
Logical Methods in Computer Science
Volume 18, Issue 3, 2022, pp. 22:1–22:22
https://lmcs.episciences.org/

Submitted Apr. 29, 2021
Published Aug. 12, 2022

TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM

M. CLARENCE PROTIN a AND GILDA FERREIRA b

a Rua Defensores da Liberdade 10 2o Esq., 7050-230 Montemor-o-Novo, Portugal
e-mail address: cprotin@sapo.pt

b Universidade Aberta, 1269-001 Lisboa, Portugal; Centro de Matemática, Aplicações Fundamentais
e Investigação Operacional — Faculdade de Ciências da Universidade de Lisboa, 1749-016 Lisboa,
Portugal
e-mail address: gmferreira@fc.ul.pt

Abstract. It is well-known that typability, type inhabitation and type inference are
undecidable in the Girard-Reynolds polymorphic system F. It has recently been proven
that type inhabitation remains undecidable even in the predicative fragment of system F
in which all universal instantiations have an atomic witness (system Fat). In this paper we
analyze typability and type inference in Curry style variants of system Fat and show that
typability is decidable and that there is an algorithm for type inference which is capable of
dealing with non-redundancy constraints.

Introduction

Type inhabitation, typability and type inference in Girard-Reynolds polymorphic system F
(also known as the second-order polymorphically typed lambda calculus) [Gir71, Rey74,
GLT89] are known to be undecidable [Lö76, DR19, Wel99].

Type inhabitation is the following problem: given a type A, is there a term having that
type? I.e. is there a term M such that ` M : A? Via the Curry-Howard isomorphism it
corresponds to asking if a formula is provable.

Typability goes in the other way around:

(Typ) Given a term M is there a type A and a type environment Γ such that Γ `M : A?

Via the Curry-Howard isomorphism typability corresponds to asking if a construction is
a proof of a formula, i.e. is there A such that M is the proof of A?

Key words and phrases: Lambda calculus; atomic polymorphism; typability; type inference; intuitionistic
logic.

The second author acknowledges the support of FCT — Fundação para a Ciência e a Tecnologia under the
projects UIDB/04561/2020, UIDB/00408/2020 and UIDP/00408/2020, and she is also grateful to CMAFcIO —
Centro de Matemática, Aplicações Fundamentais e Investigação Operacional and to LASIGE — Computer
Science and Engineering Research Centre (Universidade de Lisboa).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-18(3:22)2022
© M. Clarence Protin and G. Ferreira
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

22:2 M. Clarence Protin and G. Ferreira Vol. 18:3

What about being able to find the actual types (and type environments) which satisfy
the condition above if the answer is affirmative? In this paper by the problem of type
inference we mean the following:

(Ti) Given a term M such that (Typ) admits an affirmative answer find a procedure to
generate types A and type environments Γ such that Γ `M : A.

Having an effective procedure for (Typ) the formulation above is readily seen to be
equivalent to the standard formulation.

It has recently been proven [Pro21] that type inhabitation remains undecidable even in a
very weak fragment of system F (known as system Fat or atomic polymorphism [Fer06, FF13])
where only atomic instantiations are allowed.

What about typability and type inference for Fat? Is typability decidable? Can we
obtain an algorithm for type inference? In this paper we show that typability is decidable
and we give a procedure for type inference.

In analyzing the typing properties of Fat, the system is considered not in its original
Church style formulation (in which case they are trivial) but in Curry style variants where
terms do not come with full type annotation.

The paper is structured as follows. In the next section we recall the system involved in
the present study: system Fat.

In Section 2 we show that typability is decidable for Fat in Curry style (according to
the terminology of [Wel99][p.122] for F). In Section 3 we show that typability for Fat in the
Polymorphic Curry style (in which terms contain additional polymorphic typing information)
is also decidable, the proof also furnishing a procedure for type inference restricted to
redundant typings. In Section 4 we analyze non-redundant typability, show how we can
check for such typings and generate them if they exist. In Section 5 it is remarked that the
results of Section 4 yield as a particular case a method for type inference for Polymorphic
Curry style Fat. This section also contains various other remarks and considerations about
future work.

1. System Fat

The atomic polymorphic system Fat [FF13] is the fragment of Girard/Reynolds sys-
tem F [Gir71, Rey74] induced by restricting to atomic instances the elimination inference
rule for ∀, and the corresponding proof term constructor. System Fat was originally pro-
posed as a natural and appealing framework for full intuitionistic propositional calculus
(IPC) [Fer06, SF20]. Fat expresses the connectives of IPC in a uniform way avoiding bad
connectives (according to Girard [GLT89], page 74) and avoiding commuting conversions.
This explains the usefulness of the system in proof theoretical studies [Fer17a, Fer17b]. For
related work in the topic see [PTP22], where the authors investigate predicative translations
of IPC into system Fat using the equational framework presented in [TPP19] and giving an
elegant semantic explanation (relying on parametricity) of the syntactic results on atomic
polymorphism. Originally system F and system Fat were presented in Church style where
types are embedded in terms. The questions of typability and type inference, mentioned in
the Introduction, are meaningful only when we are in (variants of) Curry style, i.e., terms

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:3

are untyped and the type information is kept apart. Each term has a set (which may be
empty) of possible types. In what follows we present Fat in Polymorphic Curry style.

The types/formulas in Fat are exactly the ones of system F:

A,B ::= X |A→ B | ∀X.A
The terms in Fat are given by

M,N ::= x |MN |λx.M |MX |ΛX.M
having the following typing/inference rules

(VAR) x ∈ dom(Γ)
Γ ` x : Γ(x)

Γ ∪ {x : A} `M : B
(ABS)

Γ ` λx.M : A→ B
Γ `M : A→ B Γ ` N : A

(APP)
Γ `MN : B

Γ `M : A(GENX) X /∈ FTV (Γ)
Γ ` ΛX.M : ∀X.A

Γ `M : ∀X.A(INST)
Γ `MY : A[Y/X]

where a type environment Γ is a finite set x1 : A1, . . . , xn : An where xi are assumption (term)
variables and Ai are types. We denote the set {x1, . . . , xn} by dom(Γ), the set {A1, . . . , An}
by ran(Γ) and write Γ(x) = A whenever x : A ∈ Γ. We denote the free variables in the
types in ran(Γ) by FTV (Γ).

Note that, as stressed in the beginning of this section, the difference between system Fat

and system F lies in the restriction of the universal instantiation rule to type variables.
We can drop some of the information in the terms and present Fat alternatively in Curry

style (see [Wel99], page 122 in the context of system F) which differs from the Polymorphic
Curry style in the terms allowed

M,N ::= x |MN |λx.M
having the following type inference rules

(VAR) x ∈ dom(Γ)
Γ ` x : Γ(x)

Γ ∪ {x : A} `M : B
(ABS)

Γ ` λx.M : A→ B
Γ `M : A→ B Γ ` N : A

(APP)
Γ `MN : B

Γ `M : A(GENX) X /∈ FTV (Γ)
Γ `M : ∀X.A

Γ `M : ∀X.A(INST)
Γ `M : A[Y/X]

In what follows, we use A{Y/X} to denote a type that results from A by replacing
some (possibly all) free occurrences of X by Y . Observe that if we have Γ ` M : A in
Curry style derived using the (INST) rule then we have Γ ` M : ∀X.A{X/Y } for some
type variables X and Y . Likewise if we have Γ `MY : A in Polymorphic Curry style then
Γ `M : ∀X.A{X/Y } for some type variable X.

2. Typability for the Curry system

In this Section we show that the typability problem for Fat, considering the system in Curry
style, is decidable. The strategy will be to reduce the typability problem to the corresponding
problem in the simply typed lambda-calculus λ→ which is known to be decidable. To do
this, although not strictly necessary, we will employ a theorem which holds more generally
for Polymorphic Curry style terms.

22:4 M. Clarence Protin and G. Ferreira Vol. 18:3

Fix a type variable ◦. Given a type A of Fat we define 〈A〉 as the type of λ→ given
by 〈X〉 := ◦, 〈B → C〉 := 〈B〉 → 〈C〉 and 〈∀X.A〉 := 〈A〉. Let M be a term of Fat

in Polymorphic Curry style (or in Curry style). We define [M] as the term of λ→ given
by [x] := x, [MN] := [M][N], [λx.M] := λx.[M], [MX] := [M], [ΛX.M] := [M]. Finally for
a type environment Γ for Fat we define the environment 〈Γ〉 such that dom(〈Γ〉) := dom(Γ)
and 〈Γ〉(x) := 〈Γ(x)〉.

The following lemma is easily proved by induction on the structure of the type.

Lemma 2.1. Let A be an arbitrary type and X and Y be type variables. Then

〈∀X.A〉 = 〈A{Y/X}〉 = 〈A〉.

Theorem 2.2. Given a term M in Polymorphic Curry style, a type environment Γ and a
type A in Fat,

if Γ `Fat M : A then 〈Γ〉 `λ→ [M] : 〈A〉.

Proof. The proof is done by induction on the complexity of M . Let M be a variable x.
Then it is typed with (VAR) Γ `Fat x : Γ(x) and obviously 〈Γ〉 `λ→ x : 〈Γ〉(x) = 〈Γ(x)〉.
Consider an application Γ `Fat MN : A. Then Γ `Fat M : B → A and Γ `Fat N : B for
some B. By induction hypothesis 〈Γ〉 `λ→ [M] : 〈B〉 → 〈A〉 and 〈Γ〉 `λ→ [N] : 〈B〉 hence
〈Γ〉 `λ→ [M][N] = [MN] : 〈A〉. If we have an abstraction Γ `Fat λx.M : A → B then
Γ ∪ {x : A} `Fat M : B. By induction hypothesis 〈Γ ∪ {x : A}〉 `λ→ [M] : 〈B〉 hence

〈Γ〉 ∪ {x : 〈A〉} `λ→ [M] : 〈B〉
Using (ABS) we get

〈Γ〉 `λ→ λx.[M] : 〈A〉 → 〈B〉
Which by definition of [·] yields

〈Γ〉 `λ→ [λx.M] : 〈A→ B〉
In the case of universal application we have Γ `Fat MX : A. But then Γ `Fat M :

∀Y.A{Y/X}. By induction hypothesis 〈Γ〉 `λ→ [M] : 〈∀Y.A{Y/X}〉 Lemma 2.1
= 〈A〉 and

since [MX] = [M] we get
〈Γ〉 `λ→ [MX] : 〈A〉.

Finally the case of universal abstraction, Γ `Fat ΛX.M : ∀X.A follows from [ΛX.M] =
[M] and 〈∀X.A〉 = 〈A〉 and the induction hypothesis for Γ `Fat M : A.

Corollary 2.3. If M is Curry typable then M is λ→ typable.

Proof. Immediate by Theorem 2.2, noticing that being M a term of Fat in Curry style,
[M] = M .

Note that, given a λ→-term, the inverse implication is also valid, not only for the Curry
system but for the Polymorphic Curry system.

Corollary 2.4. The typability problem is decidable in Curry system Fat.

Proof. From the previous note and Corollary 2.3 we have that Curry typability is equivalent
to λ→ typability and the latter is known to be decidable.

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:5

3. Typability for Polymorphic Curry terms

In this section we address the more complex question of typability of Fat presented in
Polymorphic Curry style.

Let ◦ and • be two fixed different type variables in Fat.
We define the subsystem F◦•at of Fat whoses types are given by

A,B := ◦|A→ B|∀ • .A
and terms by

M,N := x|MN |λx.M |M • |Λ • .M
The type inference rules for F◦•at are the same as the ones for Fat except for the universal

inference rules that are given by

Γ `M : A (GEN•)
Γ ` Λ • .M : ∀ • .A

Γ `M : ∀ • .A (INST)
Γ `M• : A

Given a type A of Fat we define [A] as the type of F◦•at given by [X] = ◦, [A → B] =
[A] → [B] and [∀X.A] = ∀ • .[A]. For a type environment Γ for Fat we define the type
environment [Γ] for F◦•at such that dom([Γ]) = dom(Γ) and [Γ](x) = [Γ(x)].

We define a map from the terms of Fat to the terms of F◦•at given by |x| = x, |MN | =
|M ||N |, |λx.M | = λx.|M |, |MX| = |M |• and |ΛX.M | = Λ • .|M |.

Analogously to Lemma 2.1 we have the following result:

Lemma 3.1. Let A be an arbitrary type in Fat and X and Y be type variables. Then
[A{Y/X}] = [A].

3.1. Reduction to F◦•at.

Proposition 3.2. Let M be a term in Fat. If there are a type environment Γ and a type A
in Fat such that Γ `Fat M : A then [Γ] `F◦•at |M | : [A].

Proof. The proof is done by induction on the structure ofM . LetM be a variable x. Then it is
typed with (VAR) Γ `Fat x : Γ(x) and, since |x| = x, obviously [Γ] `F◦•at |x| : [Γ](x) = [Γ(x)].

Consider an application Γ `Fat MN : A. Then Γ `Fat M : B → A and Γ `Fat N : B
for some type B. By induction hypothesis [Γ] `F◦•at |M | : [B → A] = [B] → [A] and
[Γ] `F◦•at |N | : [B] hence, since |MN | = |M ||N |, we have [Γ] `F◦•at |MN | : [A].

If we have an abstraction Γ `Fat λx.M : A → B then Γ ∪ {x : A} `Fat M : B. By
induction hypothesis [Γ ∪ {x : A}] `F◦•at |M | : [B] hence

[Γ] ∪ {x : [A]} `F◦•at |M | : [B]

[Γ] `F◦•at λx.|M | : [A]→ [B]

[Γ] `F◦•at |λx.M | : [A→ B]

In the case of INST we have Γ `Fat MX : A. But then Γ `Fat M : ∀Y.A{Y/X}. By

induction hypothesis [Γ] `F◦•at |M | : [∀Y.A{Y/X}] = ∀ • .[A{Y/X}] Lemma 3.1
= ∀ • .[A] and

applying |M |• = |MX| we get
[Γ] `F◦•at |MX| : [A].

22:6 M. Clarence Protin and G. Ferreira Vol. 18:3

Finally consider the case of (GENX), Γ `Fat ΛX.M : A = ∀X.B. We have Γ `Fat M : B
with X not belonging to the free type variables in Γ. By induction [Γ] `F◦•at |M | : [B].
Then since • does not belong to the free type variables in [Γ], using (GEN•) we get
[Γ] `F◦•at Λ • .|M | : ∀ • .[B] = [∀X.B]. Since Λ • .|M | = |ΛX.M |, the result follows.

Note that we work modulo α-equivalence for type variables, in particular we assume the
name of the bound variables is always appropriately chosen. Since in F◦•at, the type variable
• does not occur in the scope of any quantifier it is clear that if we substitute occurrences
of • in a type A of F◦•at by any type variables other ◦, then we obtain a α-equivalent type A′

in Fat.

Lemma 3.3. Assume that Γ `F◦•at M : A. Let M ′ be the term of Fat which results from
substituting some occurrences of subterms of the form Λ•.N in M by ΛX.N with X some type
variable different from ◦ and N• in M by NY with Y any type variable (different occurrences
of the subterms may be replaced using different type variables). Then Γ `Fat M

′ : A′ where
A′ is α-equivalent to A.

Proof. The proof is done by induction on the structure of M .
If M is an assumption variable x and Γ `F◦•at x : A then x′ = x and the result follows

immediately since Γ `F◦•at x : A implies Γ `Fat x : A.
If M is NS and Γ `F◦•at NS : A then it comes from (APP).
Thus we have Γ `F◦•at N : B → A and Γ `F◦•at S : B for some type B.

Let us write M ′ = (NS)′ = N ′S′ where N ′ and S′ are the result of applying restrictions
of the substitution defining M ′. Then by induction hypothesis Γ `Fat N

′ : (B → A)′

and Γ `Fat S′ : B′ for some type B′ α-equivalent to B and some type (B → A)′ α-
equivalent to B → A. Thus (B → A)′ is of the form C → D where C is α-equivalent
to B, and thus α- equivalent to B′, and D is α-equivalent to A. Applying (APP) we obtain
Γ `Fat N

′S′ = (NS)′ : D with D α-equivalent to A.
If M is λx.N then Γ `F◦•at λx.N : A → B which comes from (ABS) and we have

Γ ∪ {x : A} `F◦•at N : B. Let us write M ′ = λx.N ′. Then by induction hypothesis

Γ ∪ {x : A} `Fat N
′ : B′ with B′ α-equivalent to B. But using (ABS) we obtain Γ `Fat

λx.N ′ : A → B′. Then the result follows since M ′ = λx.N ′ and A → B′ is α-equivalent
to A→ B.

If M is N• then Γ `F◦•at N• : A comes from (INST) and we have Γ `F◦•at N : ∀ • .A.

Let M ′ = N ′X (where X may be •). By induction hypothesis Γ `Fat N
′ : (∀ • .A)′

where (∀• .A)′ is α-equivalent to ∀• .A. If we write (∀• .A)′ = ∀Y.B (where Y can be •) then
it is clear that B must be α-equivalent to A. Applying (INST) for X yields Γ `Fat N

′X : B
since Y is not free in B. The result then follows, since M ′ = N ′X and B is α-equivalent
to A.

If M is Λ• .N then Γ `F◦•at Λ• .N : ∀• .A comes from (GEN•) and we have Γ `F◦•at N : A.

Let us writeM ′ = ΛX.N ′ whereX can be • but not ◦. By induction hypothesis Γ `Fat N
′ : A′

with A′ α-equivalent to A. Applying (GENX) (since the proviso is trivially satisfied) yields
Γ `Fat ΛX.N ′ : ∀X.A′. The result then follows since ∀X.A′ is α-equivalent to ∀ • .A.

Corollary 3.4. Given a Polymorphic Curry-term M , if |M | is typable in F◦•at then M is
typable in Fat.

Proof. Let M be a term in Fat which does not contain a subterm of the form Λ ◦ .N . Then
M results from |M | by a substitution process as in Lemma 3.3 and the result follows. Let

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:7

M be a term in Fat which contains a subterm of the form Λ ◦ .N . Note that the typability
of a term in Fat does not change if we rename all the type variables appearing in the term.
Thus renaming ◦ to a fresh type variable the result follows as above.

Hence combining Proposition 3.2 and Corollary 3.4 we get

Theorem 3.5. A Polymorphic Curry-term M is typable in Fat if and only if |M | is typable
in F◦•at.

3.2. Typability in F◦•at. In what follows we work in F◦•at.
We define the set S of type schemes by

σ, τ := α|σ → τ |∀ • .σ
where α is a type scheme variable.

A generalised environment is a finite set of elements of the form x : σ, where x is an
assumption variable and σ is a type scheme. Unlike in the usual environments x may occur
more than once.

By a multisystem we mean a finite set1 {e1, . . . , ek} such that each ei is a multiequation2

a1 = · · · = aj with the ai in S. Given a generalised environment D we get a multisystem D̃
in the following way: let D[x] be the set of all elements σi in S such that x : σi ∈ D. Then
we form the multiequation σ1 = · · · = σk where the σi are all the elements in D[x]. The

multisystem D̃ is defined by taking the union of such multiequations for all x in the domain
of D.

Let M be a term of F◦•at. Assume w.l.o.g. that M is in Barendregt form, that is, the
names of all the bound assumption variables are chosen to be distinct between themselves
as well as distinct from the free assumption variables3. A tagging A for M is a map which
assigns subterms and bound assumption variables4 of M to type scheme variables in such
a way that distinct subterms/bound variables are assigned distinct type scheme variables.
We denote the image of the tagging of a subterm/bound variable N by A(N). Here we are
using strict (typographical) equality of subterms.

Definition 3.6. Let M be a term of F◦•at and A a tagging for M . The associated multisystem
of M is the set {eN}N∈T where T is the set of subterms of M which are not assumption
variables and eN are multiequations defined as follows:

• if N := SP , A(N) = α1, A(S) = α2 and A(P) = α3 then eN is α2 = α3 → α1

• if N := λx.S, A(N) = α1, A(x) = α2 and A(S) = α3 then eN is α1 = α2 → α3

• if N := S•, A(N) = α1 and A(S) = α2 then eN is α2 = ∀ • .α1

• if N := Λ • .S, A(N) = α1 and A(S) = α2 then eN is α1 = ∀ • .α2

Lemma 3.7. Let M be a term in F◦•at such that Γ `F◦•at M : A and let M be an associated
multisystem of M . Then it is possible to replace each type scheme variable in M by a type
in F◦•at in such a way that the multiequations in M hold.

1Or equivalently a finite sequence.
2We consider equality between type schemes as usual for types.
3For example the term M = (λx.x)(λx.x) is to be presented in the form (λx.x)(λy.y) for y an assumption

variable distinct from x. The subterms λx.x and λy.y are considered distinct.
4The bound variables are needed in the definition because in terms like M := λx.yz, we want to have tags

not just for the subterms y, z, yz and M but also for x.

22:8 M. Clarence Protin and G. Ferreira Vol. 18:3

Proof. Suppose that Γ `F◦•at M : A. Then Γ defines a typing for each subterm/bounded
variable N of M , which we denote by B(N). Let A be a tagging for M and M be its
associated multisystem. Let us prove that replacing the type scheme variables α = A(N)
occurring in M by B(N) the multiequations (on F◦•at types) hold.

Let e be a multiequation in M.

If e is of the form α1 = α2 → α3 then two situations may occur: i) there are terms S
and P such that α1 = A(S), α2 = A(P) and α3 = A(SP) or ii) there are terms x and
S such that α2 = A(x), α3 = A(S) and α1 = A(λx.S). In case i), after the replacement,
we obtain the B(S) = B(P)→ B(SP) and in case ii) we obtain B(λx.S) = B(x)→ B(S).
Hence the equations hold.
If e is of the form α1 = ∀ • .α2 then two situations may occurs: i) there is a term S such
that α1 = A(S) and α2 = A(S•) or ii) there is a term S such that α1 = A(Λ • .S) and
α2 = A(S). In case i), after the replacement, we obtain the B(S) = ∀ • .B(S•) and in case
ii) we obtain B(Λ • .S) = ∀ • .B(S). Hence the equations hold.

In general given a term M and a tagging A, a solution to the associated multisystem
E := {eN}N∈T is an assignment f of types of F◦•at to the type scheme variables in E such
that the resulting set of multiequations (now in F◦•at) hold.

Given a multiequation e we denote by e[i] the ith element counting from the left. We
denote by e \ e[i] the multiequation which results from eliminating the ith term from e: if e
is σ1 = · · · = σi = · · · = σn then e \ e[i] is σ1 = · · · = σi−1 = σi+1 = · · · = σn. If e is a
single equation, e \ e[i] consists in eliminating the equation e. Given two multiequations e1

and e2 we denote by e1.e2 the result of concatenating the two multiequations into a single
multiequation in the expected way.

We consider the following rules to transform (reduce) a multisystem F .

E e e′

E e \ e[i].e′
(Joini,j), if e[i] = e′[j]

E e
E e \ e[i] σ = τ σ′ = τ ′

(Arri,j), if e[i] = σ → σ′ and e[j] = τ → τ ′, i 6= j

E e
E e \ e[i] σ = τ

(Quanti,j), if e[i] = ∀ • .σ and e[j] = ∀ • .τ , i 6= j

where E are the other multiequations in the multisystem F .

Remark 3.8. Let E be a multisystem whose multiequations hold for a particular substitution
of type scheme variables by types in F◦•at. By applying the rules above, the multisystem E′

obtained from E is such that its multiequations still hold under the same substitution.

Definition 3.9. Given a multisystem E, a reduction sequence is a sequence of applications
of the above rules. A multisystem is called irreducible if it is no longer possible to apply a
rule to it. By a clash we mean a multiequation that contains type schemes both of the form
σ → σ′ and ∀ • .σ.

The following observation is immediate:

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:9

Lemma 3.10. The rules (considered in both directions) are sound. More precisely, for any
substitution of the type scheme variables for types of F◦•at the rules are sound for the standard
notion of type equality.

Definition 3.11. The length of a type scheme is defined inductively as follows:

l(α) = 1
l(σ → τ) = l(σ) + l(τ) + 1
l(∀ • .τ) = l(τ) + 1

Lemma 3.12. All reduction sequences of a multisystem are finite.

Proof. Given a multisystem E we consider the sequence σ1, . . . , σk of all the type schemes
which appear in all the multiequations of E with any order. Take the length of these type
schemes to obtain a sequence of natural numbers n1, . . . , nk. We denote this sequence
by l(E). Consider the effect of the rules on the sequences l(E). (Joinij) simply removes
an element from the sequence. (Arri,j) replaces an element nk with four natural numbers
m, o, p, q < nk and (Quanti,j) replaces an element nk with two natural numbers m, p < nk.
Thus reductions starting from a sequence σ1, . . . , σk terminate in at most 4n1 + · · ·+ 4nk

steps.

Remark 3.13. A multiequation of an irreducible multisystem contains at most one type
scheme of the form σ → τ and at most one type scheme of the form ∀ • .σ.

Definition 3.14. A resolution of a term M is an irreducible multisystem without clashes
obtained by reducing the associated multisystem of M .

It is immediate that a resolution of a term M only contains multiequations of the
following three forms (modulo permutations of the order):

1) α1 = · · · = αn
2) α1 = · · · = αn = ∀ • .σ
3) α1 = · · · = αn = σ → τ

For 2) and 3) above, we call the multisystems α1 = · · · = αn the body and ∀ • .σ and
σ → τ the head. We also refer to multisystems of type 1) as bodies.

Definition 3.15. Given a resolution E of a term M , its minimisation is constructed as
follows: choose a single type scheme variable from each multiequation of type 1) and from
each body of multiequations of types 2) and 3). We say that these chosen type scheme
variables are associated to their respective bodies. Then discard all type scheme variables in
the bodies of the multiequations except for the previously selected type scheme variables.
Let α be a scheme variable occurring in a head of a multiequation e. If α occurs in the body
of some multiequation, then we replace it in e by the type scheme variable associated to
that body.

Definition 3.16. Let E be the minimisation of a resolution of a term M . Its associated
digraph G(M) is constructed as follows. Its vertices are the type scheme variables that
appear in E and we have a directed edge (α1, α2) whenever there is a multiequation e in E
such that α2 is in its body and α1 is in its head.

We illustrate the previous concepts with an example.
Consider the term Λ • .((Λ • .x1)•)(λx1.(x0(Λ • .x2))). We tag the subterms and bound

assumption variables:

22:10 M. Clarence Protin and G. Ferreira Vol. 18:3

Λ • .((Λ • .x1)•)(λx1.(x0(Λ • .x2))) : α0

((Λ • .x1)•)(λx1.(x0(Λ • .x2))) : α1

((Λ • .x1)•) : α2

λx1.(x0(Λ • .x2)) : α3

Λ • .x1 : α4

x0(Λ • .x2) : α5

Λ • .x2 : α6

x1 : α7

x0 : α8

x2 : α9

The associated multisystem consists of the equations:

α0 = ∀ • .α1

α2 = α3 → α1

α4 = ∀ • .α2

α3 = α7 → α5

α8 = α6 → α5

α6 = ∀ • .α9

α4 = ∀ • .α7

Applying the rules we get the irreducible multisystem:

α0 = ∀ • .α1

α4 = ∀ • .α2

α7 = α2 = α3 → α1

α3 = α7 → α5

α8 = α6 → α5

α6 = ∀ • .α9

Applying minimisation yields:

α0 = ∀ • .α1

α4 = ∀ • .α2

α2 = α3 → α1

α3 = α2 → α5

α8 = α6 → α5

α6 = ∀ • .α9

There are no clashes. The associated graph has vertices

V = {α0, α1, α2, α3, α4, α5, α6, α8, α9}

and directed edges

E = {(α0, α1), (α4, α2), (α2, α1), (α2, α3), (α3, α2), (α3, α5), (α8, α6), (α8, α5), (α6, α9)}.

Lemma 3.17. A term M is typable in F◦•at if and only if it has a resolution with an associated
digraph not containing a cycle.

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:11

Proof. Let M be typable in F◦•at. By Lemma 3.7 and Remark 3.8 we have that M has a
resolution. Also, it cannot contain a cycle for this would imply an impossible condition
on the possible types of subterms of M . On the other hand if M has a resolution and its
associated digraph G(M) does not contain a cycle then we obtain a typing for M as follows.
We tag the terminal vertices (those with no paths leaving them) of G(M) with ◦. Since
there are no cycles we can tag the rest of the vertices inductively as follows. Assume that
the descendants of a vertex α have already been tagged. If it has two descendants α1 and
α2 tagged with A and B then we tag α with A→ B. If it has a single descendant β tagged
with A then we tag it with ∀ • .A. It is easy to see by the construction of the associated
graph that these are the only two possible situations. Each vertex of the associated digraph
is also associated to a body in the resolution of M . Substitute all type schemes in the body
by the new type associated to the vertex. With this substitution the multiequations of the
resolution continue to hold. Substituting these new values in a (x : σ) of the inferred typing
of M for each x yields an environment rendering M typable in F◦•at.

Since it is decidable if a term M has a resolution and whether its associated digraph
has a cycle we get that:

Lemma 3.18. Typability in F◦•at is decidable.

Hence, combining the previous lemma with Theorem 3.5 yields:

Theorem 3.19. Typability for Fat in Polymorphic Curry style is decidable.

The proof of Lemma 3.17 yields a method of type inference for F◦•at similar to the case
of simply typed calculus [Rém02][1.4.3]. The proof of Corollary 3.4 allow us to extend such
type inference strategy to a method of type inference for Fat restricted to redundant typings.

4. Non-redundant Typability

A natural question arises: when is a term M of Fat typable with non-redundant quantifiers?
For example, if a term M contains subterms N(xX) and N(xY), where x is the same free
or bound assumption variable (after imposing the Barendregt condition), then the type of x
must be of the form ∀Z.A and the types of xX and xY must be equal. The type of xX
is A[X/Z] and the type of xY is A[Y/Z]. Thus Z cannot occur in A and we see that ∀Z is
redundant.

We have seen by Corollary 2.3 that typable Curry terms coincide with the typable terms
of λ→. If a term M has a derivation yielding a typing Γ `M : A in which all the quantifiers
in Γ and A are redundant then by lemma 3.11 of [Wel99] (which carries over from F to Fat)
M has a derivation yielding a typing Γ′ ` M : A′ in which all the redundant quantifiers
in Γ and A have been eliminated, that is, we obtain canonically a derivation in λ→. Clearly
non-redundancy is very relevant for a meaningful notion of type inference in Fat. A major
advantage of the Polymorphic Curry style presentation of Fat is that the second-order
information present in the terms allows us to impose fine-grained non-redundancy conditions
in the procedure for type inference.

In this Section we consider Fat in Polymorphic Curry style.

Definition 4.1. Given a term M in Fat typable with a type environment Γ, we say that it
is a non-redundant typing if for any subterm of M of the form NX or ΛX.N if we consider

22:12 M. Clarence Protin and G. Ferreira Vol. 18:3

the induced typings5 Γ′ ` N : ∀Y.B in the first case or Γ′ ` N : B in the second, then Y
occurs free in B in the first case or X occurs free in B in the second.

Non-redundancy involves imposing a set of positive constraints relative to variable
occurrences for the types of certain subterms (which we call polymorphic subterms). We
can discard these constraints partially (i.e. only impose them on a subset of such subterms)
or totally without losing typability. Typability in general requires only a set of negative
constraints imposed by the proviso of rule (GENX). In this section we will address the
problem of typability in the setting of positive constraints on a choice of polymorphic
subterms which includes both the (empty) case corresponding to general typability and the
case of non-redundancy above. Given a selection c of occurrences of polymorphic subterms
of a term M we call a typing of M which satisfies the positive constraints on these subterms
c-non-redundant.

We now define the set S′ of type schemes by

σ, τ := α|σ[X/Y]|σ → τ |∀X.σ
where α is a type scheme variable and X and Y are type variables of Fat. Type schemes of
the form αs where s is a (possibly empty) string of expressions of the form [X/Y] are called
variants of α. If a type scheme is not a variant of an α then it is called complex. We also
write α[X1/Y1]...[Xn/Yn] as α[X1...Xn/Y1...Yn] or α[X̄/Ȳ].

We consider that (σ → τ)[X/Y] = σ[X/Y]→ τ [X/Y] and (∀Z.σ)[X/Y] = ∀Z.σ[X/Y]
(for X and Y distinct from Z) and (∀Z.σ)[X/Z] = ∀Z.σ.

If X,Y, Z,W are distinct type variables we consider that σ[X/Y][Z/W] = σ[Z/W][X/Y].
Also we consider that σ[Y/X][W/X] = σ[Y/X] and σ[X/X] = σ.

We define a generalised environment as previously. A multisystem is also defined as
previously.

Given a term M in Fat, we define a tagging A exactly as before. We also have a variable
tagging V which assigns to each occurrence of a subterm of the form NX or ΛX.N of M a
new type variable Y . We denote the value of V sometimes by XNX or XΛX.N when there
is only one occurrence. We also use the notation NX : α for α = A(NX). The associated
multisystem is defined as F ∪ {eN}N∈T where T is the set of occurrences of subterms of M
which are not assumption variables and F is as described below. When N is an occurrence
of an arrow application or an arrow abstraction eN is defined as in the previous section (note
that occurrences of the same subterm of this form give rise to the same multiequations). In
the case of an occurrence of a subterm of the form NX we have that eNX is

α1 = αW2 [X/W]

where α1 = A(NX), α2 = A(N), W = V(NX) and αW2 is a fresh type scheme variable
identified uniquely by α2 and W . Also eΛX.N is

α1 = ∀W.α2[W/X]

where α1 = A(ΛX.N), α2 = A(N) and W = V(ΛX.N).
Finally F consists of equations α = ∀W.αW for all occurences of subterms of M of the

form NX, where α = A(N) and W is the value of V for each occurrence of the subterm.

5Given a typing Γ `M : A and a subterm N of M there is a uniquely determined type environment Γ′

and type B such that Γ′ ` N : B. We call this the induced typing on N by Γ `M : A.

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:13

Given a term M and taggings A and V we define a solution to the associated multisystem
F ∪ {eN}N∈T exactly as before.

We consider a binary predicate Occ(X,σ) over the sorts of type variables and type
scheme variables which will be interpreted as meaning that X must occur free in the assign-
ment of σ for any solution of the associated multisystem.

We associate to a term M a set of formulas B(M) (called basic constraints) in the
following way: for all subterms of M of the form ΛX.S we add∧

αi

¬Occ(X,αi)

where αi = A(x) for the free assumption variables x in S. Note that these are the
constraints required for typability in general.

Given a selection c for a term M we define a set Kc(M) which includes B(M) and a
possibly empty set of positive constraints constructed as follows: for subterms of M chosen
by c of the form ΛX.S we add

Occ(X,A(S))

and for subterms of M chosen by c of the form NX we add

Occ(W,αW)

with α = A(N) and W is the value of V for that occurrence of the subterm.

Note that Occ(X,A(S)) implies that Occ(W,A(S)[W/X]) where W = V(ΛX.S).

For other properties of substitution and the occurrence predicate (which will be used in
the proofs ahead) see the occurrence axioms listed at the beginning of Section 4.1.

Note that if we consider the term M = λxy.y(I(xX))(I(xY)) where I = λz.z then by
the definition of tagging we must first ensure that the bound variables are all distinct. Thus
the second occurrence of the subterm I would become I ′ = λw.w where w is an assumption
variable distinct from z. We also take occasion to note that it can happen that for a term N
with a redundant typing Γ ` N : A we can still have that A does not contain any redundant
quantifiers.

When we write σ[X/Y] we are assuming that σ represents a possible type A in which
X is free for Y in A. We call such values of σ adequate for [X/Y]. For a sequence of
substitutions σs we define A being adequate to s inductively. If s is a single substitution
then the definition is as previously. Otherwise let s = s′[Y/X]. Then a type A is adequate
for s if As′ is adequate for [Y/X].

A partial substitution {X/Y } is formally given by two type variables X and Y and a
strictly increasing (possibly empty) sequence of natural numbers n1, . . . , nk. The interpreta-
tion is as follows. We consider the sequence of all the free occurrences of Y as they occur
from the left. Then the free occurrences of Y in positions n1, . . . , nk in that sequence are
substituted by X. Obviously such a partial substitution can only be applied to types that
have at least nk free occurrences of Y .

22:14 M. Clarence Protin and G. Ferreira Vol. 18:3

We thus can extend the notion of adequacy to partial substitutions {Y/X} and to
partial substitution sequences s.

Note that if B = A[X/Y] with A adequate for [X/Y] then A = B{Y/X} for some partial
substitution {Y/X} with Y free for X in B for the occurrences of X which are substituted.
If A = Bs then B = As where s is some sequence of partial substitutions involving the
variables in s. We can always assume that s represents a simultaneous substitution and
likewise for s.

Since a term has a c-non-redundant typing if and only if it has a c-non-redundant typing
in which all the bound variables are distinct and different from the type variables that
appear in the term (and if we need to rename a bound variable we can do this in such a
way that this situation is preserved) we may assume that the solutions (type values) we are
considering are adequate for the substitutions that appear in the associated multisystem.

Lemma 4.2. Let M be a term in Fat such that Γ `Fat M : A is a c-non-redundant typing
and let M be its associated multisystem for a given A and V. Then we can replace each type
scheme variable in M by a type in such a way that the multiequations in M hold as well as
the corresponding constraints Kc(M).

Proof. This is shown in the same way as in Lemma 3.7. We need only consider two
further cases. Consider a c-non-redundant typing Γ for M and let Γ ` NX : A and
Γ ` N : B for a subterm NX of M . Consider a given occurrence of NX with W the
value of V for that occurrence. Let α = A(NX) and β = A(N). Now B must be of the
form ∀Y.C and we have by (INST) that A = C[X/Y]. Renaming the bound variable Y
to W (we can assume that there are no variable clashes) we get that B = ∀W.C[W/Y].
Hence A = C[X/Y] = C[W/Y][X/W]. Hence we put βW = C[W/Y] and the equation
α = βW [X/W] holds. And also β = ∀W.βW . The other case is similar. That the constraints
hold follows from the definition of c — non-redundancy.

Given a multiequation e we denote by e[X̄/Ȳ] the multiequation for which

e[X̄/Ȳ][i] = e[i][X̄/Ȳ]

Given a term M with a variable tagging V we denote by ◦ a type variable which does not
occur among the variables in the substitutions of the associated multisystem of M . Let W̄
be the sequence of all such variables and consider the substitution sequence [◦/W̄]. Then
for any substitution s involving variables of W̄ we have that As[◦/W̄] = A[◦/W̄]. Here,
when considering A as part of the solution to the associated multisystem, without loss of
generality we can assume that the types A never contain ◦ either as a free or bound variable.
Given M and V we use the notation © = [◦/W̄].

We consider the following rules to transform a multisystem F . We have (Arri,j) as in
the previous section. In addition, we have the following two rules:

E e
E e \ e[i] σ = τ [X/Y] τ = σ[Y/X]

(Quanti,j), e[i] = ∀X.σ, e[j] = ∀Y.τ , i 6= j

E e e′

E (e \ e[i])© .e′©
(Joini,j), e[i] = αs, e′[j] = αs′

In the above E are the other multiequations in the multisystem F . Note that (Arr) and
(Quant) are bi-directional.

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:15

Definition 4.3. Given a multisystem E, a reduction sequence is a series of applications of
the above rules. A multisystem is called irreducible if it is no longer possible to apply a rule
to it.

Remark 4.4. We can transform a reduction sequence in the above sense into a reduction
sequence in F◦•at by applying the translation [·] of the previous section where αs in S′ is
translated via [·] to α in S.

This guarantees the existence of an irreducible multisystem for typable terms (see
Lemma 3.12). Alternatively, we can characterise irreducible multisystems as those which
translate to irreducible multisystems in F◦•at.

Definition 4.5. A type scheme variable α in a multisystem is called terminal if no variant
of it can be expressed in terms of complex type schemes with variants of the other type
scheme variables in the multisystem. Terminals are organised into groups. Two terminals α,
α′ belong to the same group iff αs = α′s′ for some s, s′.

Note that the reduction rules are sound for the standard notion of equality and the
terminals are preserved by reduction.

Remark 4.6. To obtain a solution to a multisystem it is not enough to give values to the
terminal scheme variables. The type structure of the non-terminals is, however, determined
once we have the value of the terminals, as is easily seen by Remark 4.4.

What happens is that the free variables of the non-terminals are not uniquely determined
by the terminals. For example, consider the multisystem associated to the term (xX)y. Let
(xX)y : α1, y : α2, xX : α3 and x : α4. The associated multisystem contains α3 = α2 → α1,
α3 = αW4 [X/W] and α4 = ∀W.αW4 where W = V(xX). Here α1 and α2 are the terminals.
Consider the values α1 = (X → X) and α2 = ◦. Then we have the following distinct
solutions:

α3 = ◦ → (X → X) and α4 = ∀W.◦ → (X →W)

α3 = ◦ → (X → X) and α4 = ∀W.◦ → (W →W)

A structure is an expression built up from a “hole” symbol and ∀X. and →. We say that
a type A is built up from types A1, . . . , An if A can be obtained by considering a certain
structure in which the “holes” are filled with types among A1, . . . , An.

Lemma 4.7. Consider the associated multisystem of a term M with a c-non-redundant
typing. Given a solution consider the values of the terminals A1, . . . , An. Then for each
non-terminal αs (in particular α) there is a partial substitution sequence s1, . . . , sm such
that the value of αs is built up from A1s1, . . . , Ansm, where m ≥ n is bounded by the length
of M and the Ai may be repeated in this list.

Remark 4.8. Since the associated multisystem determines the structure for each non-
terminal, to specify a solution it is enough to give values for the terminals and a sequence
s1, . . . , sn for each non-terminal applying to the terminals which occur in its decomposition
defined by the associated multisystem.

Proof of Lemma 4.7. Consider the irreducible multisystem of M . Each non-terminal α
occurs in a unique multiequation containing a complex type scheme, an arrow or quantifier
element. We call the type scheme variables that occur in this complex type scheme the
descendants of α. In this way we can associate each non-terminal with a uniquely determined
non-cycling digraph G(α) having terminals as leaves. To prove the lemma proceed by
induction on the structure of G(α).

22:16 M. Clarence Protin and G. Ferreira Vol. 18:3

If α is non-terminal then its multiequation contains either αs = ∀X.σ or αs = σ → τ .
Note that if a type A is built up from types Ai then As is built up from types Asi where si are
restrictions of s. If αs = σ → τ then by hypothesis σ and τ are built from partial substitutions
on terminals. But α = (σ → τ)s. Decomposing s into partial substitution sequences s′

and s′′ on σ and τ respectively we get that α = σs′ → τs′′. The case of αs = ∀X.σ is
analogous.

Definition 4.9. An occurrence matrix of a term M is a set of formulas which consists
of Occ(X,α) or ¬Occ(X,α) for each type variable X and type scheme variable α occurring
in the associated multisystem of M .

Remark 4.10. If a term M has a c-non-redundant typing then it generates a solution to
its associated multisystem which in turn generates an occurrence matrix. Notice that given
this matrix we can determine all the occurrences or non-occurrences of the type variables of
the multisystem in substitutions αs of type scheme variables. It is clear that Kc(M) has to
be satisfied, since the typing is c-non-redundant.

Lemma 4.11. Let M be a term with a c-non-redundant type environment Γ and let ? be
a type variable not occurring in Γ nor in the associated multisystem of M . Then M has
a c-non-redundant type environment Γ′ in which the free type variables either occur in the
associated multisystem of M or are ?.

Proof. Notice that substitution sequences preserve equality. We use the following fact: let
R̄ be all the type variables in Γ which do not occur in the associated multisystem of M .
In particular the variables in R̄ do not occur among the variables in s in a reduction
sequence. Consider any equation As = Bt. Then we have that As[?/R̄] = Bt[?/R̄] and so
A[?/R̄]s = B[?/R̄]t. Thus if we apply [?/R̄] to the types in Γ it is clear that we still obtain a
typing and thus a solution to the associated multisystem. The typing is still c-non-redundant
because we are not altering the variables belonging to the occurrence matrix of M .

We call such a typing adequate. Hence to look for c-non-redundant typings for a typable
term M we need only look for adequate typings. Hence to look for solutions to a multisystem
we need only look for types with free variables occurring in the multisystem or equal to
a distinguished type variable ?. We call such solutions adequate solutions and the values
attributed to the type scheme variables adequate values. The following obvious result is
important:

Lemma 4.12. Given a term M and adequate values for the terminals of its associated
multisystem there are only a finite number of possible adequate values on the non-terminals.

This follows from Lemma 4.7 noticing that the partial substitution sequences can involve
only the finite number of variables which occur in the associated multisystem.

Given a type A, its variable sequence is the sequence, as they occur, of all free type
variables in A6. Note that given a solution to the associated multisystem of a term M the
values of terminals in the same group have the same structure.

Lemma 4.13. Consider an adequate solution to the associated multisystem of a term M
which yields a c-non-redundant typing. Then if we substitute the values of the terminals in a
given group by types having a different structure with the same variable sequences we can
obtain another solution which also yields a c-non-redundant typing.

6For example for A := X → (Y → X) the variable sequence is X,Y,X.

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:17

Proof. By Lemma 4.7 the non-terminals are given by partial substitution sequences on
terminals and since the variable sequences of the terminals are the same after altering the
structure we can use the same partial substitution sequences to obtain the values of the
non-terminals. Consider αs and α′s′ belonging to the same multiequation in the reduced
multisystem and let α and α′ have values A and A′. Then As = A′s′. The values A and
A′ are built up from partial substitutions on the values of the terminals in G(α) = G(α′).
Let these values be A1, . . . , An and A′1, . . . , A

′
n. So to check if As = A′s′ (after changing the

structure on terminals keeping the variable sequence) we only need to check if Ais = A′is
′

for i = 1, . . . , n with the changes above. We do not have to worry about renamed bound
variables in A or A′ because we are working within a fixed irreducible multisystem and thus
with a fixed structure for A and A′. But observe that if Bs = B′s′ then Cs = C ′s′ where
C has the variable sequence as B and C ′ the same variable sequence as B′. It follows that
when we alter the structure of the values of terminals in the above way that αs = α′s′ still
holds for the altered values. c-non-redundancy follows by observing that the alteration of
the structure does not affect the occurrence matrix.

Hence we can now assume that in our adequate solutions the terminals are given by
types of the form X1 → X2 → . . .→ Xn. We call this the minimal form. We refer to the
position of Xi as the ith place. We call n the size of the type. By the result of removing
the ith place from a type in minimal form (of a variable sequence of size greater than 1) we
mean the type X1 → . . .→ Xi−1 → Xi+1 → . . .→ Xn.

Given an adequate solution, consider the values of terminals in a group in minimal form.
They will have the same length n. A place k is called essential if after we alter the solution
in such a way that this place is removed from the values of all terminals in a group the
occurrence matrix changes. The values of the other type scheme variables are given by the
restrictions of their respective partial substitutions sequences on terminals. These values
are a solution because if for two terminals α and α′ their values in minimal form satisfy
αs = α′s′ then they continue to satisfy this equation if we remove a place from both values.

Notice that removing a place cannot alter a non-occurrence constraint.

Lemma 4.14. If a term M has a c-non-redundant typing then it has a c-non-redundant
typing given by an adequate solution in minimal form such that the maximum length of
its values on the terminals is bounded by the order O(mn), where n is the number of type
variables and m is the number of type scheme variables in the associated multisystem of M .

Proof. Consider an adequate minimal solution for the associated multisystem of M . Given
a group of terminals assume that a place is not essential. Then if we remove it we obtain a
solution which gives a c-non-redundant typing. Hence we only need to study the number
of essential places on values of terminals. Observe that removing two places in a given
group cannot affect the occurrence condition for the same type variable and the same type
scheme. For each place n consider the set S(n) of affected pairs (X,α). Then the sets S(n)
are disjoint for different n. It follows that the number of essential places in a group of
non-terminals cannot exceed the product of the number of type variables and the number of
type scheme variables in the associated multisystem.

The bound in the lemma can in fact be sharpened to the order of the cardinality
of Kc(M), for in the proof above we are in fact only interested in not affecting certain pairs
(X,α) corresponding to Kc(M).

As a corollary we get:

22:18 M. Clarence Protin and G. Ferreira Vol. 18:3

Theorem 4.15. Given a typable term M in Fat it is decidable whether it has a c-non-
redundant typing.

Given a term which admits a c-non-redundant typing, the proof of the theorem above
furnishes us with a method for type inference yielding an adequate, minimal c-non-redundant
typing. In particular it furnishes us a method of type inference for typable terms.

Note that when c chooses all the polymorphic subterms of a term M then c-non-
redundancy coincides with non-redundancy (cf. Definition 4.1).

In the following subsection we give concrete examples on how we check for non-redundant
typability and how we can find minimal typings whose values on terminals have only essential
places.

4.1. Examples. In order to give some practical examples we consider a multi-sorted first-
order language with equality endowed with a single binary predicate Occ and two sorts
TypeV ariable and TypeScheme. Occ has signature TypeV ariable× TypeScheme. The oc-
currence theory C includes, besides the standard axioms for equality, the following occurrence
axioms:

Occ(X,σ → τ)↔ Occ(X,σ) ∨Occ(X, τ)

Occ(Y,∀X.σ)↔ Occ(Y, σ) for Y 6= X

¬Occ(X,∀X.σ)

¬Occ(X,σ[Y/X]) for X 6= Y

Occ(X,σ)↔ Occ(X,σ[Z/Y]) for X 6= Y and Z 6= X

Occ(X,σ)→ Occ(Y, σ[Y/X])

σ[Y/X] = σ[Z/X] ∧Occ(X,σ)→ Y = Z

If type scheme variables are interpreted as types and we assume that for all the resulting
expression A[Y/X], Y is free for X in A, then these axioms are clearly sound for the ordinary
notion of free occurrence of a variable in a type.

Consider the example of the beginning of this section: a term M containing subterms of
the form N(xX) and N(xY).

Let x : α3, xX : α2, xY : α1. Put X1 = V(xX) and X2 = V(xY). The associated
multisystem, after applying some rules, will include α1 = α2. It will also include

α3 = ∀X1α
X1
3

α3 = ∀X2α
X2
3

α2 = αX1
3 [X/X1]

α1 = αX2
3 [Y/X2]

Also Occ(X1, α
X1
3) and Occ(X2, α

X2
3).

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:19

Applying (Quant) to the first two equations yields:

αX1
3 = αX2

3 [X1/X2]

αX2
3 = αX1

3 [X2/X1]

Hence

α2 = αX2
3 [X1/X2][X/X1]

α1 = αX2
3 [Y/X2]

Since X1 does not occur in αX2
3 we get

α2 = αX2
3 [X/X2]

α1 = αX2
3 [Y/X2]

Hence, since α2 = α1 by the last occurrence axiom we get that X = Y , a contradiction.

Consider the term (y(xX))(xY). Set x : α1, xX : α2, xY : α3, y(xX) : α4, (y(xX))(xY) :
α5, y : α6 and X1 = V(xX), X2 = V(xY). The associated multisystem contains:

α6 = α2 → α4

α4 = α3 → α5

α1 = ∀X1.α
X1
1

α1 = ∀X2.α
X2
1

α2 = αX1
1 [X/X1]

α3 = αX2
1 [Y/X2]

and also Occ(X1, α
X1
1), Occ(X2, α

X2
1).

Applying (Quant) to the third and fourth equations yields:

αX1
1 = αX2

1 [X1/X2]

αX2
1 = αX1

1 [X2/X1]

Hence ¬Occ(X2, α
X1
1).

Let us put αX1
1 = X1. Then α1 = ∀X1.X1 (so x : ∀X1.X1), α2 = X,α3 = Y and

α6 = X → Y → α5 (so y : X → Y → α5).

Consider now (xX)Y .
Let x : α1, xX : α2, (xX)Y : α3, X1 = V(xX), X2 = V((xX)Y).
The associated multisystem contains:

α3 = αX2
2 [Y/X2]

α2 = αX1
1 [X/X1]

with Occ(X2, α
X2
2) and Occ(X1, α

X1
1). Since the associated multisystem contains:

α1 = ∀X1.α
X1
1

α2 = ∀X2.α
X2
2

22:20 M. Clarence Protin and G. Ferreira Vol. 18:3

we get

αX1
1 [X/X1] = ∀X2.α

X2
2

Occurrence axioms yieldOcc(X,αX1
1 [X/X1]) and thusOcc(X,αX2

2). We also haveOcc(X2, α
X2
2).

Also it is clear that ¬Occ(X1, α
X2
2). Take αX2

2 = X2 → X. Since

αX1
1 [X/X1] = ∀X2.X2 → X

and Occ(X1, α
X1
1) we must have αX1

1 = ∀X2.X2 → X1 and hence

x : ∀X1.∀X2.X2 → X1

is a non-redundant typing.

Another example is ΛX.(xY).

Put x : α1, xY : α2,ΛX.(xY) : α3 and X1 = V(xY). Then α3 = ∀X.α2, α2 = αX1
1 [Y/X1]

and α1 = ∀X1.α
X1
1 with Occ(X1, α

X1
1), Occ(X,α2) and ¬Occ(X,α1).

Substitution yields Occ(X,αX1
1 [Y/X1]) and ¬Occ(X,∀X1.α

X1
1) and the occurrence ax-

ioms imply the contradiction Occ(X,αX1
1) and ¬Occ(X,αX1

1).

A more interesting example: (ΛX.λx.x)Y . In this case we get the non-redundant typing
x : X as can easily be checked.

5. Final Remarks

Remark 5.1. A procedure for type inference will take as input a typable term and generate
a typing (or class of typings which is general enough in some sense). By the results of Section
4 we see that the output of such a procedure will involve not only specifying occurrence (or
non-occurrence) constraints for variables and terminal type scheme variables but also will
involve a bound on the number of occurrences that may be required to obtain a valid typing.

For Lemma 4.14 in the case in which c does not choose any polymorphic subterms, that
is, Kc(M) = B(M) does not contain any positive constraints, we obtain a method of type
inference for Fat in Polymorphic Curry style.

Further work will involve a detailed analysis of the complexity of the procedure involved,
preferably in the context of an actual implementation.

Remark 5.2. In a recent work [PT21] Pistone and Tranchini proved that typability is
decidable for Curry style Fat. They do this by means of an alternative approach which
involves reducing typability to the type checking problem (TC). To show that TC is decidable,
they employ a decidable restriction, modeled after Fat, of the general undecidable second-
order unification problem. The restricted problem is shown to be decidable by reduction to
the first-order case where the problem of finding variable cycles is decidable. Type checking
is reduced to such a restricted second-order unification problem. Our present work on the
other hand analyzes typability not only for Curry style terms but also for Polymorphic Curry
style terms and most of the paper is focused on obtaining a procedure for type inference
embodying possible constraints.

The question we address in this paper of finding non-redundant typings for Polymorphic
Curry terms can be posed also for Curry terms. Note that the question of the typability of
a Curry term M can be seen as involving the analysis of possible Polymorphic Curry terms
N such that [N] = M . An assumption variable x occurring in a Curry term M is called

Vol. 18:3 TYPABILITY AND TYPE INFERENCE IN ATOMIC POLYMORPHISM 22:21

non-applying if it does not occur in a subterm of the form xy. We call a Polymorphic Curry
term N such that [N] = M non-trivial for M if N is not equal to M or obtained from M
by replacing non-applying assumption variables x in M by xX for some type variable X. A
typing for such an N is called a non-trivial typing of M . For the Curry system the following
important questions can be asked:

(1) Given a Curry term M is it decidable whether M has a non-trivial non-redundant
typing?7

(2) In searching for a non-trivial non-redundant typing for M do we need to consider only a
finite number (bounded by the complexity of M) of Polymorphic Curry terms N such
that [N] = M?

(3) for M having a non-trivial non-redundant typing is there a procedure to generate such
typings?

It seems plausible that question (2) can be answered in the affirmative, specially if we
consider arguments based on strong normalisation as in Remark 5.3. In this case it is readily
seen that the results of the present work allow us to answer (1) in the affirmative and that
we obtain an effective procedure for question (3).

We also observe that in an implementation of Fat in actual programming languages
the questions above are relevant. Redundant typing can be seen as problematic in terms of
being computationally insignificant and a waste of resources.

Remark 5.3. We mentioned in the above remark that TC for Fat in the Curry system
has been shown to be decidable in [PT21] using a second-order unification technique. It
seems there could be an alternative approach (perhaps computationally more efficient) based
on the Polymorphic Curry style and the fact that Fat has strong normalisation. Given an
environment Γ, a type A and a Curry term M , the above problem is equivalent to finding a
Polymorphic Curry term N such that [N] = M and Γ ` N : A.

The number of instantiations in a derivation of N is clearly bounded by the number of
universal abstractions in the derivation and the total number of universal abstractions in Γ, so
we only need to study the bounds of these. But what about series of repeated applications of
INST and GEN on the same variable? It would seem that we need normalisation arguments
like [Wel99] [Lemma 3.2 or Lemma 3.4]. Also

Lemma 5.4. Suppose Γ `Fat M : A where M is a Polymorphic Curry term and let M
contain a universal abstraction on X, with X not occurring in Γ or in A. Then there is a
term M ′ such that [M] = [M ′], Γ `Fat M

′ : A and M ′ has one less occurrence of universal
abstractions on X.

In the case in which Γ and A are canonical (in the terminology of [Wel99]), that is, have
no redundant quantifiers, this follows from [Wel99] Lemma 3.11.

It seems plausible that using this lemma and normalisation (Fat has strong normali-
sation [FF13]) we can show that there are only a finite number of possible terms N with
[N] = M which we need to consider to decide if Γ ` N : A. Of course if M is not normal
then there can be no normal N such that [N] = M . However we could restrict reduction
to polymorphic redexes only. In the derivation of such reduced terms a INST can never
come after a GEN. Also by canonicity sequences of GENs must be of length bounded by the
structure of Γ. Sequences of INST are bounded by the number of previous GENs. Hence

7This is non trivial. For example given a Curry term M , one cannot simply consider ΛX.M for a certain
X as the example (λx.xy)z shows.

22:22 M. Clarence Protin and G. Ferreira Vol. 18:3

the number of combinations of INST and GEN is finite and bounded by the structure of Γ
and A and thus we need only consider a finite number of terms N such that [N] = M and
the problem above is very likely decidable. We intend to proceed this line of research in
future work.

Acknowledgments

The authors are grateful to the anonymous referees for useful comments and suggestions
regarding the preliminary versions of this paper. In particular they acknowledge the idea of
working with c-non-redundancy.

References

[DR19] A. Dudenhefner and J. Rehof. A simpler undecidability proof for system F inhabitation. TYPES
2018, Leibniz International Proceedings in Informatics (LIPIcs), 130, 2019.

[Fer06] F. Ferreira. Comments on predicative logic. Journal of Philosophical Logic, 35:1–8, 2006.
[Fer17a] G. Ferreira. Eta-conversions of IPC implemented in atomic F. Logic Journal of the IGPL, 25(2):115–

130, 2017.
[Fer17b] G. Ferreira. Rasiowa–Harrop disjunction property. Studia Logica, 105:649–664, 2017.
[FF13] F. Ferreira and G. Ferreira. Atomic polymorphism. The Journal of Symbolic Logic, 78(1):260–274,

2013.
[Gir71] J.-Y. Girard. Une extension de l’interprétation de Gödel à l’analyse, et son application a l’elimination

des coupures dans l’analyse et la theorie des types. In Proceedings of the second scandinavian logic
symposium (J. E. Fenstad, editor), pages 63–92. North Holland, 1971.

[GLT89] J-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types. Cambridge University Press, 1989.
[Lö76] M. H. Löb. Embedding first order predicate logic in fragments of intuitionistic logic. The Journal of

Symbolic Logic, 41(4):705–718, 1976.
[Pro21] M. Clarence Protin. Type inhabitation of atomic polymorphism is undecidable. Journal of Logic

and Computation, 31(2):416–425, 2021.
[PT21] Paolo Pistone and Luca Tranchini. What’s Decidable About (Atomic) Polymorphism? In Naoki

Kobayashi, editor, 6th International Conference on Formal Structures for Computation and Deduc-
tion (FSCD 2021), volume 195 of Leibniz International Proceedings in Informatics (LIPIcs), pages
27:1–27:23, Dagstuhl, Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. URL:
https://drops.dagstuhl.de/opus/volltexte/2021/14265, doi:10.4230/LIPIcs.FSCD.2021.27.

[PTP22] P. Pistone, L. Tranchini, and M. Petrolo. The naturality of natural deduction (II). On atomic
polymorphism and generalized propositional connectives. Studia Logica, 110:545–592, 2022.

[Rém02] D. Rémy. Using, Understanding, and Unraveling the OCaml Language. In Gilles Barthe, editor,
Applied Semantics. Advanced Lectures. LNCS 2395., pages 413–537. Springer Verlag, 2002.

[Rey74] J. C. Reynolds. Towards a theory of type structure. In Colloque sur la programmation (B. Robinet,
editor), volume 19 of Lecture Notes in Computer Science. Springer Verlag, 1974.

[SF20] J. Esṕırito Santo and G. Ferreira. A refined interpretation of intuitionistic logic by means of atomic
polymorphism. Studia Logica, 108:477–507, 2020.

[TPP19] L. Tranchini, P. Pistone, and M. Petrolo. The naturality of natural deduction. Studia Logica,
107:195–231, 2019.

[Wel99] J. B. Wells. Typability and type checking in System F are equivalent and undecidable. Annals of
Pure and Applied Logic, 98(1-3):111–156, 1999.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

https://drops.dagstuhl.de/opus/volltexte/2021/14265
https://doi.org/10.4230/LIPIcs.FSCD.2021.27

	Introduction
	1. System Fat
	2. Typability for the Curry system
	3. Typability for Polymorphic Curry terms
	3.1. Reduction to Fat
	3.2. Typability in Fat

	4. Non-redundant Typability
	4.1. Examples

	5. Final Remarks
	Acknowledgments
	References

