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Abstract. We prove a result, similar to the ones known as Ishihara’s First and Second
Trick, for sequences of functions.

1. Introduction

In Bishop’s constructive mathematics (BISH)1, one often has to navigate around the reality
that one cannot make use of the law of excluded middle. Even though constructivists assume
that we can make decision about finite objects, case distinctions of the kind of

∀x ∈ R : x < 0 ∨ x = 0 ∨ x > 0 (1.1)

are unavailable. Most of these general disjunctions are actually false in constructive varieties
such as Brouwer’s intuitionism (INT) or Russian recursive mathematics (RUSS), while in
BISH they are merely not acceptable since the latter is consistent with not just constructive
varieties, but also classical mathematics (CLASS). One easily reaches the conclusion that
there are no such disjunctions available in BISH.

This is what makes the results nowadays known as Ishihara’s First and Second Trick [11]
so deliciously surprising: they allow us to make an interesting and non-trivial decision about
ideal objects. Both Tricks assume a strongly extensional2 mapping f of a complete metric
space (X, ρ) into a metric space (Y, ρ)3, and a sequence (xn)n>1 in X converging to a limit
x.

Proposition 1.1 (Ishihara’s First Trick). For all positive reals α < β,

∃n ∈ N : ρ(f(xn), f(x)) > α ∨ ∀n ∈ N : ρ(f(xn), f(x)) < β .

Proposition 1.2 (Ishihara’s Second Trick). For all positive reals α < β, either we have

Key words and phrases: function convergence, Ishihara’s tricks, constructive analysis.
1Informal mathematics using intuitionistic logic and an appropriate set-theoretic or type-theoretic founda-

tion such as [1]. See [2, 3] for details. We do assume dependent/countable choice, but will explicitly label
any use thereof.

2Defined below.
3We will use ρ as denoting the metric on any metric space we consider for simplicity. There is no point at

which this leads to ambiguity.
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• ρ(f(xn), f(x)) < β eventually,
• or ρ(f(xn), f(x)) > α infinitely often.

Even though it is wrong (see, however, Proposition 2.1), it is helpful to think of Ishihara’s
Second Trick as saying that a strongly extensional function is either sequentially continuous
or it is discontinuous.

In this note, we will show that we can prove a similar result for a sequence of functions
converging point-wise to another function. Vaguely speaking we can show that one can
decide whether convergence happens somewhat uniform, or in a discontinuous fashion.

The motivating example for our results is the following. Consider the sequence of
functions (fn)n>1 defined by

fn(x) =


2nx if x ∈ [0, 1

2n ]

1− 2nx if x ∈ [ 1
2n ,

2
2n ]

0 if x ∈ [ 2
2n , 1] .

0 1
2n

1
n

1

1

fn

The sequence (fn)n>1 is one of the standard examples in classical analysis (see, for
example, [8, VII.2 Problem 2]) of a sequence of functions on the unit interval that converges
point-wise but not uniformly. However, constructively this example breaks, since the
assumption that we have point-wise convergence implies the limited principle of omniscience
(LPO), which states that for every binary sequence (an)n>1 we have

∀n ∈ N : an = 0 ∨ ∃n ∈ N : an = 1 ,

which is, under the assumption of countable choice, equivalent to Equation 1.1.

Proposition 1.3. LPO is equivalent to the statement that (fn)n>1 defined as above converges
point-wise to 0.

Proof. Let (an)n>1 be a binary sequence. Without loss of generality we may assume that
(an)n>1 is increasing. Now consider the sequence (xn)n>1 in [0, 1] defined by

xn =

{
1

2m if an = 1 and am = 1− am+1

0 if an = 0 .

Using the notation of [6, 7] this is simply the sequence
(
(an) ~ ( 1

2n)
)
. It is easy to see

(or formally proven in [6, Lemma 2.1]), that (xn)n>1 is a Cauchy sequence. It therefore
converges to a limit z ∈ [0, 1]. Since fn(z)→ 0, there exists N ∈ N such that

∀n > N : fn(z) <
1

2
. (1.2)
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Now either aN+1 = 1 or aN+1 = 0. In the first case we are done. In the second case there
cannot be m > N + 1 such that am = 1. For assume there is such an m, then we can find
N < m′ < m such that am′ = 0 and am′+1 = 1. In that case xn is eventually constant
on 1

2m′ , which means that z = 1
2m′ . However fm(z) = 1 and m > N , which would be a

contradiction to Equation 1.2. Thus an = 0 for all n ∈ N. Hence LPO holds.
Conversely, it is easy to see that LPO in the form of Equation 1.1 is enough to show

that (fn)n>1 converges point-wise.

That means that in varieties of BISH in which LPO is false the above sequence of
function actually does not provably converge point-wise; which means the above example
cannot serve to show that uniform convergence is not implied by point-wise convergence. As
it turns out there are (constructive) scenarios where the two notions coincide.

Looking at this from a different angle one could say that the assumption of point-wise
convergence is constructively a stronger assumption than classically.

Of course, working in BISH we only know that LPO is not provable, but not whether
¬LPO is provable. That is if, in BISH, we encounter a sequence of functions converging
point-wise there are, intuitively speaking, two options: the convergence is actually uniform
or it is not, in which case LPO holds.

This is not just an external disjunction: surprisingly we can make this decision within
BISH and without knowing whether LPO holds or fails.

2. The Third Trick

We will first consider a restricted version of our results applying only to functions of a specific
type signature. In our opinion, this has the advantage of making the actual underlying ideas
and structure of our proofs cleaner and clearer.

As Escardó has shown [9, 10], the natural setting for Ishihara’s tricks is N∞—the space
of all increasing binary sequences with the metric induced by the usual one on Cantor
space. The space N∞ contains the sequences n = 0n1 . . . for any n ∈ N, and the sequence
ω = 000 . . .. Using classical logic we have that

N∞ = {n |n ∈ N } ∪ {ω} ,
however this cannot be proven with intuitionistic logic alone, since that statement is actually
equivalent to LPO.

We also assume that the set N∞ is equipped with the reverse lexicographic order 6; so,
for example, n 6 n+ 1 < ω.4

For functions N∞ → N Ishihara’s Second Trick becomes

Proposition 2.1 (Ishihara’s Second Trick for N∞ → N).
If f : N∞ → N is strongly extensional, then

∃N ∈ N : ∀n > N : f(n) = f(ω) ∨ ∃α ∈ NN
inc : ∀n ∈ N : f(α(n)) 6= f(ω) ,

where NN
inc is the space of all strictly increasing functions NN.

Notice that for a function f of type N∞ → N this really states that we can decide
whether f is continuous or find a witness of discontinuity.

Similarly to Ishihara’s Second Trick being an iteration of the first one, our Third Trick
will also rely on iterating a simpler result, which is Part 2 of the following.

4Of course, this order is not decidable, constructively.
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Lemma 2.2. Assume that (fn)n>1 : N∞ → N is such that fn(x)→ 0 for all x ∈ N∞.

(1) For any γ ∈ N∞
∃i ∈ N : fi(γ) 6= 0 ∨ ∀i ∈ N : fi(γ) = 0 .

(2) Either
• there exists i ∈ N and α ∈ N∞ such that fi(α) 6= 0
• or, for all i ∈ N and α ∈ N∞, we have that fi(α) = 0

Proof. (1) For any γ ∈ N∞, since fn(γ) → 0, there exists Nγ such that fi(γ) = 0 for all
i > Nγ . Because we only need to check finitely many terms, either there exists i < Nγ

such that fi(γ) 6= 0 or not.
(2) Using the first part of this lemma we can, first exclude the case that there exists i ∈ N

such that fi(ω) 6= 0, since that means we are done. So, for the rest of this proof we can
assume that fi(ω) = 0 for all i ∈ N.

Also, using the first part of this lemma, we can build (using unique choice) a binary
sequence λk such that

λk = 0 =⇒ ∀i : fi(k) = 0 ,

λk = 1 =⇒ ∃i : fi(k) 6= 0 .

Now define a sequence βk ∈ N∞ by

βk = n ⇐⇒ ∀i < n : λn = 0 ,

βk = βk−1 ⇐⇒ ∃i < n : λi = 1 .

In words, going through the sequence λ, as long as λk is 0 we just set βk = k, but as soon
as we hit a k with λk = 1 we stay constant at that first k. This is a Cauchy sequence,
which therefore converges to a limit β ∈ N∞. Now, by Lemma 2.2.1 either there exists
j ∈ N such that fj(β) 6= 0 or not. In the first case we are done, so let us focus, for the
rest of the proof, on the second case.

In this second case we claim that we must have λk = 0 for all k. For assume there is
k such that λk = 1. We may assume that k is the minimal such number. In that case we
have β = k and there exists i such that fi(β) = f(k) 6= 0. But that is a contradiction to
the case we are in, and therefore λk = 0 for all k ∈ N. Now there cannot be a α ∈ N∞
and i ∈ N such that fi(α) 6= 0. For assume there is such α and i. Then α = ω, since,
if there exists n such that α(n) = 1, we would have λn = 1. But that means that
0 6= fi(α) = fi(ω), which we excluded at the beginning of the proof.

Theorem 2.3 (The Third Trick for N∞ → N). If (fn)n>1 : N∞ → N such that fn(x)→ 0
for all x ∈ N∞, then either

• there exists N ∈ N such that for all i > N and α > N we have fi(α) = 0, that is the
convergence is uniform,
• or there exists a sequence αn in N∞ and sequence kn such that kn > n, αn > n, and
fkn(αn) 6= 0, that is there is a witness showing that the convergence is not uniform.

Proof. Since fn(ω) → 0 we may assume, without loss of generality, that fn(ω) = 0 for
all n ∈ N. Using the second part of the previous lemma, fix a binary sequence λn (using
countable choice to collect the αn) such that

λn = 0 =⇒ ∃i > n, αn > n : fi(αn) 6= 0 ,

λn = 1 =⇒ ∀i > n, α > n : fi(α) = 0 .
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The sequence λn is increasing, and we may assume that λ1 = 0, since we are otherwise done.
Now define a sequence (βn)n>1 in N∞ by

λn = 0 =⇒ βn = αn ,

λn = 1 =⇒ βn = αm, where λm = 0 ∧ λm+1 = 1 .

In words, as long as λn = 0 we set βn = αn, and as soon as we find the first term such that
λn = 1, we stay constant on the previous term αn−1. This ensures that all βn are such that
there exists i with fi(βn) 6= 0. Again, (βn)n>1 is easily seen to be a Cauchy sequence, which
therefore converges to a limit γ in N∞.

Since fn(γ)→ 0 there is Nγ such that fn(γ) = 0 for all n > Nγ , which means that by
checking all i < Nγ we can decide whether either fi(γ) = 0 for all i ∈ N or whether there is
k such that fk(γ) 6= 0 but fj(γ) = 0 for j > k.

In the first case we must have λn = 0 for all n ∈ N: for assume there exists m such
that λm = 1. That means we can find m′ < m such that λm′ = 0 and λm′+1 = 1. But that
implies that βn = αm′ for all n > m′, and therefore γ = αm′ . Thus there exists i > m′ such
that fi(γ) 6= 0; a contradiction to the case we are in.

In the second case we must have λk′ = 1, since otherwise we can reach the following,
two-step contradiction. If there is k′ > k such that λk′ = 0 and λk′+1 = 1, then γ = αk′
and ∃i > k′ : fi(γ) 6= 0, which contradicts our choice of k. Thus λn = 0 for all n ∈ N, which
means γ = ω, but that is also a contradiction, since we assumed that fn(ω) = 0 for all n ∈ N.

Together we can decide whether ∀n ∈ N : λn = 0 or whether ∃n ∈ N : λn = 1 which
means we are done, by the definition of (λn)n>1.

Proposition 2.4. In the second case of the previous proposition LPO holds.

Proof. Let (an)n>1 be a binary sequence. Without loss of generality we may assume that
(an)n>1 is increasing. Now consider the sequence (xn)n>1 in N∞ defined by

xn =

{
αm if an = 1 and am = 1− am+1

0 if an = 0 .

Using the notation of [6, 7] this is simply the sequence (an) ~ (αn). It is easy to see (or
follows from Lemma 2.1 of [6]), that (xn)n>1 is a Cauchy sequence. It therefore converges to
a limit z. Since fn(z)→ 0 we can find Nz such that

∀n > Nz : fn(z) = 0 . (2.1)

Now either aNz = 1 and we are done, or aNz = 0. In this second case there cannot be
n > Nz such that an = 1: for assume there is such n. Then we can find Nz 6 m < n
such that am = 1 − am+1, which means that z = αm. By assumption there exists j > m
such that fj(αm) 6= 0, but that is a contradiction to Equation 2.1. Thus, if aNz = 0, then
∀n ∈ N : an = 0. Altogether LPO holds.

Corollary 2.5. Under the assumption of ¬LPO, if (fn)n>1 : N∞ → {0, 1} is such that
fn(x)→ 0 point-wise then fn → 0 uniformly.
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3. The General Case

The situation is a bit more intricate when we move to more general metric spaces. Notice
that, for example, in the case of N∞ → N being sequentially continuous is equivalent to
being point-wise continuous, and even equivalent to being uniformly continuous.

The following definitions mirror these different levels of continuity.

Definition 3.1. Let (fn)n>1 be a sequence of functions. We say that (fn)n>1 converges

(1) sequentially semi-uniform at x, if for all xn → x and all ε > 0 there exists N ∈ N such
that

∀n, i > N : ρ (f(xn), fi(xn)) < ε ;

(2) semi-uniform at x, if for all ε > 0 there exists N ∈ N and δ > 0 such that for all
y ∈ Bx(δ)

∀i > N : ρ (f(y), fi(y)) < ε .

It is easy to see that we can also combine N and δ in the second definition by using δ = 1/N.

Trivially we have

uniform =⇒ semi-uniform =⇒ seq. semi-uniform =⇒ point-wise .

In this section we will show that all three implications can be reversed, assuming certain
principles and working on certain spaces.

Theorem 3.2 (General metric space version of the Third Trick). Consider a sequence of
functions (fn)n>1 : X → Y defined on a complete5 metric space X into an arbitrary metric
space Y converging point-wise to f : X → Y ; let (xn)n>1 be a sequence in X converging to
x ∈ X, and consider ε > 0. Either

• there exists N ∈ N such that

∀n, i > N : ρ (f(xn), fi(xn)) < ε ;

• or there exists a sequence zn → x and kn such that kn > n, and

∀n ∈ N : ρ (fkn(zn), f(zn)) >
ε

4
.

Furthermore, in case the second alternative holds, LPO holds.

The proof very much follows the lines of the proof of Lemma 2.2, Theorem 2.3, and
Proposition 2.4 and has been moved to an appendix.

Corollary 3.3. Assuming ¬LPO, if fn → f point-wise then fn → f sequentially semi-
uniform.

To get from sequential semi-uniform convergence to semi-uniform convergence we can use
Ishihara’s boundedness principle BD-N, which states that every countable pseudo-bounded
subset of N is bounded. Here, a subset S of N is pseudo-bounded if limn→∞ sn/n = 0 for
each sequence (sn)n>1 in S.In [13, Lemma 3], it was shown that a set S of natural numbers is
pseudo-bounded if and only if for each sequence (sn)n>1 in S, sn < n for all sufficiently large
n. Every bounded subset of N is trivially pseudo-bounded and, conversely, every inhabited,
decidable, and pseudo-bounded subset of N is easily seen to be bounded. However, in the
absence of decidability, this is not guaranteed anymore.

5We would like to mention that here and in the following one can replace completeness with the much
weaker notion of complete enough [6, 7].



Vol. 18:3 THE THIRD TRICK 21:7

Overall BD-N is a very weak principle that is true in CLASS but which also holds in
INT and RUSS. Indeed, there are very few known models in which BD-N fails. The first
such model was a realizability model described in [14] and the second one was a topological
model [15].

Proposition 3.4. BD-N implies that for (fn)n>1 and f defined on a countable space X
such that fn → f sequentially semi-uniform, also converges semi-uniformly.

Proof. Assume fn → f sequentially semi-uniform. Let X = {ri}, and consider ε > 0, and
x ∈ X. Consider the set

S =
{
n ∈ N

∣∣∃i, j > n : ri ∈ Bx( 1
n) ∧ ρ(f(ri), fj(ri)) > ε

}
∪ {0} .

This set is easily seen to be countable. We will show that S is pseudo-bounded. To this end
let (sn)n>1 be a sequence in S. Define a sequence xn by

sn 6 n =⇒ xn = x

sn > n =⇒ xn = ri, where i is as in the definition of S .

Since, for all n, we have ρ(x, xn) < 1
n , this sequence converges to x. Since (fn)n>1, by

assumption, converges sequentially semi-uniform there exists N such that ∀i, n > N :
ρ(f(xn), fi(xn)) < ε. That means, that for all n > N we must have sn 6 n, since oth-
erwise xn would be such that there is j > N with ρ(f(xn), fj(xn) > ε, by the definition of
S. Thus, by BD-N, the set S is bounded. That means that for all ε > 0 there exists N ∈ N
such that for all y ∈ Bx( 1

N ) ∩ { ri | i ∈ N }

∀i > N : ρ (f(y), fi(y)) < ε ,

and since ε and x were arbitrary we are done.

Corollary 3.5. BD-N implies that for every sequence of non-discontinuous functions (fn)n>1

and f defined on a separable space X such that fn → f sequentially semi-uniform, also
converges semi-uniformly.

For the next corollary we remind the reader that the existence of a discontinuous
function is equivalent to the weak limited principle of omniscience WLPO, and hence the
negation of the latter implies that all functions defined on a complete metric space are
non-discontinuous [12, Theorem 1].

Corollary 3.6. Assuming ¬WLPO and BD-N (both hold in RUSS and INT). For a sequence
of functions fn, f : X → Y defined on a complete, separable X and into an arbitrary metric
space Y , point-wise and semi-uniform convergence are equivalent.

Finally, in order to also make the step to uniform convergence, we need to assume a
form of Brouwer’s fan theorem: FANΠ0

1
. All versions of Brouwer’s fan theorem them enable

one to conclude that a bar is uniform. Here, a bar B is a subset of the space of all finite
binary sequences 2∗ such that for all infinite binary sequences α there is n such that αn—the
initial segment of α of length n—is in B. A bar is uniform if this happens uniformly for all
α ∈ 2N, that is if

∃N : ∀α ∈ 2N : ∃n 6 N : αn ∈ B .

A bar B is called Π0
1-bar, if there exist a set S ⊂ 2∗ × N such that

u ∈ B ⇐⇒ ∀n ∈ N : (u, n) ∈ S ,
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and

(u, n) ∈ S =⇒ (u ∗ 0, n) ∈ S ∧ (u ∗ 1, n) ∈ S .

FANΠ0
1

holds in INT as well as in CLASS and is slightly stronger than the uniform continuity

theorem (UCT), which is the statement that all point-wise continuous functions 2N → R are
uniformly continuous.

Proposition 3.7. FANΠ0
1

implies that every sequence of non-discontinuous functions fn, f :

2N → R such that fn → f semi-uniformly, also converges uniformly.
Conversely, the latter statement implies UCT.

Proof. Let fn : 2N → R be such that fn → f semi-uniform. Fix λu,n such that

λu,n = 0 =⇒ ρ (fn(u ∗ 000 . . . ), f(u ∗ 000 . . . )) < ε ,

λu,n = 1 =⇒ ρ (fn(u ∗ 000 . . . ), f(u ∗ 000 . . . )) > ε/2 .

Define a decidable set S ⊂ 2∗ × N by

(u, n) ∈ S ⇐⇒ ∀|u| 6 i 6 |u|+ n : ∀w ∈ 2∗ : |w| 6 n− |u| =⇒ λu∗w,i = 0 . (3.1)

To obtain a Π0
1-set define B by u ∈ B ⇐⇒ ∀n ∈ N : (u, n) ∈ S. We claim that B is a

Π0
1-bar. Firstly, notice that the condition “|w| 6 n− |u|” easily ensures that if (u, n) ∈ S

then also (u∗ i, n) ∈ S for i = 0, 1, as required. To see that B is a bar let α ∈ 2N be arbitrary.
By the assumption of semi-uniformity there exists N such that for all β ∈ 2N and all n > N
we have

ρ (fn(αN ∗ β), f(αN ∗ β)) < ε/2 .

In particular we have that

∀w ∈ 2∗ : ∀i > N : λαN∗w,i = 0 . (3.2)

That ensures that αN ∈ B, since it actually over-fullfills 3.1.
Applying FANΠ0

1
we get a uniform bound for B; that is, there is M such that αM ∈ B

for all α ∈ 2N. Now let v ∈ 2∗ and n ∈ N such that both |v|, n >M . Let w be the suffix of
v: v = vM ∗ w.

Let k = max{n−M, |w|+M}. Then n 6M + k, and |w| 6 k −M . That means that,
since (vM, k) ∈ S, we have λv,n = 0, and hence, by the definition of λ we have

ρ (fn(v ∗ 000 . . . ), f(v ∗ 000 . . . )) < ε

for |v| >M and n >M . Since we can pad out any v ∈ 2∗ if it is shorter than M by 0s that
actually means that for any v ∈ 2∗ and all n >M we have ρ (fn(v ∗ 000 . . . ), f(v ∗ 000 . . . )) 6
ε. Finally, by the non-discontinuity this means that for any α ∈ 2N and n > M we have
ρ (fn(α), f(α)) < ε. Hence the convergence is uniform.

Conversely to see that UCT holds, it suffices to show that every point-wise continuous
f : 2N → R is bounded [4, Theorem 10]. We may assume that f > 0. Let fn = min{f, n}.
Then fn → f semi-uniformly, since a point-wise continuous function is locally bounded.
Now if fn → f uniformly then there exists M ∈ N such that |fM (α)− f(α)| < 1 for all
α ∈ CS. That means that there cannot be α such that f(α) > M + 1, since in that case
f(α) > M + 1 = fM (α) + 1, which means that |fM (α)− f(α)| > 1. So f(α) 6M + 1 for all
α ∈ 2N and we are done.
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Corollary 3.8. Assuming FANΠ0
1
. For a sequence of non-discontinuous functions fn, f :

X → Y defined on a compact6 X and into an arbitrary metric space Y , semi-uniform and
uniform convergence are equivalent.

Proof. By [16, Proposition 7.4.3] there exists a uniformly continuous and surjective function
F : 2N → X. Now let (gn)n>1 : 2N → R be defined by

gn(α) = ρ(fn(F (α)), f(F (α))) .

It is easy to see that gn is non-discontinuous and that gn → 0 semi-uniform. So by
Proposition 3.7 gn → 0 uniformly, which means for an arbitrary ε > 0 there exists N ∈ N
such that |gn| < ε for all n > N . Since F is surjective, for all x ∈ X and n > N we have
gn(α) = ρ(fn(x), f(x)). Hence fn → f uniformly.

Since every compact space is, by definition, totally bounded, which in turns implies
separability, we get the following, final corollary.

Corollary 3.9. Assuming ¬WLPO, BD-N, and FANΠ0
1

(all these hold in INT). For a

sequence of functions fn, f : X → Y defined on a compact X and into an arbitrary metric
space Y , point-wise and uniform convergence are equivalent.

This generalises the result of [5, §1 and §5], which there is proven with the help of
continuous choice and the full fan theorem.

4. Conclusion — from the Second to the Third Trick?

We should concede that, while our results are related to Ishihara’s First and Second Trick,
naming it the “Third Trick” might be slightly misleading. As mentioned above, the Second
Trick is an iteration of the First Trick, so one might expect that the Third Trick is an
iteration — or at least follows — from the Second one. This is not the case. One is tempted,
in the situation that fn → f , where fn, f : NN → N, to consider

F (α) =
∑
n>0

|fn(α)− f(α)| .

This is a well-defined function, since the sum is finite, because of the point-wise convergence.
If we could apply Ishihara’s Second Trick to F we would immediately get (our main)
Theorem 2.3. However, Ishihara’s Second Trick requires strong extensionality, and that is
not guaranteed with F . In [6] the first author has given a version of Ishihara’s second trick,
which does not rely on strong extensionality, but which in turn has weaker consequences,
which are not strong enough to deduce Theorem 2.3.
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Appendix: Proof of Theorem 3.2

Proof. The proof is analogous to Lemma 2.2, Theorem 2.3, and Proposition 2.4, which
correspond to Part (b), (c), and (d) respectively. The only real added effort is in Part (b),
where the loss of decidability is compensated by using approximate decisions for ε

4 ,
ε
2 , and ε.

(a) Let xn → x, and ε > 0. First, we may assume, without loss of generality, that
∀n ∈ N : ρ(fn(x), f(x)) < ε

2 , since we can otherwise consider an appropriate tail of

the sequence (fn)n>1. Secondly, we fix a modulus of convergence µ ∈ NN such that
ρ(xn, x) < 1

k for all n > µ(k).
(b) Our first claim is that for any n ∈ N we can decide whether there is zn and i ∈ N such

that ρ(zn, x) 6 1
n and

ρ(fi(zn), f(zn)) >
ε

4
or whether ρ(fi(xm), f(xm)) < ε for all i > n and m > µ(n).

First, notice that for fixed m there exists Nm such that ρ(fi(xm), f(xm)) < ε for all
i > Nm. Thus we can decide whether there exists i > n such that ρ(fi(xm), f(xm)) > ε

2
or whether ρ(fi(xm), f(xm)) < ε for all i > n. Choose a binary sequence γm that flags
these possibilities by 1 and 0 respectively.

Now define a sequence (wm)m>µ(n) such that wm = x, if γm = 0, and if γm = 1 set
wm = xm′ where m′ is the smallest index such that γm = 1. In words, as long as γm = 0
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we stay constant on x and if we ever hit a term such that γm = 1, we switch to xm and
stay constant from then on. The sequence wm is easily seen to be a Cauchy sequence,
and therefore converges to a limit w. Now, choose Nw such that ρ(fi(w), f(w)) < ε

2 for
all i > Nw. Since we only need to check for the indices between n and Nw (if any), we
can decide whether either ρ(fi(w), f(w)) < ε

2 for all i > n or whether there is j > n

such that ρ(fi(w), f(w)) > ε
4 . In the latter case we are done, since ρ(w, x) 6 1

n , so we
can choose zn = w. In the first case we must have γm = 0 for all m > µ(n): for assume
there is γm = 1. Then we can find the first such index m′, which means that w = xm′

and there exists i > n such that ρ(fi(xm′), f(xm′)) > ε
2 . This is a contradiction to

ρ(fi(w), f(w)) < ε
2 for all i > n.

(c) Using the previous part, fix a binary sequence (λn)n>1 such that

λn = 0 =⇒ ∃i > n, zn ∈ X : ρ(x, zn) 6
1

n
∧ ρ(fi(zn), f(zn)) >

ε

4
λn = 1 =⇒ ∀i > n,m > µ(n) : ρ(fi(xm), f(xm)) < ε .

We may assume that the sequence λn is increasing, and that λ1 = 0, since we are
otherwise done.

Now define a sequence (yn)n>1 in X by

λn = 0 =⇒ yn = zn ,

λn = 1 =⇒ yn = zm, where λm = 0 ∧ λm+1 = 1 .

In words, as long as λn = 0 we set yn = zn, and as soon as we find the first term such
that λn = 1, we stay constant on the previous term zn−1. Again, (yn)n>1 is easily seen
to be a Cauchy sequence, which therefore converges to a limit y in X.

Since fn(y)→ f(y) there is Ny such that

ρ(fn(y), f(y)) <
ε

4
for all n > Ny . (4.1)

Now either λNy = 1 or λNy = 0.
In the second case there cannot be n > Ny with λn = 1: In that case we could find

Ny 6 n′ < n such that λn′ = 0 and λn′+1 = 1. But then y = zn′ and there is i > n′ such
that ρ(fi(y), f(y)) > ε

4 , which is a contradiction to Equation 4.1, since i > n′ > Ny.
Hence λn = 0 for all n > Ny, which means that λn = 0 for all n, since (λn)n>1 is
increasing.

Together we can decide whether ∀n ∈ N : λn = 0 or whether ∃n ∈ N : λn = 1 which
means—by the definition of (λn)n>1—we have proven the main claim of the theorem.

(d) To prove the “LPO claim” of this theorem let (an)n>1 be a binary sequence. Without
loss of generality we may assume that (an)n>1 is increasing. Now consider the sequence
(vn)n>1 in X defined by

vn =

{
zm if an = 1 and am = 1− am+1

x if an = 0 .

Again, this is a Cauchy sequence, which therefore converges to a limit v. Since fn(v)→ 0
we can find Nv such that

∀n > Nv : ρ(fn(v), f(v)) <
ε

4
. (4.2)

Now either aNv = 1 and we are done, or aNv = 0. In this second case there cannot be
n > Nv such that an = 1: for assume there is such n. Then we can find Nv 6 m < n
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such that am = 1− am+1, which means that v = zm. Also, by assumption there exists
j > m such that ρ(fj(zm), f(zm)) > ε

4 , but that is a contradiction to Equation 4.2.
Thus, if aNv = 0, then ∀n ∈ N : an = 0. Altogether LPO holds.
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