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ABSTRACT. We present a finitary version of Moss’ coalgebraic logic for T-coalgebras, where
T is a locally monotone endofunctor of the category of posets and monotone maps. The
logic uses a single cover modality whose arity is given by the least finitary subfunctor of
the dual of the coalgebra functor T}, and the semantics of the modality is given by relation
lifting. For the semantics to work, T is required to preserve exact squares. For the finitary
setting to work, T is required to preserve finite intersections. We develop a notion of a
base for subobjects of T, X. This in particular allows us to talk about the finite poset of
subformulas for a given formula. The notion of a base is introduced generally for a category
equipped with a suitable factorisation system.

We prove that the resulting logic has the Hennessy-Milner property for the notion of
similarity based on the notion of relation lifting. We define a sequent proof system for the
logic, and prove its completeness.

1. INTRODUCTION

Shortly after the theory of coalgebras emerged as a useful conceptual tool for a uniform study
of various kinds of dynamic systems, there has been an interest in finding logics expressive
enough to describe the behaviour of the coalgebras up to bisimilarity.

For the case of coalgebras for endofunctors T : Set — Set preserving weak pullbacks,
this goal has been achieved by Larry Moss in his pioneering paper [Mos99], where he
introduces a coalgebraic logic expressive for bisimulation, uniformly in the choice of the
coalgebra functor T'. The language of the logic contains a single cover modality V7, whose
arity is given by the coalgebra functor 7', and whose semantics is given by relation lifting. The
original Moss’ logic is infinitary: not only it allows for infinite conjunctions and disjunctions,
but also modal formulas Va for a € T'L can be infinitary, depending on the functor 7.
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After that, attention turned to the question how to obtain expressive coalgebraic
languages based on more standard modalities [JacOl, Kur0O1], the current mainstream
approach being based on modalities described by predicate liftings [Pat03, Sch08|.

Moss’ logic itself has soon become a lively field of study. Using similar ideas as Moss,
Baltag in [Bal00] describes an infinitary coalgebraic logic capturing both the notion of
bisimulation and simulation for Set coalgebras. Neither Moss nor Baltag provide a complete
axiomatization for their respective infinitary logics, as completeness might not be available
in general, depending again on the coalgebra functor.

A finitary version of Moss’ logic has consequently been explored by various authors,
resulting in an almost full picture, including (among others) its axiomatization and complete-
ness proof parametric in the coalgebra functor [KKV12b], a structural Gentzen-style proof
theory [BPV14], applications to automata theory [KV05, KV08, KV09], and applications
to fixpoint logics [SV10, Ven06]. The two formalisms, languages based on predicate liftings
and Moss’ finitary languages, have been compared in detail in [KL12].

Much of the theory that has been built around Moss’ idea uses heavily that endofunctors
of Set are well understood. This is not quite the case for the endofunctors on the categories
of preorders and posets. One encounters them naturally when interested in similarity alone,
rather then bisimilarity [KKV12a, Lev11]. For this reason (among others), poset extensions
and liftings of set functors were investigated in [BK11, BKV13]. Also a coalgebraic logic for
poset coalgebras, based on monotone predicate liftings, has been considered and proved to
be expressive in [KKV12a].

It therefore seems natural to investigate the possibilities of extending the above mentioned
techniques and results on finitary Moss’ logic for set coalgebras beyond the category of sets.
This paper is a step in this direction, developing Moss’ logic in the the category Pos of posets
and monotone maps, building mainly on results obtained in [BKPV11]. Namely, we use the
existence of a functorial relation lifting for functors preserving exact squares in the category
Pos. This provides us, as we show below, with the technical background for the development
of Moss’ logic for poset coalgebras.

Since the results about relation lifting in [BKPV11] were further generalised in [BKPV13]
to the enriched case of ¥ -categories, where ¥ is a commutative quantale, it is also possible
to define Moss’ logic in this level of generality. However, the commitment to the enriched
setting in particular means that everything, including the language, forms a ¥ -category and
if we are to be truly general, we deal with a highly unusual syntax. We feel that restricting to
the case of preorderes (¥ '-categories where ¥ = 2) or posets is the right level of enrichment
for presentation of Moss’ coalgebraic logic in full detail at the moment.

The commitment to the enriched setting of the category Pos has similar consequences
worth mentioning out front. First, every object we work with is going to be a poset, including
a poset of atomic propostions or the poset of formulas. Arities of connectives and of the
modality will be given by finitary poset functors. This alone opens possibilities to a rather
unusual definition of syntax. Second, the usual notion of finite objects will be replaced by
that of finitely generated objects. This affects notions of formulas, sequents and proofs.

Contribution of this paper. We present a finitary Moss’ coalgebraic language for coal-
gebras for a locally monotone functor T : Pos — Pos that preserves exact squares. The
logic is based on the language of logic of distributive lattices equipped with a single cover
modality V (and for the sake of proof theory later also with its dual modality A). The
arity of both cover modalities is the least finitary subfunctor TE of the dual of the coalgebra
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functor 7', and the semantics of the cover modalities essentially uses the notion of relation
lifting, proven to exist for our choice of coalgebra functors in [BKPV11].

For the finitary setting to work, we need to adopt an appropriate notion of a base. In
the “classical” case of a finitary coalgebraic functor T' : Set — Set, the base is a natural
transformation from T to the finitary powerset functor. In the context of Moss’ coalgebraic
language, it in particular allows us to consider subformulas of objects in T'L. Bases of
endofunctors, in a more general categorial setting, have recently been studied in the context
of reachability in automata (see e.g. the approach taken in [BKR19, WMKJD19]). We have
independently developed an appropriate notion of base of a locally monotone finitary functor
T, : Pos — Pos. Some additional assumptions on the category Pos and the functor T,
seem inevitable. First of all, one has to choose a suitable factorisation system (£, M) on
the category Pos and the functor 7' should behave well with regard to the factorisation
system. We prove that if we equip Pos with the factorisation system (£, M) of monotone
surjections and order embeddings, then a base can be computed for every finitary functor
T, that preserves order embeddings and their finite intersections. In particular, bases can
be used to produce, for each subobject of the poset T,,X, a finite poset of its “generators”,
e.g., a poset of subformulas of a formula of arity T,, or a poset of successors of a state in a
coalgebra for T,,.

The resulting finitary Moss’ logic has the Hennessy-Milner property — it is expressive for
a notion of simulation and similarity based on the relation lifting. This notion of similarity
coincides with the notion of similarity given, e.g., in [Wor00, HJ04, BK11, Lev1l]. The
result matches the similar result for Moss’ logic for coalgebras on the category of sets and
bisimilarity. It can also be seen as a counterpart to the result proved in [KKV12a] for
positive coalgebraic logics in the category of posets, stating that the logic of all monotone
predicate liftings is expressive for any endofunctor of posets that satisfies our conditions.

We present the resulting logic in a form of a cut-free two-sided sequent proof calculus,
and we prove its completeness. To be able to define such a proof system, we essentially use
a dual cover modality delta and its semantical relation to the nabla modality. This part of
the paper very closely follows previous work of the first author [BPV14] on proof theory of
classical Moss’ logic in Set.

Comparison to related work. The work we present in this paper is firmly rooted in
previous work on various Moss’ logics. From the original work [Mos99] of Moss it takes
the idea of a modality whose arity is given by the coalgebra functor and whose semantics
by the relation lifting. There are differences worth mentioning: Moss’ language does not
use propositional variables, and it is inherently infinitary. Moss does not provide any proof
calculus for the logic. In this sense, our work is much closer to the finitary version of Moss’
logic studied in detail in [KKV12b], and can be understood as the poset-based version of
this logic. [KKV12b] addressed an important open problem at the time and provided a
sound and complete derivation system for the finitary Moss’ logic in terms of a Hilbert-style
calculus parametric in the coalgebra functor, and proven completeness in a one-step manner.
We differ from this approach and opt to present the logic in terms of a cut-free sequent
calculus. In this we closely follow previous work by the first author on Gentzen style proof
theory for Moss’ logic of Kripke frames [BPV08], and consequently proof theory for general
Moss’ logic parametric in the coalgebra functor [BPV14]. One difference is that [BPV14]
assumes the coalgebra functor to be finitary, while we, following [KKV12b], do not do so and
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use finitary functors on the syntactic side of matters only. In Section 7 we briefly describe
how our approach relates to positive fragments of logics covered in [BPV14].

One possible motivation to move from Set to Pos is to study similarity. This can be done
in Set [Bal00] in case one is interested in studying bisimilarity and similarity together (first
one is represented by equality on the final coalgebra, while the other by a preorder on the final
coalgebra). However, as argued by Levy [Levll], if we are exclusively interested in similarity,
we would want the universe of final coalgebra to be a poset: if two nodes are mutually
similar, they should be equal. We employ the notion of similarity given by relation lifting of
monotone relation between posets studied in [BKPV11]. This coincides with the notion of
similarity given elsewhere in literature, in particular in [Wor00, HJ04, BK11, Lev11].

Comparing with the logic for similarity developed in Baltag’s paper [Bal00], we can,
not surprisingly, find striking resemblances. The functorial relation lifting (called strong
relator in [Bal00]) is weakened to capture similarity. For example, while the strong relator
extending the powerset funstor yields the lifting pattern of the Egli-Milner lifting, the relator
(P, ©) extending the powerset functor yields the same lifting pattern as the L-relation lifting
by the lowerset functor developed in [BKPV11] and used in this paper, namely, the first
half of Egli-Milner lifting. Similarly, the relator (P, 2) yields the same lifting pattern as
the U-relation lifting by the upperset functor, namely, the second half of Egli-Milner lifting.
Similarly, the cover operator in [Bal00] corresponds the the modality Vp of Moss, and
can be somewhat related the the modality Vpe for the convex powerset functor of this
paper, the box operator in [Bal00] can be related to the modality V| of this paper, and
the diamond operator can be related to the modality Vy of this paper. The similarities
are not surprising because the Set powerset functor P and the Pos functors L, U, P¢ can
meaningfully be related [BK11]: while the finitary convex powerset functor is the canonical
extension (the posetification) of the powerset functor, the functors L, U can be obtained
as quotients of certain liftings of the powerset functor to the category of preorders and
monotone maps. However, the obvious differences between [Bal00] and this paper are that
the logic of this paper is finitary, genuinely developed in Pos, and equipped with a sound
and complete derivation system.

As for the techniques applied in this paper, we rely on: (1) the results on relation lifting
of monotone relation between posets developed in [BKPV11], and do not provide new results
in this respect, (2) an appropriate notion of base of a locally monotone finitary functor
T, : Pos — Pos developed in this paper in a slightly more general categorial setting. Bases
of endofunctors have recently been studied in the context of reachability in automata (see
e.g. the approach taken in [BKR19, WMKJD19]), and we relate to their work in detail
throughout the Section 3.

Organisation of the paper.

e We start by listing examples of poset endofunctors and examples of ordered coalgebras in
Section 2.

e In Section 3 we study the notion of a base in a general category equipped with a factorisation
system. We describe the conditions under which an endofunctor of a category % admits
a base, and we show that a large class of Pos-endofunctors admits a base.

e Section 4 introduces monotone relations and the notion of relation lifting of monotone
relations. It states the main result of [BKPV11], that is, the characterisation of locally
monotone Pos-endofunctors that admit a relation lifting.
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e We define the syntax and semantics of Moss’ logic for ordered coalgebras in Section 5.
The syntax and semantics of this logic is parametric in the type of coalgebras involved.
We prove that the logic has Hennessy-Milner property for the notion of a simulation of
coalgebras defined by relation lifting.

e In Section 6 we develop a sequent calculus for Moss’ logic that is again parametric in
the type of coalgebras involved. We give a proof of soundness and completeness of the
calculus.

e Section 7 concludes with possible topics for future study, and clarifies how the current
setting can capture positive fragments of finitary Moss’ logic in Set studied in [BPV14].

Acknowledgements. We would like to thank Jiii Velebil for his substantial help. His
insights were crucial in the development of the paper. We are also thankful for the helpful
comments of the three anonymous referees.

2. FUNCTORS AND COALGEBRAS IN Pos

In this section we fix the basic notation and introduce the running examples that are used
throughout the paper. Firstly we introduce an important class of endofunctors of posets,
namely the locally monotone Kripke polynomial functors. In the second part of this section
we introduce the notion of a coalgebra and show several examples of coalgebras for Kripke
polynomial functors.

2.A. Basic notions and Kripke polynomial functors. We denote by Pos the category
of all posets and all monotone maps, i.e. maps f satisfying = < y implies f(z) < f(y). A
monotone map f is an order embedding if moreover f(x) < f(y) implies x < y. For a poset
(X, <), we denote by X °P the opposite poset (X, >). For every pair X and Y of posets, the
hom-set Pos(X,Y") of monotone maps from X to Y carries a natural partial order: given two
monotone maps f and g in Pos(X,Y’), we define that f < g holds if and only if f(x) < g(x)
holds for every x € X (i.e. we introduce a pointwise order). The category Pos therefore can
be seen as enriched in posets. In cases where we need to emphasise this extra structure of
Pos, we will speak of Pos as of a 2-category.

A functor T : Pos — Pos is then called a locally monotone functor (or a 2-functor), if it
preserves the additional structure present in Pos: that is, if for any pair f, g of comparable
morphisms in Pos the inequality f < g implies that the inequality T'(f) < T'(g) holds.

The Kripke polynomial endofunctors of Pos are those defined by the following grammar:

T:=E|Id|T+T|TxT|TF|T%|LT. (2.1)
We give an explanation of the building blocks of the grammar.

(1) Let E be an arbitrary poset. Slightly abusing the notation, we denote by E the
constant-at-F functor. The functor Id is the identity functor.

(2) Given two Kripke polynomial functors, their product and coproduct (in the category of
poset endofunctors) is again a Kripke polynomial functor.

(3) Given a poset E, we define that T%(X) = (T X)¥ is the poset of all monotone maps
from F to T X with the pointwise ordering. The obvious action on morphisms makes
TF into a functor.
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(4) Given a functor T, the functor 77 is the dual of T, defined by putting
T°X = (TX°P)°P

and again extending to the obvious action on morphisms. (Recall that X°? denotes
the opposite poset with the same underlying set satisfying x < y in X °P precisely when
y<zin X.)

(5) We denote by L the lowerset functor, with LX = [X°P, 2] being the poset of all lowersets
on the poset X, and the order is given by inclusion. (By 2 we denote the two-element
chain.) The lowerset functor L acts on morphisms as the direct image followed by closure:
given f : X — Y, a lowerset [ € LX is mapped by Lf to | f[l], i.e., to the lowerset
generated by the image f[l] of I.

All Kripke polynomial endofunctors of Pos are locally monotone, as seen by a routine
induction.

Observe that the dual of L is the upperset functor U: for any poset X we have that
L°X = [X,2]°P, and the latter is the set of all uppersets on X, ordered by reversed inclusion.
Therefore, the upperset functor U is Kripke polynomial as well. For a monotone map
f: X — Y, themap Uf : UX — UY sends an upperset u € UX to the upperset 1f[u]
generated by the image f[u] of u.

Apart from Kripke polynomial functors, we will list an additional functor we will briefly
need at the very end of the paper: the convex powerset functor P¢. For a poset X, P¢X is
the poset of convex subsets of X (i.e. subsets w such that if z,y € w and x < z < y, then
z € w) partially ordered by the Egli-Milner preorder: w <M /' iff

Vrew Iz’ € w'(z < 2') and Vo' € w' Iz € w(z < 7).

Its action on morphisms P€f is the direct image map. Observe that this functor is self-dual:
(P¢)? = P¢. This functor comes from the powerset functor P : Pre —> Pre in the category
of preorders and monotone maps, via the @@ - I adjunction (of the quotient and inclusion
functors) as QPI [BKPV11].

We will systematically use finitary functors on the syntactic side of the logics, i.e.
functors that are completely determined by their action on finite posets. Formally, finitary
functors are those preserving filtered colimits (see [Kel82b]), but we will use the following
elementary definition in this paper:

For a functor T, let T, be its least finitary subfunctor, with v” : T,,—T being the
natural inclusion. Categorically, T, is the finitary coreflection of the functor 7. It can
be defined in an elementary manner as follows: let m range through finite subobjects
m: Z—X of X (i.e. with Z being a finite poset) and put

T,X = ) ime(Tm).
m: Zr—X
Foramap f: X — Y, T, f is the restriction of T'f to 1T,,Y .
l/T
TwX>L> TX
wa] ITf
vy
T.Y —TY

The functors T and T, agree on finite posets (i.e., the corresponding natural inclusion is the
identity on finite posets). We say that T is finitary if T and T, coincide.
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We will often explicitly use the finitary lowerset functor L,,. For a poset X, the poset
L, X consists of finitely generated lowersets on X ordered by inclusion. Analogously, the
finitary upperset functor U,, assigns to a poset X the poset of its finitely generated uppersets,
ordered by reversed inclusion. Both functors are finitary subfunctors of the usual lowerset
and upperset functors. We will use the notation g(/) for the minimal discrete finite poset (i.e.
finite set) of generators of the lowerset [ € L, X, and in the same way g(u) will denote the
minimal finite set of generators for the upperset v € U,X. When a lowerset is generated by
a single element, we call it a principal lowerset and denote such principal loweset generated
by z by z|. Similarly, principal upperset generated by z is denoted by x1.

Similarly, the finitary convex powerset functor P¢ assigns, to a poset (X, <), the poset
of the finitely generated convex subsets of X ordered by the Egli-Milner partial order <M.
The functor P{, is the natural counterpart — the posetification — of the finitary powerset
functor P, : Set — Set (see [BK11]).

2.B. Coalgebras for a functor. Given a (not necessarily locally monotone) functor 7 :

Pos — Pos, we define coalgebras and their homomorphisms in the usual manner.
Explicitly, a coalgebra for T is a monotone map ¢ : X — T'X, and a monotone map

h: X — Y is a homomorphism from ¢: X — T X tod:Y — TY if the following square

X —5TX

1

YTTY

commutes.

There are various interesting structures from computer science and logic that can be
modelled as coalgebras for a suitable Kripke polynomial functor. We show some of the
examples below.

Example 2.1. Examples of ordered coalgebraic structures.

(1) Consider the functor T' = A x Id for some fixed poset A. Coalgebras for the functor T°
are the monotone maps ¢ = {out, next) : X —> A x X that can be seen as a particularly
trivial kind of automata with the set of states X and an (ordered) output alphabet A.
Hence the monotone map out : X — A produces an output in A for every state in X
and the monotone map next : X — X produces the next state of the automaton.

(2) A complete deterministic ordered automaton (as considered in Chapter 2 of [PP04]) is a
Biichi automaton (X, A, E, I, F') where X is equipped with a partial order <, A is the
alphabet, E the set of A-labelled (deterministic) transitions on X of the form z - a =y,
and F is an order-ideal of final states. For each x,y,y’ € X anda€e A, x <y and y-a is
defined, implies x - @ is defined and x-a < y - a.

In a Biichi automaton, the words in the semigroup A" can bee seen to generate
a morphism to the semigroup of binary relations on X, mapping a word w to the
accessibility relation labelled by (the letters) of w. We can think of a state x as accepting
w if there is a w-labelled path from x to a final state. In this sense, the partial order on
the states of automata from this example corresponds to the reverse inclusion of the
accepted languages: if £ < y and y accepts w, then x accepts w. The order on states in
a precise technical sense generates a congruence order on the semigroup A*.
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A complete deterministic ordered automaton can be seen as a coalgebra of the form
c: X — XA x2where X is a partial order of states, A the (discrete) input alphabet, the
left-hand component of the monotone map ¢ is a monotone transition map x — (a — z-a)
and its right-hand component is a monotone map from X to the two-element chain 2,
determining the accepting states. (In the poset setting, there would be no problem in
considering the more general case of ordered automata with an ordered input alphabet;
we however stick to the definition already used in literature for this example.)

Ordered automata have been considered as a counterpart of ordered semigroups
in [PP04], to deal with some natural classes of recognizable sets of words closed under
finite unions and intersection, but not under complement.

Consider the functor T = L4 x 2 (with A being discrete). A coalgebra ¢ : X —
(LoX)? x 2 is a nondeterministic automaton consisting of an upperset F < X of
accepting states, and a set C' of transitions of the form (z,a,y) with z,y € X and a € A,
satisfying two confluence properties:

(a) Whenever (z,a,y) € C and z < 2’ in X, it follows that (z/,a,y) € C.

(b) Whenever (z,a,y) € C and y < ¢/ in X, it follows that (z,a,y’) € C.

Let moreover d : Z —> (L,Z)* x 2 be an automaton with an upperset G < Z of
accepting states and a set D of transitions. A monotone map h : X — Z is a
homomorphism between ¢ and d if the following three conditions are satisfied:

(a) h[F] = G and h[X\F]| n G = & (h preserves the set of accepting states).

(b) For every transition (x,a,y) € C there is a transition (h(x),a,h(y)) € D.

(c) For every transition (h(x),a,z) € D there is a transition (z,a,y) € C with z < h(y).
We will call coalgebras for the functor L2 x 2 lowerset automata.

Frames for distributive substructural logics [Res00] are frames consisting of a poset X
of states, together with a ternary relation on X, satisfying the following monotonicity
condition:

R(z,y,2) and 2’ < z and ¢ <y and z < 2’ implies R(z', v/, 2’).

In the notation of monotone relations of Section 4 below, R is a monotone relation of
the form R: X——X x X.

Given a set At of atomic formulas and a monotone valuation X x At — 2 of the
atomic formulas, we can interpret the fusion and implication connectives as follows:

rlay®ay iff  (Jxg)(Fz1)(R(x0, 21, x) and xg |- ap and z1 |+ a1)
rzlha—>b iff (Vy)(Vz) (R(z,y,2) and y I a) implies z |- b)

It has been shown in [BHV12] that such frames can be treated as coalgebras in a
natural way so that the coalgebraic morphisms coincide with the frame morphisms.
In particular, R generates a natural coalgebraic structure ¢g : X — L(X x X) for a
locally monotone functor L(Id x Id), when we understand R as interpreting the fusion
connective. We call R finitary when the generated coalgebraic structure is in fact of the
form c¢g : X — L, (X x X), i.e. when we can use the finitary lowerset functor.
Consider a poset X equipped with a monotone relation R : X—+—X . This can be seen
as a frame for modal logic with adjoint modalities. More in detail, such frames with a
monotone valuation enable one in principle to interpret conjunction, disjunction, and
two monotone modalities: a forward-looking [] and a backward-looking ¢. We put

zl-Oa iff (Yy) (R(z,y) implies y I a)
z |- 4a iff (Jy) (R(y,x) and y I+ a)
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The modalities [] and 4 are adjoint in a sense that will be explained in Remark 5.9.
The relation R generates two coalgebras

c: X —UX and d: X — LX

defined by ¢(z) = {y | R(z,y)} and d(z) = {y | R(y,x)}. We say that the frame (X, R)
is finitary if R in fact generates coalgebras

c: X —U,X and d: X — L,X

for the finitary functors U, and L,,.

While the U-coalgebras can be seen as models of the box fragment of positive modal

logic (i.e. the logic one obtains by extending the logic of distributve lattices with a box
operator), the L-coalgebras can be seen as models of the logic of distributive lattices
extended with a backward looking diamond operator (which is the common fragment of
substructural epistemic logics considered in [BMP16]).
Consider a P¢coalgebra ¢ : X — P€ assigning to a state x a convex subset ¢(z) so
that whenever x < y, we have c¢(z) <FM ¢(y). Equipped with a monotone valuation
X x At — 2 assigning uppersets to the atomic formulas, it enables us to interpret
(conjunction and disjunction and) the box and diamond modalities:

zl-Oa iff  (Yy) (R(z,y) implies y I a)
zF<a iff (Jy) (R(x,y) and y I+ a),
creating the following operations on UX:
Or(u) == {z | c(z) < u}
Or(u) :={z | c(x) nu# I}

When seen as a relational assignment on the underlying set given by xRy := y € ¢(x),
the above monotonicity condition does not make R monotone per se, but translates to
the following two conditions on R, familiar from the theory of partially ordered frames
(X, <) with valuations taking values in UX (see e.g. [Pal04]):

<-RCR< and >-RCR >.

The first condition corresponds to UX being closed under [Jgr, the second condition
corresponds to UX being closed under g, thus ensuring the persistence of the semantics.
It is not hard to work out that this is an alternative semantics to the positive modal
logic, i.e. the positive fragment of modal logic K.
Semantics for description logic EL. The small description logic EL is a lite description
logic whose language allows for conjunction, existential restrictions, and the top-concept
(see e.g. [Baa03]). While its semantics itself is not based on a poset, the syntax employs
concept and role subsumptions in the form of inclusions.

In a simple case, and when formulated in the poset setting, the syntax works as
follows: we fix a poset N¢ of concept names ordered by concept subsumptions of the
form A & B, a poset N of role names ordered by role subsumptions of the form r & s,
and generate the following grammar of concepts:

Ci= A|T|CnD|3rC

The semantics is based on a discrete poset (i.e. a set) A together with: (ii) interpretations
C! of concept names by lowersets of A (i.e. subsets of A) respecting their order: C' = D
implies C! < D!, (ii) interpretations 7! of role names by binary relations on A, again
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respecting their order: r = s implies ! < s/. We can see each structure of this kind as
a coalgebra

c: A — (LAY x 2NV°

which, for each d € A, assigns: for each role name r the lowerset (i.e. subset) {e | (d,e) €
r'}, and for each concept name C the value 1 if d € C!, and the value 0 otherwise. Both
assignments are monotone.

We shall use some of the above coalgebras as running examples to illuminate concretely
the general theory.

3. BASE IN A CATEGORY ./ WITH A FACTORISATION SYSTEM

When studying finitary coalgebraic logics for finitary endofunctors of Set, the notion of a
base is of central importance. On the level of models, the base allows us to produce a finite
set of successors of a state of the model. On the level of the logical syntax, the base yields a
finite set of subformulas of a given formula.

Technically, given a functor T : Set —> Set, a base is a natural transformation basek :
TX — P,X, assigning to each element o of T X a finite subset of X, called the base of a.
The idea is to define base’ () as the smallest finite Z € X such that o € TZ holds. For
this idea to work, T" has to satisfy additional conditions: it has been shown in [Gum05]
that when T preserves intersections and weakly preserves inverse images, then the base
exists and it is natural. For various properties of bases for endofunctors of Set we refer to,
e.g., [KKV12b].

In this section we explain how to define and compute a base for an endofunctor
T : # — & of an arbitrary category £ that is equipped with a factorisation system
(€, M) for morphisms. The factorisation system is used in order to be able to imitate the
powerset: the set of all subsets is going to be replaced by the poset of M-subobjects.

Remark 3.1 (Comparison to related work). In [WMKJD19, BKR19], the notion of base has
been used to relate reachability within a coalgebra to a monotone operator on the (complete)
lattice of subobjects of the carrier of the coalgebra. [BKR19] assumes the category ¢
to be complete (which may limit applications), while [WMKJD19] (and us) do not do so.
Both [WMKJD19, BKR19] however define base for any f : X — T'Y", while we do so only
for M-subobjects o : Z—TX.

Both [WMKJD19, BKR19] developed the notion independently, almost at the same
time: the relation is described in Remark 5.17 in [WMKJD19]. We have developed the notion
independently of the two (a preliminary version of the current paper has been available
on arXiv since 2019), and only got aware of their related work recently. Credit for our
contribution should go mainly to J. Velebil, who closely cooperated on a previous version of
this paper.

By applying our definition of a base to the epi-mono factorisation system on the category
of sets and mappings, we then obtain the above notion of a base, see Example 3.14. By
applying our definition of a base to the category of all posets and all monotone maps,
equipped with a suitable factorisation system, we will be able to speak of bases in the
ordered case as well. See Examples 3.4 and 3.16 below.
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3.A. Factorisation systems. For more details on the general theory of factorisation
systems we refer to the book [AHSO06].

Definition 3.2. Suppose % is a category and let £ and M be classes of morphisms in 7.

We say that (€, M) is a factorisation system on % (and that ¢ is an (€, M)-category),

provided the following conditions are satisfied:

(1) The classes £ and M are closed under composition with isomorphisms.

(2) Every morphism in J# can be factorised as a morphism in £ followed by a morphism in
M.

(3) £ has the (£, M)-diagonalisation property, i.e., for every commutative square
A—>B
X ——Y

where e is in £ and m is in M, there exists a unique diagonal d : B — X, making both

triangles in the diagram
&

A——
|
X m

A factorisation system (€, M) is called proper if members of £ are (some) epimorphisms
and members of M are (some) monomorphisms.

oy

v

—

~

commutative.

Remark 3.3. Any factorisation system (£, M) on any category £ satisfies the following
(see Proposition 14.6 of [AHSO06]):

(1) The classes £ and M are closed under composition.
(2) The intersection £ N M is the class of all isomorphisms in J¢.

Example 3.4. The following are examples of (£, M)-categories J£:

(1) ¢ is the category Set of all sets and mappings, £ is the class of all epis (=surjections)
and M is the class of all monos (=injections).

(2) A is the category Pos of all posets and monotone mappings, £ is the class of all monotone
surjections and M is the class of all monotone maps that reflect the order.

(3) If £ is the category Pre of all preorders and monotone mappings, one can choose from
at least one of the following three prominent factorisation systems:

(a) & is the class of all monotone maps that are bijective on the level of elements and
M is the class of all monotone maps that reflect the order.

(b) & is the class of all monotone surjections and M is the class of all monotone
injections that reflect the order.

(¢c) M is the class of monotone injections. The class M is the class of all monomor-
phisms, hence the corresponding £ necessarily coincides with the class of all strong
epimorphisms, see [AHSO06].

All of the above cases, except for (3a), are proper factorisation systems.

(4) If X is an (£, M)-category, then £ °P is an (M, £)-category. If the factorisation system
(€, M) on X is proper, so is the factorisation system (M, E) on J# °P.
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For a factorisation system (€, M) on ¢, the morphisms in M will serve as “subobjects”.
It is however more useful to define subobjects as equivalence classes. More precisely: we fix
an object X and we denote a morphism in M into X by m : Z+—X. We define a preorder
on such morphisms by putting m < m/ if there is a factorisation

Zr— 7
X

The preorder defines an equivalence m ~ m’ iff m € m/ and m’ € m. We denote the
equivalence classes by [m]. If the category % has a final object 1, we denote the situation

11— 7

N

Definition 3.5. The equivalence class [m] of m : Z»—X is called an M-subobject of X.
The class of all subobjects of X is denoted by

Sub (X))

and we consider it ordered by [m] < [m/] if m < m/.

by writing that x € m holds.

Definition 3.6. We say that an (£, M)-category % is M-wellpowered, if every Subp(X)
has a set of elements. And % is E-cowellpowered, if # °P (equipped with the factorisation
system (M, £), see Example 3.4) is E-wellpowered.

Remark 3.7.

(1) We will abuse the notation and write m instead of [m], and m < m/ instead of [m] < [m/].

(2) An (€, M)-category need not be M-wellpowered, even for a proper factorisation system
(€, M). Indeed, suppose % is the class of all ordinals with the reversed order (so that
the ordinal 0 becomes the top element) and consider J# as a category. Put £ to be
the class of identity morphisms, M to be the class of all morphisms. The factorisation
system (£, M) on £ is proper, since every morphism in £ is both a monomorphism
and an epimorphism. Then it follows that Suba(0) is a proper class.

(3) If Subp(X) has a set of elements, then it is a complete lattice whenever .#" has enough
limits. In fact, it suffices to establish the existence of infima in Suby(X). The infima
can be computed as limits of diagrams of the form

Z;

N
o

Zj

X (1,7 €l)

that are called wide pullbacks of M-morphisms (or, intersections of M-subobjects).
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We denote by p; : Z—2; the limit cone. Every p; belongs to M by the general
properties of (proper) factorisation systems, see [AHS06], Proposition 14.15. The
composite m; - p; : Z—X represents the M-subobject that is the intersection of m;’s.
We denote the intersection by

Niegmi: Z—— X

The existence of suprema in Sub(X) then follows from the existence of infima by the
usual argument.

(4) When, moreover, coproducts exist in ., suprema in Sub((X) can be computed by
an explicit formula. Namely, the supremum [ J,.; m; (called the union of m;’s) can be
computed as the M-part

Uje;mi : Or—X

of the (&£, M)-factorisation of the unique cotupling morphism m : [[,.; Z; — X as
follows:

Zi—— - 1
inj;
\ H Zi C User ms X
%jljel j
Z; o

(5) When dealing with a pair m : Z+—X, n: Z>—X of subobjects of X, we denote their
intersection and union as m n n and m U n, respectively.

3.B. General bases.

Assumption 3.8. For the rest of this section we assume the following three conditions:
(1) & is an (€, M)-category for a proper factorisation system (£, M).

(2) A is M-wellpowered (i.e., we assume that every Suby(X) has a set of elements).
(3) T : # —> X is a functor which preserves M-morphisms.

The reader might compare our assumption 3.8 (and what we have said in the item (6)
of Remark 3.7 above) with Assumption 5.1 of [WMKJD19], where % is assumed to be
complete, wellpowered, with arbitrary (small) coproducts, equipped with a factorisation
system (£, M) where M is a class of monomorphisms.

Also, compare with Assumption of Proposition 12 in [BKR19], where .#" is assumed to
be complete and well-powered.

Definition 3.9. An M-subobject basex(«) : Z—X is called a base of an M-subobject
a : Z—TX provided that the following holds for every m : Z/'»>—X
basex (o) € m holds in Sub(X)
iff
a € Tm holds in Suby(T'X).
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Again, the reader might compare this with Definition 5.7 of [WMKJD19], where 7' is
assumed to preserve monos (like we do here), but base is defined for every arrow f : X — TY,
while we do so only for subobjects. For the class of all monomorphisms such notion was first
introduced by Alwin Block [Blo12] and called a base.

Compare also with [BKR19, Proposition 12], where for any endofunctor 7" which
preserves (wide) intersections, base of every arrow f : X — TY is shown to exist.

Remark 3.10. Since Subp(X) is a poset, the base basex(a) is determined uniquely,
whenever it exists. The base satisfies the unit property

a € Thasex ()
for every « in Subp (T X), and satisfies the counit property
basex (T'm) < m

for every m in Sub((X). These properties are immediate consequences of the definition of
base.

We shall characterise functors admitting a base in Proposition 3.12. Before we state the
result, let us show that some functors do not admit a base.

Example 3.11. Consider the category Pos equipped with the factorisation system of
Example 3.4 (2), and the lowerset functor L : Pos — Pos. We claim that

a:1—LZ, =—Z

where Z is the poset of integers with the usual order, does not admit a base.
Indeed, for any m : Z'~—Z, the inequality o € Lm states that (the image of) Z’ is a

cofinal subset of Z. Had base(«) : 1——Z existed, its image would yield the least cofinal
subset of Z — a contradiction.

Recall that meet-preserving maps between complete lattices have left adjoints. The
proof of the following characterisation is a simple application of this fact (cf. Proposition 5.9
of Wissmann et al [WMKJD19]).

Proposition 3.12. Suppose £ has intersections of M-subobjects. For T : X — X, the
following are equivalent:

(1) For every X and every o : Z——TX , the base basex () : Z——X exists.
(2) T preserves intersections of M-subobjects.

Moreover, under any of the above conditions, basex («) can be computed as the intersection

ﬂm

acSTm
of all M-subobjects m : Z'~—X such that o« € T'm holds in Suby (T X).
Proof. Observe that the assignment f — T'f induces a monotone map
Tx : Subp(X) — Subp(TX)

since T is assumed to preserve M-morphisms. The assignment « — basex («) is then simply
the value of a left adjoint

basex : Subp(TX) — Sub(X)
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to T'x at a point a. Moreover, Subp(X) and Subx((T'X) are complete lattices, since % is
assumed to have intersections of M-subobjects.
Then (1) is equivalent to (2), since (1) asserts that basex — T'x holds for any X and (2)
asserts that T'x preserves infima for any X.
The final assertion is true since the value of the left adjoint basex can be computed by
the formula
basex () = ﬂ m. []

acTm

In practical applications it may be the case that one is interested in the existence of
basex (a) only for particular a’s. For example, in [Ven06] the base is computed only for
finite subsets of T X for functors 7' : Set — Set.

We imitate this approach here. Namely, besides our standing assumptions, we assume
further that a full subcategory %) of J# is given, where A is a regular cardinal. We want to
think of the objects of J#) as being “smaller than A”. Our goal is to construct the value of
a left adjoint basex(«) : Zr—X only for those M-subobjects a : Z+—TX with Z in 7,

and such that Z is in ), as well.
For every X, denote by

IX : SUbM,)\(X) e SUbM(X)

the inclusion of the subposet spanned by M-subobjects having a domain in JZ).

One can refine the existence of the base by applying the ideas of Freyd’s Adjoint Functor
Theorem [Fre03]. In the formulation we use the terminology A-small to abbreviate “of
cardinality less than A”. For example, a A-small set is one of less than A elements, a A-small
intersection is one indexed by a A-small set, etc.

Proposition 3.13. Suppose that for every X, the poset Suba((X) has A-small infima, and
suppose that Subpg \(X) is a subset in Subp(X) that is closed under A-small infima.
Suppose further that the following two conditions are satisfied:

(1) T preserves A-small intersections.
(2) For any a: Z—TX with Z in %) there exists a A-small set

F = {fl | 1el, aC Tfl} < SUbM,)\(X)
such that for every m in Subp(X) with o« € T'm there exists f € F with Tf < Tm.

Then basex (c) exists for every o : Z—TX with Z in %), it is an element of Subp\(X),
and it is computed by the formula

basex (a)) = ﬂF

Proof. By hypothesis, Subay x(X) has A-small infima, and the map Tx preserves them by
condition (1). Condition (2) now ensures that

holds. The latter infimum is A-small and Tx is assumed to preserve such infima. The result
now follows. []

We show how Proposition 3.13 is applied in the classical case when J# = Set. Recall
that a category & is \-filtered if every A-small diagram in & has a cocone in Z. A colimit
is A-filtered if its scheme is a A-filtered category.
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Example 3.14. Let J# be the category Set of all sets and mappings with the factorisation
system of surjections and injections. Let T : Set — Set be a finitary functor that preserves
injections and finite intersections. Then, for every a:Z>—TX with the set Z finite,
basex () : Z——X exists and the set Z is finite.

It suffices to verify conditions (1) and (2) of Proposition 3.13 (where A = X and Sety,
are the finite sets). Condition (1) is well-known to hold for Set!. Condition (2) is verified as
follows. Given « : Z—TX with Z a finite set, express X as a filtered colimit colim;e; X;
of subobjects m; : X;— X with all X; finite. Since T is finitary and is assumed to preserve
injections, T'X is a filtered colimit colim;c; T'X; of injections. Since Z is finite, there exists
1o such that the triangle

Zy—2—5TX

T e

TX;,
commutes. Denote by F' the set
{f1f<mi and a = Tf}

of elements of Sub(X).
Observe first that F' is nonempty and finite. Secondly, if o € T'm, then

a S Tmiy nTm =T (m;, nm)

since T" preserves finite intersections. Since the subobject m;, nm is in F, condition (2) has
been verified.

More generally, Proposition 3.13 and the technique of Example 3.14 can be applied to
the case when 7 is a locally A-bounded category for some regular cardinal A\ and a proper
factorisation system (£, M), see [Kel82a|. In particular, we will use the results for .2 = Pos
equipped with the factorisation system of monotone surjections and order-embeddings, see
Example 3.16.

Definition 3.15. A category % is locally A-bounded w.r.t. a proper factorisation system
(€, M), if the following two conditions hold:

(1) There is an essentially small full subcategory #) of # such that:
(a) Every object Z in J#, is A\-bounded, i.e., the functor .# (Z, —) preserves colimits of
Mfiltered diagrams of M-subobjects.
(b) A morphism m : X»—Y is an isomorphism iff the map #(Z,m): #(Z,X) —
H(Z,Y) is a bijection for every A-bounded Z. (Le., ) is an (M, E)-generator of
(2) The category £ is cocomplete and has all £-cointersections. This means that the
opposite category £ °P (that is equipped with (M, E) as a factorisation system) has all
intersections of £-subobjects.

A category £ is called A-ranked, if it is locally A-bounded and £-cowellpowered.

Example 3.16. Examples of locally A-bounded categories w.r.t. a factorisation system
(€, M) include the following:

n fact, one has to be slightly careful here: every endofunctor of Set preserves all finite (thus even empty)
intersections provided it is sound, see [AGT10] for an explanation or [Trn71] for the original result. Any
non-sound endofunctor of Set can easily be “repaired” to be sound [AGT10].
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(1) All locally A-presentable categories when we take £ to be strong epimorphisms and M
to be monomorphisms, see [Kel82a.

In particular, the categories Pos and Pre are locally Ng-bounded, if we take M to
consist of all monotone injections (not necessarily reflecting order). A preorder or a
poset X is Ng-bounded iff it is finite.

(2) The category Pos of posets and monotone maps is locally finitely presentable, and thus it
is locally Np-bounded for £ consisting of surjective monotone maps and M of monotone
maps reflecting the order, see e.g. Proposition 1.61 in [AR94]. A poset is Rp-bounded iff
it is finite.

(3) The category Pre of preorders and monotone maps can be equipped with a variety of
factorisation systems, see Example 3.4. The category Pre is locally Xg-bounded w.r.r.
the factorisation system where £ consists of all monotone surjections and M consists of
all monotone injections that reflect the order, see Theorem 5.6 of [KLO1]. A preorder X
is Ng-bounded iff it is finite.

Definition 3.17. Let .# be a A-bounded category w.r.t. a factorisation system (£, M). We
say that T : & — & admits A\-bounded bases, provided that base§ : 7 —X exists for
any «: Z—TX with Z in %) and, moreover, Z is in .

Proposition 3.18. Suppose that % is locally \-bounded w.r.t. a factorisation system (€, M).
Then T : # — X admits A-bounded bases, whenever the following four conditions are
satisfied:

(1) Every subposet Subpg (X)) in Subpa(X) is closed under A-small infima.
(2) The principal lowersets in every poset Subpg\(X) are A\-small.

(3) T preserves colimits of A-filtered diagrams of M-subobjects.

(4) T preserves A-small intersections of M-subobjects.

Proof. 1t is proved in [KLO01] that every locally A\-bounded category is necessarily complete.
Hence every Subp(X) is a complete lattice. Every object X of # can be represented as a
filtered colimit of its A-subobjects; consider the canonical filtered diagram D : ¥ — % of X.
Its colimit colim D yields a unique comparison morphism colim D — X by the couniversal
property of the colimit. This comparison is an isomorphism since %) is an (M, £)-generator.
We can thus use Proposition 3.13 and the same argument as in Example 3.14 to conclude
the result. []

3.C. Bases in posets. We will apply the general theory of Subsection 3.B to the particular
case of the category Pos. In more detail, we consider Pos as an (£, M)-category for & =
monotone surjections and M = order-embeddings (i.e. monotone maps f satisfying <y
iff f(x) < f(y)). Then the following conditions hold:

(1) (€, M) is a proper factorisation system, see Example 3.4.
(2) Pos is M-wellpowered.
(3) Pos is locally Np-bounded, see Example 3.16. The category Posy, consists of finite posets.

Hence, by Proposition 3.18, a functor T : Pos — Pos admits Rp-bounded (=finite) bases,
whenever T preserves order-embeddings and their finite intersections. Next we survey which
functors preserve those properties. From now on, all bases will be considered finite. We
start with a negative example:
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Example 3.19. Not all locally monotone endofunctors T : Pos — Pos preserve order-
embeddings. See e.g. Example 6.1 of [BKPV13].

Moreover, a locally monotone endofunctor of Pos that preserves order-embeddings does
not necessarily preserve finite intersections. The reasoning is the same as in the case of Set-
endofunctors, as empty intersections are not necessarily preserved. Suppose T : Pos — Pos
assigns the two-element chain 2 to every nonempty poset and it assigns the one-element
poset 1 to the empty poset. On morphisms 7' sends the unique morphism !y : @ — X to
"1": 1 — 2, all other morphisms are mapped to the identity morphism. The intersection

o2

!{ "

0

is clearly not preserved by 7'

Preservation of order embeddings. We now list examples of endofunctors of the category
Pos that admit finite bases. We start with the preservation of order-embeddings.

Example 3.20. All Kripke-polynomial endofunctors (2.1) of the category Pos preserve order-
embeddings. This is essentially proved in [BKPV13], Examples 5.3 and 6.3, for the case of
Kripke polynomial endofunctors of Pre. One only needs to notice that order-embeddings in
Pos are precisely the order-reflecting monotone injective maps of the underlying preorders.

In fact, the class of endofunctors of Pos that preserve order-embeddings is quite large.
It includes all functors that preserve certain lax diagrams called ezact squares, see [Gui80]
or [BKPV11].

Definition 3.21. A lax square

p1
— B

P
;DOJ /! g

A——C
f

in Pos is called exact, if fa <¢ gb entails the existence of w in P such that both a <4 pow
and pyw <p b hold.

A functor T which preserves exact squares will be also called a functor satisfying the
Beck-Chevalley Condition, or BCC for short.

Example 3.22. All endofunctors of Pos satisfying BCC preserve order-embeddings. In
particular, all Kripke-polynomial endofunctors of Pos satisfy BCC, as does the convex
powerset functor P¢. See [BKPV11].

For an example of an endofunctor of Pos not satisfying BCC, consider the connected
components functor C : Pos — Pos that takes a poset P to the discrete poset consisting of
connected components of P. The functor C' does not preserve (e.g.) the order-embedding
from the discrete poset on {a,b} to the poset on {a,b,c} with the ordering a < ¢, b < c.
(This is Example 6.7 of [BKPV11].)



Vol. 18:3 MOSS’ LOGIC FOR ORDERED COALGEBRAS 18:19

Preservation of finite intersections. The following series of results deals with preserva-
tion of finite intersections. As the next example shows, not all Kripke polynomial functors
preserve finite intersections.

Example 3.23. The lowerset functor L does not preserve intersections of order-embeddings.
Consider the poset Z of integers and its subposets m : Ex~—Z and n : O—Z of even and
odd integers, respectively. The intersection of m and n is empty, as it is shown in the
diagram on the left below:

gr—0 Lg——LO
[ [ [ I
E>T>Z LETLZ

Then the one-element poset L in the diagram on the right above is not the intersection of
Lm and Ln. Namely, the intersection of Lm and Ln contains at least two elements, since
Lm(&) = & = Ln() and Lm(E) = Z = Ln(0).

The functor L does not, in general, preserve non-empty intersections of order-embeddings
as well. Consider again the above example, and take as m : E — Z the poset of even
integers and n : O — Z of odd integers and zero. Then the domain of m n n is the
one-element set {0} and L{0} has two elements, while the domain of Lm n Ln contains (¥,
10, and Z.

Proposition 3.24. All finitary Kripke-polynomial endofunctors of Pos preserve finite in-
tersections of order-embeddings.

Proof. The proof is trivial for all the formation steps (2.1) except for T¥ and L, T. For the
induction hypothesis, suppose T' preserves finite intersections of order-embeddings.

(1) Since T¥ X = (TX)¥, it suffices to observe that the diagram

4 E
(TL)® SR (TB)®

(TJ)EI I(TH)E

(TA)F ot (TX )P

is a pullback whenever the following diagram is:

TLL TR

"

TA——TX.
Tm

This is true because the functor (—)¥ : Pos — Pos preserves all limits: it is a right
adjoint by cartesian closedness of Pos (see Example 27.3 of [AHS06]).
(2) It suffices to prove that L,, preserves finite intersections of order-embeddings.

L——B L,L——L,B A—p

T [k

Ar— X L, A o L,X « l—>me X



18:20 MOSS’ LOGIC FOR ORDERED COALGEBRAS Vol. 18:3

Given an intersection in the diagram on the left above, we show that the diagram in
the center above is again an intersection of the morphisms L,m and L,n. For any two
lowersets « in L, A and § in LB satisfying L,m(«) = x = L,n(p) it is enough to find
a lowerset A\ in L, L as shown in the diagram above on the right. All of the depicted
lowersets are determined by their minimal sets of generators. Recall that the minimal
set of generators of the lowerset « is denoted by g(«). Since m and n are inclusions, we
see that g(a) = g(x) = g(B). The equality of sets of generators implies that g(x) < L.
Defining A in L, L to be the lowerset generated by g(x) yields the unique witness in
L, L.

Observe that the preceding argument works even in the case of g(x) being empty. [

By the above, all finitary Kripke-polynomial functors 7" admit finite bases.

Example 3.25. We will show how the bases for Kripke-polynomial functors can be com-
puted.

(1) Constant functor E: For an arbitrary subobject a : Z—F, we have that its base is of
the form base(a) : @ X, with base(«) being the empty mapping.

(2) Identity functor Id : Given a subobject o : Z——X, its base base(a) : Z—X is the
mapping « itself.

(3) Sum and product of functors: Fix two functors 77 and T. Given a subobject

a: r—NX+1TX,

it is equally well a subobject a1 + a9 : Z1 + Zo—T1 X 4+ 15X for some choice of posets
Z1 and Zs. Then base(a) = base(y) U base(as). For the case of the product of functors,
given a subobject a: Z—T1X x 15X, denote by p; : T1 X x T, X — T;X the i-th
projection from the product (i € {1,2}). Then base(«) = base(p; - @) U base(ps - ).
(4) Power of a functor: Given a functor T and a subobject o : Z—(TX)¥, we denote by
pe : TXT — TX the obvious projection (with e € E). Then base(a) = |, s base(pe-a).
(5) The dual of a functor: A straightforward computation yields that the base of

a: Zr—T%X

is (base(a®P))°P.
(6) The lowerset functor: Given a lowerset « : 1L, X, the base base() : 1——X is the
(discrete) finite poset of generators of a. More generally, the base of a: Z—L,X is

U,ey base(a - 2).

4. MONOTONE RELATIONS AND THEIR LIFTING

In the current section, we summarise the notation and the necessary facts that concern
monotone relations between posets. We will use these facts and the facts about liftings of
monotone relations in Section 5 to introduce the semantics of a coalgebraic logic over posets.
For a more detailed treatment of the theory of relation liftings in the categories Pre and Pos
we refer to [BKPV11].

The category Rel of monotone relations over Pos has the same objects as the category
Pos, and has monotone relations as arrows. A monotone relation R from X to Y will be
denoted by R : X——Y and it will be identified with a monotone map R: Y x X — 2.
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We shall often write R(y,x) or y R x to denote that R relates x to y. Using this notation, a
relation R is monotone if it satisfies the following monotonicity condition:
R(y,z) and ¢/ <y y and = <x 2’ implies R(y/, 2").

The composition in Rel is computed in the usual manner: (S - R)(z,z) holds if and only if
S(z,y) and R(y,z) hold for some y. The identity morphism on a poset X is the order <x
of X, considered as the monotone map <x : X°? x X — 2. For any two posets X and Y,
the hom-set Rel(X,Y") of all monotone relations from X to Y carries a poset structure given
by the inclusion of relations.

Example 4.1. We shall often use two special kinds of relations: graph relations and
membership relations.

(1) Graph relations. For a monotone map f : X — Y we define two graph relations

Xy v x

by putting
foly, @) ity < fo,  f(x,y) iff fz<y.
The assignment
f=fo
can be extended to a locally monotone functor
(=)o : Pos —> Rel.
(2) Membership relations. For a poset X, we use the following two membership relations:
Ex: LX——X 3y: X——UX
defined by ex (z,l) =1 iff zisin [ and =x (u,x) = 1 iff z is in w.

As in the case of ordinary relations, there are various operations that we can perform
on monotone relations.

Definition 4.2 (Operations on relations). Suppose R : X——Y is a monotone relation.

(1) The converse R®™:Y?—— X of S is defined by putting R"(z,y) iff R(y, x).

(2) The negation —R : X°P——Y°P is defined by putting —R(y,x) iff it is not the case
that (y,x) € R.

(3) Given monotone maps f: A — X, g: B— Y, the composite

4 ' Y
A—+—X—+—Y —+—B
fo R 9°

is called a restriction of R along f and g.

Remark 4.3. Observe that =x is the converse of Exo. We omit the subscript X whenever
it is clear from the context. We also often use the notation

&yt (LX)P—— X P Ay XP——(UX)oP

instead of the notation —= and —= for the negation of the respective membership relations.
Whenever it is possible, we use the infix notation for the membership relations.
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Any locally monotone functor 7" : Pos — Pos that satisfies BCC (see Definition 3.21)
can be lifted to a locally monotone functor T : Rel — Rel. In fact, BCC is equivalent to the
existence of such a lifting. The following theorem was proved in [BKPV11] for the category
Pre, but the proof goes through verbatim for the case of Pos.

Theorem 4.4 [BKPV11]. For a locally monotone functor T : Pos — Pos the following are
equivalent:

(1) The functor T has a locally monotone functorial relation lifting T, i.e., there is a
2-functor T : Rel — Rel such that the square

Rel— L Rel

<—)<J IHQ (4.1)

Pos ———— Pos
T

commautes.
(2) The functor T satisfies the Beck-Chevalley Condition. (i.e., it preserves exact squares).

A relation lifting T of a locally a locally monotone functor T satisfying the BCC is
computed in the following way. A relation R : X—+—Y can be represented by a certain
span

v g Py,

of monotone maps such that the equality R = (p1)o- (po)® holds (see  BKPV11] or [BKPV13]
for details). Then the lifting T is computed by the following composition of graph relations:

(T'p1)°® (Tpo)o

TR:TX # TE TY

In elementary terms, we can check if the elements o € TX and g € TY are related by the
lifted relation TR as follows:

TR(B,a) iff (Jwe TR)(B <ty Tpo(w) and Tp;(w) <rx @). (4.2)

Relation lifting behaves well with respect to graph relations, converse relations and
restrictions of relations. The easy proofs of these properties follow immediately from the
formula (4.2). We also give explicit explicit instances of relation liftings for Kripke-polynomial
functors, and the convex powerset functor.

Example 4.5. Suppose T : Pos — Pos is a locally monotone functor satisfying BCC, and
R: X—+—Y is a given relation.

(1) The relation lifting commutes with graph relations, i.e., the equalities Tf, = (T'f), and
Tf° = (Tf)° hold. -
(2) Relation lifting commutes with converses, i.e., the equality TR®" = (T?R)*" (or,

equivalently, TOR = (T'R®")°") holds for every monotone relation R.
(3) Relation lifting commutes with taking restrictions. Given a restriction

a4 ' Y
A—+—X—+—Y —+—B
fo R gQ
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of R: X——Y along f: A— X and g: B — Y, we can apply T to obtain

TR(Tg—,Tf-)
4 ' N
TA—+—TX —+—TY —+—TB
(Tf)o TR (Tg)°

since T commutes with taking the graphs by (1) above.
(4) Relation lifting for Kripke-polynomial functors can be computed inductively:

constxR = <x,
To x T R((ao, 1) (Bo, A1) iff ToR(aw, Bo) and T1R(az, f1),
aeTyY, BeTpX, and ToR(a, B),
aeTyY, feTi X, and T1R(a, ).
LR(o,1) iff (Vy)(y £ o implies (3z)(z = | and R(y,x))),
UR(v,u) iff (Vz)(u = z implies (Jy)(v = y and R(y,z))).

To + T1R(c, B) = 1 iff {

(5) Relation lifting for the conver powerset functor is computed as follows:

PeR(v,u) iff (Vy € v)(3y =y y)(R(Y,2) and (V') (R(y,2") implies (Ix € u)z’ <x x))
and (Vo € u)(32" <x z)(R(y',2’) and (Vy')(R(y',2’) implies (Jy € v)y' =y v)))
iff (Yy € v)(3z € u)R(y,x) and (Vz € u)(y € v)R(y, x).

Remark 4.6. Let the least finitary subfunctor T, of a locally monotone functor 7" : Pos —

Pos satisfying BCC be given via the natural transformation v7 : T,~—T. We can take

any relation R : X—+—Y and restrict its lifting TR : TX ——TY along v” to obtain the

relation
TR(WE—vE-)=T,R

r Y
T.X TX ——TY T,Y.

(1/)7; )o TR (1/;"/‘)<>

Thus defined, the operation T, need not be functorial. In general, we only obtain lax
functoriality T, R - T,,S < T,,(R - S) (this follows from (14)° - (vL), being the identity <7y
for every Y). In case R = f,, we even obtain T,,(f,) - T.,S = T,,(f. - S). The operation T,
commutes with converses and with graph relations. To sum up, T}, is a laz extension of T,,.

Being only a lax extension is not a real obstacle — in Set, the coalgebraic logic based
on a cover modality can be meaningfully defined for an arbitrary lax extension, as shown
in [MV15]. Apart from the case when T, = T' in Proposition 5.14 (2) (and T, is therefore
assumed to satisfy BCC) we only use the operation T, on the syntax side of matters in
formulating the modal rules of the calculus (this part roughly starts with Definition 5.17
in 5.D, and continues in Section 6). There we mostly use the fact that T, R is the indicated
restriction of TR and that the relations TR and T,,R coincide whenever R is a relation
between finite posets.

It is worth mentioning though that the finitary Kripke polynomial functors satisfy the
BCC, and therefore they admit functorial relation lifting. For example, L, is the appropriate
restriction of L, and therefore is computed in the same way. The same goes for the finitary
convex powerset functor Pg,.
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The above calculus of relation liftings allows us to explicitly describe the relation liftings
for functors introduced in Section 2.

Example 4.7. Recall the various ordered coalgebraic structures from Example 2.1.

(1) The lifting of the functor T' = A x Id is particularly easy. Given a relation R : X ——Y",
let us denote the lifted relation

(AXIdR: Ax X——AXY

by R. Then the relation R((b,y), (a,z)) holds if and only if b < a and R(y, z) holds.

(2) The coalgebras for the functor T = Id* x 2 model deterministic ordered automata.
Given a monotone relation R : X—+—Y the elements o = (f,i) € X4 x 2 and § =
(g,7) € YA x 2 are related by the lifted relation TR : TX ——TY if and only if j < i
and R(g(a), f(a)) for every a € A.

(3) Given the functor T = L4 x 2 (with A discrete) for lowerset automata and a relation
R: X—+—Y , its lifted relation TR : TX —+—TY is defined as follows: For an element
o= (1,7) in (LX)A x 2 and 38 = (0,7) in (LY)? x 2 we have that TR(j3, o) holds if and
only if

j<iand (Vae A) LR (o(a),l(a))
holds, with the latter condition meaning that for every y such that y = o(a) there is an
element = with = = [(a) such that R(y,z) holds.

In the finitary case, and due to the monotonicity of the relation R, the condition
can be weakened further using the sets of minimal generators of the lowersets [ and
o. For every y € g(o(a)) there has to be some z € ¢g(I(a)) such that R(y,x) holds. The
computation of the lifting stays the same even for an ordered set A of “inputs”.

(4) Given the functor T' = U, two coalgebras ¢ : X — UX and ¢ : ¥ — UY, and a
relation R : X——Y , The lifted relation UR is defined as follows:

UR(d(y), c(x)) iff (Ya')(c(x) = 2 implies (3y')(¢'(y) =y and R(y',2"))).
Given the functor T' = L, two coalgebras ¢: X — LX and ¢ : Y — LY,
LR(¢ (y),c(z)) iff (Vi) (y' = c(y) implies (32')(z" = ¢(z) and R(y,x))).
Given the functor T' = P¢, two coalgebras ¢: X — P°X and ¢ : Y — P°Y,
PER(C(y), cl(x)) it (VY € ¢ (y)) (3’ € c(2))R(y, @)
and (Vo' € c(z))3y € ' (y))R(y, 2).

5. M0SS’ LOGIC FOR ORDERED COALGEBRAS

In this section we introduce a logic for ordered coalgebras parametric in the coalgebra
functor T. The syntax of the logic will be finitary, the propositional part will be given
by the conjunction and disjunction connectives, and the modal part will consist, up to
Subsection 5.D, of a single modality V of arity Tf . The semantics of the logic will be given
by monotone valuations over T-coalgebras, with the semantics of the modality V given by
T? relation lifting. We will show that this language is always adequate for T-coalgebras,
and adequate and expressive for T;,-coalgebras. This means that the logic, in case of finitary
coalgebras, has the Hennessy-Milner property.
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Assumption 5.1. From this section on, we fix a locally monotone functor T : Pos — Pos,
its least finitary subfunctor v : T,——T, and assume T (and therefore Ta) preserve exact
squares. We assume that Tg preserves finite intersections, and therefore admits a finite base.

In particular, all Kripke polynomial functors of 2.1 in place of the functor T comply
with this assumption.

5.A. The syntax of the coalgebraic language. The syntax of Moss’ logic for ordered
coalgebras will be based on finitary conjunction and disjunction connectives, and a single
finitary modality. It will be convenient to regard the arities of both the connectives and the
modality as finitary functors. A similar approach has been already used in [KKV12b] for
the Moss’ logic in sets. There are some differencies worth mentioning though: First, when
passing from sets to the enriched setting of posets, to be as general as possible, one should
start with a poset of propositional variables. Second, one has to be more careful about the
precise shape of the arities, namely:

(1) In Set, the arity of the finitary conjunction and disjunction is given by the finitary
powerset functor P, : Set — Set. This means that, e.g., the conjunction is a map
A : P,L — L where L denotes the set of all formulas. In Pos, the natural choice for
the arity of the conjunction is U, whereas for the disjunction it is L.

(2) In Set, the cover modality V has the coalgebraic functor 7T, as its arity. In Pos, one needs
to use the dual Tf of T, for type-checking reasons, as will become clear in Subsection 5.B
below.

Remark 5.2. Propositional variables are proposition place-holders. As such, the most
natural (and the most free) choice is to simply start with a set of them (i.e., a discrete
poset). This is indeed the setting of the most of our examples. The poset setting however
allows to provide place-holder patterns, which consequently the semantics must respect.
This can be seen and used as prescribing order between formulas (which is normally done
afterwords by the logic and induced by semantics of logical connectives, usually in a form
of assuming implications — and we can do so by using theories). But what if implications
are not at hand, or, we do not want to use (possibly infinite) theories? What if we used
place-holder patterns instead? Not many examples are out there, but let us provide some
simple intuition behind the possibilities this opens:

- Consider the {A, v }-fragment of classical propositional logic, but take {p; < ¢;|i € N} for
the poset of propositional variables. This would produce a situation where “p’s always
entail q’s”.

- Similarly, atomic propositions can “code” scalable properties often used in questionnaires
(where mostly 3—7 options in a form of “degrees” are given — e.g. heavy smoker, smoker,
occasional smoker). For such settings, the poset of propositional variables can be chosen
as e.g. {pi < q <rjie N}

Examples where a partial order (namely inclusion) is built in syntax can be found in literature

which consider ordered sorts or predicates: Order-Sorted Predicate Logic has been proposed

as a formal knowledge representation languages for handling structural knowledge, such as

the classification of objects [Obe90, Coh87], and extended by [Kan04] which formalizes a

logic programming language with not only a sort hierarchy, but also a predicate hierarchy.

Remark 5.3. The naturality of the choice of the arity of the finitary conjunction to be U,,,
i.e. a finitely generated upwards closed set of formulas, can be demonstrated for example as
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follows: Assume we have a poset of atomic formulas at hand, and think of a conjunction as
eventually becoming the infimum in the free algebra of formulas. Whenever A ¢ < b, we
expect A(p ub) = A ¢ — the conjunction is immune to adding arguments greater than
the conjunction. Similarly for disjunction and its arity being L,,.

The choice of arities is in accord with how the free distributive lattice over a poset X
can be constructed on L, ,U,X: first take the free finite meet completion on U, X, then the
free finite join completion (cf. [Joh82]).

Therefore the formulas of the coalgebraic language should have the following intuitive

description in BNF:
az=p|N\el\/¢|Va (5.1)

where p is an atom, ¢ = f{ai,...,ar} is a finitely generated upperset of formulas, ¢ =
laxy,...,ax} is a finitely generated lowerset of formulas, and «a is a “T"-tuple” of formulas.
There is a slight technicality however: since we work in posets we expect to obtain a poset
of formulas. The precise definition of formulas is achieved by the free algebra construction
in the category Pos.

Definition 5.4 (Formulas). Fix a poset At of propositional atoms. The language L is given
as an algebra for U, + L, + Tg , free on At. The components of the algebraic structure
a:UyL +LyL+ TIL — L will be denoted by

NVl — L \/:LL—L, Vyo:TIL—L

Remark 5.5.

(1) The language £ is a poset by its construction. Moreover, an algebra for F = U, +L,, +71°
free on At can be defined by a colimit of a transfinite chain

Wiip1 s Wi — Wiy

where Wy = At, W;11 = F(W;) + At and the connecting morphisms are defined in
the obvious way: w1 : At — F'(At) + At is the coproduct injection and w;;1,i+2 =

F(wi,iﬂ) + At.

The above chain w; ;41 has £ as its colimit; we denote the colimit injections by

(2) The transfinite construction of £ also shows that the “intuitive BNF” of (5.1) works.
More in detail, one can show that each formula @ in £ has a unique finite depth. Indeed,
for every a : 1>—L there is a least ¢ such that a € w;. There are two cases for a fixed a
in L:

(a) i = 0 means that a is an atom.

(b) i is positive, i.e., i = k + 1. Then a € wy1 holds. The formula a is not an atom by
the definition of 7; hence a is either a conjunction, a disjunction or a nabla of an
object in Wi.

The finite poset of direct subformulas of a can be obtained as the subobject
baseg(Wk)(wkH(a)).

(3) We defined the arity of a conjunction to be a finitely generated upperset of formulas,
which itself may not be finite. We often abuse the notation in writing the formulas, and
list only the finite set of generators of the upperset to keep the description finite. For
example, by A{a,b} we implicitly mean the conjunction applied to the upperset 1{a, b}
generated by a and b.
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Notice that, for finite sets A and B of formulas such that 1A = 1B holds, the
equality /\ A = /\ B is built into the relaxed notation. Similarly for disjunctions, the
equality |A = | B implies the syntactic equality \/ A = \/ B. In both conjunction and
disjunction, the commutativity, associativity and idempotence properties are built into
the notation as well, due to the choice of their arity. Moreover, whenever ¢ < ¢’ in U, L,

A ¢ <z A ¢, and, similarly whenever ¢ € ¢/ in L,L, \/ ¥ <z \/ ¢

For a given formula a, the above remark allows us to define its finite poset of subformulas
and its modal depth inductively.

Definition 5.6 (Subformulas and modal depth). Given a formula a in £, the (finite)
subobject Sf(a) of L is called the subobject of subformulas of a, and is defined inductively
as follows. Simultaneously we define the modal depth d(a).

(1) For a in At, put Sf(a) = a: 1—L and d(a) = 0.
(2) For a of the form A ¢, put

Sf(a) = |J Sfx)ua

z€base(y)
d(a) = max{d(b) | ¢ = b}

(3) For a of the form \/ ¢, put
Sf@) = |J Sf(x)ua

z€base(v))
d(a) = max{d(b)|beE ¢}

(4) For a of the form Ve, put
Sf(a) = U Sf(w) U a

webase(a)

d(a) = max{d(w) | w € base(a)} +1
Above, all the unions are taken in the lattice of subobjects, see Remark 3.7.

Example 5.7. Let us describe the syntax of the logic for the functor T'= A x Id, where
as A we take the poset 2 = {0 < 1}. If we are given a poset At of atomic propositions, the
syntax is defined inductively as follows:

az=p| Nel\/ ¢ Vrs(n,a).

In the above, p is any atomic proposition, ¢ = 1{a1,...,ar} is a finitely generated upperset
and ¢ = [{a1,...,ax} is a finitely generated lowerset of formulas, and the n in Vo (n,a) is
an element of 2. Observe that V is monotone with respect to the first argument.

Hence the more relaxed description of the syntax can be given by

a:z=p] /\{al,...,ak} | \/{al,...,ak} | Vro(n,a).
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5.B. The semantics of the coalgebraic language. The above language £ will be inter-
preted in coalgebras for the functor 7. More precisely, given a coalgebra ¢ : X — T'X, the
semantics will be given by a monotone relation |o: At——X°P called a monotone valuation
of propositional atoms. The valuation being monotone, x < y and x I¢ p implies y |9 p,
and p <, ¢q and x | p implies z Iq q.

We extend |¢ to obtain the semantics |-: L—+—X°P of an arbitrary formula a by
induction on a as follows:

x |- /\go iff  (Va)(¢ = a implies x |+ a)
x - \/1/) iff (Ja)(a = ¢ and z |- a)
el Vo iff e(@)(Toh - (VF )o)a

Remark 5.8. The semantics for conjunction and disjunction is standard. The semantics for
the modal formula VTga in a state z is given by checking whether the T7-lifted |- relation
contains c(x) and «: for type-checking reasons, this is achieved by composing the lifted |-
relation with the graph of the natural inclusion of T)¢ in T, i.e. (yga)o:

WE) T
7oL / T°C / (TX)oP.

We can also equivalently write it like this:
z - Vo it c(z) T yga ().

The semantics of nabla is indeed well defined: in the inductive process of defining the
relation |- we use the fact that relation lifting commutes with restrictions (see Definition 4.2
and Example 4.5). In particular, to compute the lifted relation it is enough to have |-
restricted to the base of o, whose semantics has been defined previously. Unravelling this
yields the following simplification, using the lifted restricted relation |-(—, base(a)—): Let
base(c) : Z~—L and z € Z be the unique element with T%base(a/)(z) = a.

z I+ Vo iff c(z) TO(—, Tbase(a)—) z

Remark 5.9. Recall from Remark 5.5 that £ is a poset. The above semantics allows us to
define a monotone relation =: L——L by putting:

a ™ b iff for all ¢,z and all valuations: z - a implies x |- b. (5.2)

The relation T is reflexive (i.e., the relation <, is smaller than =) and transitive (i.e., the
composite relation £ - E is smaller than =). Therefore £ allows us to define an order-quotient
Q = L/= of L. The elements of the poset Q are equivalence classes [a]= where

a=bifacband b= a

and <g is the least order such that a T b entails [a]= <g [b]=.
The quotient Q carries an algebra structure for U,, + L, + 7 that is derived from the
algebra structure on L.

Example 5.10.
(1) Nabla for the functor T = A x Id. Observe that, T' = T,,, and the functor dual to T, is:

TOX = (A x X°P)P = A% x X.
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If we fix a coalgebra ¢ = (out,next) : X — A x X, then it holds that
z Ik Vye(a,b) iff out(z) >4 a and next(x) I+ b,
since the lifting of the semantics relation |-: L—+— X is the relation
(Saor X )+ AP x L—+— AP x X,

The monotonicity of |- says that

(a) If  <x 2’ and z I+ Vo (a,b), then 2’ |- Via(a,b), and

(b) if a >4 a’ and b <. V, then z |- Vo (a, b) implies that @ |- Vya(a’, V).
Nabla for the functor T = L4 x 2. Observe that the arity of nabla is:

TOL = (U,L)4 x 2.

By definition, z |- Voo holds if and only if () (T - (Vga)o)oz holds. Suppose c(x) is
a tuple (/,7) and « is a tuple (0, 7). Then this is the case if and only if

i = jand (Va € A)(Vy)(o(a) = ¢ implies (3z)(z = l(a) and z |- ¢)).

We can again use the monotonicity of the semantics relation |- to weaken the above
condition: c¢(z) (T - (Vga)o)a holds if and only if

i = j and (Va € A)(Vo € g(o(a)))(3z € g(l(a))) z I ¢
Here g(I(a)) and g(o(a)) are, again, the generators for the lowerset I(a) in X and upperset
o(a) in L, respectively.
Recall from Example 2.1 that a frame for positive modal logic is a poset X equipped
with a monotone relation R : X——X that gives rise to two coalgebras

c: X —UX and d: X — LX

defined by c¢(z) = {y | R(z,y)} and d(z) = {y | R(y,x)}. The modalities [] and 4
defined by the equivalences

z+-a iff  (Vy) (R(z,y) implies y I- a)
z - 4a iff (Jy) (R(y,z) and y I a)

are adjoint in the sense that a = [Jb holds if and only if 4a = b holds, where £ is the
semantic preorder as defined in (5.2).

Now, using the definition of the modalities V|, and Vy,_, and the corresponding
liftings of the semantics |-, we see that

- Via iff e@) (D - ()e)a
iff ( y)(y £ c(x) implies (Ja) (a = @ and y I a)),
zl-Vu,f iff d(z)( U - (v8).)B
iff ( b)(8 = b implies (Fy) (d(z) =y and y I b)).

Therefore
Vo can be expressed as D\/ «,
Vu,B can be expressed as /\ 5,



18:30 MOSS’ LOGIC FOR ORDERED COALGEBRAS Vol. 18:3

and also conversely
(a can be expressed as V| {a},
#b can be expressed as Vy, {b}.
Let T = P, and T = P¢. Recall from Example 2.1 that P¢ coalgebras can be used
as semantics for positive modal logic. For a coalgebra ¢ : X — P¢X and a monotone
valuation, we have
z0Oe iff (Vy) (R(z,y) implies y I a)
zl-<a it (Jy) (R(z,y) and y I+ a).
By the definition of the semantics for Vpe and the relation lifting, we see that for a in
P L
z - Vpea iff c(x) (P I--(vf )s)
iff (V' € ¢(z))(3a € )z’ I a and (Va € o) (32’ € ¢(x))2 I a.
As « is a finitely generated convex subset of formulas, we can create a finitely generated
upperset of formulas T, and a finitely generated lowerset of formulas |a. Then

Vpe o can be expressed as D\/ la A /\ Ola,
and also conversely
(a can be expressed as Vpe {a} v Vpe 7,

<a can be expressed as Vpe {a, T},

just the same way as it is in the classical finitary Moss’ logic [KKV12b].

Recall the semantics of small description logic EL from Example 2.1 The syntax consists
of a poset IN¢ of concept names ordered by concept subsumptions of the form A & B,
a poset N” of role names ordered by role subsumptions of the form r £ s, and the
following grammar of concepts:

C:=A|T|CnD]|3arC

This results in a poset £ of concept expressions. The semantics is based on a discrete
poset (i.e. aset) A together with: (ii) interpretations C! of concept names by lowersets of
A (i.e. subsets of A) respecting their order: C' = D implies C! < D’ (ii) interpretations
r! of role names by binary relations on A, again respecting their order: r = s implies

rI < s!. We can see each structure of this kind as a coalgebra

c: A — (LAYN x 2V

which, for each d € A, assigns: for each role name r the lowerset (i.e. subset) {e | (d,e) €
r! }, and for each concept name C' the value 1 if d € C!, and the value 0 otherwise. Both
assignments are monotone.

For the sake of this example, we shall extract the v : A — 2V° part of the coalgebra
structure and treat it as a monotone valuation of concept names |: N —+—A°P instead.
The relation extends inductively to all concept expressions as follows:

di-T
di-CrnDiff di-C anddI-D
dI+3Ir.C iff Je(ee€ c(d)(r) and e |- C)

c
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The monotonicity of |- entails that if C £y D and d |+ C, than also d |- D.
Each 8 € (U,£)N" can be seen as a monotone assignment of uppersets of concepts
to role names. Unravelling the semantics of the modality V,)n" on a coalgebra

c: A — (LA)YN", we see that

dI- VB i cd) (U - " )08
ifft  (Vr)((VC)(B(r) = C implies (Je) (c(d)(r) = e and e I+ C))).

Therefore

V(Uw)mﬁ can equivalently be expressed as /\(/\ Ir[B(r)]),

r

and also conversely

3r.C' can equivalently be expressed as V y v 3,

where 8 € (U,£)"" is a monotone assignment of uppersets of concepts to role names
such that S(r) = C1 and fB(s) = T for all s # r.
(6) Recall frames for distributive substructural logics from Example 2.1. We restrict ourselves
to ternary relations R that generate coalgebras of the form ¢g : X — L(X x X).
The polynomial coalgebra functor 7' = L(Id x Id) is locally monotone and satisfies
BCC. Its relation lifting is easy to compute, using the properties listed in Example 4.5.
The semantics of the nabla modality with the arity .0 = U, (Id x Id), works as follows:

z |- Vyea iff (V(ag, a1) € a)(3(zo, 21) € () (20 - ao & 21 IF a1).

Therefore
Vraa can be expressed as /\ (ap ®ay),

a3=(ap,a1)
and conversely
(ap ®a1) can be expressed as Va{(ao,a1)}.

5.C. Hennessy-Milner property. We now turn to proving that the finitary language
defined in Subsection 5.A is adequate and, in the finitary case T=T,,, also expressive for the
following notion of similarity, which is defined in terms of relation lifting.

Definition 5.11. We fix two pointed models (¢, I, z¢) and (d, -4, o), i.e., we fix coalgebras
c: X —>TX and d:Y — TY, valuations |, and |4, and o € X and yp € Y.

(1) A relation S :Y——X is called a T-simulation (from (d, -4, y0) to (¢, ¢, o)), if the
following three conditions are satisfied:
(a) S(xo,yo) holds.
(b) For any z € X and y € Y, S(x,y) implies T'S(c(x), d(y)).
(c) If S(z,y) holds, then x |, p implies y -4 p, for each atom p in At.
And we say that (d, g, yo) simulates (¢, ke, o), if there is a simulation S : Y——X
from (d7 I=d, yO) to (Cv e, xO)'
(2) We say that (d, g, y0) is modally stronger than (c, ¢, o), if 2o I-c a implies yo -4 a,
for each formula a.
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Remark 5.12. The notion of simulation given by the monotone relation lifting coincides
with the one given by Worrell in [Wor00] in the enriched setting of #'-categories (of which
preorders, hence also posets, are a special case for ¥ = 2). It is also shown in [Wor00] that
similarity coincides with the preorder on the final coalgebra, whenever the final coalgebra
exists.

Example 5.13. Fix the empty poset At of atomic propositions. Taking two coalgebras
c: X — Ax X andd:Y — A x Y with two distinguished states g € X and yg € Y,
the notion of simulation yields that (d, I, yo) simulates (¢, |-, o) if the infinite stream -
obtained as the behaviour of x( is pointwise smaller than the infinite stream § obtained as
the behaviour of yp.

Proposition 5.14. Assume T complies with the Assumption 5.1, and L is defined as in

Definition 5.4.

(1) The language L is adequate for T-coalgebras: if (d,I-q4,y0) simulates (¢, I, xo), then
(d, IFa,y0) is modally stronger than (¢, ke, o).

and

(2) The language L is expressive for T,-coalgebras: if (d,lq4,y0) is modally stronger than
(¢, ¢, o), then (d,lFq,y0) simulates (¢, ¢, xo). Moreover, the relation “being modally
stronger” is a T,,-simulation.

Proof. (1) Let us assume that (d, -4, y0) simulates (c, Ic, xo) via a simulation S : Y ——X.
We need to prove that xg I-. a implies yg I-y a for every formula a. The adequacy is proved
by induction on the complexity of a given formula a.

The case when a is an atom is immediate from S being a simulation, the cases of
conjunction and disjunction are easy. For the induction step for a = Va, let us assume
that z¢ I, Va holds. The induction hypothesis states that for every x € X, y € Y and
z € base(«) the following implication holds:

If k. z and S(x,y), then y |4 2.

The induction hypothesis can equivalently be described as a lax triangle

Z Falmbeel) ) yor (5.3)
- (—,base(a)—) f /é‘{
X°p

denoting the base of o : Z——TL by base(a) : Z——L.

We shall prove that for any = in X, y in Y, and w € TObase(a), the following implication
holds:

TS(c(x), d(y)) and c() (T - (W5 )o)w implies d(y)(Tohq- (W5 ))w  (5.4)

The relation T'S(c(o), d(yo)) holds since S is a simulation. Moreover, ¢(zo) (T - (Vga)o)a
holds since zq I, Vo holds. Since a € T%base(c) (to be precise, a € T base(cx), but the base
is a finite poset and therefore T and T, E coincide on it), we could instantiate the implication

to get that d(yo)(Tl4 - (Vga><>)a holds, and this would yield yg IFq Vo as we wanted.
However, the implication (5.4) can be expressed by the following diagram. The lax

triangle is simply the image under T9 of (5.3), and we formally pre-compose it with graph
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of the natural inclusion (yza)<> (which, by Z being finite, is the identity):

o5 WD on
A

- T &
T%c(—,T@base(\a)_N T5)on

(TX)%

ﬁ”—d(—,T?base(a)—) (TY)or

(2) For this part, we assume T = T,, (i.e., the coalgebra functor is finitary). As both the
coalgebra functor T,, and the arity functor 70 are finitary, we can simplify the semantic
clause for z |- Voo to

c(z) T a.

Expressivity boils down to proving that “being modally stronger” is a T,,-simulation. For
the purpose of the proof, write

S(x,y)
to denote that (d, |4, y) is modally stronger than (c, I, ).
Hence the following implication holds for any formula a:

If S(x,y) and x |- a, then y -4 a. (5.5)

It is clear that S verifies the properties (a) and (c) of 7,,-simulations from Definition 5.11.
It remains to be proved that S satisfies the property (b):

If S(z,y), then T,,S(c(z),d(y)). (5.6)
Assume therefore that S(x,y) holds and denote the corresponding bases of ¢(x) and d(y) by
base(c(z)) : U»— X  and  base(d(y)) : W —Y.

We first construct a monotone map f : X °? — £ such that for any 2’ € X and w € base(d(y))
the following two requirements hold:

@' e f(2) (5.7)

w ¢ f(2') implies S“" (w, z') (5.8)
Fix 2/ in X, and for each w € base(d(y)) such that
-S(2',w)

pick a formula b, ) for which &’ I-¢ b ) but w g bar ), which is possible by —S (2, w)

and (5.5). Define
f(.l‘/> = /\ b(a}’,w)'
webase(d(y)):—S(z/ ,w)
The above conjunction is finitary since W is a finite poset. In case the conjunction is empty,
we set f(z') = T. Moreover, f is a monotone map (with #” > 2’ the number of conjuncts
in the definition of f(z”) decreases), and the properties (5.7) and (5.8) hold. In particular,
given any u € base(c(x)), the implication
w g f(u) implies S" (w, u)

holds.



18:34 MOSS’ LOGIC FOR ORDERED COALGEBRAS Vol. 18:3

The latter implication can be expressed as a 2-cell

Seom(base(d(y)°P)—,base(c(z)°P)—)

e / Y
Uer t wer
_ ,, ¥

I-a(base(d(y))—, fbase(c(z))—)

in Rel. We apply the functor TT‘Z to it and use the properties of relation lifting to obtain a
2-cell
(TwS) ™ (T.,base(d(y))°P —,T., base(c(z))°P —)

e ' Ry
(T, U)°P 1 (T, W)°P (5.9)
g )

7

TG4 (Tubase(d(y))—, TS f-Tibase(c(z))—)
By the unit property of base, we know that
c(x) € T,base(c(x)) and d(y) € T,,base(d(y))

holds. Therefore we can use (5.9) and the definition of the converse of a relation to observe
that T,,5(c(z), d(y)) holds whenever d(y) T4 (T2 f)c(z) holds.

The relation d(y) T4 (T9f)c(z) holds iff y 4 V((TOf)c(z)) holds. Since we
assume that S(z,y) holds, it is enough to prove that z |-. V((T0f)c(x)) holds, and
Y lkqg V(TS f)e(z)) will follow.

By (5.7) we know that 2’ |-, f(2’) holds for every z/. Thus we get the inequality
idx < Ie(—, f—), and by applying the functor Tif, to it, we obtain the inequality idTgx <

Tlo(—, T f—). Hence ¢(x) T, (T2 f)e(x) holds, and therefore z I-. V((TC f)c(x)) holds
as required. ]

5.D. A dual modality A. In the preceding paragraphs we proved that the coalgebraic
language £ with a single nabla modality is adequate, and in the finitary case also expressive.
Nevertheless, we introduce another modality A in this subsection. The semantics of this
modality will show that A is, in a sense, dual to V. Why would we want to extend the
language with a new modality, knowing that the language with nabla as the only modality is
already expressive? It will turn out that the dual modality is crucial in designing a cut-free
two-sided sequent calculus which is sound and complete for the logic of T-coalgebras.

The definition of semantics of A below is a straightforward adaptation of a similar
modality studied in [KV09] in the context of complementation of coalgebraic automata in
the case of Set and classical Moss’ logic, where A is the boolean dual of V. For the classical
Moss’ logic in Set, the dual modality A, and its mutual definability with the modality V,
played a crucial role in the formulation of a cut-free two-sided sequent calculus as shown
in [BPV14]. Without the boolean negation, a one-sided sequent calculus is not available in
our case already for the propositional part of the language £. For that reason we aim at a
two-sided calculus, and therefore it is convenient to have a modality dual to nabla in the
language.

We extend the language £ with a monotone modality

Ago : TSL — L.
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Given a coalgebra c: X — T'X and a monotone valuation |-: L——X°P | the semantics
of Aps is defined negatively by the relation lifting of the negated relation |f-: LP —— X as
follows:

z W Aa iff c(z)(TW -E)o)a.
Before we discuss the mutual relation of the two modalities V and A, we illustrate the
semantics of A on the running examples:
Example 5.15.
(1) Delta for the functor T = A x Id. Let us fix a coalgebra ¢ = {out, nexty : X — A x X.
The semantics of the modality A is then given as follows:

x|+ Aa,b) iff out(r) €4 aor next(z) I b.

(2) Delta for the functor T = (Id)* x 2. Fix a coalgebra ¢ : X — X4 x 2. If for some
state x € X we denote by c(z) = (f,7) the successors and output of x, the semantics of
the modality A in the state x is given as follows:

z - A(®,j) iff j<£ior(Ja)f(a) - P(a)

(3) Delta for the functor T = (L)* x 2. For a coalgebra ¢ : X — (LX) x 2 and for its
state = with ¢(x) = (I,), we have that = |- A(p, j) holds if and only if

Jj$ior (Jae A)Fy l(a)) (Ve Ep(a) y I- ».

(4) Consider again frames for modal logic with adjoint modalities (see Example 2.1). We
only consider coalgebras of the form c¢: X — UX for this example. The semantics of
A, works as follows:

T ALB = (c(@)(UF (v2)0)B)
= ((Vb)(B = b implies (32')(c(z) = 2’ and 2’ |£ b))
= —(3b)(B8=band (Va')(c(z) = 2’ implies 2 |- b))
Therefore
AL,B= \/Dﬁ-
Recall from Example 5.10 that
(b =V, {b}.

We see that in this particular example A is definable by V as follows:
ALB=\/ Vi {b}.
bES

Since the arity functor L, is finitary, the above expression is a well-formed formula.
(5) Consider P¢ coalgebras for positive modal logic (see Example 2.1). The semantics of
Ape works as follows

T ApgB = (c(@)(PY (v )o)B)
= (V2'ec(x))(Faea)r’ It a and (Vae a)3z' €c(x))x’ ¥ a
= —((3 ec(x)(Vaea)r a or (Jacea)(Va' € c(x))x I a)

Therefore

Apef=0 \18v\/OUS.
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Recall from Example 5.10 that
(a can be expressed as Vpe {a} v Vpe &,

Ca can be expressed as Vpe {a, T},

Thus Apc 8 can be expressed as a disjunction of Vpc-formulas as follows:

Ape 3=V { A\ 18, T} v \/{Vpe {0}, Ve & | be |8}

The above example suggests that the modality A might always be expressible by a
certain disjunction of V formulas. This is indeed true, but the disjunction need not in
general be finitely generated: for some coalgebra functors the disjunction of the V formulas
needed in the expression is inherently infinite and thus A is not definable by a well-formed
formula of the finitary language. The mutual definability of the two modalities becomes
important when formulating rules of the sequent calculus.

To explain the relationship between the modalities V and A, we need to unravel the
combinatorial principle underlying their mutual translations. It will not be as simple as
the previous example suggests, but let us have a glimpse at it first. Take an upperset 1b
for some b = 3, and generate a lowerset from it in L,U,L. Call it ®;. It has the following
property: ®,—U,#B. Moreover, applying the L, /A map to ®;, yields an element in L.,
namely, the lowerset of conjunctions of uppersets containing b. It is generated by /\ 1b. We
may apply V|, to it. The above example suggests, that one of the formulas V| A 1b will
be true whenever A 3 is true.

The underlying operations suggested by the above are in particular the lifted relations
—T& and —T#. We describe them first, as they will play a crucial role in the mutual
definitions. We provide an inductive definition of these relations for the case of T" being a
Kripke-polynomial functor.

Example 5.16. We state explicit formulas for the relation —T'& : T°L,X ——T°X when

T is a Kripke-polynomial functor.

(1) T = constg: The relation —E¢ : E°?P—+—E°P is the relation €g: E?—+—E°P.

(2) T = Id: The relation —Idet : L,X—+—X is the relation =: L,X—+—X.

(3) T =T\ + Ty Let a be in T{ X and @ be in T7L, X for some 4, j in {1,2}. The relation
a —(T1 + Te#) ® holds iff i # j or a —T;& ® with i = j.

(4) T = T1 x Ty: The relation (041,042) —'(Tl X TQ%) ((I)l,q)g) holds iff oy —'Tlﬁé $; or
ap —Toe: ®9 holds.

(5) T = TE: Generalising the case (4), the relation @ =TF& ® holds iff there is some e
from E such that a(e) =11 ®(e) holds.

(6) T = L,T1: The relation v —L,T1& u holds iff the following condition is satisfied:

(Fa=v)(V0 = u) a —-Ti# ®.

The formulas for the relation —T# : TL, X —+—T?X are easy to obtain by dual reasoning.
For example, the relation v —L,,717 v holds if and only if the following condition is satisfied:

(3P = u)(VaEv) ® -T1% a.
Next we define collections R, and Lg, parametric in a € T)L and 3 € T L respectively.

R, contains all U € TIL base(cr) of which « is not a lifted non-member. Similarly, Lg
contains all ® € TU, base(3) of which 3 is not a lifted non-member. The collection R, will
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be explicitly used to rewrite a formula Voo as a conjunction of delta-formulas by the right
rule V-r in the calculus in the next section (hence the notation). Similarly, Lg will be used
in rewriting a formula AT:] [ as a disjunction of nabla-formulas by the left rule A-1 in the
calculus.

Definition 5.17. Let us fix elements o € T0L and 8 € TSL. We define the collections R,
and Lg as follows:

(1) R, is the collection of all elements ¥ € L base(a) with
a—-T,# 0.

(2) Lg is the collection of all elements ® € U, base(3) with
® —T,7 B

Example 5.18. To illustrate the above definition we give two simple examples:
(1) Consider T¢ = L,,, thus T,, = U,. Note that a—U,, & ¥ holds iff

F(¥ = ¢ and Va(a = a implies a = v)).

For o = {1}, the collection Ry consists of those elements W of L, L., {Ll}, where some
Y £ ¥ contains L. The only such lowerset W is {¢F, { L}}. Thus Ry equals {{&, { L}}}.

(2) Consider 79 = N°P x Id where N is the poset of natural numbers with their natural order,
and T'= N x Id. For a = (5,b A c), the collection R, consists of elements (n,1)) of
NP x L,base(5,bAc) where 5 € nor bac e 1. Note that Lbase(5,bAc) = {,{bAc}}.
Therefore Ris ey = {(n, D) | 5 £ npu{(n,{bnac})|neN}

To compare the current setting with the classical Moss’ logic: It was shown in [KV09]
that the two modalities V and A are mutually definable already in the positive fragment
of the classical Moss’ logic. Their mutual definability was used in [BPV14] in designing a
two-sided sequent proof system for the logic. We will state a similar fact in the poset-setting
in the following two propositions. They will be applied in the next section, when we define
a sequent proof system.

Proposition 5.19. For each coalgebra ¢ : X — T X and every semantics relation |-, the
relations

1oL B pop A
and
oL ~(Tw#) TjUw,C“_C(_7VT3/\_)X0p
are equal.

In other words, for each x in X, and each 5 in Tfﬁ, we have that x . AB holds if and
only if there is a ®, in TOU,L such that

O, ~T,% B and z I V(TS /\)®s.
Whenever Lg is finite, we have the following semantic equivalence:
Ag=\/ V(IS )\
¢€L5

Proof. The guiding ideas in the proof are quite simple, however, much of the work is due to
type-checking reasons. We divide the proof into several parts:
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(1) The inequality |-c(—, A=) - (VE)o < Ire(—, VIS A =) - ~(Tu#).
Suppose that = |- AB holds. We will construct an element ® in (70U, £)°P such that

® -T,#p and z I V(I] /\)®

The main idea for this part of the proof is to simply consider the monotone map assigning
to a state z the finitely generated upperset of formulas from base(5) it satisfies:

5 X — (U,L)°%, x— t{w e base(B) | = I, w}.

Most of what follows concerns restricting along base(3). Using the base(3) : Wr»—L
with W finite, we can factorise f¥ as follows:

\ mse(ﬁ

(UyL)oP
The mapping f with a finite range is then defined as
f: X — UW)?P  z—{weW |zl base(f)(w)}.
Therefore, applying the functor T to f yields an element (Tf)c(z) in (T°U,W)°P.
Observe first that because W (and therefore U,WW) is a finite poset, we have that
T2(U,W)°P = T9(U,W) (i.e., the corresponding natural inclusion VSZW is the iden-
tity). We may therefore define the element @, in (75U, W) to be the unique one
with
79

Wo,w (@) = (Tf)e(x).

As (U,W)°P is included in (U, L) via a mono morphism (Uybase(5))°P, we may put

¢ = (T U, base(8)) (&),

and see that it is indeed an element of (7; 0‘3 U,L)°P. Relaxing the typing, we could say
that ®, ®,, and (T f)c(z) are the same thing. The situation is depicted in the following
naturality square:

{)

T
cTOU,W =—=—=TU,W  : (Tf)c(x)
Tguwbase(ﬁ{ i ITauwbase(,B)
I/TO
& : TOU,Lr—25 TOU,, L

Let #": WP —+—(U,W)° be the restriction of the relation #: L% —+—(U,L)? along
base(f), i.e. &' = # (U,base(8)—, base(8)—). We obtain that ® is related with 3 via
the lifted # relation, i.e. ® T,,% 3, if and only if ®, and §3 relate in the lifted #’ relation
restricted along base(3), i.e. ®, T,,%’ 8 This will concern the point (a) below.

Similarly, let |F.: W—+—X°P be the restriction of the relation |-.: L—+—X°P along
base(3), i.e. -, = IF. (—,base(3)—). We obtain that c¢(x) and I/ga(ﬁ) are related via
the lifted |, relation, i.e. c(x)(Tl}#c)uga(ﬁ), if and only if ¢(z) and 8 are related via
the lifted restricted |, relation as follows: c(x)(T|£.)3. This will concern the point (a)
below.
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For the conjunction map (restricted to base(3)) A : U,W — L, the restricted
relation |, (—, A\ —) of “satisfying conjunctions of formulas from base(3)” will be

considered in the point (b) below. We obtain that ¢(z) and Uga( (T2 N\)®) are related

w

via the lifted |-, relation, i.e. c(x)(ﬁ\l—c)vga((Ta A)®), if and only if ¢(z) and @, are

w
related via the T lifted restricted |-, (—, A\ —) relation. These observations simplify a
bit the remaining proof.

(a) To prove that ®, —T,%#’ 3 holds, it suffices to prove that
c(z) =TW B implies ®, —T,#" B.

We reason by contraposition and we assume that ®; T.#' 3 to show that then
c(x) T B, contradicting the original assumption that z |- AS.
By the definition of f*, observe that for any w € base(3) we have an implication

z . w implies fz =’ w.

By contraposition, fx #’ w implies x [t w. Write this implication as the following

diagram:
o (= base(5)°F —)
4 ' Y
Wop ) X.
x , 7
2'(f=-)
The image under T of the above diagram yields
TIF(—,(T%base(B)) " —)
4 ' Y
(T°W)ep t TX
\_ J

T# (Tf—,—)

We read the diagram for 3 in (T°W)° and c(z) in TX (this is correct because W
is finite, and (T9W)°P = (TSW)°P). The lower part says that (T'f)(c(z)) T#' B
By assumption, ®, T,%’ [ holds, and since ®, = (Tf)c(z), we deduce that
(Tf)(c(z)) T2 B holds.

For the upper part, we first recall that, by the unit property of base, 8 € Tf base(f3).
Together with base(/3) being finite, this entails that 8 € T%base(3). Hence we have
c(z) Tl B by using the above diagram. This is a contradiction with z |-. AS.

(b) We prove that = |- V(TS A\)®, holds by proving ¢(x) T (—, A\ —) ®..

By the definition of f we have that z |-. /\ f(z) holds. The monotonicity of |-,
together with the definition of conjunction says that for any other ¢ € U ,W with
f(z) < ¢ we can deduce x |-. /\ p. This observation yields a diagram in Rel of the

form
|FC(717/\ 7)
4 ' I
u,w 1 X°P
N J

/
7
<wa(fop_7_)
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By applying T9 to the above diagram we obtain
The(—=, T2 \ )

4 " Ry
T°U, W 1 (TX)°P
_ , J

gT(?wa(Tf)opfvf)

We instantiate the diagram for ¢(x) in (TX)°, and ®, in T°U,W. Since
(Tf)Pe(x) = (Tfe(z) = @,

we have in particular the inequality (T'f)c(z) < @, in T°U,W. By the above

diagram, the relation c(z) T, (T° /\)<I> follows.

We deduce from this that ¢(z) T, vk ((Tf /N\)®.), using the following naturality
square for the conjunction map:

a

T
&, : TOU W —— TU, W

T3 /\J . JT‘? A
I/T
ToL—E——TL

(2) The inequality I-o(—, VIZ A\ =) - ~(T#) < IFo(—, A—) - (Vza)@
Consider z, @ in TgUwﬁ, and S in TEE, such that
®—T% B and z I V(T7 /\)®
We need to show that = |-, AS holds, so by the definition of the semantics of A we need
to prove that c(x) =TI} Vﬁb(ﬂ) holds. Reasoning by contraposition, we show that

c(z) T V%a (B) entails ® T# S,
contradicting the assumption.
First let us observe that whenever there is an xy € X such that zg If. a for some
a € L, and zg I+, /\ u for an upperset u € U, L, then u # w follows. This is precisely
the information contained in the diagram in Rel of the form

5écon

e (— /\\\ / con

We apply T? to the above lax triangle to obtain

a T con
UL %)

(TX)°P

We instantiate the diagram for c(z) in (T'X)7, @ in T°U,,L, and I/ga (B) in T°L. Using
the assumptions c(z) T2~ (T° A\)® and c(x) TI¥' B, we conclude that ® T# 8 holds.
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We have proved the desired equality of the two relations. The last assertion of the proposition
trivially follows. []

The previous proposition states that under certain conditions, the modality A is
semantically equivalent to a disjunction of V formulas. The following proposition deals
with the dual statement: the modality V is semantically equivalent to a conjunction of A
formulas.

Proposition 5.20. For each coalgebra ¢ : X — T X and every semantics relation ., the
relations
Ta)

Tog e pop GV xop
and
1o — B qa e AV o
are equal.

In other words, for each x in X, and each « in Tgﬁ, x e VB holds iff there is a ¥ in
TOL,L such that

a -T2 ¥ and x|, AT \/)\II

Whenever R, is finite, we have the following semantic equivalence:

Va= A ATS\))¥.

VeRy

Proof. The proof is completely analogous to that of Proposition 5.19. []

6. PROOF SYSTEM AND COMPLETENESS

In this section we define a two-sided sequent calculus Gya for the coalgebraic language £
defined in Section 5. We prove that the calculus is complete with respect to the semantics of
L given therein. The definition of the calculus as well as the completeness proof is general
and parametric in the coalgebra functor 7.

The calculus we are going to define can be seen as closely related to the two-sided
sequent calculus for the finitary Moss’ coalgebraic logic of coalgebras in Set as presented
in [BPV14]. We point out a closer connection of the two calculi in Subsection 7.A at the
very end of the paper.

6.A. The proof system G% A+ The calculus G% A Will manipulate sequents. A sequent is
a syntactic object of the form ¢ = ¢ where ¢ is a finitely generated upperset of formulas, i.e.
pisin U,L, and v is a finitely generated lowerset of formulas, i.e., ¢ is in L, L. Sequents
can be seen as objects in (UyL)% x L,L, and therefore they carry an order and form a
poset which we denote S (this order on sequents is a natural one as becomes clear from their
semantics).

Given a coalgebra ¢: X — T'X equipped with a monotone valuation |-, and a state
xg, we say that sequent ¢ = 1 is refuted in xg if zg I-. /\ ¢ while g . \/ . Otherwise,
the sequent is valid in zg. Observe that the validity is monotone w.r.t. the order on S. A
sequent that is valid in all states of all T-coalgebras under all valuations is simply called a
valid sequent, otherwise it is called a refutable sequent.
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A rule is a scheme written in the form

A

S

where A is a poset of sequents (namely, A is in SubyS) forming the assumptions of the
rule, and the sequent S is the conclusion of the rule.

Notice that as defined, the number of assumptions of a rule need not be finite. It is
because, for some functors, we will need infinitary modal rules to form a complete calculus.
However, if the functor Tf preserves finite posets, all the rules will be finitary.

A rule is said to be sound if, whenever all the assumptions are valid sequents, the
conclusion is also a valid sequent. A rule is called invertible if whenever the conclusion is
valid, then all the assumptions are valid as well. A rule has a subformula property if all the
assumptions consist of subformulas of the conclusion only. A rule with the empty set of
assumptions is called an aziom.

A proof in the calculus Gg A is a well-founded tree labelled by sequents in the following
way:

(1) Each leaf is labelled by an instance of an axiom.
(2) Each non-leaf node n is labelled by the conclusion of an instance I of some rule. The

children nodes of n are labelled by the assumptions of the instance I.

We say that a sequent is provable if there is a proof whose root is labelled by the sequent.

We start the definition of the calculus G% A by listing the axioms, rules of weakening
and standard rules for conjunction and disjunction. If ¢ is an upperset of formulas, by
writing ¢, a we mean the upperset generated by ¢ U {a}, and by ¢, ¢’ we mean the upperset
generated by ¢ U /. Similarly If ¥ is a lowerset of formulas, by writing v, a we mean the
lowerset generated by ¥ U {a}, and by 1,9’ we mean the lowerset generated by ¢ U /.

When writing down a sequent, e.g. in examples we provide, we often use a simplified
notation and list only the generators of the corresponding lowersets and uppersets to keep
the description finite?.

Definition 6.1. The propositional part of the calculus Gg A is given in the following table:

Axopased
wr £=Y Wl f=Y

o =Y 0, =

6.1
e femavlacale)) | e =y (o1
o= N¢, AN
o=, {p,a=1v |aecg®)}

S g A 1

VTSN v AV

The rules for conjunction and disjunction above are straightforward adaptations of the
standard conjunction and disjunction rules to our specific setting. In the axioms, the side
condition requires that the inequality a <, b holds in the free algebra of formulas. All the

20ne can do so systematically by mapping sequents to their bases as follows: observing (UL)?? = L, L7,
we can use (basesor, bases) : Subag (Lo L) x Subp(Lu L) —> SubaLP X Suba L.
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axioms and rules are sound, and the rules for A and \/ are moreover invertible, which
follows immediately from the definition of valid sequents.

Remark 6.2. One can see the above tabular of rules as an inductive definition of a monotone
relation =: L,L—+—U, L as the smallest one such that it in a way subsumes </: a </ b
implies Ta = |b, and is closed under the conjunction and disjunction rules (the weakening
rules ensure the monotonicity).

Next we turn to modal rules. The modal part of the calculus will consist of three rule
schemes: (1) a rule for introduction of nabla modality to the right-hand side of a sequent,
(2) a rule for introduction of delta modality to the left-hand side of a sequent, and (3) a
combined nabla-delta rule.

(1) V-r and (2) A-lL Let us first cover the cases of introducing nabla to the right-hand
and delta to the left-hand side of a sequent. Behind the soundness of following two rules lie
the mutual definability of the two modal operators discussed in the previous section. The
two rules, when read backwards, say how to reduce a nabla formula on the right-hand side
of a sequent to a conjunction of delta formulas, and dually how to reduce a delta formula on
the right-hand side of a sequent to a disjunction of nabla formulas. The laws that guarantee
the soundness and invertibility of these two rules are those of Propositions 5.19 and 5.20.

Definition 6.3 (Modal rules for V-r and A-1). Consider a € T9L with base(a) : V—L,
and B € TOL with base(3) : W—L. The two modal rules are defined as

s {p= ATS\))¥,9 | ¥in R,} Al {p, V(TON)® = ¢ | @ in Lg}
p= Va9 0, A =1

The sets of assumptions are indexed by collections R, with each W in T0Lbase(c), and Lg
with each @ in 72U, base(3), from Definition 5.17. The collections can in general be infinite,
and therefore the above rules become infinitary. However, in case that Tg preserves finite
posets, they will become finitary.

(6.2)

Example 6.4. We illustrate the above definition with two simple examples of instances of
the rule V-r. The instances are based on Example 5.18.

(1) Consider T? = L, and a = {1}. By Example 5.18 (1), R, = {{&, {L}}}. Then for the
only element {¢F, {L}} of Ry we obtain L, \/{J,{L}} = {L}. The following is therefore
a correct instance of the rule V-r:

. Vo = A{L}
Vg = V{L}
(2) Consider T° = N°? x Id, and a = (5,bAc¢). By Example 5.18 (2), Rispacy ={(n, )| 5>
n} u {(n,{b A ¢}) | n € N}. Note that L, \/(n, ) = (n, L) while L, \/(n,{b A c}) =
(n,b A ¢). The following is therefore a correct instance of the rule V-r:

\%

{V(3,0),V(8,¢c) = A(n,L) | 5>n} u{V(3,0),V(8,¢c) = A(n,bac)|neN}
V(3,b),V(8,¢) = V(5,bAc)
The rule V-r is sound and invertible by Proposition 5.20, and the rule A-1 is sound

and invertible by Proposition 5.19. Let us make a syntactic observation on the two rules
concerning the subformula property.

V-r
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Remark 6.5 (A form of the subformula property). Given any ¥ of the type

1 7oL,V
\Il\ ITfJLw base(a)

ToL,L
we can state the following, weaker kind of the subformula property:
z € base(V) implies z € L, base(a).
Since ¥ € TLbase(a) holds, we get the inclusion
base(V) < Lbase(«)

by Definition 3.9 of base. The weak subformula property follows from this immediately.
We can use the weak subformula property in particular to study the rule V-r: It shows
that all the assumptions of the rule are built from subformulas of the conclusion, using one
additional modality V, and the operation 7°\/. Similarly, for any ® € T°U,base(3) we get
that

z € base(®) implies z € U, base().

(3) VA rule. Let us turn now to introducing the last rule scheme. Observe that the
invertible rules of the calculus (the A and \/ rules and rules V-r and A-1) are strong enough
to reduce any valid sequent ¢ = 1 to a set of sequents in a reduced form by a backwards
application of the rules. A sequent is reduced if it is of the form

m{Va | Asa} = {AB|BE B}, A

with 7 and X\ being finitely generated upperset and lowerset of atomic formulas (or their
respective generators in the simplified notation), A being in U,T°L and B in L,TIL (or
their respective generators in the simplified notation).

The last missing bit of the calculus Gg A is arule that decomposes sequents in a reduced
form. The rule VA, which we will formulate in Definition 6.9 below, introduces the nabla
modality to the left-hand side and the modality delta to the right-hand side of a sequent
simultaneously. It is the only rule whose backwards application reduces the modal depth of
a sequent.

The idea behind the rule VA is to express what it means for a sequent in a reduced
form to be refuted in a state of a coalgebra. It will describe how validity and refutation
of the subformulas of the sequent is “redistributed” in the “successors” of the state. This
semantical idea will be made precise in Example 6.8 below. To be able to formulate the
same idea in a syntactic form of a rule we employ a technical notion of redistribution.

Definition 6.6. Fix a pair (4, B) in (U, TSL x L,TSL). A redistribution of (A, B) is an
element ® of T)7(U,,base(A) x Lbase(B)) satisfying the following two conditions:

(1) for each o with A = « it holds that (7%po)® T9= a,

(2) for each B with 8 = B it holds that 8 T9= (T0p;,)®,

where UWE&UME X LMEL)LWE are the projection maps.
We denote the collection of all redistributions of the pair (A, B) by rd(A, B).
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Remark 6.7. The notion of redistribution was introduced earlier in work on coalgebra
automata [KV08]. The idea of “redistributing the subformulas” has appeared, for the case
of sets, e.g. in [KKV12b] and [BPV14] under the name of slim redistribution or separated
slim redistribution, respectively. For reasons of simplicity we do not adopt the name slim
redistribution, and speak simply about redistributions instead.

We illustrate the notion of redistribution with the following example which arises
semantically. It is a crucial example because it relates directly to soundness and a weak
form of invertibility of the modal rule we prove later in Proposition 6.13.

Example 6.8. Suppose a sequent
H{Va|Asal = [{AB| B = B}

is not valid for some pair (A, B) in U,TL x L,T0L. This means that there is a coalgebra
c¢: X — TX and a valuation |-: L——X°P such that

o I+ /\Va and zq | \/Aﬂ

ET BEB
for some zp in X. The bases of A and B in SubxL will be denoted by
base(A) : V—L and base(B): W»—L

respectively, with V' and W being finite posets. In this example we will construct a certain
redistribution out of this countermodel.

(1) The construction of a redistribution. Again, the main idea of the proof is rather simple,
and most of the hassle is due to keep track of types and restricting to bases to keep the
reasoning on the language side finitary.

We start by defining two maps

4 XP — UL oand ¢f - X — L,L
by putting
fH(x) = t{a € base(A) | z IF v},
g*(x) = 1{b € base(B) | = |- w}.

Similarly as before in proof of Proposition 5.19, they factor through the bases of A and
B to result in the following two maps:

f: X% —U,V and ¢g: X? — L W

by putting
f(z) ={v|x I base(A)(v)} and g(z) = {w | = |¢ base(B)(w)}.
Hence the tupling of f and g is of the form
(f,g) : X? — U,V x L,W

and by applying T to it we obtain a map

T°(f,9) : (TX)? — T2(U,V x L,W).
Consider the composite

T°(f.9)

xor <2, (TX)o T(U,V x L,W)
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and define ®,,, to be its value at z¢ in X :

Dy i= TO(f, 9)(c*(20)).

Because U,V x L, W is a finite poset, 79 and T\ agree on it (the corresponding natural
inclusion is the identity). Thus we may see ®,, as an element of T2(U,V x L, W).
Therefore, using base(A) and base(B) as maps,

B = T3 (U,base(A), L, base(B))(®ay) = T°(f, ¢°) (e (o))

is an element of T)(U,base(A) x L,base(B)) as required by the definition or a redistri-
bution.

We claim that @ is a redistribution of (A, B). We verify item (1) of Definition 6.6,
item (2) is verified by dual reasoning. Therefore, we want to prove that

(Tfpg)(ID TiﬁEl «

holds for every o with A = «, where pg : U,L x L,L — U, L is the product projection.
By the definition of ®, we observe that

(TOp)® = TOU,,base(A) (T f)cP (x0) = (T7f*)c (x0).

For the following diagrams to work, we however need to keep things restricted to bases
on the language side, and therefore we are going to use f rather then f! Consider
any « such that A = « holds. From the unit property of the base we know that
A€ U,T%ase(A). So, there is a (unique) o’ in TV with a = Tbase(A)(/). To sum
up, to prove for =: L—+—U_ L that

(Tpo)® TT?E a,
means to prove that
TOU,,base(A) (T f)coP (x0) TI= T base(A) (o),
and in turn it suffices to prove, for the restricted =: V——U,V, that

(Topo) Py, TO= o

w

This by definition of ®,, boils down to proving that
(T f(c* (x0))) T= o (6.3)

holds for any « such that A = « holds.

Given any z in X and v € V such that z |-, base(A)(v) holds, we know that f(z) = v
holds by the definition of f. The monotonicity of the membership relation = entails that
for every ¢ in U,V with ¢ < f(z), the relation ¢ = v holds as well. Thus the following
lax triangle in Rel

=3

\%4 / U,V

II—(—,base(A\)—)\ f /fo/

Xop
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commutes. Its image under T9 is the lax triangle

To=

TV

TIl-(—,T%base(A)—) (T?)o

(TX)

T°U,V. (6.4)

We prove (6.3) using (6.4). Consider any a such that A = « holds. Recall o in TV is
the unique element with o = T%base(A)(/) (as V is a finite poset, we are allowed to
write T in place of T here). We instantiate the diagram for c°P(zg) in (T°X)°P, and
o in TV,

We know from assumption that xg |-. Va. Let base(a) : Z~—L and z € Z be the
unique element with Tbase(c)(z) = . By the semantic definition we obtain that

c(x0) Tl (—, T%base(a)—)z.
But observe that base(«) = base(A). Therefore this is equivalent to
c(z0) Tl (—, T?base(A)—)a’.

Applying the diagram we finally obtain that T f(c°P(x0))T° = o' as required. We
consequently use the fact that since V and U,V are finite posets, 79 and T coincide
on them, and consequently the lifted relations 79 = and T} = coincide.
The redistribution ® constructed above, has the following additional property: the
sequent

Pol2) = pi(2)
is refutable, for every z € base(®).
(a) Recall the map (f*,¢*) : X°? — U, L x L,L and consider its (£, M)-factorisation

(f.9)
a Y

XP ——=Y — U,L x L,L

We will prove the inclusion
base(®) < m.
The diagram

cP (o) T

1 (TX)? —— T
'\%u,gw J
(] Tm

T(U,L x L,L)

commutes: the left triangle commutes by the definition of ®, and the right triangle
commutes by the (£, M)-factorisation of (f*, g¥). This proves that ® € T%m holds.
Thus base(®,,) < m holds by the definition of base.

(b) We will show that for every z € base(®) there is a state x, € X such that

po(2) = p1(2)

is not valid in z,.
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Since z € base(®) holds, we know that z € m holds as well. From this and from the
surjectivity of the mapping e we can thus define x, to be any element from X such
that

z=(m-e)(x,)

holds. Then we know by the (£, M)-factorisation of (¥, g*) that
(m-e)(z.) = (fﬁ,gﬁ)(xz)_
The sequent pp(z) = p1(z) can therefore be written as
po - (f% ) (w2) = pr- (% 6%) (),

and this in turn is the sequent

fﬂ(xz) = 9ﬂ<$z)~
By the definition of f# and ¢, all formulas in f*(x,) are valid in z, while no

formula in g*(x,) is valid in z..

Now we can state the main modal rule of the calculus GF‘G A» €xplain how it reads, and
show its main properties.

Definition 6.9 (The modal VA rule). We formulate the rule VA as follows:

{po(z®) = p1(2®) | @ in rd(4, B)}
va {(Va| A= a} = {AB ]| E B}

V®. 2% € base(®) (6.5)

where the elements in rd(A, B) are of the form ® € T(U,L x L,L), and

U LU, L x L, L1,
are the projection maps of the product U,L x L,L.

Recall from Part II of Example 6.8 that choosing an element z® € base(®), we obtain a
finitely generated upperset of formulas po(z®) and a finitely generated lowerset of formulas
p1(2?®), therefore po(2®) = p1(2?) is a well-formed sequent. The rule VA says that the
conclusion is provable whenever for each redistribution ® of (A, B) there exists some
2® € base(®) such that the sequent po(2®) = p1(2®) is provable. In other words, it says
that if the sequent in the conclusion is refutable, there must be a redistribution ® of the
pair (A, B) (in fact the one of Example 6.8) such that all the sequents po(z®) = p;(z?) are
refutable.

Example 6.10. Continuing on Examples 5.18 and 6.4, we illustrate the above definition
with two instances of the rule:

(1) Consider T = L,, and let us compute rd({&}, {{L}}). Any such redistribution ® in
L, (U,L x L,L) has to satisfy the following:

(Lupo)® L,= & and {1} L= (Lup1)®.

The first condition is met by (L,po)® = & only, while the second condition requires
(Lup1)® # &, which together is impossible. The collection of redistributions is therefore
empty and the following is a correct instance of the VA rule (in fact an axiom):

%)

VAT = AL
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Putting the above observations together with Example 6.4 (1) we obtain a simple proof
in the simplified notation:

g

Vo = A{Ll}

Vg = V{L}

(2) Consider T = N°P x Id and let us compute rd({(3,b), (8,¢)}, {(n, L)}) where n < 5. Any

such redistribution ® is an element of N°? x (U,L x L, L), i.e. of the form (m, (¢, 1))
satisfying firstly

VA
V-r

(m, )(N7 % Td=)(3,b) and (m, ¢)(N x Id=)(8, c),
which implies that m > 8 and ¢ = b and ¢ = ¢. Secondly,
(n, 1) (NP  Td=)(m, ),

which implies that n > m. But since m > 8 and n < 5, this is clearly impossible.
Thus there is no such redistribution and the following is a correct instance of the rule,
whenever n < 5:

%)
V(3,b),V(8,¢c) = A(n, L)

Let us compute rd({(3,b), (8,¢)},{(n,b A ¢)}) for any n. Any such redistribution & is
of the form (m, (p,1)) satisfying, as before, m > 8 and ¢ = b and ¢ = c¢. Moreover, it
should satisfy

VA

(n,b A ¢)(N°P x Id=)(m, 1),

which implies that n = m and b A ¢ £ ¥. For n < 8 the collection of redistributions
is again empty. For n > 8 we know that any redistribution (m, (,%)) contains in its
base the pair (¢,1) where ¢ = 1) is a provable sequent (using possibly some weakening
inferences). Therefore the following is a correct proof in the simplified notation:

b=b c=c
A be=bnac
=19
V(3,0),V(8,¢c) = A(n,b A ¢)
Put together with Example 6.4 (2) we obtain the following proof, where the left part of

the tree covers cases for n < 8 and the right part of the tree covers cases for n > 8 and
all the existing redistributions:

VA

b=1b c=_c
A be=bnac
W—
VA 2 VA o=y
v V(3,0),V(8,¢c) = A(n, L) . V(3,0),V(8,¢) = A(n,b A ¢)
-1

V(3,0),V(8,¢) = V(5,b A ¢)

The rule VA satisfies the subformula property, similar in spirit to the properties discussed
in Remark 6.5.
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Remark 6.11 (Subformula property). Since any redistribution ® has the form
1 TS(U,V x L,W)
ITg(waase(A)wabase(B))
TI(UuL x LyL),
we get by the definition of base the inclusion
base(®) < U,base(A4) x L,base(B).

Since the image of Uy,base(A) x L,base(B) are the subformulas of the conclusion of the rule
VA, this observation tells us that the rule VA satisfies the subformula property.

Remark 6.12 (One-step nature of the rules). Coalgebras naturally capture one-step be-
haviour. As introduced by [Pat03], both the semantics and syntax of coalgebraic logics can
be stratified in layers of transition and modal depth. In particular, proof systems (both
Hilbert and Gentzen style) can be presented via one-step axioms with no nesting modalities
and rules which concern one layer of modalities only, and their completeness demonstrated
by an inductive argument in a one-step manner [KKV12b, KP11]. We do not adopt the
one-step formalism systematically in this paper, however, the construction of the language in
Subsection 5.A allows for such a treatment, the semantics could be presented in a one-step
manner following [KKV12b], and the rules of the sequent calculus allow for a purely one-step
reformulation. It is roughly because all the rules except the VA rule operate within the same
layer of the language, while the VA rule strips precisely one layer of modalities. Namely, in
the proof of the following proposition, constructing the model refuting a sequent

m{Va| Az a}= {AB | = B},
can be seen as a part of presenting a completeness proof by step-by-step method.

The rule VA is sound, and even invertible in a certain technical sense which we explain
and prove in the following proposition.

Proposition 6.13 (Soundness and invertibility of the VA rule). Let A, B and their bases
be given as in Definition 6.9 and let m and A consist of atomic formulas. The following are
equivalent:

(1) The sequent
m{Va| Az a}= {AB | = B},

1s refutable.
(2) The sequent ™ = X is refutable, and there exists a redistribution ® of (A, B) such that
for all z € base(®) the sequents

po(z) = p1(2)
are refutable.
Proof. (1) implies (2). Assume that the sequent
m{Va| Az a} = {AB | = B}, A

is refutable. Then there is a coalgebra c: X — T'X, a monotone valuation | on ¢ and a

state zo in X such that x( refutes the sequent 7 = X, and (z I A\ Va) and (z ¢ \/ ApB).
E BEB
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Then the redistribution ® of (A, B), defined in Example 6.8, has the property that all
the sequents py(z) = p1(z) are refutable, see Part (II) of Example 6.8.

(2) implies (1). Assume a redistribution ® in rd(A, B) is given. We moreover assume that for
all z € base(®), the sequent py(z) = p1(2) is refuted by some valuation |-, on a coalgebra
¢, : X, — TX, in a state z,.

We define a new coalgebra ¢ : X — T X, a point xg in X, and a valuation | such that
xg will validate Va for all « in A, and xg will refute AgS for all 5 in B.

(1) The definition of ¢ : X — T'X and z¢ in X. We will denote the base of the redistribution
® by

base(®) : Z—— U, L x L,L .
Therefore, by the properties of base, there is a we in T?Z such that
T%base(®)(wg) = P.

(and we are allowed to write here T in place of T because Z is a finite poset). Let
Z4 denote the discrete underlying poset of Z. We denote by e : Z; — Z the obviously
monotone mapping that is identity on the elements. The monotone map h : Z; — X
is defined by putting h(z) = x..

Define

X = ]_[XZ+1

ZEZd

and denote the unique element of 1 by xg. The coalgebra map ¢ : X — T'X is defined
on the individual components as follows:

where inj and inj, are the coproduct injections, and w® is the element of 7°Z; with the
property that

T%base(®) - TPe(w®) = ®.

(2) The valuation |- on c¢: X — TX.
In all states from all X, the valuation of atoms remains unchanged, while in zg we
satisfy all atoms in 7 and refute all atoms in A. This is possible because the sequent
m = )\ is refutable by assumption.
(3) We need to prove zy I /A Va for each « in A, and that zg I AS for each § in B.
Equivalently, we can prove that c(z¢) T « for each « in A, and c(xq) Tl 3 for each
B in B. We will prove only c(zg) T?I- « for each « in A, the second property is verified
by dual reasoning.
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We consider base(A) : V—L. We first claim that there the following lax diagram in
Rel commutes:

e \F(*,ba?e(A)f) op

- - e

UwV —F Uwﬁ — Uwﬁ X Lwﬁ 7 A 7 Zd
(Uubase(A))o \_ (po)® (base(@))y €

(po-base(®))?
To see that this is the case, fix a v € V and a z in Z; such that v and z are related by
the first-down-then-right passage of the diagram.

Hence there is some ¢ in U,L with ¢ = base(A)(v), some (¢',¢') with ¢ 2 ¢
and therefore ¢’ = base(A)(v), and base(®)(z) <u,cxL.z (¢',¢’). This entails that
po(base(®)(z)) = base(A)(v), and base(A)(v) is valid in x, by assumption. Therefore
the pair v and z are related by the first-right-then-down passage of the diagram.

We will use the image under T of the above diagram:

T (-, T%base(A)—)

TV (TX)°P
To“ajj /! {T(Tah)o
TU,V ——+—— TU,L ——+—— TU,L x TL, L ——T°Z / T°Z,

(T9U,base(A))o (T%pg)° (T%base(®))° (T%€)°

Consider a fixed o in A. Let base(a) : U—L, and let u € U be the unique element
with T%base(a)(u) = a. Because base(a) C base(A), there is a unique o/ in TV with
a = T%base(A)(a).

Apply the diagram to o/ in TV, (T%g)® in T°U,L, and the unique wg in T°Z such
that

T%base(®)(wg) = ®.

Since o/ and wg are related by the first-down-then-right passage of the diagram, there
exists ¢ in (T'X)P with c¢(x0) <(rx)er &, and such that

€ TO-(—, Tbase(A)—) /.
Therefore c¢(xg) =7x £ and, consequently,
c(x0) TO-(—, Tbase(A)—) o'
But this is equivalent to
(o) TO(—, Tbase(a)—) u,

and this proves that xg validates Va, as required.
We remark that, in the above diagram, that since V' (and also U, V) is a finite poset,
T% and T, 5 coincide on it. Therefore o and o’ are typed properly. For the same reason,

also the lifted relations 795 and TT?E coincide. []
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6.B. Completeness. Assume a valid sequent ¢ = 1) is given. Recall that in a simplified
notation, we can identify the finitely generated lowerset ¢ (and the finitely generated upperset
) with the finite (discrete) poset of its generators g(1) (resp. g(¢)). We will show by an
inductive argument that the sequent is provable in the calculus G% A» using the invertibility
of the rules of the calculus. To this end we need to define a measure of syntactic complexity
of a sequent in such a way that any backward application of a logical rule of the calculus
strictly decreases the defined measure.

Definition 6.14 (Measure on sequents). For each formula a in £, we define its complexity
on the left-hand side of a sequent, and on the right-hand side of the sequent simultaneously
as follows, counting modal formulas as atoms with a slightly bigger complexity.

llp) = 0 r(p) = 0
UNy) = Z l(a r(Ae) = D r(a)+1
acg(p) agg(p)
(Vy) = Z l(a r(Ve) = ) rla)+1
acg(y) aeg(v)
I(AB) = 3 r(Va) = 3
I(Va) = 2 r(AB) = 2

For a sequent ¢ = 9 we define its complexity as
Ko=) = > la)+ r(b)
agg(p) beg(v)
and its modal depth (recall Definition 5.6) by

d(p = ) = max({d(a) | a € g(¢)} v {d(b) | be g(¢)}).

Finally, we define the measure of the sequent ¢ = 1 to be the pair of natural numbers

m(p = ¥) = (e = ), k(e = ¥)).
We consider the pairs to be ordered lezicographically. The measure is defined exactly as
in [BPV14].
Proposition 6.15. Fiz a sequent ¢ = . A backward application of any rule of the calculus,

except weakening rules®, to the sequent yields sequents with strictly smaller measure.

Proof. In each backward application of one of the propositional rules, k(¢ = 1) strictly
decreases while modal depth remains unchanged, i.e., the measure of any assumption is
strictly smaller then the measure of the conclusion.

We inspect the modal rules. Consider a backward application of the A-1 rule with the
conclusion ¢, AB = . Its complexity is

k(p, AB = 1) = Z I(a) + 3+ Z
acg(p beg(y
Complexity of any of the assumptions ¢, V(T IN)® = 1) is strlctly smaller:

k(e Ta/\q):w Zl )+ 2+ Z

acg(y beg(vp

3In a backward application of a weakening inference, the set of generators of the corresponding upperset
or lowerset may actually get bigger, even if the actual upperset or lowerset does not.
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Since ® € T2U,base(8), from Remark 6.5 it follows that the modal depth of the sequent
remains unchanged. The case of the modal rule V-r is similar.

Consider a backward application of the VA rule with the conclusion {Va | A = a} =
{Ap | p = B}. From the type of any ® in rd(A, B) and from Remark 6.11 it follows that
the measure of each of the sequents po(z®) = pl(zq’) is strictly smaller because in this case
the modal depth of the assumptions is strictly smaller than that of the conclusion. []

The basic idea is we can apply the rules of the calculus (except the weakening rules) to a
sequent backwards, simplifying it in terms of the measure, and using the invertibility of the
rules (or a weak form of invertibility in the case of the modal rule). Reaching an irreducible,
atomic, sequent, we check for provability. This can be seen as a backward proof-search in a
variant of the calculus with the weakening rules built in the axioms. Now we can finally
prove that the calculus G% A is sound and complete.

Theorem 6.16 (Soundness and Completeness of the calculus GL ). Each sequent ¢ = 1
1s valid if and only if it is provable.

Proof. Soundness of the calculus G% A can be proved by a routine induction on the depth of
a proof in the calculus, using in particular appropriate directions of Propositions 5.19, 5.20
and 6.13 establishing soundness of the modal rules.

The completeness can be proved by induction on the measure. Assume a valid sequent
@ = 1) is given. If the measure of the sequent is (0,0), it consists of atoms and can only
be valid if there are some atoms ¢ = p and q £ ¥ with p <, ¢. In that case the sequent is
provable from an axiom by weakening rules.

Suppose that (d(¢ = ), k(e = 1)) > (0,0), meaning the sequent contains at least one
logical operator. We distinguish two cases:

(1) ¢ = 1 is not of the reduced form. Then some of the propositional rules, or the A-l
or the V-r rule can be applied to it backwards. Any such rule is by Propositions 5.19
and 5.20 invertible and therefore such an application preserves validity. Moreover, all
the assumptions of such a rule have strictly smaller measure by Proposition 6.15. We
may therefore apply the induction hypothesis and conclude that all the assumptions of
such a rule application, being valid, are also provable, and so is, by applying the rule
forward, its conclusion.

(2) ¢ = 1 is of the form 7,{Va | A = a} = {AB | 8 = B}, A\ with 7 and A consisting of
atomic formulas. Then either 7 = X is valid, and therefore provable as in the basic case.
The sequent itself is then provable by weakening rules.

Or, by Proposition 6.13, for each redistribution there is some z® € base(®) such
that the sequent po(z®) = p1(2®) is valid. But any such sequent has strictly smaller
measure by Proposition 6.15 and therefore we may apply the induction hypothesis
and conclude that any such sequent, being valid, is therefore also provable. Then the
sequent 7, {Va | A= a} = {AS | B = B}, A is provable by the rule VA, and weakening
rules. []

7. CONCLUDING REMARKS

We have shown that a finitary Moss’ logic can be meaningfully defined for coalgebras in the
category Pos of posets and monotone maps, and that it is expressive and also complete. All
the definitions and proofs are parametric in the coalgebra functor 7', which is required to be
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locally monotone, to preserve exact squares, and the syntax functor Tg , which is required to
preserve intersections of subobjects.

There is still a lot we do not know about endofunctors of Pos. Namely we are interested
in the following open problems:

(1) Characterise endofunctors of Pos that preserve exact squares.

(2) Characterise endofunctors of Pos that preserve order embeddings.

(3) Among the endofunctors of Pos that preserve order embeddings, characterise those such
endofunctors that moreover preserve finite intersections.

There are two interesting questions regarding the logic introduced in this paper that we
have not addressed and leave for potential future study:

(1) Is it the case that for a posetification T}, (see [BK11]) of a Set endofunctor T, the Moss’
logic for T"-coalgebras as introduced in this paper is the positive fragment of the Moss’
logic for T-coalgebras? The corresponding result for the logic of predicate liftings was
obtained in [BKV13].

(2) What is the relation of the Moss’ logic for coalgebras for Pos-endofunctors to the logic
of all monotone predicate liftings considered in [KKV12a|?

Let us briefly comment on (1). First of all, our definition of the language in Subsection 5.A
uses L, and U, for arities of disjunction and conjunction. We have explained that this
makes perfect sense in the poset setting in Remark 5.3 (it is worth noting that even with
a discrete poset of atomic propositions, our construction produces an ordered language).
But these functors are not poset extensions or liftings of the finitary powerset functor in
Set*, which classical Moss’ logic uses as arity of both the connectives. While we could in
principle use the self-dual finitary convex powerset functor P¢, which is the posetification of
the finitary powerset functor in Set [BK11], for the arity of both conjunction and disjunction
(and this choice would actually produce a discrete language, starting from a discrete poset
of atomic propositions), this seems to us to make sense precisely for the purpose of studying
positive fragments of Set-based coalgebraic logic (which is not the aim of this paper), and
not so much for studying the Pos-based coalgebraic logic. Had we done so, it would not be
difficult to adjust the rest of the syntactic machinery, including the Definition 5.17 of the
collections R, and Lg and Definition 6.6 of a redistribution, syntactic shape of sequents,
and the formulation of the rules of the calculus accordingly. What is more important, under
this modification, all the proofs remain correct. We will outline the resulting formalism in
the following subsection.

7.A. Positive fragments. We will see how the machinery described in this paper, modulo
one alternation concerning arities, can capture positive (i.e. —-free) fragments of finitary
Moss’ logic in Set, as presented in [BPV14]. All functors in this section, including the
coalgebra functors, are assumed to be finitary.

Assumption 7.1. Solely for the purpose of this subsection, we assume that the arities of
the conjunction and disjunction in Pos are given by the finitary convexr subset functor P,.

Let D : Set — Pos be the discrete functor. We consider a finitary coalgebra Pos functor
T’ to be the canonical extension — the posetification — of a fixed finitary standard Set
functor T preserving weak pull-backs. T” is defined as a completion w.r.t. Pos-enriched

4The functors L, U can however be obtained as quotients of certain liftings of the powerset functor to the
category of preorders and monotone maps [BK11].
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colimits [BK11], and it preserves exact squares. T’ is an extension of 7', meaning that
T'D ~ DT. In particular, T’ applied to a discrete poset yields a discrete poset. Observe
that posetifications are self-dual on discrete posets:

T°DX = (T'(DX)°")” ~ (T'DX)* =~ (DTX)” ~ DTX =~ T'DX.

Therefore we can use T’ on the syntax side as the arity of both nabla and delta modalities,
as long as the language is discrete.

Language. We fix a set of propositional atoms AtS¢t. Therefore DAt can be used
as a discrete poset AtT° of propositional atoms. The definition of the finitary Moss’
language in Set [KKV12b, 5.1], namely its —-free fragment which we denote £, can
be seen as an algebra for P, + P, + T + T, free on At>®* (computed in Set). The four
components correspond to arities of conjunction, disjunction, nabla, and the delta modality.
We aim at a definition of a discrete language £P° so that DLt ~ £P°. For conjunction
N : PLL% — L5 we aim at its Pos counterpart being D A : PS DL — DL,
similarly for disjunction. For the nabla modality Vp : L3t — £ we aim at its Pos
counterpart being Vv = DV : T'DL3¢ — D5 similarly for delta. We therefore define
the language £P° to be an algebra for P, + PS¢ 4+ T' + T, free on At"°s in Pos. Observe that
L£P°s is indeed a discrete poset, because for two convex subsets of a discrete poset, u <M v
implies u = v, and T” applied to a discrete poset yields a discrete poset. It follows that
indeed D3¢t =~ £Pos,

Sequents in Set [BPV14] are pairs of finite subsets of £ written as ¢ = 1. For the
purpose of this subsection only, sequents in Pos are pairs of finite convex subsets of £P°S.
Translation of the above sequent will be written as Dy = D). This notation is justified by
the following paragraph:

Elements and bases. Assume that « is an element of T£%: « : 1=—TL£5t. Applying
D to it yields an element of T'LP%: Do : D1——DT L5t =~ T'£P° . Similarly for ¢, in
P, L% we have Dy, Dt in P¢,LP° and for ®, ¥ in PP, L% we have D®, DV in P¢P¢ L£Ps,
Here we again abuse the notation slightly and denote by a or Da both the inclusion map
and its image. Assume the base of a in TL% is given by base’ (o) : Z—L£%%t. Then we

obtain the base of Do as base” (Do) = Dbase’ (a) : DZr—LPos.

Relations and their lifting. For a relation R in Rel(Set)
R:Y——X

we obtain a monotone relation DR in Rel(Pos) by applying the functor D to the span
corresponding to R to yield:
DR :DY——DX.

The lifting of R by T in Rel(Set) is given by the composite

(Tp1)°

TR:TX TR "™ 1y,

Applying the functor D to its underlying span we obtain the 7" lifting of DR

il y (T"Dp1)® ., (T"Dpo)o ..,
T'"DR :T'DX ~ DTX————T'DR ~ DT R————T'DY = DTY.

From the above diagrams one can conclude the following;:
TR(B,a) iff T'"DR(DS, Da). (7.1)
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Coalgebras and valuations. Given a T-coalgebra ¢ : X — T X in Set, we can apply the
functor D to it to obtain the T”- coalgebra Dc: DX — T'DX in Pos. Given a valuation of
propositional variables on the coalgebra ¢ [BPV14, Definition 3.5.], we can see it as a relation

- At>¢*—+— X | we obtain a corresponding valuation on D¢ as DI : AtPo——(DX)P .
Observing carefully how the connectives /\,\/ and V, A are interpreted in [BPV14, Definition
3.5.] and in this paper in Subsections 5.B and 5.D, we observe that the correspondence carries
out to link |-: £3—+—X and DIF: £LP—+—(DX) so that we can prove by induction
that for each sequent

¢,z - o= iff D¢,z D+ Dy = D). (7.2)

(cf. [BPV14, Definition 3.18.], and a definition in Subsection 6.A of a valid sequent.) We
spell out the case for the nabla modality (the other cases are simpler or similar):

¢,z - Vra iff ¢(x)(T -)a
iff Dc(x)(T'DI-)Da by (7.1)
iff Dc,x DI- Vi(Da).

Before we go further, we sum up the correspondence between the Set-based setting of the
finitary Moss’ logic of [BPV14] and the Pos-based setting of the finitary Moss’ logic of this
paper (with the arities of conjunction and disjunction adjusted) in the following table:

T : Set — Set T" : Pos —> Pos
ESet EPos

« in TL5¢ Do in T L£Pes

@, 1 in P, L5 Dy, Dv) in P¢ LPos
®, U in TP, L D®, DV in T'P¢ LPs
base” (a) base” (Da)

/\ . pWESet N ESet D/\ . P((j)EPos N EPos
\/ . pw[’Set _ L:Set D\/ . pz:u[’Pos _ ﬁPos

c: X —TX Dc: DX —T'DX

-: L3¢ —— X Dl : LPoS——(DX)°P

c: pwESet £Set De : P¢ EPos £Pos
: —— : P, ——

TR T'DR

Redistributions. First let us cover the syntactic constructions behind the V-r and A-1
rules. By [BPV14, Definition 3.14], the collections Ly (a) and Ry () are defined as follows:

Ly(a) = {(T /\)® | ® € Thase” (a); ~(a T¢ ®)}
Ry (B) := {(T\/)¥ | ¥ € Thase™ (8); ~(8 T¢ )}
Transferring this to Pos, we obtain
D[Ly(a)] := {(T'D /\)D(I) | D® € T'base’” (Da); —(Da T'D¢ D®)}
D[Rr(B)] := {(T'D \/)qu | DU € T'base” (DB); —(DB T'D¢ D)}

Comparing this with Definition 5.17, using the above table, we see that this provides us
with the right definition when the arities of conjunction and disjunction are altered to be
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PS¢, putting:
D® e Ly(Da) iff (T /\)® e Ly () (7.3)
DU € Rp(DB) iff (T\/)¥ e Rr(B) (7.4)

Turning to redistributions, from [BPV14, Definition 3.20.] of slim redistribution, and its
generalization for two-sided sequents explained on p. 44 therein, we can extract the following:
Let (A, B) be an element of P,TL5 x P,TL%. A ® in T(P,base’ (A) x P base’ (B)) is a
slim redistribution of (A, B) iff

(Vae A) aTe (Tpy)®
(VB e B) BTe (Tp1),

where pg, p1 are the projections of the product waaseT(A) x Py baseT(B). Transferring to
Pos we obtain that for (DA, DB) in PST'LP° x PST'LP°S and @ a slim redistribution as
above, D® in T"(P¢base’ (DA) x P¢base’ (DB)) satisfies

(VDa e DA) Da T'De (T'Dpy)®,

(VDB e DB) DB T'De (T'Dp;)®.
Comparing this with Definition 6.6, using the table above, we see again that this fits with

D® being a redistribution of (DA, DB), modulo the arities of conjunction and disjunction
being altered to be P{:

® e srd(A, B) iff D® e rd(DA, DB). (7.5)

Rules of the calculus. Using the transfer machinery described above, we can translate
proofs of positive sequents from the two-sided calculus G2 of [BPV14, Definition 5.1.] to
the calculus G%IA of this paper (to be precise, to the calculus we obtain by systematically
replacing the arities of conjunctions and disjunctions in G@A with PS). We can do so
inductively, rule by rule. We will spell out the cases for the modal rules, and leave the
propositional part of the calculus to be verified by the reader (propositional part of G2p can
be found in [BPV14, Figure 1.], and that of GF‘QA in Definition 6.1).

The following two rules of G27 are those of [BPV14, Definition 5.1.], adapted to our

current notation:
v Ap=ANTV)¥.¢ | (TV)V in Rr(a)}
o= VTa,y
AT {2 VT A = | (T A)® in Lr(5))
@, ATB =1
They translate into the following instances of the two rules of the modified (as for the arities
of conjunctions and disjunctions) GQA from Definition 6.3

v Do = AT (T'D\/)DW¥, Dy | DV in Ryv(Da)}
Dy = VT' Da, Dy

\%

\Y

v ADg, VT (T'D N)D® = Dt | D® in Li+(Dg)}

A
Dy, AT'"DB = D
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The following rule of G27 is the one of [BPV14, Definition 5.1.], adapted to our current
notation (in particular, po(2®) is originally denoted by A? and p;(z?) is denoted by B% and
the notation explained on p. 47 (18).)

{po(2®) = p1(2®) | @ in srd(A, B)}
{Vra|ae A} = {ArfS | B € B}
It translates into the following instance of the 7"(VA) rule of Definition 6.9
{Dpo(Dz®) = Dp(Dz*) | D® in rd(DA, DB)}
{VrDa | Dae DA} = {ADS | DB € DB}

To sum up, using the above, we can state the following theorem

T(VA) V®. 2% € base® (®)

T'(VA) V®. (Dz)® € base” (D®)

Theorem 7.2. Let ¢,1) be finite subsets of L5 (i.c., the —-free fragment of the classical
Moss’ coalgebraic language).

}—GQT ) = 11} Zﬁ I—GglA DQO - D"IIZJ

Proof. The left-right direction is proven by induction on the proof in G27, translating it
step-by-step using the discrete functor as described above.

The right-left direction is proven by contraposition, using the completeness of the two
calculi. Assume that t£g2, ¢ = 1. Then there is a coalgebra ¢ : X — T'X, a valuation of
£t and a state z so that

c,x I o= .
Then, by 7.2, the coalgebra D¢ : DX — T'DX, the translated valuation of £P°, and a
state x refute the sequent
Dc,x |+ Dp = D. L]

Example 7.3. Consider the finitary convex powerset functor P, as the coalgebra functor. P,
is the posetification of the finitary powerset functor P, whose coalgebras in Set correspond
to image-finite Kripke frames. Thus, adapting the arities of conjuctions and disjunctions in
the calculus GPV‘C“A captures the positive fragment of the finitary Moss’ logic over image-finite
Kripke frames (whose complete proof theory is provided by the calculus G2p_ of [BPV14]).
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