the subposet spanned by M-subobjects having a domain in Kλ.
One can refine the existence of the base by applying the ideas of Freyd’s Adjoint Functor

Theorem [Fre03]. In the formulation we use the terminology λ-small to abbreviate “of
cardinality less than λ”. For example, a λ-small set is one of less than λ elements, a λ-small
intersection is one indexed by a λ-small set, etc.

Proposition 3.13. Suppose that for every X, the poset SubMpXq has λ-small infima, and
suppose that SubM,λpXq is a subset in SubMpXq that is closed under λ-small infima.

Suppose further that the following two conditions are satisfied:

(1) T preserves λ-small intersections.
(2) For any α : Z // //TX with Z in Kλ there exists a λ-small set

F “ tfi | i P I, α Ď Tfiu Ď SubM,λpXq

such that for every m in SubMpXq with α Ď Tm there exists f P F with Tf Ď Tm.

Then baseXpαq exists for every α : Z // //TX with Z in Kλ, it is an element of SubM,λpXq,
and it is computed by the formula

baseXpαq “
č

F.

Proof. By hypothesis, SubM,λpXq has λ-small infima, and the map TX preserves them by
condition (1). Condition (2) now ensures that

č

αĎTm

m “
č

F

holds. The latter infimum is λ-small and TX is assumed to preserve such infima. The result
now follows.

We show how Proposition 3.13 is applied in the classical case when K “ Set. Recall
that a category D is λ-filtered if every λ-small diagram in D has a cocone in D . A colimit
is λ-filtered if its scheme is a λ-filtered category.
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Example 3.14. Let K be the category Set of all sets and mappings with the factorisation
system of surjections and injections. Let T : Set ÝÑ Set be a finitary functor that preserves
injections and finite intersections. Then, for every α : Z // //TX with the set Z finite,

baseXpαq : rZ // //X exists and the set rZ is finite.
It suffices to verify conditions (1) and (2) of Proposition 3.13 (where λ “ ℵ0 and Setℵ0

are the finite sets). Condition (1) is well-known to hold for Set1. Condition (2) is verified as
follows. Given α : Z // //TX with Z a finite set, express X as a filtered colimit colimiPI Xi

of subobjects mi : Xi
// //X with all Xi finite. Since T is finitary and is assumed to preserve

injections, TX is a filtered colimit colimiPI TXi of injections. Since Z is finite, there exists
i0 such that the triangle

Z //
α

//
''

''

TX

TXi0

OO

Tmi0

OO

commutes. Denote by F the set

tf | f Ď mi0 and α Ď Tfu

of elements of SubMpXq.
Observe first that F is nonempty and finite. Secondly, if α Ď Tm, then

α Ď Tmi0 X Tm “ T pmi0 Xmq

since T preserves finite intersections. Since the subobject mi0 Xm is in F , condition (2) has
been verified.

More generally, Proposition 3.13 and the technique of Example 3.14 can be applied to
the case when K is a locally λ-bounded category for some regular cardinal λ and a proper
factorisation system pE ,Mq, see [Kel82a]. In particular, we will use the results for K “ Pos
equipped with the factorisation system of monotone surjections and order-embeddings, see
Example 3.16.

Definition 3.15. A category K is locally λ-bounded w.r.t. a proper factorisation system
pE ,Mq, if the following two conditions hold:

(1) There is an essentially small full subcategory Kλ of K such that:
(a) Every object Z in Kλ is λ-bounded, i.e., the functor K pZ,´q preserves colimits of

λ-filtered diagrams of M-subobjects.
(b) A morphism m : X // //Y is an isomorphism iff the map K pZ,mq : K pZ,Xq ÝÑ

K pZ, Y q is a bijection for every λ-bounded Z. (I.e., Kλ is an pM, Eq-generator of
K .)

(2) The category K is cocomplete and has all E-cointersections. This means that the
opposite category K op (that is equipped with pM, Eq as a factorisation system) has all
intersections of E-subobjects.

A category K is called λ-ranked, if it is locally λ-bounded and E-cowellpowered.

Example 3.16. Examples of locally λ-bounded categories w.r.t. a factorisation system
pE ,Mq include the following:

1In fact, one has to be slightly careful here: every endofunctor of Set preserves all finite (thus even empty)
intersections provided it is sound, see [AGT10] for an explanation or [Trn71] for the original result. Any
non-sound endofunctor of Set can easily be “repaired” to be sound [AGT10].
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(1) All locally λ-presentable categories when we take E to be strong epimorphisms and M
to be monomorphisms, see [Kel82a].

In particular, the categories Pos and Pre are locally ℵ0-bounded, if we take M to
consist of all monotone injections (not necessarily reflecting order). A preorder or a
poset X is ℵ0-bounded iff it is finite.

(2) The category Pos of posets and monotone maps is locally finitely presentable, and thus it
is locally ℵ0-bounded for E consisting of surjective monotone maps and M of monotone
maps reflecting the order, see e.g. Proposition 1.61 in [AR94]. A poset is ℵ0-bounded iff
it is finite.

(3) The category Pre of preorders and monotone maps can be equipped with a variety of
factorisation systems, see Example 3.4. The category Pre is locally ℵ0-bounded w.r.r.
the factorisation system where E consists of all monotone surjections and M consists of
all monotone injections that reflect the order, see Theorem 5.6 of [KL01]. A preorder X
is ℵ0-bounded iff it is finite.

Definition 3.17. Let K be a λ-bounded category w.r.t. a factorisation system pE ,Mq. We

say that T : K ÝÑ K admits λ-bounded bases, provided that baseTX : rZ // //X exists for

any α : Z // //TX with Z in Kλ and, moreover, rZ is in Kλ.

Proposition 3.18. Suppose that K is locally λ-bounded w.r.t. a factorisation system pE ,Mq.
Then T : K ÝÑ K admits λ-bounded bases, whenever the following four conditions are
satisfied:

(1) Every subposet SubM,λpXq in SubMpXq is closed under λ-small infima.
(2) The principal lowersets in every poset SubM,λpXq are λ-small.
(3) T preserves colimits of λ-filtered diagrams of M-subobjects.
(4) T preserves λ-small intersections of M-subobjects.

Proof. It is proved in [KL01] that every locally λ-bounded category is necessarily complete.
Hence every SubMpXq is a complete lattice. Every object X of K can be represented as a
filtered colimit of its λ-subobjects; consider the canonical filtered diagram D : D ÝÑ K of X.
Its colimit colimD yields a unique comparison morphism colimD ÝÑ X by the couniversal
property of the colimit. This comparison is an isomorphism since Kλ is an pM, Eq-generator.
We can thus use Proposition 3.13 and the same argument as in Example 3.14 to conclude
the result.

3.C. Bases in posets. We will apply the general theory of Subsection 3.B to the particular
case of the category Pos. In more detail, we consider Pos as an pE ,Mq-category for E =
monotone surjections and M = order-embeddings (i.e. monotone maps f satisfying x ď y
iff fpxq ď fpyq). Then the following conditions hold:

(1) pE ,Mq is a proper factorisation system, see Example 3.4.
(2) Pos is M-wellpowered.
(3) Pos is locally ℵ0-bounded, see Example 3.16. The category Posℵ0 consists of finite posets.

Hence, by Proposition 3.18, a functor T : Pos ÝÑ Pos admits ℵ0-bounded (=finite) bases,
whenever T preserves order-embeddings and their finite intersections. Next we survey which
functors preserve those properties. From now on, all bases will be considered finite. We
start with a negative example:
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Example 3.19. Not all locally monotone endofunctors T : Pos ÝÑ Pos preserve order-
embeddings. See e.g. Example 6.1 of [BKPV13].

Moreover, a locally monotone endofunctor of Pos that preserves order-embeddings does
not necessarily preserve finite intersections. The reasoning is the same as in the case of Set-
endofunctors, as empty intersections are not necessarily preserved. Suppose T : Pos ÝÑ Pos
assigns the two-element chain 2 to every nonempty poset and it assigns the one-element
poset 1 to the empty poset. On morphisms T sends the unique morphism !X : H ÝÑ X to
x1y : 1 ÝÑ 2, all other morphisms are mapped to the identity morphism. The intersection

H
!1
//

!1
��

1

x1y

��

1
x0y

// 2

is clearly not preserved by T .

Preservation of order embeddings. We now list examples of endofunctors of the category
Pos that admit finite bases. We start with the preservation of order-embeddings.

Example 3.20. All Kripke-polynomial endofunctors (2.1) of the category Pos preserve order-
embeddings. This is essentially proved in [BKPV13], Examples 5.3 and 6.3, for the case of
Kripke polynomial endofunctors of Pre. One only needs to notice that order-embeddings in
Pos are precisely the order-reflecting monotone injective maps of the underlying preorders.

In fact, the class of endofunctors of Pos that preserve order-embeddings is quite large.
It includes all functors that preserve certain lax diagrams called exact squares, see [Gui80]
or [BKPV11].

Definition 3.21. A lax square

P
p1
//

p0

��

B

g

��

A
f
//

Õ

C

in Pos is called exact, if fa ďC gb entails the existence of w in P such that both a ďA p0w
and p1w ďB b hold.

A functor T which preserves exact squares will be also called a functor satisfying the
Beck-Chevalley Condition, or BCC for short.

Example 3.22. All endofunctors of Pos satisfying BCC preserve order-embeddings. In
particular, all Kripke-polynomial endofunctors of Pos satisfy BCC, as does the convex
powerset functor Pc. See [BKPV11].

For an example of an endofunctor of Pos not satisfying BCC, consider the connected
components functor C : Pos ÝÑ Pos that takes a poset P to the discrete poset consisting of
connected components of P . The functor C does not preserve (e.g.) the order-embedding
from the discrete poset on ta, bu to the poset on ta, b, cu with the ordering a ă c, b ă c.
(This is Example 6.7 of [BKPV11].)
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Preservation of finite intersections. The following series of results deals with preserva-
tion of finite intersections. As the next example shows, not all Kripke polynomial functors
preserve finite intersections.

Example 3.23. The lowerset functor L does not preserve intersections of order-embeddings.
Consider the poset Z of integers and its subposets m : E // //Z and n : O // //Z of even and
odd integers, respectively. The intersection of m and n is empty, as it is shown in the
diagram on the left below:

H // //

��

��

O
��

n
��

E // m
// Z

LH // //

��

��

LO
��

Ln
��

LE //
Lm
// LZ

Then the one-element poset LH in the diagram on the right above is not the intersection of
Lm and Ln. Namely, the intersection of Lm and Ln contains at least two elements, since
LmpHq “ H “ LnpHq and LmpEq “ Z “ LnpOq.

The functor L does not, in general, preserve non-empty intersections of order-embeddings
as well. Consider again the above example, and take as m : E ÝÑ Z the poset of even
integers and n : O ÝÑ Z of odd integers and zero. Then the domain of m X n is the
one-element set t0u and Lt0u has two elements, while the domain of LmX Ln contains H,
Ó0, and Z.

Proposition 3.24. All finitary Kripke-polynomial endofunctors of Pos preserve finite in-
tersections of order-embeddings.

Proof. The proof is trivial for all the formation steps (2.1) except for TE and LωT . For the
induction hypothesis, suppose T preserves finite intersections of order-embeddings.

(1) Since TEX “ pTXqE , it suffices to observe that the diagram

pTLqE //
pT iqE

//

��

pTjqE

��

pTBqE
��

pTnqE

��

pTAqE //
pTmqE

// pTXqE

is a pullback whenever the following diagram is:

TL //
T i
//

��

Tj
��

TB
��

Tn
��

TA //
Tm
// TX.

This is true because the functor p´qE : Pos ÝÑ Pos preserves all limits: it is a right
adjoint by cartesian closedness of Pos (see Example 27.3 of [AHS06]).

(2) It suffices to prove that Lω preserves finite intersections of order-embeddings.

L // //

��

��

B
��

n
��

A // m
// X

LωL // //

��

��

LωB
��

Lωn
��

LωA // Lωm
// LωX

λ � //
_

��

β
_

Lωn

��

α �
Lωm

// χ
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Given an intersection in the diagram on the left above, we show that the diagram in
the center above is again an intersection of the morphisms Lωm and Lωn. For any two
lowersets α in LωA and β in LωB satisfying Lωmpαq “ χ “ Lωnpβq it is enough to find
a lowerset λ in LωL as shown in the diagram above on the right. All of the depicted
lowersets are determined by their minimal sets of generators. Recall that the minimal
set of generators of the lowerset α is denoted by gpαq. Since m and n are inclusions, we
see that gpαq “ gpχq “ gpβq. The equality of sets of generators implies that gpχq Ď L.
Defining λ in LωL to be the lowerset generated by gpχq yields the unique witness in
LωL.

Observe that the preceding argument works even in the case of gpχq being empty.

By the above, all finitary Kripke-polynomial functors T admit finite bases.

Example 3.25. We will show how the bases for Kripke-polynomial functors can be com-
puted.

(1) Constant functor E: For an arbitrary subobject α : Z // //E , we have that its base is of
the form basepαq : H // //X , with basepαq being the empty mapping.

(2) Identity functor Id : Given a subobject α : Z // //X , its base basepαq : rZ // //X is the
mapping α itself.

(3) Sum and product of functors: Fix two functors T1 and T2. Given a subobject

α : Z // //T1X ` T2X ,

it is equally well a subobject α1 ` α2 : Z1 ` Z2
// //T1X ` T2X for some choice of posets

Z1 and Z2. Then basepαq “ basepα1qYbasepα2q. For the case of the product of functors,
given a subobject α : Z // //T1X ˆ T2X , denote by pi : T1X ˆ T2X ÝÑ TiX the i-th
projection from the product (i P t1, 2u). Then basepαq “ basepp1 ¨ αq Y basepp2 ¨ αq.

(4) Power of a functor: Given a functor TE and a subobject α : Z // //pTXqE , we denote by

pe : TXE ÝÑ TX the obvious projection (with e P E). Then basepαq “
Ť

ePE baseppe ¨αq.
(5) The dual of a functor: A straightforward computation yields that the base of

α : Z // //T BX

is pbasepαopqqop .

(6) The lowerset functor: Given a lowerset α : 1 // //LωX , the base basepαq : r1 // //X is the
(discrete) finite poset of generators of α. More generally, the base of α : Z // //LωX is
Ť

zPZ basepα ¨ zq.

4. Monotone relations and their lifting

In the current section, we summarise the notation and the necessary facts that concern
monotone relations between posets. We will use these facts and the facts about liftings of
monotone relations in Section 5 to introduce the semantics of a coalgebraic logic over posets.
For a more detailed treatment of the theory of relation liftings in the categories Pre and Pos
we refer to [BKPV11].

The category Rel of monotone relations over Pos has the same objects as the category
Pos, and has monotone relations as arrows. A monotone relation R from X to Y will be
denoted by R : X � //Y and it will be identified with a monotone map R : Y op ˆX ÝÑ 2.
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We shall often write Rpy, xq or y R x to denote that R relates x to y. Using this notation, a
relation R is monotone if it satisfies the following monotonicity condition:

Rpy, xq and y1 ďY y and x ďX x1 implies Rpy1, x1q.

The composition in Rel is computed in the usual manner: pS ¨Rqpz, xq holds if and only if
Spz, yq and Rpy, xq hold for some y. The identity morphism on a poset X is the order ďX
of X, considered as the monotone map ďX : Xop ˆX ÝÑ 2. For any two posets X and Y ,
the hom-set RelpX,Y q of all monotone relations from X to Y carries a poset structure given
by the inclusion of relations.

Example 4.1. We shall often use two special kinds of relations: graph relations and
membership relations.

(1) Graph relations. For a monotone map f : X ÝÑ Y we define two graph relations

X �
f˛
// Y Y �

f˛
// X

by putting

f˛py, xq iff y ď fx, f˛px, yq iff fx ď y.

The assignment

f ÞÑ f˛

can be extended to a locally monotone functor

p´q˛ : Pos ÝÑ Rel.

(2) Membership relations. For a poset X, we use the following two membership relations:

ẮX : LX � //X Ą́X : X � //UX

defined by ẮX px, lq “ 1 iff x is in l and Ą́X pu, xq “ 1 iff x is in u.

As in the case of ordinary relations, there are various operations that we can perform
on monotone relations.

Definition 4.2 (Operations on relations). Suppose R : X � //Y is a monotone relation.

(1) The converse Rcon : Y op � //Xop of S is defined by putting Rconpx, yq iff Rpy, xq.
(2) The negation  R : Xop � //Y op is defined by putting  Rpy, xq iff it is not the case

that py, xq P R.
(3) Given monotone maps f : A ÝÑ X, g : B ÝÑ Y , the composite

A �
f˛
// X �

R
// Y �

g˛
// B
��

�
Rpg´,f´q

is called a restriction of R along f and g.

Remark 4.3. Observe that Ą́X is the converse of ẮXop . We omit the subscript X whenever
it is clear from the context. We also often use the notation

­ẮX : pLXqop � //Xop ­Ą́X : Xop � //pUXqop

instead of the notation  Ắ and  Ą́ for the negation of the respective membership relations.
Whenever it is possible, we use the infix notation for the membership relations.
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Any locally monotone functor T : Pos ÝÑ Pos that satisfies BCC (see Definition 3.21)
can be lifted to a locally monotone functor T : Rel ÝÑ Rel. In fact, BCC is equivalent to the
existence of such a lifting. The following theorem was proved in [BKPV11] for the category
Pre, but the proof goes through verbatim for the case of Pos.

Theorem 4.4 [BKPV11]. For a locally monotone functor T : Pos ÝÑ Pos the following are
equivalent:

(1) The functor T has a locally monotone functorial relation lifting T , i.e., there is a
2-functor T : Rel ÝÑ Rel such that the square

Rel
T

// Rel

Pos
T

//

p´q˛

OO

Pos

p´q˛

OO

(4.1)

commutes.
(2) The functor T satisfies the Beck-Chevalley Condition. (i.e., it preserves exact squares).

A relation lifting T of a locally a locally monotone functor T satisfying the BCC is
computed in the following way. A relation R : X � //Y can be represented by a certain
span

Y E
p1
//

p0
oo X,

of monotone maps such that the equality R “ pp1q˛ ¨ pp0q
˛ holds (see [BKPV11] or [BKPV13]

for details). Then the lifting T is computed by the following composition of graph relations:

TR : TX �
pTp1q

˛

//TE �
pTp0q˛

//TY

In elementary terms, we can check if the elements α P TX and β P TY are related by the
lifted relation TR as follows:

TRpβ, αq iff pDw P TRqpβ ďTY Tp0pwq and Tp1pwq ďTX αq. (4.2)

Relation lifting behaves well with respect to graph relations, converse relations and
restrictions of relations. The easy proofs of these properties follow immediately from the
formula (4.2). We also give explicit explicit instances of relation liftings for Kripke-polynomial
functors, and the convex powerset functor.

Example 4.5. Suppose T : Pos ÝÑ Pos is a locally monotone functor satisfying BCC, and
R : X � //Y is a given relation.

(1) The relation lifting commutes with graph relations, i.e., the equalities Tf˛ “ pTfq˛ and
Tf˛ “ pTfq˛ hold.

(2) Relation lifting commutes with converses, i.e., the equality TRcon “ pT BRqcon (or,

equivalently, T BR “ pTRconqcon) holds for every monotone relation R.
(3) Relation lifting commutes with taking restrictions. Given a restriction

A �
f˛
// X �

R
// Y �

g˛
// B
��

�
Rpg´,f´q
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of R : X � //Y along f : A ÝÑ X and g : B ÝÑ Y , we can apply T to obtain

TA �
pTfq˛

// TX �
TR

// TY �
pTgq˛

// TB
��

�
TRpTg´,T f´q

since T commutes with taking the graphs by (1) above.
(4) Relation lifting for Kripke-polynomial functors can be computed inductively:

constXR “ ďX ,

T0 ˆ T1Rppα0, α1qpβ0, β1qq iff T0Rpα0, β0q and T1Rpα1, β1q,

T0 ` T1Rpα, βq “ 1 iff

#

α P T0Y, β P T0X, and T0Rpα, βq,

α P T1Y, β P T1X, and T1Rpα, βq.

LRpo, lq iff p@yqpy Ắ o implies pDxqpx Ắ l and Rpy, xqqq,

URpv, uq iff p@xqpu Ą́ x implies pDyqpv Ą́ y and Rpy, xqqq.

(5) Relation lifting for the convex powerset functor is computed as follows:

PcRpv, uq iff pp@y P vqpDy1 ěY yqpRpy1, x1q and p@x1qpRpy1, x1q implies pDx P uqx1 ďX xqq

and p@x P uqpDx1 ďX xqpRpy1, x1q and p@y1qpRpy1, x1q implies pDy P vqy1 ěY yqqq

iff p@y P vqpDx P uqRpy, xq and p@x P uqpDy P vqRpy, xq.

Remark 4.6. Let the least finitary subfunctor Tω of a locally monotone functor T : Pos ÝÑ
Pos satisfying BCC be given via the natural transformation νT : Tω // //T . We can take

any relation R : X � //Y and restrict its lifting TR : TX � //TY along νT to obtain the
relation

TωX �
pνTXq˛

// TX �
TR

// TY �
pνTY q

˛

// TωY.
��

�
TRpνTY ´,ν

T
X´q“TωR

Thus defined, the operation Tω need not be functorial. In general, we only obtain lax
functoriality TωR ¨ TωS Ď TωpR ¨ Sq (this follows from pνTY q

˛ ¨ pνTY q˛ being the identity ďTY
for every Y ). In case R “ f˛, we even obtain Tωpf˛q ¨ TωS “ Tωpf˛ ¨ Sq. The operation Tω
commutes with converses and with graph relations. To sum up, Tω is a lax extension of Tω.

Being only a lax extension is not a real obstacle — in Set, the coalgebraic logic based
on a cover modality can be meaningfully defined for an arbitrary lax extension, as shown
in [MV15]. Apart from the case when Tω “ T in Proposition 5.14 (2) (and Tω is therefore
assumed to satisfy BCC) we only use the operation Tω on the syntax side of matters in
formulating the modal rules of the calculus (this part roughly starts with Definition 5.17
in 5.D, and continues in Section 6). There we mostly use the fact that TωR is the indicated
restriction of TR and that the relations TR and TωR coincide whenever R is a relation
between finite posets.

It is worth mentioning though that the finitary Kripke polynomial functors satisfy the
BCC, and therefore they admit functorial relation lifting. For example, Lω is the appropriate
restriction of L, and therefore is computed in the same way. The same goes for the finitary
convex powerset functor Pcω.
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The above calculus of relation liftings allows us to explicitly describe the relation liftings
for functors introduced in Section 2.

Example 4.7. Recall the various ordered coalgebraic structures from Example 2.1.

(1) The lifting of the functor T “ Aˆ Id is particularly easy. Given a relation R : X � //Y ,
let us denote the lifted relation

pAˆ IdqR : AˆX � //Aˆ Y

by R. Then the relation Rppb, yq, pa, xqq holds if and only if b ď a and Rpy, xq holds.
(2) The coalgebras for the functor T “ IdA ˆ 2 model deterministic ordered automata.

Given a monotone relation R : X � //Y the elements α “ pf, iq P XA ˆ 2 and β “

pg, jq P Y A ˆ 2 are related by the lifted relation TR : TX � //TY if and only if j ď i
and Rpgpaq, fpaqq for every a P A.

(3) Given the functor T “ LA ˆ 2 (with A discrete) for lowerset automata and a relation

R : X � //Y , its lifted relation TR : TX � //TY is defined as follows: For an element
α “ pl, iq in pLXqA ˆ 2 and β “ po, jq in pLY qA ˆ 2 we have that TRpβ, αq holds if and
only if

j ď i and p@a P Aq LR popaq, lpaqq

holds, with the latter condition meaning that for every y such that y Ắ opaq there is an
element x with x Ắ lpaq such that Rpy, xq holds.

In the finitary case, and due to the monotonicity of the relation R, the condition
can be weakened further using the sets of minimal generators of the lowersets l and
o. For every y P gpopaqq there has to be some x P gplpaqq such that Rpy, xq holds. The
computation of the lifting stays the same even for an ordered set A of “inputs”.

(4) Given the functor T “ U, two coalgebras c : X ÝÑ UX and c1 : Y ÝÑ UY , and a
relation R : X � //Y , The lifted relation UR is defined as follows:

URpc1pyq, cpxqq iff p@x1qpcpxq Ą́ x1 implies pDy1qpc1pyq Ą́ y1 and Rpy1, x1qqq.

Given the functor T “ L, two coalgebras c : X ÝÑ LX and c1 : Y ÝÑ LY ,

LRpc1pyq, cpxqq iff p@y1qpy1 Ắ c1pyq implies pDx1qpx1 Ắ cpxq and Rpy, xqqq.

Given the functor T “ Pc, two coalgebras c : X ÝÑ PcX and c1 : Y ÝÑ PcY ,

PcRpc1pyq, cpxqq iff p@y1 P c1pyqqpDx1 P cpxqqRpy1, x1q

and p@x1 P cpxqqpDy1 P c1pyqqRpy1, x1q.

5. Moss’ logic for ordered coalgebras

In this section we introduce a logic for ordered coalgebras parametric in the coalgebra
functor T . The syntax of the logic will be finitary, the propositional part will be given
by the conjunction and disjunction connectives, and the modal part will consist, up to
Subsection 5.D, of a single modality ∇ of arity T Bω . The semantics of the logic will be given
by monotone valuations over T -coalgebras, with the semantics of the modality ∇ given by
T B relation lifting. We will show that this language is always adequate for T -coalgebras,
and adequate and expressive for Tω-coalgebras. This means that the logic, in case of finitary
coalgebras, has the Hennessy-Milner property.
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Assumption 5.1. From this section on, we fix a locally monotone functor T : Pos ÝÑ Pos,
its least finitary subfunctor νT : Tω // //T , and assume T (and therefore T B) preserve exact
squares. We assume that T Bω preserves finite intersections, and therefore admits a finite base.

In particular, all Kripke polynomial functors of 2.1 in place of the functor T comply
with this assumption.

5.A. The syntax of the coalgebraic language. The syntax of Moss’ logic for ordered
coalgebras will be based on finitary conjunction and disjunction connectives, and a single
finitary modality. It will be convenient to regard the arities of both the connectives and the
modality as finitary functors. A similar approach has been already used in [KKV12b] for
the Moss’ logic in sets. There are some differencies worth mentioning though: First, when
passing from sets to the enriched setting of posets, to be as general as possible, one should
start with a poset of propositional variables. Second, one has to be more careful about the
precise shape of the arities, namely:

(1) In Set, the arity of the finitary conjunction and disjunction is given by the finitary
powerset functor Pω : Set ÝÑ Set. This means that, e.g., the conjunction is a map
Ź

: PωL ÝÑ L where L denotes the set of all formulas. In Pos, the natural choice for
the arity of the conjunction is Uω, whereas for the disjunction it is Lω.

(2) In Set, the cover modality ∇ has the coalgebraic functor Tω as its arity. In Pos, one needs
to use the dual T Bω of Tω for type-checking reasons, as will become clear in Subsection 5.B
below.

Remark 5.2. Propositional variables are proposition place-holders. As such, the most
natural (and the most free) choice is to simply start with a set of them (i.e., a discrete
poset). This is indeed the setting of the most of our examples. The poset setting however
allows to provide place-holder patterns, which consequently the semantics must respect.
This can be seen and used as prescribing order between formulas (which is normally done
afterwords by the logic and induced by semantics of logical connectives, usually in a form
of assuming implications — and we can do so by using theories). But what if implications
are not at hand, or, we do not want to use (possibly infinite) theories? What if we used
place-holder patterns instead? Not many examples are out there, but let us provide some
simple intuition behind the possibilities this opens:

- Consider the t^,_u-fragment of classical propositional logic, but take tpi ď qi|i P Nu for
the poset of propositional variables. This would produce a situation where “p’s always
entail q’s”.

- Similarly, atomic propositions can “code” scalable properties often used in questionnaires
(where mostly 3–7 options in a form of “degrees” are given — e.g. heavy smoker, smoker,
occasional smoker). For such settings, the poset of propositional variables can be chosen
as e.g. tpi ď qi ď ri|i P Nu.

Examples where a partial order (namely inclusion) is built in syntax can be found in literature
which consider ordered sorts or predicates: Order-Sorted Predicate Logic has been proposed
as a formal knowledge representation languages for handling structural knowledge, such as
the classification of objects [Obe90, Coh87], and extended by [Kan04] which formalizes a
logic programming language with not only a sort hierarchy, but also a predicate hierarchy.

Remark 5.3. The naturality of the choice of the arity of the finitary conjunction to be Uω,
i.e. a finitely generated upwards closed set of formulas, can be demonstrated for example as
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follows: Assume we have a poset of atomic formulas at hand, and think of a conjunction as
eventually becoming the infimum in the free algebra of formulas. Whenever

Ź

ϕ ď b, we
expect

Ź

pϕY bq ”
Ź

ϕ — the conjunction is immune to adding arguments greater than
the conjunction. Similarly for disjunction and its arity being Lω.

The choice of arities is in accord with how the free distributive lattice over a poset X
can be constructed on LωUωX: first take the free finite meet completion on UωX, then the
free finite join completion (cf. [Joh82]).

Therefore the formulas of the coalgebraic language should have the following intuitive
description in BNF:

a ::“ p |
ľ

ϕ |
ł

ψ | ∇α (5.1)

where p is an atom, ϕ “ Òta1, . . . , aku is a finitely generated upperset of formulas, ψ “
Óta1, . . . , aku is a finitely generated lowerset of formulas, and α is a “T B-tuple” of formulas.
There is a slight technicality however: since we work in posets we expect to obtain a poset
of formulas. The precise definition of formulas is achieved by the free algebra construction
in the category Pos.

Definition 5.4 (Formulas). Fix a poset At of propositional atoms. The language L is given
as an algebra for Uω ` Lω ` T Bω , free on At. The components of the algebraic structure
a : UωL` LωL` T BωL ÝÑ L will be denoted by

ľ

: UωL ÝÑ L,
ł

: LωL ÝÑ L, ∇T Bω
: T BωL ÝÑ L

Remark 5.5.

(1) The language L is a poset by its construction. Moreover, an algebra for F “ Uω`Lω`T B

free on At can be defined by a colimit of a transfinite chain

wi,i`1 : Wi ÝÑWi`1

where W0 “ At, Wi`1 “ F pWiq ` At and the connecting morphisms are defined in
the obvious way: w0,1 : At ÝÑ F pAtq ` At is the coproduct injection and wi`1,i`2 “

F pwi,i`1q ` At.
The above chain wi,i`1 has L as its colimit; we denote the colimit injections by

wi : Wi ÝÑ L.
(2) The transfinite construction of L also shows that the “intuitive BNF” of (5.1) works.

More in detail, one can show that each formula a in L has a unique finite depth. Indeed,
for every a : 1 // //L there is a least i such that a P wi. There are two cases for a fixed a
in L:
(a) i “ 0 means that a is an atom.
(b) i is positive, i.e., i “ k ` 1. Then a P wk`1 holds. The formula a is not an atom by

the definition of i; hence a is either a conjunction, a disjunction or a nabla of an
object in Wk.
The finite poset of direct subformulas of a can be obtained as the subobject
baseFF pWkq

pwk`1paqq.

(3) We defined the arity of a conjunction to be a finitely generated upperset of formulas,
which itself may not be finite. We often abuse the notation in writing the formulas, and
list only the finite set of generators of the upperset to keep the description finite. For
example, by

Ź

ta, bu we implicitly mean the conjunction applied to the upperset Òta, bu
generated by a and b.
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Notice that, for finite sets A and B of formulas such that ÒA “ ÒB holds, the
equality

Ź

A “
Ź

B is built into the relaxed notation. Similarly for disjunctions, the
equality ÓA “ ÓB implies the syntactic equality

Ž

A “
Ž

B. In both conjunction and
disjunction, the commutativity, associativity and idempotence properties are built into
the notation as well, due to the choice of their arity. Moreover, whenever ϕ Ď ϕ1 in UωL,
Ź

ϕ1 ďL
Ź

ϕ, and, similarly whenever ψ Ď ψ1 in LωL,
Ž

ψ ďL
Ž

ψ1.

For a given formula a, the above remark allows us to define its finite poset of subformulas
and its modal depth inductively.

Definition 5.6 (Subformulas and modal depth). Given a formula a in L, the (finite)
subobject Sfpaq of L is called the subobject of subformulas of a, and is defined inductively
as follows. Simultaneously we define the modal depth dpaq.

(1) For a in At, put Sfpaq “ a : 1 // //L and dpaq “ 0.
(2) For a of the form

Ź

ϕ, put

Sfpaq “
ď

zPbasepϕq

Sfpzq Y a

dpaq “ maxtdpbq | ϕ Ą́ bu

(3) For a of the form
Ž

ψ, put

Sfpaq “
ď

zPbasepψq

Sfpzq Y a

dpaq “ maxtdpbq | b Ắ ψu

(4) For a of the form ∇α, put

Sfpaq “
ď

wPbasepαq

Sfpwq Y a

dpaq “ maxtdpwq | w P basepαqu ` 1

Above, all the unions are taken in the lattice of subobjects, see Remark 3.7.

Example 5.7. Let us describe the syntax of the logic for the functor T “ Aˆ Id , where
as A we take the poset 2 “ t0 ă 1u. If we are given a poset At of atomic propositions, the
syntax is defined inductively as follows:

a ::“ p |
ľ

ϕ |
ł

ψ | ∇T Bω
pn, aq.

In the above, p is any atomic proposition, ϕ “ Òta1, . . . , aku is a finitely generated upperset
and ψ “ Óta1, . . . , aku is a finitely generated lowerset of formulas, and the n in ∇T Bω

pn, aq is
an element of 2. Observe that ∇ is monotone with respect to the first argument.

Hence the more relaxed description of the syntax can be given by

a ::“ p |
ľ

ta1, . . . , aku |
ł

ta1, . . . , aku | ∇T Bω
pn, aq.
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5.B. The semantics of the coalgebraic language. The above language L will be inter-
preted in coalgebras for the functor T . More precisely, given a coalgebra c : X ÝÑ TX, the
semantics will be given by a monotone relation ,0: At � //Xop called a monotone valuation
of propositional atoms. The valuation being monotone, x ď y and x ,0 p implies y ,0 p,
and p ďL q and x ,0 p implies x ,0 q.

We extend ,0 to obtain the semantics ,: L � //Xop of an arbitrary formula a by
induction on a as follows:

x ,
ľ

ϕ iff p@aqpϕ Ą́ a implies x , aq

x ,
ł

ψ iff pDaqpa Ắ ψ and x , aq

x , ∇T Bω
α iff cpxqpT B, ¨ pνT

B

L q˛qα

Remark 5.8. The semantics for conjunction and disjunction is standard. The semantics for
the modal formula ∇T Bω

α in a state x is given by checking whether the T B-lifted , relation

contains cpxq and α: for type-checking reasons, this is achieved by composing the lifted ,

relation with the graph of the natural inclusion of T Bω in T B, i.e. pνT
B

L q˛:

T BωL �
pνT

B

L q˛
//T BL �

T B,
//pTXqop .

We can also equivalently write it like this:

x , ∇T Bω
α iff cpxq T B, νT

B

L pαq.

The semantics of nabla is indeed well defined: in the inductive process of defining the
relation , we use the fact that relation lifting commutes with restrictions (see Definition 4.2
and Example 4.5). In particular, to compute the lifted relation it is enough to have ,
restricted to the base of α, whose semantics has been defined previously. Unravelling this
yields the following simplification, using the lifted restricted relation ,p´, basepαq´q: Let
basepαq : Z // //L and z P Z be the unique element with T Bbasepαqpzq “ α.

x , ∇T Bω
α iff cpxq T B,p´, T Bbasepαq´q z.

Remark 5.9. Recall from Remark 5.5 that L is a poset. The above semantics allows us to
define a monotone relation Ď: L � //L by putting:

a Ď b iff for all c, x and all valuations: x , a implies x , b. (5.2)

The relation Ď is reflexive (i.e., the relation ďL is smaller than Ď) and transitive (i.e., the
composite relation Ď ¨Ď is smaller than Ď). Therefore Ď allows us to define an order-quotient
Q “ L{Ď of L. The elements of the poset Q are equivalence classes ras” where

a ” b iff a Ď b and b Ď a

and ďQ is the least order such that a Ď b entails ras” ďQ rbs”.
The quotient Q carries an algebra structure for Uω ` Lω ` T Bω that is derived from the

algebra structure on L.

Example 5.10.

(1) Nabla for the functor T “ Aˆ Id . Observe that, T “ Tω, and the functor dual to Tω is:

T BωX “ pAˆXopqop “ Aop ˆX.
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If we fix a coalgebra c “ xout, nexty : X ÝÑ AˆX, then it holds that

x , ∇T Bω
pa, bq iff outpxq ěA a and nextpxq , b,

since the lifting of the semantics relation ,: L � //Xop is the relation

pďAop ˆ ,q : Aop ˆ L � //Aop ˆXop .

The monotonicity of , says that
(a) If x ďX x1 and x , ∇T Bω

pa, bq, then x1 , ∇T Bω
pa, bq, and

(b) if a ěA a
1 and b ďL b

1, then x , ∇T Bω
pa, bq implies that x , ∇T Bω

pa1, b1q.

(2) Nabla for the functor T “ LA ˆ 2. Observe that the arity of nabla is:

T BωL “ pUωLqA ˆ 2.

By definition, x , ∇T Bω
α holds if and only if cpxqpT B, ¨ pνT

B

L q˛qα holds. Suppose cpxq is

a tuple pl, iq and α is a tuple po, jq. Then this is the case if and only if

i ě j and p@a P Aqp@ϕqpopaq Ą́ ϕ implies pDxqpx Ắ lpaq and x , ϕqq.

We can again use the monotonicity of the semantics relation , to weaken the above

condition: cpxqpT B, ¨ pνT
B

L q˛qα holds if and only if

i ě j and p@a P Aqp@ϕ P gpopaqqqpDx P gplpaqqq x , ϕ.

Here gplpaqq and gpopaqq are, again, the generators for the lowerset lpaq in X and upperset
opaq in L, respectively.

(3) Recall from Example 2.1 that a frame for positive modal logic is a poset X equipped
with a monotone relation R : X � //X that gives rise to two coalgebras

c : X ÝÑ UX and d : X ÝÑ LX

defined by cpxq “ ty | Rpx, yqu and dpxq “ ty | Rpy, xqu. The modalities l and �
defined by the equivalences

x , la iff p@yq pRpx, yq implies y , aq

x , �a iff pDyq pRpy, xq and y , aq

are adjoint in the sense that a Ď lb holds if and only if �a Ď b holds, where Ď is the
semantic preorder as defined in (5.2).

Now, using the definition of the modalities ∇Lω and ∇Uω and the corresponding
liftings of the semantics ,, we see that

x , ∇Lωα iff cpxqpL, ¨ pνL
Lq˛qα

iff p@yqpy Ắ cpxq implies pDaq pa Ắ α and y , aqq,

x , ∇Uωβ iff dpxqpU, ¨ pνU
L q˛qβ

iff p@bqpβ Ą́ b implies pDyq pdpxq Ą́ y and y , bqq.

Therefore

∇Lωα can be expressed as l
ł

α,

∇Uωβ can be expressed as
ľ

�β,
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and also conversely

la can be expressed as ∇Lωtau,

�b can be expressed as ∇Uωtbu.

(4) Let T “ Pc, and T Bω “ Pcω. Recall from Example 2.1 that Pc coalgebras can be used
as semantics for positive modal logic. For a coalgebra c : X ÝÑ PcX and a monotone
valuation, we have

x , la iff p@yq pRpx, yq implies y , aq

x , 3a iff pDyq pRpx, yq and y , aq.

By the definition of the semantics for ∇Pcω and the relation lifting, we see that for α in
PcωL

x , ∇Pcωα iff cpxq pPc , ¨pνPc
L q˛q α

iff p@x1 P cpxqqpDa P αqx1 , a and p@a P αqpDx1 P cpxqqx1 , a.

As α is a finitely generated convex subset of formulas, we can create a finitely generated
upperset of formulas Òα, and a finitely generated lowerset of formulas Óα. Then

∇Pcωα can be expressed as l
ł

Óα^
ľ

3Òα,

and also conversely

la can be expressed as ∇Pcωtau _∇PcωH,

3a can be expressed as ∇Pcωta,Ju,

just the same way as it is in the classical finitary Moss’ logic [KKV12b].
(5) Recall the semantics of small description logic EL from Example 2.1 The syntax consists

of a poset N c of concept names ordered by concept subsumptions of the form A Ď B,
a poset N r of role names ordered by role subsumptions of the form r Ď s, and the
following grammar of concepts:

C :“ A | J | C [D | Dr.C

This results in a poset L of concept expressions. The semantics is based on a discrete
poset (i.e. a set) ∆ together with: (ii) interpretations CI of concept names by lowersets of
∆ (i.e. subsets of ∆) respecting their order: C Ď D implies CI Ď DI , (ii) interpretations
rI of role names by binary relations on ∆, again respecting their order: r Ď s implies
rI Ď sI . We can see each structure of this kind as a coalgebra

c : ∆ ÝÑ pL∆qN
r
ˆ 2N

c

which, for each d P ∆, assigns: for each role name r the lowerset (i.e. subset) te | pd, eq P
rIu, and for each concept name C the value 1 if d P CI , and the value 0 otherwise. Both
assignments are monotone.

For the sake of this example, we shall extract the v : ∆ ÝÑ 2N
c

part of the coalgebra
structure and treat it as a monotone valuation of concept names ,: N c � //∆op instead.
The relation extends inductively to all concept expressions as follows:

d , J

d , C [D iff d , C and d , D

d , Dr.C iff Depe P cpdqprq and e , Cq
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The monotonicity of , entails that if C ĎL D and d , C, than also d , D.
Each β P pUωLqN

r
can be seen as a monotone assignment of uppersets of concepts

to role names. Unravelling the semantics of the modality ∇pUωqNr on a coalgebra

c : ∆ ÝÑ pL∆qN
r
, we see that

d , ∇pUωqNrβ iff cpdqppUqNr
, ¨ pνUN

r

L q˛qβ

iff p@rqpp@Cqpβprq Ą́ C implies pDeq pcpdqprq Ą́ e and e , Cqqq.

Therefore

∇pUωqNrβ can equivalently be expressed as
ľ

r

p
ľ

Dr.rβprqsq,

and also conversely

Dr.C can equivalently be expressed as ∇pUωqNrβ,

where β P pUωLqN
r

is a monotone assignment of uppersets of concepts to role names
such that βprq “ CÒ and βpsq “ J for all s ‰ r.

(6) Recall frames for distributive substructural logics from Example 2.1. We restrict ourselves
to ternary relations R that generate coalgebras of the form cb : X ÝÑ LpX ˆXq.

The polynomial coalgebra functor T “ LpId ˆ Idq is locally monotone and satisfies
BCC. Its relation lifting is easy to compute, using the properties listed in Example 4.5.
The semantics of the nabla modality with the arity T Bω “ UωpId ˆ Idq, works as follows:

x , ∇T Bω
α iff p@pa0, a1q Ắ αqpDpx0, x1q Ắ cpxqq px0 , a0 & x1 , a1q.

Therefore

∇T Bω
α can be expressed as

ľ

αĄ́pa0,a1q

pa0 b a1q,

and conversely

pa0 b a1q can be expressed as ∇T Bω
tpa0, a1qu.

5.C. Hennessy-Milner property. We now turn to proving that the finitary language
defined in Subsection 5.A is adequate and, in the finitary case T=Tω, also expressive for the
following notion of similarity, which is defined in terms of relation lifting.

Definition 5.11. We fix two pointed models pc,,c, x0q and pd,,d, y0q, i.e., we fix coalgebras
c : X ÝÑ TX and d : Y ÝÑ TY , valuations ,c and ,d, and x0 P X and y0 P Y .

(1) A relation S : Y � //X is called a T -simulation (from pd,,d, y0q to pc,,c, x0q), if the
following three conditions are satisfied:
(a) Spx0, y0q holds.
(b) For any x P X and y P Y , Spx, yq implies TSpcpxq, dpyqq.
(c) If Spx, yq holds, then x ,c p implies y ,d p, for each atom p in At.

And we say that pd,,d, y0q simulates pc,,c, x0q, if there is a simulation S : Y � //X
from pd,,d, y0q to pc,,c, x0q.

(2) We say that pd,,d, y0q is modally stronger than pc,,c, x0q, if x0 ,c a implies y0 ,d a,
for each formula a.
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Remark 5.12. The notion of simulation given by the monotone relation lifting coincides
with the one given by Worrell in [Wor00] in the enriched setting of V -categories (of which
preorders, hence also posets, are a special case for V “ 2). It is also shown in [Wor00] that
similarity coincides with the preorder on the final coalgebra, whenever the final coalgebra
exists.

Example 5.13. Fix the empty poset At of atomic propositions. Taking two coalgebras
c : X ÝÑ A ˆX and d : Y ÝÑ A ˆ Y with two distinguished states x0 P X and y0 P Y ,
the notion of simulation yields that pd,,, y0q simulates pc,,, x0q if the infinite stream γ
obtained as the behaviour of x0 is pointwise smaller than the infinite stream δ obtained as
the behaviour of y0.

Proposition 5.14. Assume T complies with the Assumption 5.1, and L is defined as in
Definition 5.4.

(1) The language L is adequate for T -coalgebras: if pd,,d, y0q simulates pc,,c, x0q, then
pd,,d, y0q is modally stronger than pc,,c, x0q.

and

(2) The language L is expressive for Tω-coalgebras: if pd,,d, y0q is modally stronger than
pc,,c, x0q, then pd,,d, y0q simulates pc,,c, x0q. Moreover, the relation “being modally
stronger” is a Tω-simulation.

Proof. (1) Let us assume that pd,,d, y0q simulates pc,,c, x0q via a simulation S : Y � //X .
We need to prove that x0 ,c a implies y0 ,y a for every formula a. The adequacy is proved
by induction on the complexity of a given formula a.

The case when a is an atom is immediate from S being a simulation, the cases of
conjunction and disjunction are easy. For the induction step for a “ ∇α, let us assume
that x0 ,c ∇α holds. The induction hypothesis states that for every x P X, y P Y and
z P basepαq the following implication holds:

If x ,c z and Spx, yq, then y ,d z.

The induction hypothesis can equivalently be described as a lax triangle

rZ �
,dp´,basepαq´q

//

~
,cp´,basepαq´q

&&

Y op

Xop

%
Scon

88

Ò

(5.3)

denoting the base of α : Z // //T BωL by basepαq : rZ // //L .

We shall prove that for any x in X, y in Y , and w P T Bωbasepαq, the following implication
holds:

TSpcpxq, dpyqq and cpxqpT B,c ¨ pν
T B

L q˛qw implies dpyqpT B,d ¨ pν
T B

L q˛qw (5.4)

The relation TSpcpx0q, dpy0qq holds since S is a simulation. Moreover, cpx0qpT B,c ¨ pν
T B

L q˛qα

holds since x0 ,c ∇α holds. Since α P T Bbasepαq (to be precise, α P T Bωbasepαq, but the base
is a finite poset and therefore T B and T Bω coincide on it), we could instantiate the implication

to get that dpy0qpT B,d ¨ pν
T B

L q˛qα holds, and this would yield y0 ,d ∇α as we wanted.
However, the implication (5.4) can be expressed by the following diagram. The lax

triangle is simply the image under T B of (5.3), and we formally pre-compose it with graph
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of the natural inclusion pνT
B

L q˛ (which, by rZ being finite, is the identity):

T Bω
rZ �

pνT
B

L q˛
// T B rZ �

T B,dp´,T
Bbasepαq´q

//

�
T B,cp´,T Bbasepαq´q ''

pTY qop

pTXqop

Ò
$
pTSqcon

77

(2) For this part, we assume T “ Tω (i.e., the coalgebra functor is finitary). As both the
coalgebra functor Tω and the arity functor T Bω are finitary, we can simplify the semantic
clause for x , ∇T Bω

α to

cpxq T Bω, α.

Expressivity boils down to proving that “being modally stronger” is a Tω-simulation. For
the purpose of the proof, write

Spx, yq

to denote that pd,,d, yq is modally stronger than pc,,c, xq.
Hence the following implication holds for any formula a:

If Spx, yq and x ,c a, then y ,d a. (5.5)

It is clear that S verifies the properties (a) and (c) of Tω-simulations from Definition 5.11.
It remains to be proved that S satisfies the property (b):

If Spx, yq, then TωSpcpxq, dpyqq. (5.6)

Assume therefore that Spx, yq holds and denote the corresponding bases of cpxq and dpyq by

basepcpxqq : U // // X and basepdpyqq : W // // Y.

We first construct a monotone map f : Xop ÝÑ L such that for any x1 P X and w P basepdpyqq
the following two requirements hold:

x1 ,c fpx
1q (5.7)

w ,d fpx
1q implies Sconpw, x1q (5.8)

Fix x1 in X, and for each w P basepdpyqq such that

 Spx1, wq

pick a formula bpx1,wq for which x1 ,c bpx1,wq but w .d bpx1,wq, which is possible by  Spx1, wq
and (5.5). Define

fpx1q “
ľ

wPbasepdpyqq: Spx1,wq

bpx1,wq.

The above conjunction is finitary since W is a finite poset. In case the conjunction is empty,
we set fpx1q “ J. Moreover, f is a monotone map (with x2 ě x1 the number of conjuncts
in the definition of fpx2q decreases), and the properties (5.7) and (5.8) hold. In particular,
given any u P basepcpxqq, the implication

w ,d fpuq implies Sconpw, uq

holds.
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The latter implication can be expressed as a 2-cell

Uop Ò W op
��

�
Scon pbasepdpyqopq´,basepcpxqopq´q

OO

�
,dpbasepdpyqq´,fbasepcpxqq´q

in Rel. We apply the functor T Bω to it and use the properties of relation lifting to obtain a
2-cell

pTωUq
op Ò pTωW q

op
��

�
pTωSqcon pTωbasepdpyqqop´,Tωbasepcpxqqop´q

OO

�
T Bω,dpTωbasepdpyqq´,T

B
ωf ¨Tωbasepcpxqq´q

(5.9)

By the unit property of base, we know that

cpxq P Tωbasepcpxqq and dpyq P Tωbasepdpyqq

holds. Therefore we can use (5.9) and the definition of the converse of a relation to observe

that TωSpcpxq, dpyqq holds whenever dpyq T Bω,d pT
B
ωfqcpxq holds.

The relation dpyq T Bω,d pT
B
ωfqcpxq holds iff y ,d ∇ppT Bωfqcpxqq holds. Since we

assume that Spx, yq holds, it is enough to prove that x ,c ∇ppT Bωfqcpxqq holds, and
y ,d ∇ppT Bωfqcpxqq will follow.

By (5.7) we know that x1 ,c fpx
1q holds for every x1. Thus we get the inequality

idX ď ,cp´, f´q, and by applying the functor T Bω to it, we obtain the inequality idT BωX ď

T Bω,cp´, T
B
ωf´q. Hence cpxq T Bω,c pT

B
ωfqcpxq holds, and therefore x ,c ∇ppT Bωfqcpxqq holds

as required.

5.D. A dual modality ∆. In the preceding paragraphs we proved that the coalgebraic
language L with a single nabla modality is adequate, and in the finitary case also expressive.
Nevertheless, we introduce another modality ∆ in this subsection. The semantics of this
modality will show that ∆ is, in a sense, dual to ∇. Why would we want to extend the
language with a new modality, knowing that the language with nabla as the only modality is
already expressive? It will turn out that the dual modality is crucial in designing a cut-free
two-sided sequent calculus which is sound and complete for the logic of T -coalgebras.

The definition of semantics of ∆ below is a straightforward adaptation of a similar
modality studied in [KV09] in the context of complementation of coalgebraic automata in
the case of Set and classical Moss’ logic, where ∆ is the boolean dual of ∇. For the classical
Moss’ logic in Set, the dual modality ∆, and its mutual definability with the modality ∇,
played a crucial role in the formulation of a cut-free two-sided sequent calculus as shown
in [BPV14]. Without the boolean negation, a one-sided sequent calculus is not available in
our case already for the propositional part of the language L. For that reason we aim at a
two-sided calculus, and therefore it is convenient to have a modality dual to nabla in the
language.

We extend the language L with a monotone modality

∆T Bω
: T BωL ÝÑ L.
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Given a coalgebra c : X ÝÑ TX and a monotone valuation ,: L � //Xop , the semantics
of ∆T B is defined negatively by the relation lifting of the negated relation .: Lop � //X as
follows:

x . ∆α iff cpxqpT. ¨pνT
B

L q˛qα.

Before we discuss the mutual relation of the two modalities ∇ and ∆, we illustrate the
semantics of ∆ on the running examples:

Example 5.15.

(1) Delta for the functor T “ Aˆ Id . Let us fix a coalgebra c “ xout, nexty : X ÝÑ AˆX.
The semantics of the modality ∆ is then given as follows:

x , ∆pa, bq iff outpxq ęA a or nextpxq , b.

(2) Delta for the functor T “ pIdqA ˆ 2. Fix a coalgebra c : X ÝÑ XA ˆ 2. If for some
state x P X we denote by cpxq “ pf, iq the successors and output of x, the semantics of
the modality ∆ in the state x is given as follows:

x , ∆pΦ, jq iff j ę i or pDaqfpaq , Φpaq

(3) Delta for the functor T “ pLqA ˆ 2. For a coalgebra c : X ÝÑ pLXqA ˆ 2 and for its
state x with cpxq “ pl, iq, we have that x , ∆pp, jq holds if and only if

j ę i or pDa P AqpDy Ắ lpaqqp@ϕ Ắ ppaqq y , ϕ.

(4) Consider again frames for modal logic with adjoint modalities (see Example 2.1). We
only consider coalgebras of the form c : X ÝÑ UX for this example. The semantics of
∆Lω works as follows:

x . ∆Lωβ ” pcpxqpU. ¨pνL
Lq˛qβq

” pp@bqpβ Ą́ b implies pDx1qpcpxq Ą́ x1 and x1 . bqq

”  pDbqpβ Ą́ b and p@x1qpcpxq Ą́ x1 implies x1 , bqq

Therefore

∆Lωβ ”
ł

lβ.

Recall from Example 5.10 that

lb ” ∇Lωtbu.

We see that in this particular example ∆ is definable by ∇ as follows:

∆Lωβ ”
ł

bẮβ

∇Lωtbu.

Since the arity functor Lω is finitary, the above expression is a well-formed formula.
(5) Consider Pc coalgebras for positive modal logic (see Example 2.1). The semantics of

∆Pcω works as follows

x . ∆Pcωβ ” pcpxqpPc. ¨pνPc
L q˛qβq

” p@x1 P cpxqqpDa P αqx1 . a and p@a P αqpDx1 P cpxqqx1 . a

”  ppDx1 P cpxqqp@a P αqx1 , a or pDa P αqp@x1 P cpxqqx1 , aq

Therefore

∆Pcωβ ” 3
ľ

Òβ _
ł

lÓβ.
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Recall from Example 5.10 that

la can be expressed as ∇Pcωtau _∇PcωH,

3a can be expressed as ∇Pcωta,Ju,

Thus ∆Pcωβ can be expressed as a disjunction of ∇Pcω -formulas as follows:

∆Pcωβ ” ∇Pcωt
ľ

Òβ,Ju _
ł

t∇Pcωtbu,∇PcωH | b P Óβu.

The above example suggests that the modality ∆ might always be expressible by a
certain disjunction of ∇ formulas. This is indeed true, but the disjunction need not in
general be finitely generated: for some coalgebra functors the disjunction of the ∇ formulas
needed in the expression is inherently infinite and thus ∆ is not definable by a well-formed
formula of the finitary language. The mutual definability of the two modalities becomes
important when formulating rules of the sequent calculus.

To explain the relationship between the modalities ∇ and ∆, we need to unravel the
combinatorial principle underlying their mutual translations. It will not be as simple as
the previous example suggests, but let us have a glimpse at it first. Take an upperset Òb
for some b Ắ β, and generate a lowerset from it in LωUωL. Call it Φb. It has the following
property: Φb Uω ­Ą́β. Moreover, applying the Lω

Ź

map to Φb yields an element in LωL,
namely, the lowerset of conjunctions of uppersets containing b. It is generated by

Ź

Òb. We
may apply ∇Lω to it. The above example suggests, that one of the formulas ∇Lω

Ź

Òb will
be true whenever ∆Lωβ is true.

The underlying operations suggested by the above are in particular the lifted relations
 T ­Ắ and  T ­Ą́. We describe them first, as they will play a crucial role in the mutual
definitions. We provide an inductive definition of these relations for the case of T being a
Kripke-polynomial functor.

Example 5.16. We state explicit formulas for the relation  T ­Ắ : T BLωX � //T BX when
T is a Kripke-polynomial functor.

(1) T “ constE : The relation  E ­Ắ : Eop � //Eop is the relation ęE : Eop � //Eop .

(2) T “ Id : The relation  Id ­Ắ : LωX � //X is the relation Ắ: LωX � //X .
(3) T “ T1 ` T2: Let α be in T Bi X and Φ be in T Bj LωX for some i, j in t1, 2u. The relation

α  pT1 ` T2 ­Ắq Φ holds iff i ‰ j or α  Ti ­Ắ Φ with i “ j.
(4) T “ T1 ˆ T2: The relation pα1, α2q  pT1 ˆ T2 ­Ắq pΦ1,Φ2q holds iff α1  T1 ­Ắ Φ1 or

α2  T2 ­Ắ Φ2 holds.

(5) T “ TE1 : Generalising the case (4), the relation α  TE1 ­Ắ Φ holds iff there is some e

from E such that αpeq  T1 ­Ắ Φpeq holds.
(6) T “ LωT1: The relation v  LωT1 ­Ắ u holds iff the following condition is satisfied:

pDα Ắ vqp@Φ Ắ uq α  T1 ­Ắ Φ.

The formulas for the relation  T ­Ą́ : T BLωX � //T BX are easy to obtain by dual reasoning.

For example, the relation u  LωT1 ­Ą́ v holds if and only if the following condition is satisfied:

pDΦ Ắ uqp@α Ắ vq Φ  T1 ­Ą́ α.

Next we define collections Rα and Lβ , parametric in α P T BωL and β P T BωL respectively.

Rα contains all Ψ P T BωLωbasepαq of which α is not a lifted non-member. Similarly, Lβ
contains all Φ P T BωUωbasepβq of which β is not a lifted non-member. The collection Rα will
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be explicitly used to rewrite a formula ∇T Bω
α as a conjunction of delta-formulas by the right

rule ∇-r in the calculus in the next section (hence the notation). Similarly, Lβ will be used
in rewriting a formula ∆T Bω

β as a disjunction of nabla-formulas by the left rule ∆-l in the
calculus.

Definition 5.17. Let us fix elements α P T BωL and β P T BωL. We define the collections Rα
and Lβ as follows:

(1) Rα is the collection of all elements Ψ P T BωLωbasepαq with

α  Tω ­Ắ Ψ.

(2) Lβ is the collection of all elements Φ P T BωUωbasepβq with

Φ  Tω ­Ą́ β.

Example 5.18. To illustrate the above definition we give two simple examples:

(1) Consider T Bω “ Lω, thus Tω “ Uω. Note that α Uω ­Ắ Ψ holds iff

DψpΨ Ą́ ψ and @apα Ą́ a implies a Ắ ψqq.

For α “ tKu, the collection RtKu consists of those elements Ψ of LωLωtKu, where some
ψ Ắ Ψ contains K. The only such lowerset Ψ is tH, tKuu. Thus RtKu equals ttH, tKuuu.

(2) Consider T B “ NopˆId where N is the poset of natural numbers with their natural order,
and T “ Nˆ Id . For α “ p5, b^ cq, the collection Rp5,b^cq consists of elements pn, ψq of
NopˆLωbasep5, b^cq where 5 ę n or b^c Ắ ψ. Note that Lωbasep5, b^cq “ tH, tb^cuu.
Therefore Rp5,b^cq “ tpn,Hq | 5 ę nu Y tpn, tb^ cuq | n P Nu.

To compare the current setting with the classical Moss’ logic: It was shown in [KV09]
that the two modalities ∇ and ∆ are mutually definable already in the positive fragment
of the classical Moss’ logic. Their mutual definability was used in [BPV14] in designing a
two-sided sequent proof system for the logic. We will state a similar fact in the poset-setting
in the following two propositions. They will be applied in the next section, when we define
a sequent proof system.

Proposition 5.19. For each coalgebra c : X ÝÑ TX and every semantics relation ,c, the
relations

T BωL �
pνT

B

L q˛
// T BL �

,cp´,∆´q
// Xop

and

T BωL �
 pTω ­Ą́q

// T BωUωL �
,cp´,∇T Bω

Ź

´q
// Xop

are equal.
In other words, for each x in X, and each β in T BωL, we have that x ,c ∆β holds if and

only if there is a Φx in T BωUωL such that

Φx  Tω ­Ą́ β and x ,c ∇pT Bω
ľ

qΦx.

Whenever Lβ is finite, we have the following semantic equivalence:

∆β ”
ł

ΦPLβ

∇pT Bω
ľ

qΦ.

Proof. The guiding ideas in the proof are quite simple, however, much of the work is due to
type-checking reasons. We divide the proof into several parts:
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(1) The inequality ,cp´,∆´q ¨ pν
T B

L q˛ ď ,cp´,∇T Bω
Ź

´q ¨  pTω ­Ą́q.

Suppose that x , ∆β holds. We will construct an element Φ in pT BωUωLqop such that

Φ  Tω ­Ą́ β and x ,c ∇pT Bω
ľ

qΦ.

The main idea for this part of the proof is to simply consider the monotone map assigning
to a state x the finitely generated upperset of formulas from basepβq it satisfies:

f 7 : X ÝÑ pUωLqop , x ÞÑ Òtw P basepβq | x ,c wu.

Most of what follows concerns restricting along basepβq. Using the basepβq : W // //L
with W finite, we can factorise f 7 as follows:

X
f

//

f 7   

pUωW q
op

pUωbasepβqqopzz

pUωLqop

The mapping f with a finite range is then defined as

f : X ÝÑ pUωW q
op , x ÞÑ tw PW | x ,c basepβqpwqu.

Therefore, applying the functor T to f yields an element pTfqcpxq in pT BUωW q
op .

Observe first that because W (and therefore UωW ) is a finite poset, we have that

T BpUωW q
op “ T BωpUωW q

op (i.e., the corresponding natural inclusion νT
B

UωW is the iden-

tity). We may therefore define the element Φx in pT BωUωW q
op to be the unique one

with

νT
B

UωW pΦxq “ pTfqcpxq.

As pUωW q
op is included in pUωLqop via a mono morphism pUωbasepβqq

op , we may put

Φ “ pT BωUωbasepβqq
oppΦxq,

and see that it is indeed an element of pT BωUωLqop . Relaxing the typing, we could say
that Φ,Φx, and pTfqcpxq are the same thing. The situation is depicted in the following
naturality square:

Φx : T BωUωW
νT
B

UωW

��

T BωUωbasepβq
��

T BUωW
��

T BUωbasepβq
��

: pTfqcpxq

Φ : T BωUωL //
νT
B

UωL
// T BUωL

Let ­Ą́1: W op � //pUωW q
op be the restriction of the relation ­Ą́: Lop � //pUωLqop along

basepβq, i.e. ­Ą́1 “ ­Ą́ pUωbasepβq´, basepβq´q. We obtain that Φ is related with β via
the lifted ­Ą́ relation, i.e. Φ Tω ­Ą́ β, if and only if Φx and β relate in the lifted ­Ą́1 relation
restricted along basepβq, i.e. Φx Tω ­Ą́1 β This will concern the point (a) below.

Similarly, let ,1c: W � //Xop be the restriction of the relation ,c: L � //Xop along

basepβq, i.e. ,1c “ ,c p´, basepβq´q. We obtain that cpxq and νT
B

L pβq are related via

the lifted .c relation, i.e. cpxqpT.cqν
T B

L pβq, if and only if cpxq and β are related via

the lifted restricted .1c relation as follows: cpxqpT.1cqβ. This will concern the point (a)
below.
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For the conjunction map (restricted to basepβq)
Ź

: UωW ÝÑ L, the restricted
relation ,c p´,

Ź

´q of “satisfying conjunctions of formulas from basepβq” will be

considered in the point (b) below. We obtain that cpxq and νT
B

L ppT
B
ω

Ź

qΦq are related

via the lifted ,c relation, i.e. cpxqpT B,cqν
T B

L ppT
B
ω

Ź

qΦq, if and only if cpxq and Φx are

related via the T B lifted restricted ,c p´,
Ź

´q relation. These observations simplify a
bit the remaining proof.

(a) To prove that Φx  Tω ­Ą́1 β holds, it suffices to prove that

cpxq  T.1 β implies Φx  Tω ­Ą́1 β.

We reason by contraposition and we assume that Φx Tω ­Ą́1 β to show that then
cpxq T.1 β, contradicting the original assumption that x , ∆β.
By the definition of f 7, observe that for any w P basepβq we have an implication

x ,c w implies fx Ą́1 w.

By contraposition, fx ­Ą́1 w implies x .c w. Write this implication as the following
diagram:

W op Ò X.
��

�
.1cp´,basepβq

op´q

OO

�
­Ą́1pf´,´q

The image under T of the above diagram yields

pT BW qop Ò TX
��

�
T.1cp´,pT

Bbasepβqqop´q

OO

�
T ­Ą́1pTf´,´q

We read the diagram for β in pT BW qop and cpxq in TX (this is correct because W
is finite, and pT BW qop “ pT BωW q

op). The lower part says that pTfqpcpxqq T ­Ą́1 β:
By assumption, Φx Tω ­Ą́1 β holds, and since Φx “ pTfqcpxq, we deduce that
pTfqpcpxqq T ­Ą́1 β holds.
For the upper part, we first recall that, by the unit property of base, β P T Bωbasepβq.
Together with basepβq being finite, this entails that β P T Bbasepβq. Hence we have
cpxq T.1 β by using the above diagram. This is a contradiction with x ,c ∆β.

(b) We prove that x ,c ∇pT Bω
Ź

qΦx holds by proving cpxq T B, p´,
Ź

´q Φx.
By the definition of f we have that x ,c

Ź

fpxq holds. The monotonicity of ,c
together with the definition of conjunction says that for any other ϕ P UωW with
fpxq ď ϕ we can deduce x ,c

Ź

ϕ. This observation yields a diagram in Rel of the
form

UωW Ò Xop
��

�
,cp´,

Ź

´q

OO

�
ďUωW pf

op´,´q



18:40 MOSS’ LOGIC FOR ORDERED COALGEBRAS Vol. 18:3

By applying T B to the above diagram we obtain

T BUωW Ò pTXqop
��

�
T B,cp´,T B

Ź

´q

OO

�
ď
TBUωW

pTfqop´,´q

We instantiate the diagram for cpxq in pTXqop , and Φx in T BUωW . Since

pTfqopcpxq “ pTfqcpxq “ Φx,

we have in particular the inequality pTfqopcpxq ď Φx in T BUωW . By the above

diagram, the relation cpxq T B,c pT
B

Ź

qΦx follows.

We deduce from this that cpxq T B,c ν
T B

L ppT
B
ω

Ź

qΦxq, using the following naturality
square for the conjunction map:

Φx : T BωUωW
νT
B

UωW

T Bω
Ź

��

T BUωW

T B
Ź

��

T BωL //
νT
B

L
// T BL

(2) The inequality ,cp´,∇T Bω
Ź

´q ¨  pT ­Ą́q ď ,cp´,∆´q ¨ pν
T B

L q˛.

Consider x, Φ in T BωUωL, and β in T BωL, such that

Φ  T ­Ą́ β and x ,c ∇pT B
ľ

qΦ.

We need to show that x ,c ∆β holds, so by the definition of the semantics of ∆ we need

to prove that cpxq  T. νT
B

L pβq holds. Reasoning by contraposition, we show that

cpxq T. νT
B

L pβq entails Φ T ­Ą́ β,

contradicting the assumption.
First let us observe that whenever there is an x0 P X such that x0 .c a for some

a P L, and x0 ,c
Ź

u for an upperset u P UωL, then u ­Ą́ w follows. This is precisely
the information contained in the diagram in Rel of the form

UωL �
­Ą́con

//

�
,cp´,

Ź

´q
''

L

Xop

Ò
%

.c
con

77

We apply T B to the above lax triangle to obtain

T BUωL �
pT ­Ą́qcon

//

�
T B,cp´,T B

Ź

´q ((

T BL

pTXqop

Ò
$
pT.cqcon

66

We instantiate the diagram for cpxq in pTXqop , Φ in T BUωL, and νT
B

L pβq in T BL. Using

the assumptions cpxq T B, pT B
Ź

qΦ and cpxq T.1 β, we conclude that Φ T ­Ą́ β holds.
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We have proved the desired equality of the two relations. The last assertion of the proposition
trivially follows.

The previous proposition states that under certain conditions, the modality ∆ is
semantically equivalent to a disjunction of ∇ formulas. The following proposition deals
with the dual statement: the modality ∇ is semantically equivalent to a conjunction of ∆
formulas.

Proposition 5.20. For each coalgebra c : X ÝÑ TX and every semantics relation ,c, the
relations

T BωL �
pνT

B

L q˛
// T BL �

,cp´,∇´q
// Xop

and

T BωL �
 Tω ­Ắ

// T BωLωL �
,cp´,∆T Bω

Ž

´q
// Xop

are equal.
In other words, for each x in X, and each α in T BωL, x ,c ∇β holds iff there is a Ψ in

T BωLωL such that

α  Tω ­Ắ Ψ and x ,c ∆pT Bω
ł

qΨ.

Whenever Rα is finite, we have the following semantic equivalence:

∇α ”
ľ

ΨPRα

∆pT Bω
ł

qΨ.

Proof. The proof is completely analogous to that of Proposition 5.19.

6. Proof system and completeness

In this section we define a two-sided sequent calculus G∇∆ for the coalgebraic language L
defined in Section 5. We prove that the calculus is complete with respect to the semantics of
L given therein. The definition of the calculus as well as the completeness proof is general
and parametric in the coalgebra functor T .

The calculus we are going to define can be seen as closely related to the two-sided
sequent calculus for the finitary Moss’ coalgebraic logic of coalgebras in Set as presented
in [BPV14]. We point out a closer connection of the two calculi in Subsection 7.A at the
very end of the paper.

6.A. The proof system GT
∇∆. The calculus GT

∇∆ will manipulate sequents. A sequent is
a syntactic object of the form ϕñ ψ where ϕ is a finitely generated upperset of formulas, i.e.
ϕ is in UωL, and ψ is a finitely generated lowerset of formulas, i.e., ψ is in LωL. Sequents
can be seen as objects in pUωLqop ˆ LωL, and therefore they carry an order and form a
poset which we denote S (this order on sequents is a natural one as becomes clear from their
semantics).

Given a coalgebra c : X ÝÑ TX equipped with a monotone valuation ,c and a state
x0, we say that sequent ϕñ ψ is refuted in x0 if x0 ,c

Ź

ϕ while x0 .c
Ž

ψ. Otherwise,
the sequent is valid in x0. Observe that the validity is monotone w.r.t. the order on S. A
sequent that is valid in all states of all T -coalgebras under all valuations is simply called a
valid sequent, otherwise it is called a refutable sequent.
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A rule is a scheme written in the form

A
S

where A is a poset of sequents (namely, A is in SubMS) forming the assumptions of the
rule, and the sequent S is the conclusion of the rule.

Notice that as defined, the number of assumptions of a rule need not be finite. It is
because, for some functors, we will need infinitary modal rules to form a complete calculus.
However, if the functor T Bω preserves finite posets, all the rules will be finitary.

A rule is said to be sound if, whenever all the assumptions are valid sequents, the
conclusion is also a valid sequent. A rule is called invertible if whenever the conclusion is
valid, then all the assumptions are valid as well. A rule has a subformula property if all the
assumptions consist of subformulas of the conclusion only. A rule with the empty set of
assumptions is called an axiom.

A proof in the calculus GT
∇∆ is a well-founded tree labelled by sequents in the following

way:

(1) Each leaf is labelled by an instance of an axiom.
(2) Each non-leaf node n is labelled by the conclusion of an instance I of some rule. The

children nodes of n are labelled by the assumptions of the instance I.

We say that a sequent is provable if there is a proof whose root is labelled by the sequent.
We start the definition of the calculus GT

∇∆ by listing the axioms, rules of weakening
and standard rules for conjunction and disjunction. If ϕ is an upperset of formulas, by
writing ϕ, a we mean the upperset generated by ϕY tau, and by ϕ,ϕ1 we mean the upperset
generated by ϕY ϕ1. Similarly If ψ is a lowerset of formulas, by writing ψ, a we mean the
lowerset generated by ψ Y tau, and by ψ,ψ1 we mean the lowerset generated by ψ Y ψ1.

When writing down a sequent, e.g. in examples we provide, we often use a simplified
notation and list only the generators of the corresponding lowersets and uppersets to keep
the description finite2.

Definition 6.1. The propositional part of the calculus GT
∇∆ is given in the following table:

Ax
Òañ Ób

a ďL b

w-r
ϕñ ψ

ϕñ ψ1, ψ
w-l

ϕñ ψ

ϕ,ϕ1 ñ ψ

Ź

-r
tϕñ a, ψ | a P gpϕ1qu

ϕñ
Ź

ϕ1, ψ

Ź

-l
ϕ,ϕ1 ñ ψ

ϕ,
Ź

ϕ1 ñ ψ

Ž

-r
ϕñ ψ,ψ1

ϕñ ψ,
Ž

ψ1
Ž

-l
tϕ, añ ψ | a P gpψ1qu

ϕ,
Ž

ψ1 ñ ψ

(6.1)

The rules for conjunction and disjunction above are straightforward adaptations of the
standard conjunction and disjunction rules to our specific setting. In the axioms, the side
condition requires that the inequality a ďL b holds in the free algebra of formulas. All the

2One can do so systematically by mapping sequents to their bases as follows: observing pULqop “ LωLop ,
we can use pbaseLop , baseLq : SubMpLωLop

q ˆ SubMpLωLq ÝÑ SubMLop
ˆ SubML.
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axioms and rules are sound, and the rules for
Ź

and
Ž

are moreover invertible, which
follows immediately from the definition of valid sequents.

Remark 6.2. One can see the above tabular of rules as an inductive definition of a monotone
relation ñ: LωL � //UωL as the smallest one such that it in a way subsumes ďL: a ďL b
implies Òañ Ób, and is closed under the conjunction and disjunction rules (the weakening
rules ensure the monotonicity).

Next we turn to modal rules. The modal part of the calculus will consist of three rule
schemes: (1) a rule for introduction of nabla modality to the right-hand side of a sequent,
(2) a rule for introduction of delta modality to the left-hand side of a sequent, and (3) a
combined nabla-delta rule.

(1) ∇-r and (2) ∆-l. Let us first cover the cases of introducing nabla to the right-hand
and delta to the left-hand side of a sequent. Behind the soundness of following two rules lie
the mutual definability of the two modal operators discussed in the previous section. The
two rules, when read backwards, say how to reduce a nabla formula on the right-hand side
of a sequent to a conjunction of delta formulas, and dually how to reduce a delta formula on
the right-hand side of a sequent to a disjunction of nabla formulas. The laws that guarantee
the soundness and invertibility of these two rules are those of Propositions 5.19 and 5.20.

Definition 6.3 (Modal rules for ∇-r and ∆-l). Consider α P T BωL with basepαq : V // //L ,

and β P T BωL with basepβq : W // //L . The two modal rules are defined as

∇-r
tϕñ ∆pT Bω

Ž

qΨ, ψ | Ψ in Rαu

ϕñ ∇α,ψ
∆-l

tϕ,∇pT Bω
Ź

qΦ ñ ψ | Φ in Lβu

ϕ,∆β ñ ψ
(6.2)

The sets of assumptions are indexed by collections Rα with each Ψ in T BωLωbasepαq, and Lβ
with each Φ in T BωUωbasepβq, from Definition 5.17. The collections can in general be infinite,
and therefore the above rules become infinitary. However, in case that T Bω preserves finite
posets, they will become finitary.

Example 6.4. We illustrate the above definition with two simple examples of instances of
the rule ∇-r. The instances are based on Example 5.18.

(1) Consider T B “ Lω, and α “ tKu. By Example 5.18 (1), Rα “ ttH, tKuuu. Then for the
only element tH, tKuu of Rα we obtain Lω

Ž

tH, tKuu “ tKu. The following is therefore
a correct instance of the rule ∇-r:

∇-r
∇Hñ ∆tKu

∇Hñ ∇tKu
(2) Consider T B “ NopˆId , and α “ p5, b^cq. By Example 5.18 (2), Rp5,b^cq “ tpn,Hq | 5 ą

nu Y tpn, tb ^ cuq | n P Nu. Note that Lω
Ž

pn,Hq “ pn,Kq while Lω
Ž

pn, tb ^ cuq “
pn, b^ cq. The following is therefore a correct instance of the rule ∇-r:

∇-r
t∇p3, bq,∇p8, cq ñ ∆pn,Kq | 5 ą nu Y t∇p3, bq,∇p8, cq ñ ∆pn, b^ cq | n P Nu

∇p3, bq,∇p8, cq ñ ∇p5, b^ cq
The rule ∇-r is sound and invertible by Proposition 5.20, and the rule ∆-l is sound

and invertible by Proposition 5.19. Let us make a syntactic observation on the two rules
concerning the subformula property.
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Remark 6.5 (A form of the subformula property). Given any Ψ of the type

1 // //
''

Ψ ''

T BωLωV
��

T BωLωbasepαq
��

T BωLωL

we can state the following, weaker kind of the subformula property:

z P basepΨq implies z P Lωbasepαq.

Since Ψ P T BωLωbasepαq holds, we get the inclusion

basepΨq Ď Lωbasepαq

by Definition 3.9 of base. The weak subformula property follows from this immediately.
We can use the weak subformula property in particular to study the rule ∇-r: It shows
that all the assumptions of the rule are built from subformulas of the conclusion, using one
additional modality ∇, and the operation T B

Ž

. Similarly, for any Φ P T BUωbasepβq we get
that

z P basepΦq implies z P Uωbasepβq.

(3) ∇∆ rule. Let us turn now to introducing the last rule scheme. Observe that the
invertible rules of the calculus (the

Ź

and
Ž

rules and rules ∇-r and ∆-l) are strong enough
to reduce any valid sequent ϕñ ψ to a set of sequents in a reduced form by a backwards
application of the rules. A sequent is reduced if it is of the form

π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ,

with π and λ being finitely generated upperset and lowerset of atomic formulas (or their
respective generators in the simplified notation), A being in UωT

B
ωL and B in LωT BωL (or

their respective generators in the simplified notation).
The last missing bit of the calculus GT

∇∆ is a rule that decomposes sequents in a reduced
form. The rule ∇∆, which we will formulate in Definition 6.9 below, introduces the nabla
modality to the left-hand side and the modality delta to the right-hand side of a sequent
simultaneously. It is the only rule whose backwards application reduces the modal depth of
a sequent.

The idea behind the rule ∇∆ is to express what it means for a sequent in a reduced
form to be refuted in a state of a coalgebra. It will describe how validity and refutation
of the subformulas of the sequent is “redistributed” in the “successors” of the state. This
semantical idea will be made precise in Example 6.8 below. To be able to formulate the
same idea in a syntactic form of a rule we employ a technical notion of redistribution.

Definition 6.6. Fix a pair pA,Bq in pUωT
B
ωL ˆ LωT BωLq. A redistribution of pA,Bq is an

element Φ of T BωpUωbasepAq ˆ LωbasepBqq satisfying the following two conditions:

(1) for each α with A Ą́ α it holds that pT Bωp0qΦ T BωĄ́ α,

(2) for each β with β Ắ B it holds that β T BωẮ pT Bωp1qΦ,

where UωL UωLˆ LωL
p1
//

p0
oo LωL are the projection maps.

We denote the collection of all redistributions of the pair pA,Bq by rdpA,Bq.
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Remark 6.7. The notion of redistribution was introduced earlier in work on coalgebra
automata [KV08]. The idea of “redistributing the subformulas” has appeared, for the case
of sets, e.g. in [KKV12b] and [BPV14] under the name of slim redistribution or separated
slim redistribution, respectively. For reasons of simplicity we do not adopt the name slim
redistribution, and speak simply about redistributions instead.

We illustrate the notion of redistribution with the following example which arises
semantically. It is a crucial example because it relates directly to soundness and a weak
form of invertibility of the modal rule we prove later in Proposition 6.13.

Example 6.8. Suppose a sequent

Òt∇α | A Ą́ αu ñ Ót∆β | β Ắ Bu

is not valid for some pair pA,Bq in UωT
B
ωLˆ LωT BωL. This means that there is a coalgebra

c : X ÝÑ TX and a valuation ,: L � //Xop such that

x0 ,
ľ

AĄ́α

∇α and x0 .
ł

βẮB

∆β

for some x0 in X. The bases of A and B in SubML will be denoted by

basepAq : V // //L and basepBq : W // //L
respectively, with V and W being finite posets. In this example we will construct a certain
redistribution out of this countermodel.

(1) The construction of a redistribution. Again, the main idea of the proof is rather simple,
and most of the hassle is due to keep track of types and restricting to bases to keep the
reasoning on the language side finitary.

We start by defining two maps

f 7 : Xop ÝÑ UωL and g7 : Xop ÝÑ LωL
by putting

f 7pxq “ Òta P basepAq | x , vu,

g7pxq “ Òtb P basepBq | x . wu.

Similarly as before in proof of Proposition 5.19, they factor through the bases of A and
B to result in the following two maps:

f : Xop ÝÑ UωV and g : Xop ÝÑ LωW

by putting

fpxq “ tv | x , basepAqpvqu and gpxq “ tw | x . basepBqpwqu.

Hence the tupling of f and g is of the form

pf, gq : Xop ÝÑ UωV ˆ LωW

and by applying T B to it we obtain a map

T Bpf, gq : pTXqop ÝÑ T BpUωV ˆ LωW q.

Consider the composite

Xop cop
// pTXqop

T Bpf,gq
// T BpUωV ˆ LωW q
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and define Φx0 to be its value at x0 in Xop :

Φx0 :“ T Bpf, gqpcoppx0qq.

Because UωV ˆ LωW is a finite poset, T B and T Bω agree on it (the corresponding natural
inclusion is the identity). Thus we may see Φx0 as an element of T BωpUωV ˆ LωW q.
Therefore, using basepAq and basepBq as maps,

Φ “ T BωpUωbasepAq,LωbasepBqqpΦx0q “ T Bpf 7, g7qpcoppx0qq

is an element of T BωpUωbasepAq ˆ LωbasepBqq as required by the definition or a redistri-
bution.

We claim that Φ is a redistribution of pA,Bq. We verify item (1) of Definition 6.6,
item (2) is verified by dual reasoning. Therefore, we want to prove that

pT Bωp0qΦ T BωĄ́ α

holds for every α with A Ą́ α, where p0 : UωLˆ LωL ÝÑ UωL is the product projection.
By the definition of Φ, we observe that

pT Bωp0qΦ “ T BωUωbasepAqpT
Bfqcoppx0q “ pT

Bf 7qcoppx0q.

For the following diagrams to work, we however need to keep things restricted to bases
on the language side, and therefore we are going to use f rather then f 7. Consider
any α such that A Ą́ α holds. From the unit property of the base we know that
A P UωT

B
ωbasepAq. So, there is a (unique) α1 in T BωV with α “ T BωbasepAqpα

1q. To sum
up, to prove for Ą́: L � //UωL that

pT Bωp0qΦ T BωĄ́ α,

means to prove that

T BωUωbasepAqpT
Bfqcoppx0q T BωĄ́ T BbasepAqpα1q,

and in turn it suffices to prove, for the restricted Ą́: V � //UωV, that

pT Bωp0qΦx0 T
B
ωĄ́ α1.

This by definition of Φx0 boils down to proving that

pT Bfpcoppx0qqq T BωĄ́ α1 (6.3)

holds for any α such that A Ą́ α holds.
Given any x in X and v P V such that x ,c basepAqpvq holds, we know that fpxq Ą́ v

holds by the definition of f . The monotonicity of the membership relation Ą́ entails that
for every ϕ in UωV with ϕ ď fpxq, the relation ϕ Ą́ v holds as well. Thus the following
lax triangle in Rel

V �
Ą́

//

�
,p´,basepAq´q

''

UωV

Xop

$
f˛

77

Ò
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commutes. Its image under T B is the lax triangle

T BV �
T BĄ́

//

�
T B,p´,T BbasepAq´q ((

T BUωV.

pTXqop

#

pT Bfq˛

66

Ò

(6.4)

We prove (6.3) using (6.4). Consider any α such that A Ą́ α holds. Recall α1 in T BV is
the unique element with α “ T BbasepAqpα1q (as V is a finite poset, we are allowed to
write T B in place of T Bω here). We instantiate the diagram for coppx0q in pT BXqop , and
α1 in T BV .

We know from assumption that x0 ,c ∇α. Let basepαq : Z // //L and z P Z be the

unique element with T Bωbasepαqpzq “ α. By the semantic definition we obtain that

cpx0q T B,c p´, T
Bbasepαq´qz.

But observe that basepαq Ď basepAq. Therefore this is equivalent to

cpx0q T B,c p´, T
BbasepAq´qα1.

Applying the diagram we finally obtain that T Bfpcoppx0qqT B Ą́ α1 as required. We
consequently use the fact that since V and UωV are finite posets, T B and T B coincide

on them, and consequently the lifted relations T B Ą́ and T Bω Ą́ coincide.
(2) The redistribution Φ constructed above, has the following additional property: the

sequent

p0pzq ñ p1pzq

is refutable, for every z P basepΦq.
(a) Recall the map pf 7, g7q : Xop ÝÑ UωLˆ LωL and consider its pE ,Mq-factorisation

Xop
e
// // Y // m

// UωLˆ LωL
��

pf,gq

We will prove the inclusion

basepΦq Ď m.

The diagram

1 //
coppx0q

//**

Φ
**

pTXqop
T Be

//

T Bpf 7,g7q

''

T BY
��

T Bm
��

T BpUωLˆ LωLq

commutes: the left triangle commutes by the definition of Φ, and the right triangle
commutes by the pE ,Mq-factorisation of pf 7, g7q. This proves that Φ P T Bm holds.
Thus basepΦx0q Ď m holds by the definition of base.

(b) We will show that for every z P basepΦq there is a state xz P X such that

p0pzq ñ p1pzq

is not valid in xz.
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Since z P basepΦq holds, we know that z P m holds as well. From this and from the
surjectivity of the mapping e we can thus define xz to be any element from X such
that

z “ pm ¨ eqpxzq

holds. Then we know by the pE ,Mq-factorisation of pf 7, g7q that

pm ¨ eqpxzq “ pf
7, g7qpxzq.

The sequent p0pzq ñ p1pzq can therefore be written as

p0 ¨ pf
7, g7qpxzq ñ p1 ¨ pf

7, g7qpxzq,

and this in turn is the sequent

f 7pxzq ñ g7pxzq.

By the definition of f 7 and g7, all formulas in f 7pxzq are valid in xz, while no
formula in g7pxzq is valid in xz.

Now we can state the main modal rule of the calculus GT
∇∆, explain how it reads, and

show its main properties.

Definition 6.9 (The modal ∇∆ rule). We formulate the rule ∇∆ as follows:

∇∆
tp0pz

Φq ñ p1pz
Φq | Φ in rdpA,Bqu

t∇α | A Ą́ αu ñ t∆β | β Ắ Bu
@Φ. zΦ P basepΦq (6.5)

where the elements in rdpA,Bq are of the form Φ P T BωpUωLˆ LωLq, and

UωL UωLˆ LωL
p1
//

p0
oo LωL

are the projection maps of the product UωLˆ LωL.

Recall from Part II of Example 6.8 that choosing an element zΦ P basepΦq, we obtain a
finitely generated upperset of formulas p0pz

Φq and a finitely generated lowerset of formulas
p1pz

Φq, therefore p0pz
Φq ñ p1pz

Φq is a well-formed sequent. The rule ∇∆ says that the
conclusion is provable whenever for each redistribution Φ of pA,Bq there exists some
zΦ P basepΦq such that the sequent p0pz

Φq ñ p1pz
Φq is provable. In other words, it says

that if the sequent in the conclusion is refutable, there must be a redistribution Φ of the
pair pA,Bq (in fact the one of Example 6.8) such that all the sequents p0pz

Φq ñ p1pz
Φq are

refutable.

Example 6.10. Continuing on Examples 5.18 and 6.4, we illustrate the above definition
with two instances of the rule:

(1) Consider T Bω “ Lω and let us compute rdptHu, ttKuuq. Any such redistribution Φ in
LωpUωLˆ LωLq has to satisfy the following:

pLωp0qΦ LωĄ́ H and tKu LωẮ pLωp1qΦ.

The first condition is met by pLωp0qΦ “ H only, while the second condition requires
pLωp1qΦ ‰ H, which together is impossible. The collection of redistributions is therefore
empty and the following is a correct instance of the ∇∆ rule (in fact an axiom):

H
∇∆ ∇Hñ ∆tKu
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Putting the above observations together with Example 6.4 (1) we obtain a simple proof
in the simplified notation:

H
∇∆ ∇Hñ ∆tKu
∇-r ∇Hñ ∇tKu

(2) Consider T Bω “ NopˆId and let us compute rdptp3, bq, p8, cqu, tpn,Kquq where n ă 5. Any
such redistribution Φ is an element of Nop ˆ pUωLˆ LωLq, i.e. of the form pm, pϕ,ψqq
satisfying firstly

pm,ϕqpNop ˆ IdĄ́qp3, bq and pm,ϕqpNop ˆ IdĄ́qp8, cq,

which implies that m ě 8 and ϕ Ą́ b and ϕ Ą́ c. Secondly,

pn,KqpNop ˆ IdẮqpm,ψq,

which implies that n ě m. But since m ě 8 and n ă 5, this is clearly impossible.
Thus there is no such redistribution and the following is a correct instance of the rule,
whenever n ă 5:

H
∇∆ ∇p3, bq,∇p8, cq ñ ∆pn,Kq

Let us compute rdptp3, bq, p8, cqu, tpn, b ^ cquq for any n. Any such redistribution Φ is
of the form pm, pϕ,ψqq satisfying, as before, m ě 8 and ϕ Ą́ b and ϕ Ą́ c. Moreover, it
should satisfy

pn, b^ cqpNop ˆ IdẮqpm,ψq,

which implies that n ě m and b ^ c Ắ ψ. For n ă 8 the collection of redistributions
is again empty. For n ě 8 we know that any redistribution pm, pϕ,ψqq contains in its
base the pair pϕ,ψq where ϕñ ψ is a provable sequent (using possibly some weakening
inferences). Therefore the following is a correct proof in the simplified notation:

bñ b cñ cŹ

-r
b, cñ b^ c

w
ϕñ ψ

∇∆ ∇p3, bq,∇p8, cq ñ ∆pn, b^ cq

Put together with Example 6.4 (2) we obtain the following proof, where the left part of
the tree covers cases for n ă 8 and the right part of the tree covers cases for n ě 8 and
all the existing redistributions:

H
∇∆ ∇p3, bq,∇p8, cq ñ ∆pn,Kq . . .

bñ b cñ cŹ

-r
b, cñ b^ c

w
ϕñ ψ

∇∆ ∇p3, bq,∇p8, cq ñ ∆pn, b^ cq . . .
∇-r ∇p3, bq,∇p8, cq ñ ∇p5, b^ cq

The rule ∇∆ satisfies the subformula property, similar in spirit to the properties discussed
in Remark 6.5.
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Remark 6.11 (Subformula property). Since any redistribution Φ has the form

1 // //
))

Φ ))

T BωpUωV ˆ LωW q
��

T BωpUωbasepAqˆLωbasepBqq
��

T BωpUωLˆ LωLq,

we get by the definition of base the inclusion

basepΦq Ď UωbasepAq ˆ LωbasepBq.

Since the image of UωbasepAq ˆ LωbasepBq are the subformulas of the conclusion of the rule
∇∆, this observation tells us that the rule ∇∆ satisfies the subformula property.

Remark 6.12 (One-step nature of the rules). Coalgebras naturally capture one-step be-
haviour. As introduced by [Pat03], both the semantics and syntax of coalgebraic logics can
be stratified in layers of transition and modal depth. In particular, proof systems (both
Hilbert and Gentzen style) can be presented via one-step axioms with no nesting modalities
and rules which concern one layer of modalities only, and their completeness demonstrated
by an inductive argument in a one-step manner [KKV12b, KP11]. We do not adopt the
one-step formalism systematically in this paper, however, the construction of the language in
Subsection 5.A allows for such a treatment, the semantics could be presented in a one-step
manner following [KKV12b], and the rules of the sequent calculus allow for a purely one-step
reformulation. It is roughly because all the rules except the ∇∆ rule operate within the same
layer of the language, while the ∇∆ rule strips precisely one layer of modalities. Namely, in
the proof of the following proposition, constructing the model refuting a sequent

π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ

can be seen as a part of presenting a completeness proof by step-by-step method.

The rule ∇∆ is sound, and even invertible in a certain technical sense which we explain
and prove in the following proposition.

Proposition 6.13 (Soundness and invertibility of the ∇∆ rule). Let A, B and their bases
be given as in Definition 6.9 and let π and λ consist of atomic formulas. The following are
equivalent:

(1) The sequent

π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ

is refutable.
(2) The sequent π ñ λ is refutable, and there exists a redistribution Φ of pA,Bq such that

for all z P basepΦq the sequents

p0pzq ñ p1pzq

are refutable.

Proof. (1) implies (2). Assume that the sequent

π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ

is refutable. Then there is a coalgebra c : X ÝÑ TX, a monotone valuation , on c and a
state x0 in X such that x0 refutes the sequent π ñ λ, and px ,

Ź

AĄ́α

∇αq and px .
Ž

βẮB

∆βq.
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Then the redistribution Φ of pA,Bq, defined in Example 6.8, has the property that all
the sequents p0pzq ñ p1pzq are refutable, see Part (II) of Example 6.8.

(2) implies (1). Assume a redistribution Φ in rdpA,Bq is given. We moreover assume that for
all z P basepΦq, the sequent p0pzq ñ p1pzq is refuted by some valuation ,z on a coalgebra
cz : Xz ÝÑ TXz in a state xz.

We define a new coalgebra c : X ÝÑ TX, a point x0 in X, and a valuation , such that
x0 will validate ∇α for all α in A, and x0 will refute ∆β for all β in B.

(1) The definition of c : X ÝÑ TX and x0 in X. We will denote the base of the redistribution
Φ by

basepΦq : Z // // UωLˆ LωL .

Therefore, by the properties of base, there is a wΦ in T BZ such that

T BbasepΦqpwΦq “ Φ.

(and we are allowed to write here T B in place of T Bω because Z is a finite poset). Let
Zd denote the discrete underlying poset of Z. We denote by e : Zd ÝÑ Z the obviously
monotone mapping that is identity on the elements. The monotone map h : Zd ÝÑ Xop

is defined by putting hpzq “ xz.
Define

X “
ž

zPZd

Xz ` 1

and denote the unique element of 1 by x0. The coalgebra map c : X ÝÑ TX is defined
on the individual components as follows:

1

inj
��

x0 ÞÑpT BhqpwΦq

''

X
c

// TX

Xz

injz

OO

cz
// TXz

T injz

OO

where inj and injz are the coproduct injections, and wΦ is the element of T BZd with the
property that

T BbasepΦq ¨ T BepwΦq “ Φ.

(2) The valuation , on c : X ÝÑ TX.
In all states from all Xz the valuation of atoms remains unchanged, while in x0 we

satisfy all atoms in π and refute all atoms in λ. This is possible because the sequent
π ñ λ is refutable by assumption.

(3) We need to prove x0 ,
Ź

∇α for each α in A, and that x0 . ∆β for each β in B.

Equivalently, we can prove that cpx0q T B, α for each α in A, and cpx0q T. β for each

β in B. We will prove only cpx0q T B, α for each α in A, the second property is verified
by dual reasoning.
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We consider basepAq : V // //L . We first claim that there the following lax diagram in
Rel commutes:

V �
,p´,basepAq´q

//

UĄ́

��

Xop

U
h˛

��

UωV �
pUωbasepAqq˛

// UωL �
pp0q

˛
//

Õ

UωLˆ LωL �
pbasepΦqq˛

// Z �
e˛

//
OO

�
pp0¨basepΦqq˛

Zd

To see that this is the case, fix a v P V and a z in Zd such that v and z are related by
the first-down-then-right passage of the diagram.

Hence there is some ϕ in UωL with ϕ Ą́ basepAqpvq, some pϕ1, ψ1q with ϕ1 Ě ϕ
and therefore ϕ1 Ą́ basepAqpvq, and basepΦqpzq ďUωLˆLωL pϕ

1, ψ1q. This entails that
p0pbasepΦqpzqq Ą́ basepAqpvq, and basepAqpvq is valid in xz by assumption. Therefore
the pair v and z are related by the first-right-then-down passage of the diagram.

We will use the image under T B of the above diagram:

T BV �
T B,p´,T BbasepAq´q

//

U
T BĄ́

��

pTXqop

U
pT Bhq˛

��

T BUωV �
pT BUωbasepAqq˛

// T BUωL �
pT Bp0q

˛

//

Õ

T BUωLˆ T BLωL �
pT BbasepΦqq˛

// T BZ �
pT Beq˛

// T BZd

Consider a fixed α in A. Let basepαq : U // //L , and let u P U be the unique element

with T Bbasepαqpuq “ α. Because basepαq Ď basepAq, there is a unique α1 in T BV with
α “ T BbasepAqpα1q.

Apply the diagram to α1 in T BV , pT Bp0qΦ in T BUωL, and the unique wΦ in T BZ such
that

T BbasepΦqpwΦq “ Φ.

Since α1 and wΦ are related by the first-down-then-right passage of the diagram, there
exists ξ in pTXqop with cpx0q ďpTXqop ξ, and such that

ξ T B,p´, T BbasepAq´q α1.

Therefore cpx0q ěTX ξ and, consequently,

cpx0q T B,p´, T
BbasepAq´q α1.

But this is equivalent to

cpx0q T B,p´, T
Bbasepαq´q u,

and this proves that x0 validates ∇α, as required.
We remark that, in the above diagram, that since V (and also UωV ) is a finite poset,

T B and T Bω coincide on it. Therefore α and α1 are typed properly. For the same reason,

also the lifted relations T BĄ́ and T BωĄ́ coincide.
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6.B. Completeness. Assume a valid sequent ϕñ ψ is given. Recall that in a simplified
notation, we can identify the finitely generated lowerset ψ (and the finitely generated upperset
ϕ) with the finite (discrete) poset of its generators gpψq (resp. gpϕq). We will show by an
inductive argument that the sequent is provable in the calculus GT

∇∆, using the invertibility
of the rules of the calculus. To this end we need to define a measure of syntactic complexity
of a sequent in such a way that any backward application of a logical rule of the calculus
strictly decreases the defined measure.

Definition 6.14 (Measure on sequents). For each formula a in L, we define its complexity
on the left-hand side of a sequent, and on the right-hand side of the sequent simultaneously
as follows, counting modal formulas as atoms with a slightly bigger complexity.

lppq “ 0 rppq “ 0

lp
Ź

ϕq “
ÿ

aPgpϕq

lpaq ` 1 rp
Ź

ϕq “
ÿ

aPgpϕq

rpaq ` 1

lp
Ž

ψq “
ÿ

aPgpψq

lpaq ` 1 rp
Ž

ψq “
ÿ

aPgpψq

rpaq ` 1

lp∆βq “ 3 rp∇αq “ 3

lp∇αq “ 2 rp∆βq “ 2

For a sequent ϕñ ψ we define its complexity as

kpϕñ ψq “
ÿ

aPgpϕq

lpaq `
ÿ

bPgpψq

rpbq,

and its modal depth (recall Definition 5.6) by

dpϕñ ψq “ maxptdpaq | a P gpϕqu Y tdpbq | b P gpψquq.

Finally, we define the measure of the sequent ϕñ ψ to be the pair of natural numbers

mpϕñ ψq “ pdpϕñ ψq, kpϕñ ψqq.

We consider the pairs to be ordered lexicographically. The measure is defined exactly as
in [BPV14].

Proposition 6.15. Fix a sequent ϕñ ψ. A backward application of any rule of the calculus,
except weakening rules3, to the sequent yields sequents with strictly smaller measure.

Proof. In each backward application of one of the propositional rules, kpϕ ñ ψq strictly
decreases while modal depth remains unchanged, i.e., the measure of any assumption is
strictly smaller then the measure of the conclusion.

We inspect the modal rules. Consider a backward application of the ∆-l rule with the
conclusion ϕ,∆β ñ ψ. Its complexity is

kpϕ,∆β ñ ψq “
ÿ

aPgpϕq

lpaq ` 3`
ÿ

bPgpψq

rpbq.

Complexity of any of the assumptions ϕ,∇pT Bω
Ź

qΦ ñ ψ is strictly smaller:

kpϕ,∇pT Bω
ľ

qΦ ñ ψq “
ÿ

aPgpϕq

lpaq ` 2`
ÿ

bPgpψq

rpbq.

3In a backward application of a weakening inference, the set of generators of the corresponding upperset
or lowerset may actually get bigger, even if the actual upperset or lowerset does not.
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Since Φ P T BωUωbasepβq, from Remark 6.5 it follows that the modal depth of the sequent
remains unchanged. The case of the modal rule ∇-r is similar.

Consider a backward application of the ∇∆ rule with the conclusion t∇α | A Ą́ αu ñ
t∆β | β Ắ Bu. From the type of any Φ in rdpA,Bq and from Remark 6.11 it follows that
the measure of each of the sequents p0pz

Φq ñ p1pz
Φq is strictly smaller because in this case

the modal depth of the assumptions is strictly smaller than that of the conclusion.

The basic idea is we can apply the rules of the calculus (except the weakening rules) to a
sequent backwards, simplifying it in terms of the measure, and using the invertibility of the
rules (or a weak form of invertibility in the case of the modal rule). Reaching an irreducible,
atomic, sequent, we check for provability. This can be seen as a backward proof-search in a
variant of the calculus with the weakening rules built in the axioms. Now we can finally
prove that the calculus GT

∇∆ is sound and complete.

Theorem 6.16 (Soundness and Completeness of the calculus GT
∇∆). Each sequent ϕñ ψ

is valid if and only if it is provable.

Proof. Soundness of the calculus GT
∇∆ can be proved by a routine induction on the depth of

a proof in the calculus, using in particular appropriate directions of Propositions 5.19, 5.20
and 6.13 establishing soundness of the modal rules.

The completeness can be proved by induction on the measure. Assume a valid sequent
ϕ ñ ψ is given. If the measure of the sequent is p0, 0q, it consists of atoms and can only
be valid if there are some atoms ϕ Ą́ p and q Ắ ψ with p ďL q. In that case the sequent is
provable from an axiom by weakening rules.

Suppose that pdpϕñ ψq, kpϕñ ψqq ą p0, 0q, meaning the sequent contains at least one
logical operator. We distinguish two cases:

(1) ϕ ñ ψ is not of the reduced form. Then some of the propositional rules, or the ∆-l
or the ∇-r rule can be applied to it backwards. Any such rule is by Propositions 5.19
and 5.20 invertible and therefore such an application preserves validity. Moreover, all
the assumptions of such a rule have strictly smaller measure by Proposition 6.15. We
may therefore apply the induction hypothesis and conclude that all the assumptions of
such a rule application, being valid, are also provable, and so is, by applying the rule
forward, its conclusion.

(2) ϕ ñ ψ is of the form π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ with π and λ consisting of
atomic formulas. Then either π ñ λ is valid, and therefore provable as in the basic case.
The sequent itself is then provable by weakening rules.

Or, by Proposition 6.13, for each redistribution there is some zΦ P basepΦq such
that the sequent p0pz

Φq ñ p1pz
Φq is valid. But any such sequent has strictly smaller

measure by Proposition 6.15 and therefore we may apply the induction hypothesis
and conclude that any such sequent, being valid, is therefore also provable. Then the
sequent π, t∇α | A Ą́ αu ñ t∆β | β Ắ Bu, λ is provable by the rule ∇∆, and weakening
rules.

7. Concluding remarks

We have shown that a finitary Moss’ logic can be meaningfully defined for coalgebras in the
category Pos of posets and monotone maps, and that it is expressive and also complete. All
the definitions and proofs are parametric in the coalgebra functor T , which is required to be
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locally monotone, to preserve exact squares, and the syntax functor T Bω , which is required to
preserve intersections of subobjects.

There is still a lot we do not know about endofunctors of Pos. Namely we are interested
in the following open problems:

(1) Characterise endofunctors of Pos that preserve exact squares.
(2) Characterise endofunctors of Pos that preserve order embeddings.
(3) Among the endofunctors of Pos that preserve order embeddings, characterise those such

endofunctors that moreover preserve finite intersections.

There are two interesting questions regarding the logic introduced in this paper that we
have not addressed and leave for potential future study:

(1) Is it the case that for a posetification T 1ω (see [BK11]) of a Set endofunctor Tω, the Moss’
logic for T 1-coalgebras as introduced in this paper is the positive fragment of the Moss’
logic for T -coalgebras? The corresponding result for the logic of predicate liftings was
obtained in [BKV13].

(2) What is the relation of the Moss’ logic for coalgebras for Pos-endofunctors to the logic
of all monotone predicate liftings considered in [KKV12a]?

Let us briefly comment on (1). First of all, our definition of the language in Subsection 5.A
uses Lω and Uω for arities of disjunction and conjunction. We have explained that this
makes perfect sense in the poset setting in Remark 5.3 (it is worth noting that even with
a discrete poset of atomic propositions, our construction produces an ordered language).
But these functors are not poset extensions or liftings of the finitary powerset functor in
Set4, which classical Moss’ logic uses as arity of both the connectives. While we could in
principle use the self-dual finitary convex powerset functor Pcω, which is the posetification of
the finitary powerset functor in Set [BK11], for the arity of both conjunction and disjunction
(and this choice would actually produce a discrete language, starting from a discrete poset
of atomic propositions), this seems to us to make sense precisely for the purpose of studying
positive fragments of Set-based coalgebraic logic (which is not the aim of this paper), and
not so much for studying the Pos-based coalgebraic logic. Had we done so, it would not be
difficult to adjust the rest of the syntactic machinery, including the Definition 5.17 of the
collections Rα and Lβ and Definition 6.6 of a redistribution, syntactic shape of sequents,
and the formulation of the rules of the calculus accordingly. What is more important, under
this modification, all the proofs remain correct. We will outline the resulting formalism in
the following subsection.

7.A. Positive fragments. We will see how the machinery described in this paper, modulo
one alternation concerning arities, can capture positive (i.e.  -free) fragments of finitary
Moss’ logic in Set, as presented in [BPV14]. All functors in this section, including the
coalgebra functors, are assumed to be finitary.

Assumption 7.1. Solely for the purpose of this subsection, we assume that the arities of
the conjunction and disjunction in Pos are given by the finitary convex subset functor Pcω.

Let D : Set ÝÑ Pos be the discrete functor. We consider a finitary coalgebra Pos functor
T 1 to be the canonical extension — the posetification — of a fixed finitary standard Set
functor T preserving weak pull-backs. T 1 is defined as a completion w.r.t. Pos-enriched

4The functors L,U can however be obtained as quotients of certain liftings of the powerset functor to the
category of preorders and monotone maps [BK11].
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colimits [BK11], and it preserves exact squares. T 1 is an extension of T , meaning that
T 1D – DT . In particular, T 1 applied to a discrete poset yields a discrete poset. Observe
that posetifications are self-dual on discrete posets:

T 1BDX “ pT 1pDXqopqop – pT 1DXqop – pDTXqop – DTX – T 1DX.

Therefore we can use T 1 on the syntax side as the arity of both nabla and delta modalities,
as long as the language is discrete.

Language. We fix a set of propositional atoms AtSet. Therefore DAtSet can be used
as a discrete poset AtPos of propositional atoms. The definition of the finitary Moss’
language in Set [KKV12b, 5.1], namely its  -free fragment which we denote LSet, can

be seen as an algebra for Pω ` Pω ` T ` T , free on AtSet (computed in Set). The four
components correspond to arities of conjunction, disjunction, nabla, and the delta modality.
We aim at a definition of a discrete language LPos so that DLSet – LPos. For conjunction
Ź

: PωLSet ÝÑ LSet, we aim at its Pos counterpart being D
Ź

: PcωDLSet ÝÑ DLSet,
similarly for disjunction. For the nabla modality ∇T : TLSet ÝÑ LSet we aim at its Pos
counterpart being ∇T 1 “ D∇T : T 1DLSet ÝÑ DLSet, similarly for delta. We therefore define
the language LPos to be an algebra for Pcω `Pcω ` T

1` T 1, free on AtPos in Pos. Observe that
LPos is indeed a discrete poset, because for two convex subsets of a discrete poset, u ďEM v
implies u “ v, and T 1 applied to a discrete poset yields a discrete poset. It follows that
indeed DLSet – LPos.

Sequents in Set [BPV14] are pairs of finite subsets of LSet written as ϕñ ψ. For the
purpose of this subsection only, sequents in Pos are pairs of finite convex subsets of LPos.
Translation of the above sequent will be written as Dϕñ Dψ. This notation is justified by
the following paragraph:

Elements and bases. Assume that α is an element of TLSet: α : 1 // //TLSet . Applying
D to it yields an element of T 1LPos: Dα : D1 // //DTLSet – T 1LPos . Similarly for ϕ,ψ in
PωLSet we have Dϕ,Dψ in PcωLPos, and for Φ,Ψ in PωPωLSet we have DΦ, DΨ in PcωPcωLPos.
Here we again abuse the notation slightly and denote by α or Dα both the inclusion map

and its image. Assume the base of α in TLSet is given by baseT pαq : Z // //LSet . Then we

obtain the base of Dα as baseT
1

pDαq “ DbaseT pαq : DZ // //LPos .

Relations and their lifting. For a relation R in RelpSetq

R : Y � //X

we obtain a monotone relation DR in RelpPosq by applying the functor D to the span
corresponding to R to yield:

DR : DY � //DX.

The lifting of R by T in RelpSetq is given by the composite

TR : TX �
pTp1q

˛

//TR �
pTp0q˛

//TY.

Applying the functor D to its underlying span we obtain the T 1 lifting of DR

T 1DR : T 1DX – DTX �
pT 1Dp1q

˛

//T 1DR – DTR �
pT 1Dp0q˛

//T 1DY – DTY.

From the above diagrams one can conclude the following:

TRpβ, αq iff T 1DRpDβ,Dαq. (7.1)
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Coalgebras and valuations. Given a T -coalgebra c : X ÝÑ TX in Set, we can apply the
functor D to it to obtain the T 1- coalgebra Dc : DX ÝÑ T 1DX in Pos. Given a valuation of
propositional variables on the coalgebra c [BPV14, Definition 3.5.], we can see it as a relation

,: AtSet � //X , we obtain a corresponding valuation on Dc as D, : AtPos � //pDXqop .
Observing carefully how the connectives

Ź

,
Ž

and ∇,∆ are interpreted in [BPV14, Definition
3.5.] and in this paper in Subsections 5.B and 5.D, we observe that the correspondence carries

out to link ,: LSet � //X and D,: LPos � //pDXqop so that we can prove by induction
that for each sequent

c, x , ϕñ ψ iff Dc, x D, Dϕñ Dψ. (7.2)

(cf. [BPV14, Definition 3.18.], and a definition in Subsection 6.A of a valid sequent.) We
spell out the case for the nabla modality (the other cases are simpler or similar):

c, x , ∇Tα iff cpxqpT ,qα

iff DcpxqpT 1D,qDα by (7.1)

iff Dc, x D, ∇1T pDαq.

Before we go further, we sum up the correspondence between the Set-based setting of the
finitary Moss’ logic of [BPV14] and the Pos-based setting of the finitary Moss’ logic of this
paper (with the arities of conjunction and disjunction adjusted) in the following table:

T : Set ÝÑ Set T 1 : Pos ÝÑ Pos
LSet LPos

α in TLSet Dα in T 1LPos

ϕ,ψ in PωLSet Dϕ,Dψ in PcωLPos

Φ,Ψ in TPωLSet DΦ, DΨ in T 1PcωLPos

baseT pαq baseT
1

pDαq
Ź

: PωLSet ÝÑ LSet D
Ź

: PcωLPos ÝÑ LPos
Ž

: PωLSet ÝÑ LSet D
Ž

: PcωLPos ÝÑ LPos

c : X ÝÑ TX Dc : DX ÝÑ T 1DX

,: LSet � //X D, : LPos � //pDXqop

P: PωLSet � //LSet DP : PcωLPos � //LPos

TR T 1DR

Redistributions. First let us cover the syntactic constructions behind the ∇-r and ∆-l
rules. By [BPV14, Definition 3.14], the collections LT pαq and RT pβq are defined as follows:

LT pαq :“ tpT
ľ

qΦ | Φ P TbaseT pαq; pα TR Φqu

RT pβq :“ tpT
ł

qΨ | Ψ P TbaseT pβq; pβ TR Ψqu

Transferring this to Pos, we obtain

DrLT pαqs :“ tpT 1D
ľ

qDΦ | DΦ P T 1baseT
1

pDαq; pDα T 1DR DΦqu

DrRT pβqs :“ tpT 1D
ł

qDΨ | DΨ P T 1baseT
1

pDβq; pDβ T 1DR DΨqu

Comparing this with Definition 5.17, using the above table, we see that this provides us
with the right definition when the arities of conjunction and disjunction are altered to be
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Pcω, putting:

DΦ P LT 1pDαq iff pT
ľ

qΦ P LT pαq (7.3)

DΨ P RT 1pDβq iff pT
ł

qΨ P RT pβq (7.4)

Turning to redistributions, from [BPV14, Definition 3.20.] of slim redistribution, and its
generalization for two-sided sequents explained on p. 44 therein, we can extract the following:
Let pA,Bq be an element of PωTLSet ˆ PωTLSet. A Φ in T pPωbaseT pAq ˆ PωbaseT pBqq is a
slim redistribution of pA,Bq iff

p@α P Aq α TP pTp0qΦ

p@β P Bq β TP pTp1qΦ,

where p0, p1 are the projections of the product PωbaseT pAq ˆ PωbaseT pBq. Transferring to
Pos we obtain that for pDA,DBq in P cωT

1LPos ˆ P cωT
1LPos and Φ a slim redistribution as

above, DΦ in T 1pPcωbase
T 1pDAq ˆ Pcωbase

T 1pDBqq satisfies

p@Dα P DAq Dα T 1DP pT 1Dp0qΦ,

p@Dβ P DBq Dβ T 1DP pT 1Dp1qΦ.

Comparing this with Definition 6.6, using the table above, we see again that this fits with
DΦ being a redistribution of pDA,DBq, modulo the arities of conjunction and disjunction
being altered to be Pcω:

Φ P srdpA,Bq iff DΦ P rdpDA,DBq. (7.5)

Rules of the calculus. Using the transfer machinery described above, we can translate
proofs of positive sequents from the two-sided calculus G2T of [BPV14, Definition 5.1.] to

the calculus GT
1

∇∆ of this paper (to be precise, to the calculus we obtain by systematically

replacing the arities of conjunctions and disjunctions in GT
1

∇∆ with Pcω). We can do so
inductively, rule by rule. We will spell out the cases for the modal rules, and leave the
propositional part of the calculus to be verified by the reader (propositional part of G2T can

be found in [BPV14, Figure 1.], and that of GT
1

∇∆ in Definition 6.1).
The following two rules of G2T are those of [BPV14, Definition 5.1.], adapted to our

current notation:

∇T -r
tϕñ ∆T pT

Ž

qΨ, ψ | pT
Ž

qΨ in RT pαqu

ϕñ ∇Tα,ψ

∆T -l
tϕ,∇T pT

Ź

qΦ ñ ψ | pT
Ź

qΦ in LT pβqu

ϕ,∆Tβ ñ ψ

They translate into the following instances of the two rules of the modified (as for the arities

of conjunctions and disjunctions) GT
1

∇∆ from Definition 6.3

∇T 1-r
tDϕñ ∆T 1pT 1D

Ž

qDΨ, Dψ | DΨ in RT 1pDαqu

Dϕñ ∇T 1Dα,Dψ

∆T 1-l
tDϕ,∇T 1pT 1D

Ź

qDΦ ñ Dψ | DΦ in LT 1pDβqu

Dϕ,∆T 1Dβ ñ Dψ



Vol. 18:3 MOSS’ LOGIC FOR ORDERED COALGEBRAS 18:59

The following rule of G2T is the one of [BPV14, Definition 5.1.], adapted to our current
notation (in particular, p0pz

Φq is originally denoted by AΦ
L and p1pz

Φq is denoted by BΦ
R and

the notation explained on p. 47 (18).)

T p∇∆q
tp0pz

Φq ñ p1pz
Φq | Φ in srdpA,Bqu

t∇Tα | α P Au ñ t∆Tβ | β P Bu
@Φ. zΦ P baseT pΦq

It translates into the following instance of the T 1p∇∆q rule of Definition 6.9

T 1p∇∆q
tDp0pDz

Φq ñ Dp1pDz
Φq | DΦ in rdpDA,DBqu

t∇T 1Dα | Dα P DAu ñ t∆T 1Dβ | Dβ P DBu
@Φ. pDzqΦ P baseT

1

pDΦq

To sum up, using the above, we can state the following theorem

Theorem 7.2. Let ϕ,ψ be finite subsets of LSet (i.e., the  -free fragment of the classical
Moss’ coalgebraic language).

$G2T ϕñ ψ iff $
GT

1

∇∆
Dϕñ Dψ.

Proof. The left-right direction is proven by induction on the proof in G2T , translating it
step-by-step using the discrete functor as described above.

The right-left direction is proven by contraposition, using the completeness of the two
calculi. Assume that &G2T ϕñ ψ. Then there is a coalgebra c : X ÝÑ TX, a valuation of
LSet, and a state x so that

c, x . ϕñ ψ.

Then, by 7.2, the coalgebra Dc : DX ÝÑ T 1DX, the translated valuation of LPos, and a
state x refute the sequent

Dc, x . Dϕñ Dψ.

Example 7.3. Consider the finitary convex powerset functor Pcω as the coalgebra functor. Pcω
is the posetification of the finitary powerset functor Pω, whose coalgebras in Set correspond
to image-finite Kripke frames. Thus, adapting the arities of conjuctions and disjunctions in

the calculus G
Pcω
∇∆ captures the positive fragment of the finitary Moss’ logic over image-finite

Kripke frames (whose complete proof theory is provided by the calculus G2Pω of [BPV14]).
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[BKPV13] M. B́ılková, A. Kurz, D. Petrisan, and J. Velebil. Relation lifting, with an application to the
many-valued cover modality. Log. Methods Comput. Sci, 9:1–48, 2013.

[BKR19] S. Barlocco, C. Kupke, and J. Rot. Coalgebra learning via duality. In International Conference
on Foundations of Software Science and Computation Structures, pages 62–79. Springer, 2019.

[BKV13] A. Balan, A. Kurz, and J. Velebil. Positive fragments of coalgebraic logics. In International
Conference on Algebra and Coalgebra in Computer Science, pages 51–65. Springer, 2013.

[Blo12] A. Block. Interaction, observation and denotation. Master’s thesis, Universiteit van Amsterdam,
2012.
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