
Logical Methods in Computer Science
Volume 19, Issue 4, 2023, pp. 19:1–19:32
https://lmcs.episciences.org/

Submitted Aug. 16, 2022
Published Dec. 05, 2023

SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS

ANTONIO ABU NASSAR AND SHAULL ALMAGOR

Technion, Israel
e-mail address: antonio@cs.technion.ac.il, shaull@technion.ac.il

Abstract. Letter-to-letter transducers are a standard formalism for modeling reactive
systems. Often, two transducers that model similar systems differ locally from one another,
by behaving similarly, up to permutations of the input and output letters within “rounds”.
In this work, we introduce and study notions of simulation by rounds and equivalence by
rounds of transducers. In our setting, words are partitioned to consecutive subwords of a
fixed length k, called rounds. Then, a transducer T1 is k-round simulated by transducer T2

if, intuitively, for every input word x, we can permute the letters within each round in x,
such that the output of T2 on the permuted word is itself a permutation of the output of
T1 on x. Finally, two transducers are k-round equivalent if they simulate each other.

We solve two main decision problems, namely whether T2 k-round simulates T1 (1) when
k is given as input, and (2) for an existentially quantified k.

We demonstrate the usefulness of the definitions by applying them to process symmetry:
a setting in which a permutation in the identifiers of processes in a multi-process system
naturally gives rise to two transducers, whose k-round equivalence corresponds to stability
against such permutations.

1. Introduction

Reactive systems interact with their environment by receiving inputs, corresponding to
the state of the environment, and sending outputs, which describe actions of the system.
Finite-state reactive systems are often modeled by transducers – finite-state machines over
alphabets ΣI and ΣO of inputs and outputs, respectively, which read an input letter in
ΣI , and respond with an output in ΣO. Such transducers are amenable to automatic
verification of certain properties (e.g., LTL model-checking), and are therefore useful in prac-
tice. Nonetheless, modeling complex systems may result in huge transducers, which makes
verification procedures prohibitively expensive, and makes understanding the constructed
transducers difficult.

A common approach to gain a better understanding of a transducer (or more generally,
any system) is simulation [Mil71], whereby a transducer T1 is simulated by a “simpler”
transducer T2 in such a way that model checking is easier on T2, and the correctness of
the desired property is preserved under the simulation. Usually, “simpler” means smaller,

Key words and phrases: Transducers, Permutations, Parikh, Simulation, Equivalence.
∗A preliminary version was published in CSL 2022 [AA22].
This research was supported by the ISRAEL SCIENCE FOUNDATION (grant No. 989/22).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.46298/LMCS-19(4:19)2023
© A. Abu Nassar and S. Almagor
CC⃝ Creative Commons

https://lmcs.episciences.org/
https://orcid.org/0000-0001-9021-1175
http://creativecommons.org/about/licenses

19:2 A. Abu Nassar and S. Almagor Vol. 19:4

as in standard simulation [Mil71] and fair simulation [HKR97], but one can also view e.g.,
linearization of concurrent programs [HW87] as a form of simulation by a simpler machine.

In this work, we introduce and study new notions of simulation and of equivalence for
transducers, based on rounds : consider an input word x ∈ Σ∗

I whose length is k ·R for some
k,R > 0. We divide the word into R disjoint infixes of length k, each called a round of w.
We then say that two words x, x′ ∈ ΣkR

I are k-round equivalent, denoted x′ ≍k x, if x
′ is

obtained from x by permuting the positions of letters within each round of x. For example
abcabc and cbaacb are 3-round equivalent, since cba is a permutation of abc and so is acb.
Example 3.1 presents a pair of words that are 3-round equivalent but not 4-round equivalent.
We now say that a transducer T1 is k-round simulated by a transducer T2, denoted T1 ≺k T2,
if for every1 input x ∈ ΣkR

I we can find x′ ≍k x such that the outputs of T1 on x and T2 on
x′, denoted y, y′ respectively, are also round equivalent: y′ ≍k y. Intuitively, T1 ≺k T2 means
that every behaviour of T1 is captured by T2, up to permutations within each round. When
we have both T1 ≺k T2 and T2 ≺k T1, we say that they are k-round equivalent and denote
this by T1 ≡k T2.

The benefit of k-round simulation is twofold. First, it may serve as an alternative
simulation technique for reducing the state space while maintaining the correctness of certain
properties. Second, we argue that k-round simulation is in and of itself a design concern.
Indeed, in certain scenarios, as follows, we can naturally design a transducer T2 that performs
a certain task in an ideal, but not realistic, way, and we want to check that an existing design,
namely T1, is simulated by this ideal. In particular, this is useful when dealing with systems
that naturally work in rounds, such as schedulers (e.g., Round Robin, cf. Example 3.3),
arbiters, and other resource allocation systems.

We now demonstrate both benefits by an example.

Example 1.1. Consider a monitor M for the fairness of a distributed system with 10
processes P = {1, . . . , 10}. At each timestep, M receives as input the ID of the process
currently working. The monitor then verifies that in each round of 10 steps, every process
works exactly once. As long as this holds, the monitor keeps outputting safe; otherwise, it
outputs error.

M can be modeled by a transducer T1 that keeps track of the set of processes that have
worked in the current round. Thus, the transducer has at least 210 states, as it needs to
keep track of the subset of processes that have been seen.

It is not hard to see that T1 is 10-round simulated by an “ideal” transducer T2 which
expects to see the processes in the order 1, . . . , 10. This transducer needs roughly 10 states,
as it only needs to know the index of the next process it expects to see.

Now, suppose we want to verify some correctness property which is invariant to permu-
tations of the processes within each round of length 10, such as “if there is no error, then
Process 3 works at least once every 20 steps”. Then we can verify this against the much
smaller T2.

The notion of k-round simulation arises naturally in the setting of process symmetry.
There, the input and output alphabets are ΣI = 2I and ΣO = 2O respectively, where
I = {i1, . . . , im} and O = {o1, . . . , om} represent signals corresponding to m processes.
Process symmetry addresses the scenario where the identifiers of the processes may be
scrambled. For example, if the input {i1, i2} is generated, the system might actually
receive an input {i7, i4}. A system exhibits process symmetry if, intuitively, its outputs

1Our formal definition allows to also restrict the input to some regular language Λ ⊆ Σ∗
I , see section 3.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:3

are permuted in a similar way to the inputs. Unfortunately, deterministic systems that are
process symmetric are extremely naive, as process symmetry is too restrictive for them.
While this can be overcome using probabilistic systems, as studied in [Alm20], it is also
desirable to find a definition that is suited for deterministic systems. As we show in section 6,
k-round simulation provides such a definition.

The main contributions of this work are as follows. We introduce the notion of k-round
simulation and k-round equivalence, and define two decision problems pertaining to them:
in fixed round simulation we need to decide whether T1 ≺k T2 for a given value of k, and
in existential round simulation we need to decide whether there exists some value of k for
which T1 ≺k T2 holds. In fact, we consider a somewhat more elaborate setting, by also
allowing the inputs to T1 to be restricted to some regular language Λ. We solve the first
problem by reducing it to the containment of two nondeterministic automata. For the
second problem, things become considerably more difficult, and the solution requires several
constructions, as well as tools such as Presburger arithmetic and Parikh’s theorem. In
addition, we demonstrate the usefulness of the definitions in relation to process symmetry.

Related Work. Simulation relations between systems are a well studied notion. We refer
the reader to [CHVB18, Chapter 13] and references therein for an exposition. The connection
of our notion with standard simulation is only up to motivation, as our measure is semantic:
it does not directly relate to the state space; instead, it refers to the behaviour of the system
rather than its structure.

On the technical level, our work is closely related to commutative automata [BS73] and
jumping automata [FPS15, MZ12] — models of automata capable of reading their input in
a discontinuous manner, by jumping from one letter to another. Indeed, our notion of round
simulation essentially allows the simulating transducer to read the letters within rounds
in a discontinuous manner. This similarity is manifested implicitly in section 5.2, where
we encounter similar structures as e.g. the commutative closure in [Hof20] (although the
analysis here has a different purpose).

Finally, the initial motivation for this work comes from process symmetry [Alm20,
CEFJ96, ES96, ID96, LNRS16]. We explore the connections in depth in section 6.

Paper Organization. The rest of this work is organized as follows. In section 2 we
present some basic definitions used throughout the paper. In section 3 we introduce k-
round simulation and equivalence, define the relevant decision problems, and study some
fundamental properties of the definitions. In section 4 we solve fixed round simulation,
while developing some technical tools and characterizations that are reused later. section 5
is our main technical result, where we develop a solution for existential round simulation.
In particular, in section 5.1 we give an overview of the solution, before going through the
technical details in section 5.2. In section 5.3 we give lower bounds for the existential
setting. In section 6 we use round simulation to obtain a definition of process symmetry for
deterministic transducers, along with an algorithm for deciding it. In section 7 we study the
mapping between transducers that induces a simulation. In section 8 we study variants of
symmetry and simulation, both refining and coarsening the previous notions. Finally, we
conclude with some open problems in section 9.

19:4 A. Abu Nassar and S. Almagor Vol. 19:4

2. Preliminaries

Automata. A deterministic finite automaton (DFA) is A = ⟨Σ, Q, q0, δ, F ⟩, where Q is a
finite set of states, q0 ∈ Q is an initial state, δ : Q × Σ → Q is a transition function, and
F ⊆ Q is the set of accepting states.

The run of A on a word w = σ0 · σ1 · · ·σn−1 ∈ Σ∗ is a sequence of states q0, q1, . . . , qn
such that qi+1 = δ(qi, σi) for all 0 ≤ i < n. The run is accepting if qn ∈ F . A word w ∈ Σ∗

is accepted by A if the run of A on w is accepting. The language of A, denoted L(A), is
the set of words that A accepts. We also consider nondeterministic finite automata (NFA),
where δ : Q× Σ → 2Q and there can be multiple initial states. Then, a run of A on a word
w ∈ Σ∗ as above is a sequence of states q0, q1, . . . , qn such that q0 is an initial state and
qi+1 ∈ δ(qi, σi) for all 0 ≤ i < n. Analogously to the deterministic setting, the language of A
is the set of words that have an accepting run. We denote by |A| the number of states of A.

As usual, we denote by δ∗ the transition function lifted to words. For states q, q′ and

w ∈ Σ∗, we write q
w−→A q′ if q′ ∈ δ∗(q, w). That is, if there is a run of A from q to q′ while

reading w.
An NFA A can be viewed as a morphism from Σ∗ to the monoid BQ×Q of Q × Q

Boolean matrices, where we associate with a letter σ ∈ Σ its type τA(σ) ∈ BQ×Q defined by

(τA(σ))q,q′ = 1 if q
σ−→A q′, and (τA(σ))q,q′ = 0 otherwise. We lift the definition of types to

Σ∗ by defining, for a word w = σ1 · · ·σn ∈ Σ∗, its type as τA(w) = τA(σ1) · · · τA(σn) where
the concatenation denotes Boolean matrix product. It is easy to see that (τA(w))q,q′ = 1 iff

q
w−→A q′. For example, the types of the letters a and b in the automaton in fig. 1 are the

3× 3 matrices

τA(a) =

q0 q1 q2
q0
q1
q2

 0 1 0
0 0 0
0 0 1

 , τA(b) =

q0 q1 q2
q0
q1
q2

 0 0 0
0 0 1
0 0 1

 ,

and the type of the word w = ab in the transducer in fig. 1 is the matrix

τA(w) =

q0 q1 q2
q0
q1
q2

 0 0 1
0 0 0
0 0 1

 = τA(a) · τA(b).

q0

start

q1 q2
a b

a, b

Figure 1: A nondeterministic automaton with one initial state q0 and one accepting state q2.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:5

Transducers. Consider two sets ΣI and ΣO representing input and output alphabets,
respectively. A ΣI/ΣO transducer is T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩ where Q, q0 ∈ Q, and δ :
Q × ΣI → Q are as in a DFA, and ℓ : Q → ΣO is a labelling function on the states.
For a word w ∈ Σ∗

I , consider the run ρ = q0, . . . , qn of T on w. We define its output
ℓ(ρ) = ℓ(q1) · · · ℓ(qn) ∈ Σ∗

O, and we define the output of T on w to be T (w) = ℓ(ρ). Observe
that we ignore the labelling of the initial state in the run, so that the length of the output
matches that of the input.

Words and rounds. Consider a word w = σ0 · · ·σn−1 ∈ Σ∗. We denote its length by |w|,
and for 0 ≤ i ≤ j < |w| we define w[i : j] = σi · · ·σj . For k > 0, if |w| = kR for some R ∈ N,
then for every 0 ≤ r < R we refer to w[rk : r(k + 1)− 1] as the r-th round in w (of length
k), and we write w = γ0 · · · γR−1 where γr is the r-th round. We emphasize that k indicates
the length of each round, not the number of rounds.

In particular, throughout the paper we consider words (x, y) ∈ (Σk
I × Σk

O)
∗ and their

rounds of length k. In such cases, we sometimes use the natural embedding of (Σk
I × Σk

O)
∗

in (ΣI × ΣO)
∗ and in Σ∗

I × Σ∗
O, and refer to these sets interchangeably.

Parikh vectors and permutations. Consider an alphabet Σ. For a word w ∈ Σ∗ and a
letter σ ∈ Σ, we denote by #σ(w) the number of occurrences of σ in w. The Parikh map
P : Σ∗ → NΣ maps every word w ∈ Σ∗ to a Parikh vector P(w) ∈ NΣ, where P(w)(σ) =
#σ(w). We lift this to languages by defining, for L ⊆ Σ∗, P(L) = {P(w) : w ∈ L}.

For p ∈ NΣ (in the following we consistently denote vectors in NΣ by bold letters) we
write |p| =

∑
σ∈Σ p(σ). In particular, for a word w ∈ Σ∗ we have |P(w)| = |w|.

By Parikh’s theorem [Par66], for every NFA A we have that P(L(A)) is a semilinear
set – that is, a finite union of sets of the form {p+ λ1s1 + . . .+ λ1sm | λ1, . . . , λm ∈ N }
where p, s1, . . . , sm ∈ Nd.

Consider words x, y ∈ Σ∗. We say that x is a permutation of y if P(x) = P(y) (indeed,
in this case y can be obtained from x by permuting its letters). In particular this implies
|x| = |y|.

3. Round Simulation and Round Equivalence

Consider two k-round words x, y ∈ ΣkR with the same number of rounds R, and denote their
rounds by x = α0 · · ·αR−1 and y = β0 · · ·βR−1. We say that x and y are k-round equivalent,
denoted x ≍k y (or x ≍ y, when k is clear from context)2, if for every 0 ≤ r < R we have
that P(αr) = P(βr). That is, x ≍ y iff the r-th round of y is a permutation of the r-th
round of x, for every r. Indeed, ≍ is an equivalence relation.

Example 3.1 (Round-equivalence for words). Consider the words x = abaabbabbbaa and
y = baabbaabbaba over the alphabet Σ = {a, b}. Looking at the words as 3-round words,
one can see in table 1 that rounds of length 3 in y are all permutations of those in x, which
gives x ≍3 y. However, looking at the rounds of length 4 of x, y, the number of occurrences
of b already in the first round of x and of y is different, so x ̸≍4 y, as illustrated in table 2.

Let ΣI and ΣO be input and output alphabets, let Λ ⊆ Σ∗
I be a regular language, and

let k > 0. Consider two ΣI/ΣO transducers T1 and T2. We say that T2 k-round simulates T1

2Conveniently, our symbol for round equivalence is a rounded equivalence.

19:6 A. Abu Nassar and S. Almagor Vol. 19:4

Table 1: x and y are 3-round equiva-
lent

x aba abb abb baa
y baa bba abb aba

Table 2: x and y are not 4-round
equivalent

x abaa bbab bbaa
y baab baab baba

restricted to Λ, denoted T1 ≺k,Λ T2, if for every k-round word x ∈ Λ there exists a k-round
word x′ ∈ Σ∗

I such that x ≍k x
′ and T1(x) ≍k T2(x′).

Intuitively, T1 ≺k,Λ T2 if for every input word x ∈ Λ, we can permute each round of
length k in x to obtain a new word x′, such that the outputs of T1 on x and of T2 on x′

are k-round equivalent. Note that the definition is not symmetric: the input x for T1 is
universally quantified, while x′ is chosen according to x. We illustrate this in Example 3.5.

If T1 ≺k,Λ T2 and T2 ≺k,Λ T1 we say that T1 and T2 are k-round equivalent restricted
to Λ, denoted T1 ≡k,Λ T2. In the special case where Λ = Σ∗

I (i.e., when we require the
simulation to hold for every input), we omit it from the subscript and write T1 ≺k T2.
Remark 3.2 (On the role of Λ). Transducers have a “universal” flavor, in that every input
string is assigned an output. In many settings, however, inputs of interest should comply
to some simple form, and are otherwise irrelevant. The restriction language Λ allows the
designer to specify that we only care about symmetry when the input is correctly formed.

We note that it is technically easy to add a similar restriction-language for T2, although
we find it less motivated, as T2 is meant to be an abstraction of T1 for the purpose of
verification, rather than a concrete model to act in an environment.

Example 3.3 (Round Robin). We consider a simple version of the Round Robin scheduler
for three processes P = {0, 1, 2}. In each time step, the scheduler outputs either a singleton
set containing the ID of the process whose request is granted, or an empty set if the
process whose turn it is did not make a request. Depending on the ID i ∈ {0, 1, 2} of the
first process, we model the scheduler as a 2P/2P transducer Ti =

〈
2P , 2P , Q, q(i−1)%3, δ, ℓ

〉
depicted in fig. 2, where % is the mod operator, Q = {q0, q1, q2, q′0, q′1, q′2}, δ(qi, σ) = q(i+1)%3

if i+ 1 ∈ σ and δ(qi, σ) = q′(i+1)%3 otherwise, ℓ(qi) = {i} and ℓ(q′i) = ∅.

q0/{0} q1/{1} q2/{2}

q′0/∅ q′1/∅ q′2/∅

1

¬1

2

¬2

0
¬0

1

¬1

2

¬2

0
¬0

Figure 2: The transducer Ti for RR, initial state omitted. The input letters σ and ¬σ mean
all letters from 2P that, respectively, contain or do not contain σ. The labels are
written in red.

Technically, the initial state changes the behaviour of Ti significantly (e.g. we have
T0({0}{2}{1}) = {0}∅∅ whereas T1({0}{2}{1}) = ∅{2}∅). Conceptually, however, changing

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:7

the initial state does not alter the behaviour, as long as the requests are permuted accordingly.
This is captured by round equivalence, as follows.

We argue that, if we allow permutation of the input letters, then the set of processes
whose requests are granted in each round is independent of the start state. This is equivalent
to saying T0 ≡3 Tj for j ∈ {1, 2}, which indeed holds: if j = 1 then we permute all rounds
of the form σ0σ1σ2 to σ1σ2σ0, and similarly if j = 2 then we permute all rounds to σ2σ0σ1.
It is easy to see that the run of Ti on the permuted input grants outputs that are 3-round
equivalent to the output of T0 on the non-permuted input.

Remark 3.4. In Example 3.3, the constant k of round equivalence is equal to the number
of processes k = 3. This need not be the case in general. Indeed, one could define Round
Robin over 3 processes that follows the request order e.g., 111232332. It is easy to show
that in this case, the natural round length is 9, and that permutations of 3-rounds are not
enough to reorder inputs starting from different initial states.

In Example 3.3, the transducers satisfied not only round simulation, but also round
equivalence. We now show that this is not always the case for simulating transducers.

Example 3.5 (Round simulation is not symmetric). Consider the ΣI/ΣO transducers T1 and
T2 over the alphabet ΣI = {a, b} and ΣO = {0, 1}, depicted in fig. 3. We claim that T1 ≺2 T2

1 0

0 1

1
b

a a

b

a, b

a

b

a, b

0 1

0 1

0
b

a a

b

a, b

a

b

a, b

Figure 3: Transducers T1 (left) and T2 (right) illustrate the asymmetry in the definition of
round equivalence (see Example 3.5).

but T2 ̸≺2 T1. Starting with the latter, observe that T2(ab) = 00, but T1(ab) = T1(ba) = 01.
Since 00 ̸≍2 01, we have T2 ̸≺2 T1.

We turn to show that T1 ≺2 T2. Observe that for every input word of the form
x ∈ (ab + ba)m, we have T1(x) = (01)m, and x ≍2 (ba)m. So in this case we have that
T2((ba)m) = (10)m ≍2 (01)m. Next, for x ∈ (ab + ba)m · bb · w for some w ∈ Σ∗

I we have

T1(x) = (01)m011|w| and x ≍2 (ba)m ·bb·w, for which T2((ba)m ·bb·w) = (01)m101|w| ≍2 T1(x).
The case where x ∈ (ab+ ba)m · aa · w is handled similarly. We conclude that T1 ≺2 T2.

Round simulation and round equivalence give rise to the following decision problems:

• In fixed round simulation (resp. fixed round equivalence) we are given transducers T1, T2,
an NFA for the language Λ, and k > 0 in unary, and we need to decide whether T1 ≺k,Λ T2
(resp. whether T1 ≡k,Λ T2).

• In existential round simulation (resp. existential round equivalence) we are given trans-
ducers T1, T2 and an NFA for the language Λ, and we need to decide whether there exists
k > 0 such that T1 ≺k,Λ T2 (resp. T1 ≡k,Λ T2).

In the following we identify Λ with an NFA (or DFA) for it, as we do not explicitly rely on
its description.

We start by showing that deciding equivalence (both fixed and existential) is reducible,
in polynomial time, to the respective simulation problem.

19:8 A. Abu Nassar and S. Almagor Vol. 19:4

Lemma 3.6. Fixed (resp. existential) round equivalence is Turing reducible in polynomial
time to fixed (resp. existential) round simulation.

Proof. First, we can clearly reduce fixed round equivalence to fixed round simulation: given
an algorithm that decides, given T1, T2, Λ and k > 0, whether T1 ≺k,Λ T2, we can decide
whether T1 ≡k,Λ T2 by using it twice to decide whether both T1 ≺k,Λ T2 and T1 ≺k,Λ T2 hold.

A slightly more careful examination shows that the same approach can be taken to
reduce existential round equivalence to existential round simulation, using the following
observation: if T1 ≺k,Λ T2, then for every m ∈ N it holds that T1 ≺mk,Λ T2. Indeed, we can
simply group every m rounds of length k and treat them as a single round of length mk.

Now, given an algorithm that decides, given T1, T2 and Λ, whether there exists k > 0
such that T1 ≺k,Λ T2, we can decide whether T1 ≡k,Λ T2 by using the algorithm twice to
decide whether there exists k1 such that T1 ≺k1,Λ T2 and k2 such that T2 ≺k2,Λ T1 hold. If
there are no such k1, k2, then clearly T1 ̸≡k,Λ T2. However, if there are such k1, k2, then
by the observation above we have T1 ≡k1k2,Λ T2 (we can also take lcm(k1, k2) instead of
k1k2).

By Lemma 3.6, for the purpose of upper-bounds, we focus henceforth on round simulation.

4. Deciding Fixed Round Simulation

In this section we show decidability of fixed round simulation (and, by Lemma 3.6, fixed
round equivalence). The tools we develop will be used in section 5 to handle the existential
variant.

Let ΣI and ΣO be input and output alphabets. Consider two ΣI/ΣO transducers T1 and
T2, and let Λ ⊆ Σ∗

I and k > 0. In order to decide whether T1 ≺k,Λ T2, we proceed as follows.
First, we cast the problem to a problem about deterministic automata. Then, we translate
rounds into letters, by working over the alphabets Σk

I and Σk
O. We construct an NFA, dubbed

the permutation closure, for each transducer T , that captures the behaviour of T on words
and their permutations. Intuitively, the NFA takes as input a word (x, y) ∈ (Σk

I × Σk
O)

∗,
guesses a round-equivalent word x′ ≍ x, and verifies that T (x′) ≍ T (x). We then show that
round simulation amounts to deciding the containment of these NFAs.

We now turn to give the details of the construction of these NFAs.

The trace DFA. Consider a transducer T = ⟨ΣI ,ΣO, Q, q0, δ, ℓ⟩, we define its trace DFA
Tr(T) =
⟨ΣI × ΣO, Q ∪ {q⊥}, q0, η,Q⟩ where for q ∈ Q and (σ, σ′) ∈ ΣI ×ΣO we define η(q, (σ, σ′)) =
δ(q, σ) if T q(σ) = σ′ and η(q, (σ, σ′)) = q⊥ otherwise. q⊥ is a rejecting sink.

Tr(T) captures the behaviour of T in that L(Tr(T)) = { (x, y) ∈ (ΣI × ΣO)
∗ | T (x) = y }.

The permutation closure NFA. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let
k > 0. We obtain from N an NFA Permk(N) =

〈
Σk
I × Σk

O, S, s0, µ, F
〉
where the alphabet is

Σk
I × Σk

O, and the transition function µ is defined as follows. For a letter (α, β) ∈ Σk
I × Σk

O
and a state s ∈ S, we think of (α, β) as a word in (ΣI × ΣO)

∗. Then we have

µ(s, (α, β)) =
⋃{

η∗(s, (α′, β′))
∣∣ P(α′) = P(α) ∧P(β) = P(β′)

}
. (4.1)

That is, upon reading (α, β), Permk(N) can move to any state s′ that is reachable in
N from s by reading a permutation of α, β (denoted α′, β′). Recall that for two words

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:9

x, x′ we have that x ≍k x
′ if for every two corresponding rounds α, α′ in x and x′ we have

P(α) = P(α′). Thus, we have the following.

Observation 4.1. In the notations above, it holds that L(Permk(N)) = {(x, y) ∈ Σ∗
I ×Σ∗

O |
∃x′ ≍k x, y

′ ≍k y, (x
′, y′) ∈ L(N) ∧ |x| = |y| = kR for some R ∈ N}.

Since the transition function of Permk(N) is only defined using permutations of its input
letters, we have the following property, which we refer to as permutation invariance:

Observation 4.2 (Permutation invariance). For every state s ∈ S and letters (α, β), (α′, β′)∈
Σk
I × Σk

O, if P(α) = P(α′) and P(β) = P(β′) then µ(s, (α, β)) = µ(s, (α′, β′)).

Given a transducer T , we apply the permutation closure to the trace DFA of T . In
order to account for the restriction given by Λ ⊆ Σ∗

I , we identify it with Λ ⊆ Σ∗
I ×Σ∗

O. Recall
that Λ denotes both a language and a corresponding NFA (or DFA), so what this means is
that the NFA, reading input from Σ∗

I × Σ∗
O, simply ignores the second component.

Lemma 4.3. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

(where the intersection implies the product NFA construction) and Ak
2 = Permk(Tr(T2)), then

L(Ak
1) = { (x, y) ∈ Σ∗

I × Σ∗
O | ∃x′ ≍k x, T1(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N ∧ x′ ∈ Λ } ,

L(Ak
2) = { (x, y) ∈ Σ∗

I × Σ∗
O | ∃x′ ≍k x, T2(x′) ≍k y ∧ |x| = |y| = kR where R ∈ N } .

Proof. Recall that Tr(T) accepts a word (x′, y′) iff T (x′) = y′. The claim then follows
from Observation 4.1, by replacing the expression y ≍ y′ ∧ (x′, y′) ∈ L(Tr(T)) with the
equivalent expression T (x′) ≍k y.

We now reduce round simulation to the containment of permutation closure NFAs.

Lemma 4.4. Consider transducers T1, T2, an NFA Λ and k > 0. Let Ak
1 = Permk(Tr(T1)∩Λ)

and Ak
2 = Permk(Tr(T2)), then T1 ≺k,Λ T2 iff L(Ak

1) ⊆ L(Ak
2).

Proof. For the first direction, assume T1 ≺k,Λ T2, and let (x, y) ∈ L(Ak
1). By Lemma 4.3, x

and y are k-round words, and there exists a word x′ ∈ Λ such that x ≍ x′ and T1(x′) ≍ y.
Since T1 ≺k,Λ T2, then applying the definition on x′ yields that there exists a k-round word
x′′ such that x′ ≍ x′′ and such that T1(x′) ≍ T2(x′′). Since ≍ is an equivalence relation, it
follows that x ≍ x′′ and T2(x′′) ≍ y, so again by Lemma 4.3 we have (x, y) ∈ L(Ak

2).
Conversely, assume L(Ak

1) ⊆ L(Ak
2), we wish to prove that for every k-round word

x ∈ Λ there exists a word x′ such that x ≍ x′ and T1(x) ≍ T2(x′). Let x ∈ Λ be a k-round
word, and let y = T1(x), then clearly (x, y) ∈ L(Ak

1) ⊆ L(Ak
2) (since x ≍ x, T1(x) = y ≍ y

and x ∈ Λ). By Lemma 4.3, there exists x′ such that x ≍ x′ and T2(x′) ≍ y = T1(x), so
T2(x′) ≍ T1(x), thus concluding the proof.

Remark 4.5. The proof of Lemma 4.4 does not require taking the permutation closure of
Tr(T1)∩Λ, and it could be simplified by using instead of Ak

1, the augmentation of Tr(T1)∩Λ
to k-round words. However, such an NFA is not permutation invariant, which is key to
our solution for existential round simulation. Since this simplification does not reduce the
overall complexity, we use a uniform setting for both solutions.

Lemma 4.4 shows that deciding fixed round equivalence amounts to deciding containment
of NFAs. By analyzing the size of the NFAs, we obtain the following.

Theorem 4.6. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is in PSPACE.

19:10 A. Abu Nassar and S. Almagor Vol. 19:4

Proof. Let Ak
1 = Permk(Tr(T1) ∩ Λ) and Ak

2 = Permk(Tr(T2)). By Lemma 4.4, deciding
whether T1 ≺k,Λ T2 amounts to deciding whether L(Ak

1) ⊆ L(Ak
2). Looking at the dual

problem, recall that for two NFAs N1,N2 we have that L(N1) ̸⊆ L(N2) iff there exists

w ∈ L(N2) \ L(N1) with |w| ≤ |N1| · 2|N2| (this follows immediately by bounding the size of

an NFA for L(N1) ∩ L(N2)). Thus, we can decide whether L(Ak
1) ⊆ L(Ak

2) by guessing a
word w over Σk

I × Σk
O of single-exponential length (in the size of Ak

1 and Ak
2), and verifying

that it is accepted by Ak
1 and not by Ak

2.
Observe that to this end, we do not explicitly construct Ak

1 nor Ak
2, as their alphabet

size is exponential. Rather, we evaluate them on each letter of w based on their construction
from T . At each step we keep track of a counter for the length of w, a state of Ak

1, and a
set of states of Ak

2. Since the number of states in Ak
1 and Ak

2 is the same as that of T1 and
T2, this requires polynomial space.

By Savitch’s theorem we have that coNPSPACE = PSPACE, and the proof is concluded.

We now establish a PSPACE-hardness lower bound, thus concluding that the problem is
PSPACE-complete. In fact, we show a lower bound for round equivalence. Note that a priori,
this does not entail a lower bound for round simulation by Lemma 3.6, since the reduction
there is a Turing reduction. However, our PSPACE-hardness proof actually explicitly shows
the hardness of both simulation and equivalence.

Theorem 4.7. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2, is
PSPACE-hard, even for k = 2 and Λ of constant size (given as a 4-state DFA).

Proof sketch. We show a reduction from the universality problem for NFAs over alpha-
bet {0, 1} where all states are accepting and the degree of nondeterminism is at most 2.
See appendix A for a proof of PSPACE-hardness of this problem and for the full reduction.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and
σ ∈ {0, 1}. Set Λ = (ab + cd)∗. We construct two transducers T1 and T2 over input and
output alphabets ΣI = {a, b, c, d} and ΣO = {⊤,⊥} such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.

Intuitively, our reduction encodes {0, 1} over {a, b, c, d} by identifying 0 with ab and
with ba, and 1 with cd and with dc. Then, T1 keeps outputting ⊤ for all inputs in Λ, thus
mimicking a universal language in {0, 1}∗ (see fig. 14), whereas T2 is obtained by replacing
every nondeterministic transition of N on e.g. 0 by two deterministic branches, on e.g. ab
and ba (see fig. 15). Hence, when we are allowed to permute ab and ba by round equivalence,
we capture the nondeterminism of N .

We show that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2 by showing that permuting a word w ∈ Λ
essentially amounts to choosing an accepting run of N on the corresponding word in
{0, 1}∗.

Corollary 4.8. Given transducers T1, T2, an NFA Λ, and k > 0 in unary, the problem of
deciding whether T1 ≺k,Λ T2 is PSPACE-complete.

5. Deciding Existential Round Simulation

In section 4, we established a method for deciding k-round simulation for a given k. This
case is for when the systems in question exhibit an apparent symmetry with a round length
that a developer can guess; such as Round Robin where the round length is the number of
processes involved. However, k is not necessarily given in the general sense.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:11

We turn to solve existential round simulation. That is, given T1, T2 and Λ, we wish to
decide whether there exists k > 0 such that T1 ≺k,Λ T2. By Lemma 4.4, this is equivalent to

deciding whether there exists k > 0 such that L(Ak
1) ⊆ L(Ak

2), as defined therein.
Recall that solving the decision problems of round simulation will aid us in solving the

initial problem of round symmetry, which gave the motivation for this work. The transition
between the problems is explained in section 6.

5.1. Intuitive Overview. We start with an intuitive explanation of the solution and its
challenges. For simplicity, assume for now Λ = Σ∗

I , so it can be ignored. The overall approach
is to present a practical method for hunting k: in Theorem 5.1, the main result of this
section, we give an upper bound on the minimal k > 0 for which T1 ≺k T2, rendering the
search space finite. In order to obtain this bound, we proceed as follows. Observe that for a
transducer T and for 0 < k ̸= k′ the corresponding permutation closure NFAs Permk(Tr(T))
and Permk′(Tr(T)) are defined on the same state space, but differ by their alphabet (Σk

I ×Σk
O

vs Σk′
I ×Σk′

O). Thus, by definition, these NFAs obtained from an increasing round length form
infinitely many distinct automata. Nonetheless, there are only finitely many possible types of

letters (indeed, at most |BQ×Q| = 2|Q|2). Therefore, there are only finitely many type profiles
for NFAs– that is, the set of letter types occurring in the NFA– up to multiplicities of the
letter types.

Recall that by Lemma 4.4, we have T1 ≺k T2 iff L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))).
Intuitively, one could hope that if Permk(Tr(Ti)) and Permk′(Tr(Ti)) have the same type
profile, for each i ∈ {1, 2}, then it holds that L(Permk(Tr(T1))) ⊆ L(Permk(Tr(T2))) iff
L(Permk′(Tr(T1))) ⊆ L(Permk′(Tr(T2))). Then, if one can bound the index k after which no
further type profiles are encountered, then the problem reduces to checking a finite number
of containments.

Unfortunately, this is not the case, the reason being that the mapping of letters induced
by the equal type profiles Permk(Tr(T1)) and Permk′(Tr(T1)) may differ from the mapping
induced by Permk(Tr(T2)) and Permk′(Tr(T2)), and thus one cannot translate language
containment between the two pairs. We overcome this difficulty, however, by working from
the start with product automata that capture the structure of both T1 and T2 simultaneously,
and thus unify the letter mapping. We dub them redundant product automata for their
apparent redundancy.

We are now left with the problem of bounding the minimal k after which no new type
profiles appear. In order to provide this bound, we show that for every type profile, the set
of indices in which it occurs is semilinear. Then, by finding a bound for each type profile,
we obtain the overall bound. The main result of this section is the following.

Theorem 5.1. Given transducers T1, T2 and Λ, we can effectively compute K0 > 0 such
that if T1 ≺k,Λ T2 for some k ∈ N, then T1 ≺k′,Λ T2 for some k′ ≤ K0.

Which by Lemma 4.4 immediately entails the following.

Corollary 5.2. Existential round simulation is decidable.

We prove Theorem 5.1 in section 5.2, organized as follows. We start by lifting the
definition of types in an NFA to Parikh vectors, and show how these relate to the NFA (in
Lemma 5.3). We then introduce Presburger arithmetic and its relation to Parikh’s theorem.
In Lemma 5.4 we show that the set of Parikh vectors that share a type τ is definable in
Presburger arithmetic, which provides the first main step towards our bound.

19:12 A. Abu Nassar and S. Almagor Vol. 19:4

We then proceed to define the redundant product automata mentioned above, which
serve to unify the types between T1 and T2. In Observations 5.5 and 5.6 we formalize the
connection of these products to the transducers T1 and T2. Then, we formally define the
type profiles and prove in Lemma 5.7 that they exhibit a semilinear behaviour. Finally,
in Lemma 5.8 we prove that when two redundant product automata have the same type
profile, then the containment mentioned above can be shown. Combining these results, we
obtain Theorem 5.1. A flow diagram for the proof is illustrated in fig. 4.

trace DFA

Redundant products

Types of Parikh vectors

Equivalence of Type Profiles

PA Formula for Types

D2 = Tr(T2)

B1,B2 = D1 ×D2

D1 = Tr(T1) ∩ Λ

τB1(p,o) = τB2(p,o)

Υ(B1, k) = Υ(B2, k)

ΘT (k)

If ΘT (k) ∧ΘT (k
′) then T1 ≺k T2 iff T1 ≺k′ T2

Figure 4: A flow diagram for the proof steps in section 5.2.

5.2. Proof of Theorem 5.1.
Type matrices of Parikh vectors. Consider the alphabet Σk

I × Σk
O for some k > 0.

Recall that by Observation 4.2, permutation closure NFAs are permutation invariant, and
from section 2, the type of a word in an NFA is the transition matrix it induces. In particular,
for permutation invariant NFAs, two letters (α, β), (α′, β′) ∈ Σk

I × Σk
O with P(α) = P(α′)

and P(β) = P(β′) have the same type.
Following this, we now lift the definition of types to Parikh vectors. Consider an NFA

N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and let p ∈ NΣI ,o ∈ NΣO be Parikh vectors with |p| = |o| = k.
We define the type τN (p,o) ∈ BS×S to be τPermk(N)(α, β) where (α, β) ∈ Σk

I × Σk
O are such

that P(α) = p and P(β) = o. By permutation invariance, this is well-defined, i.e. is
independent of the choice of α and β.

Note that we use different automata to extract the type of words of different lengths.
We obtain a more uniform description as follows.

Lemma 5.3. In the notations above, for every s1, s2 ∈ S, we have (τN (p,o))s1,s2 = 1 iff

there exists (α, β) ∈ Σk
I × Σk

O with P(α) = p and P(β) = o such that s1
(α,β)−→Permk(N) s2.

Proof. By the definitions preceding the lemma, we have that τN (p,o) = τPermk(N)(α
′, β′)

for some (α′, β′) ∈ Σk
I × Σk

O are such that P(α′) = p and P(β′) = o. According to the
transition function of Permk(N) (as defined in section 4), for every s1, s2 ∈ S we have

that s1
(α′,β′)−→ Permk(N) s2 iff there exist (α, β) ∈ Σk

I × Σk
O with P(α) = P(α′) = p and

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:13

P(β) = P(β′) = o such that s1
(α,β)−→N s2. Since the type encodes the reachable pairs of

states, this concludes the proof.

Presburger arithmetic. The first ingredient in the proof of Theorem 5.1 is to characterize
the set of Parikh vectors whose type is some fixed matrix τ ∈ BQ×Q. For this characterization,
we employ the first-order theory of the naturals with addition and order Th(N, 0, 1,+, <,=),
commonly known as Presburger arithmetic (PA). We do not give a full exposition of PA but
refer the reader to [Haa18] (and references therein) for a survey. In the following we briefly
cite the results we need.

For our purposes, a PA formula φ(x1, . . . , xd), where x1, . . . , xd are free variables, is
evaluated over Nd, and defines the set

{
(a1, . . . , ad) ∈ Nd

∣∣ (a1, . . . , ad) |= φ(x1, . . . , xd)
}
.

For example, the formula φ(x1, x2) := x1 < x2 ∧ ∃y. x1 = 2y defines the set
{
(a, b) ∈ N2

∣∣
a < b ∧ a is even }.

A fundamental result about PA is that the definable sets in PA are exactly the semilinear
sets. In particular, Parikh’s theorem states that for every NFA A, P(L(A)) is PA definable.
In fact, by [VSS05], one can efficiently construct a linear-sized existential PA formula for
P(L(A)). We can now show that the set of Parikh vectors whose type is τ is PA definable.

Lemma 5.4. Consider an NFA N = ⟨ΣI × ΣO, S, s0, η, F ⟩, and a type τ ∈ BS×S, then the
set
{
(p,o) ∈ NΣI × NΣO

∣∣ τN (p,o) = τ
}
is PA definable.

Proof. Let τ ∈ BS×S , and consider a Parikh vector (p,o) ∈ NΣI × NΣO with k = |p| = |o|.
By Lemma 5.3, we have that τN (p,o) = τ iff the following holds for every s1, s2 ∈ S: we
have τs1,s2 = 1 iff there exists a letter (α, β) ∈ Σk

I × Σk
O such that P(α) = p,P(β) = o, and

s1
(α,β)−→N s2.
Consider s1, s2 ∈ S and define N s1

s2 to be the NFA obtained from N by setting the initial

state to be s1 and a single accepting state s2. Then, we have s1
(α,β)−→N s2 iff (α, β) ∈ L(N s1

s2).
Thus, τN (p,o) = τ iff for every s1, s2 ∈ S we have that τs1,s2 = 1 iff there exists a word

(α, β) with P(α′) = p and P(β′) = o such that (α, β) ∈ L(N s1
s2). Equivalently, we have

τN (p,o) = τ iff for every s1, s2 ∈ S it holds that τs1,s2 = 1 iff (p,o) ∈ P(L(N s1
s2)).

By Parikh’s theorem, for every s1, s2 ∈ S we can compute a PA formula ψs1,s2 such that
(p,o) |= ψs1,s2 iff (p,o) ∈ P(L(N s1

s2)). Now we can construct a PA formula Ψτ such that
τN (p,o) = τ iff (p,o) |= Ψτ , as follows:

Ψτ :=
∧

s1,s2 : τs1,s2=1

ψs1,s2 ∧
∧

s1,s2 : τs1,s2=0

¬ψs1,s2 .

Finally, observe that Ψτ defines the set in the premise of the lemma, so we are done.

The redundant product construction. As mentioned in section 5.1, for the remainder
of the proof we want to reason about the types of Permk(Tr(T1) ∩ Λ) and Permk(Tr(T2))
simultaneously. In order to do so, we present an auxiliary product construction.

Let T1, T2 be transducers, Λ ⊆ Σ∗
I be given by an NFA, and let D1 = Tr(T1) ∩ Λ and

D2 = Tr(T2). We now consider the product automaton of D1 and D2, and endow it with
two different acceptance conditions, capturing that of D1 and D2, respectively. Formally, for
i ∈ {1, 2}, denote Di =

〈
ΣI × ΣO, Si, s

i
0, ηi, Fi

〉
, then the product automaton is defined as

Bi =
〈
ΣI × ΣO, S1 × S2, (s

1
0, s

2
0), η1 × η2, Gi

〉
, where G1 = F1 ×Q2 and G2 = Q1 × F2, and

η1 × η2 denotes the standard product transition function, namely η1 × η2((s1, s2), (σ, σ
′)) =

19:14 A. Abu Nassar and S. Almagor Vol. 19:4

(η1(s1, (σ, σ
′)), η2(s2, (σ, σ

′))). Thus, Bi tracks both D1 and D2, but has the same acceptance
condition as Di. This seemingly “redundant” product construction has the following
important properties, which are crucial for our proof:

Observation 5.5. In the notations above, we have the following:

(1) L(B1) = L(D1) and L(B2) = L(D2).
(2) For every letter (σ, σ′) ∈ ΣI × ΣO, we have τB1(σ, σ

′) = τB2(σ, σ
′).

Indeed, Item 1 follows directly from the acceptance condition, and Item 2 is due to the
identical transition function of B1 and B2.

By Observation 4.1, L(Permk(Di)) depends only on L(Di). We thus have the following.

Observation 5.6. The following holds for every k > 0:

(1) L(Permk(B1)) = L(Permk(Tr(T1) ∩ Λ)).
(2) L(Permk(B2)) = L(Permk(Tr(T2))).

Type profiles. We now consider the set of types induced by the redundant product automata
B1 and B2 on Parikh vectors of words of length k. By Item 2 of Observation 5.5, it is enough
to consider B1.

For k > 0, we define the k-th type profile of B1 to be the set of all types of Parikh
vectors (p,o) with |p| = |o| = k that are induced by B1; i.e. it is the set Υ(B1, k) ={
τB1(P(α),P(β))

∣∣ (α, β) ∈ Σk
I × Σk

O

}
. Clearly, there is only a finite number of type profiles,

as Υ(B1, k) ⊆ BS′×S′
, where S′ is the state space of B1. Therefore, as k increases, after some

finite K0, every type profile that is ever attained will have been encountered already. We
now place an upper bound on K0.

Lemma 5.7. We can effectively compute K0 > 0 such that for every k > 0 there exists
k′ ≤ K0 with Υ(B1, k

′) = Υ(B1, k).

Proof. Consider a type τ , and let Ψτ be the PA formula constructed as per Lemma 5.4
for the NFA B1. Observe that for a Parikh vector (p,o) and for k > 0, the expression
|p| = |o| = k is PA definable. Indeed, writing p = (x1, . . . , x|ΣI |) and q = (y1, . . . , y|ΣO|),
the expression is defined by x1 + . . .+ x|ΣI | = k ∧ y1 + . . .+ y|ΣO| = k.

Let T ⊆ BS′×S′
be a set of types (i.e., a potential type profile). We define a PA formula

ΘT (z) over a single free variable z such that k |= ΘT (z) iff Υ(B1, k) = T , as follows.

ΘT (z) =

(
∀p,o, |p| = |o| = z →

∨
τ∈T

Ψτ (p,o)

)
∧

(∧
τ∈T

∃p,o, |p| = |o| = z ∧Ψτ (p,o)

)
Intuitively, ΘT (z) states that every Parikh vector (p,o) with |p| = |o| = z has a type within
T , and that all the types in T are attained by some such Parikh vector.

By [FR74, BT76], we can effectively determine for every T whether ΘT (z) is satisfiable

and, if it is, find a witness MT such that MT |= ΘT (z). By doing so for every set T ⊆ BS′×S′
,

we can set K0 = max {MT | ΘT (z) is satisfiable }. Then, for every k > K0 if Υ(B1, k) = T ,
then T has already been encountered at MT ≤ K0, as required.

The purpose of the bound K0 obtained in Lemma 5.7 is to bound the minimal k for
which T1 ≺k,Λ T2, or equivalently L(Permk(B1)) ⊆ L(Permk(B2)) (by Lemma 4.4 and Obser-
vation 5.6). This is captured in the following.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:15

Lemma 5.8. Let k, k′ > 0 such that k ≠ k′ and Υ(B1, k
′) = Υ(B1, k), then we have

L(Permk(B1)) ⊆ L(Permk(B2)) iff L(Permk′(B1)) ⊆ L(Permk′(B2)).

Proof. By the symmetry between k and k′, it suffices to prove w.l.o.g. that if L(Permk(B1)) ⊆
L(Permk(B2)), then L(Permk′(B1)) ⊆ L(Permk′(B2)).

Assume the former, and let w = (x′, y′) ∈ L(Permk′(B1)), where (x′, y′) ∈ (Σk′
I × Σk′

O)
∗,

and we denote (x′, y′) = (α′
1, β

′
1) · · · (α′

n, β
′
n) with (α′

j , β
′
j) ∈ Σk′

I × Σk′
O for every 1 ≤ j ≤ n.

Since Υ(B1, k
′) = Υ(B1, k), there is a mapping φ that takes every letter (α′

j , β
′
j) ∈

Σk′
I ×Σk′

O in w to a letter (αj , βj) ∈ Σk
I ×Σk

O that has same type in Permk(B1), so that we can
find (x, y) = (α1, β1) · · · (αn, βn) such that for every 1 ≤ j ≤ n we have τB1(P(αj),P(βj)) =
τB1(P(α′

j),P(β′j)).
By the definition of the type of a Parikh vector, we have that

τPermk(B1)(αj , βj) = τB1(P(αj),P(βj)) = τB1(P(α′
j),P(β′j)) = τPermk′ (B1)(α

′
j , β

′
j).

In particular, since the type of a word is the concatenation (i.e., Boolean matrix product)
of its underlying letters, we have that τPermk(B1)(x, y) = τPermk′ (B1)(x

′, y′). Since (x′, y′) ∈
L(Permk′(B1)), it follows that also (x, y) ∈ L(Permk(B1)). Indeed, (τPermk′ (B1)(x

′, y′))s10,s1f
= 1

where s10 and s1f are an initial state and an accepting state of Permk′(B1), respectively. But

the equality of types implies
(
τPermk(B1)(x, y)

)
s10,s

1
f

= 1 as well, so Permk(B1) has an accepting

run on (x, y).
By our assumption, L(Permk(B1)) ⊆ L(Permk(B2)), so (x, y) = φ(w) ∈ L(Permk(B2)),

or equivalently, φ(w) ∈ L(Permk(B2)). We now essentially reverse the arguments above, but
with B2 instead of B1. However, this needs to be done carefully, so that the mapping of
letters lands us back at (x′, y′), and not a different word. Thus, instead of finding a round
equivalent word, we observe that for every 1 ≤ j ≤ n, we also have

τPermk(B2)(αj , βj) = τB2(P(αj),P(βj)) = τB2(P(α′
j),P(β′j)) = τPermk′ (B2)(α

′
j , β

′
j),

This follows from Item 2 in Observation 5.5 and the fact that the permutation closure
depends only on the transitions (and not on accepting states, which are the only difference
between B1 and B2).

Thus, similarly to the arguments above, we have that (x′, y′) ∈ L(Permk′(B2)), and the
mapping applied is in fact the the inverse map φ−1, where φ−1(φ(w)) = w. We conclude
that L(Permk′(B1)) ⊆ L(Permk′(B2)), as required.

The mapping is illustrated in fig. 5.

w ∈ Permk′(B1)
w = (x1, y1)(x2, y2) · · · (xn, yn)

φ(w) ∈ Permk(B1)
φ(w) = φ ((x1, y1))φ ((x2, y2)) · · ·φ ((xn, yn))

φ(w) ∈ Permk(B2)

φ−1(φ(w)) = w ∈ Permk′(B2)

φ

⊆

φ−1

Figure 5: A diagram for the proof structure of Lemma 5.8.

19:16 A. Abu Nassar and S. Almagor Vol. 19:4

Combining Lemmas 5.7 and 5.8, we can effectively compute K0 such that if it holds that
L(Permk(B1)) ⊆ L(Permk(B2)) for some k, then this also holds for some k < K0. Finally,
using Lemma 4.4, this concludes the proof of Theorem 5.1.

Remark 5.9 (Complexity results for Theorem 5.1 and Corollary 5.2). Let n be the number
of states in T1 × T2. Observe that the formula Ψτ constructed in Lemma 5.4 comprises
a conjunction of O(n2) PA subformulas, where each subformula is either an existential
PA formula of length O(n), or the negation of one. Then, the formula ΘT in Lemma 5.7
consists of a universal quantification, nesting a disjunction over |T | formulas of the form
Ψτ , conjuncted with |T | existential quantifications, nesting a single Ψτ each. Overall, this

amounts to a formula of length |T | ≤ 2n
2
, with alternation depth 3. 3

Using quantifier elimination [Coo72, Opp78], we can obtain a witness for the satisfiability

of ΘT of size 4-exponential in n2. Then, finding the overall bound K0 amounts to 22
n2

calls
to find such witnesses. Finally, we need K0 oracle calls to Lemma 4.4 in order to decide
existential simulation, and since K0 may have a 4-exponential size description, this approach
yields a whopping 5-EXP algorithm. This approach, however, does not exploit any of the
structure of ΘT .

5.3. Lower Bounds for Existential Round Simulation. The complexity bounds in Re-
mark 5.9 are naively analyzed, and we leave it for future work to conduct a more in-depth
analysis. In this section, we present lower bounds to delimit the complexity gap. Note that
there are two relevant lower bounds: one on the complexity of deciding round simulation,
and the other on the minimal value of K0 in Theorem 5.1.

We start with the complexity lower bound, which applies already for round equivalence.

Theorem 5.10. The problem of deciding, given transducers T1, T2, whether T1 ≡k,Λ T2 for
any k, is PSPACE-hard, even for Λ of a constant size (given as a 5-state DFA).

Proof sketch. We present a similar reduction to that of Theorem 4.7 from universality of
NFAs (see appendix A.2). In order to account for the unknown value of k, we allow padding
words with a fresh symbol #, which is essentially ignored by the transducers.

Next, we show that the minimal value for K0 can be exponential in the size of the given
transducers (in particular, of T2).
Example 5.11 (Exponential round length). Let p1, p2, . . . , pm be the first m prime numbers.
We define two transducers T1 and T2 over input and output alphabet P = {1, . . . ,m}, as
depicted in fig. 6 for m = 3. Intuitively, T1 reads input w ∈ Λ = (1 · 2 · · ·m)∗ and simply
outputs w, whereas T2 works by reading a letter i ∈ P, and then outputting i for pi steps
(while reading pi arbitrary letters) before getting ready to read a new letter i.

In order for T2 to k-round simulate T1, it must be able to output a permutation of
(1 · 2 · · ·m)∗. In particular, the number of 1’s, 2’s, etc. must be equal, so k must divide every
prime up to pm, hence it must be exponential in the size of T2.

The sum of the number of states in T1 and T2 is 1 +m+
∑m

i=1 pi = O (
∑m

i=1 pi). Set
Q =

∏m
i=1 pi. It is easily verified that T1 ≺k T2 holds for k = m ·Q, which is exponential in

the number of states. Indeed, for the round w = (1 · · ·m)Q, we consider the permutation
1Q · · ·mQ, on which the run of T2 induces the same output.

3Alternation depth is usually counted with the outermost quantifier being existential, which is not the
case here, hence 3 instead of 2.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:17

s3/3

s1/1

s2/2

1

2

3

2

s12

2

s22

2

s32

1

s11

1

s21

3

s13

3

s23

3

s33

3

s43

3

s53

1

2

3

P

ε

P P

ε

P P P P

ε

Figure 6: The transducers T1 (left) and T2 (right) for m = 3 in Example 5.11. The transition

s
ε−→ t in T2 means that the transition function from state s behaves identically

as from t.

We now show that this k is minimal. For a word x ∈ (1 · 2 · · ·m)∗ in rounds of k to
have round equivalent outputs in T1 and T2, there must be some word round equivalent
word x′ in which every appearance of i ∈ P is part of a sequence of appearances of i, of
length pi, except maybe at its end. If m | k, then there are k

m appearances of each i, so k
m

must be divisible by all primes, except maybe one. The latter possibility is falsified when
considering the next round. If, however, m ∤ k, then in the next round, 1 ∈ P will have one
less appearance than in the first round. This, again, makes impossible the round equivalence
of the outputs when considering one additional round.

6. From Process Symmetry to Round Equivalence

As mentioned in section 1, our original motivation for studying round simulation comes from
process symmetry. We present process symmetry with an example before introducing the
formal model. Recall the Round Robin scheduler from Example 3.3. There, at each time
step, the scheduler receives as input the IDs of processes in P = {0, 1, 2} that are making a
request, and it responds with the IDs of those that are granted (either a singleton {i} or ∅).

In process symmetry, we consider a setting where the identifiers of the processes may be
permuted. This corresponds to the IDs representing, for instance, ports, and the processes not
knowing which port they are plugged into. Thus, the input received may be a permutation
of the actual identifiers of the processes. Note that a permutation in this case is a bijection
over identifiers, not indices as in previous sections. Then, we say that a transducer is
process symmetric if the outputs are permuted in a way that matches the permutation of
identifiers. For example, in the RR scheduler of Example 3.3, the output corresponding to
input {1, 2}{3}{3} is {1}∅{3}. However, if we permute the identifiers by swapping processes
1 and 3, we obtain the input {3, 2}{1}{1}. Then, the output of RR is ∅∅∅, demonstrating
that RR is not process symmetric. Indeed, the output letters have to be permuted in the
same manner as the input for RR to be process symmetric.

In [Alm20], several definitions of process symmetry are studied for probabilistic trans-
ducers. In the deterministic case, however, process symmetry is a very strict requirement. In
order to overcome this, we allow some flexibility by letting the transducer do local reordering
in the word to account for the input permutation. For instance, if we are allowed to rearrange

19:18 A. Abu Nassar and S. Almagor Vol. 19:4

the input {3, 2}{1}{1} to {1}{1}{3, 2}, then the output becomes {1}∅{3}, and once we
apply the inverse permutation, this becomes {3}∅{1}. This, in turn, can be again rearranged
to obtain the original output {1}∅{3}. In this sense, the scheduler is “locally stable” against
permutations of the identifiers of processes.

We now turn to give the formal model. Consider a set of processes P = {1, . . . ,m}
and k > 0. For a permutation π of P (i.e. a bijection π : P → P) and a letter σ ∈ 2P ,
we obtain π(σ) = {π(i) : i ∈ σ} ∈ 2P by applying π to each process in σ. We lift this to
words x ∈ (2P)∗ by applying the permutation letter-wise to obtain π(x). We now say that a
2P/2P transducer T =

〈
2P , 2P , Q, q0, δ, ℓ

〉
is k-round symmetric if for every permutation π

of P and for every k-round word x ∈ (2P)∗ there exists x′ ∈ (2P)∗ such that π(x) ≍k x
′ and

π(T (x)) ≍k T (x′). We say that T is k-round symmetric w.r.t. π if the above holds for a
fixed permutation π.

Example 6.1. Consider the RR scheduler for n processes (cf. Example 3.3), and let T be a
transducer for it. As discussed above, T is not process symmetric. Intuitively, however, RR
is symmetric in the sense that all processes are “treated equally” within each round. We
now show that round symmetry captures this property.

Consider for example the input word x = {0, 2}{1}{2} over P = {0, 1, 2}, and let
π = (0 1) be a permutation swapping processes 0 and 1. We have that π(x) = {1, 2}{0}{2}.
Observe that T (x) = {0}, {1}, {2}, meaning all processes are granted. We can now choose
x′ = {0}{1, 2}{2} so that x′ ≍3 x, and we have that T (x′) = {0}, {1}, {2}. and in particular
T (x′) ≍3 π(T (x)), since π(T (x)) = {1}, {0}, {2}.

In general, consider a permutation π ∈ Sn applied to the signals. We can then preserve
the behaviour of the system (i.e. the identifiers of the process that receive grants) by
reordering the requests. Indeed, given input x, consider the i-th round b1b2 · · · bn of π(x).
We obtain x′ by setting the i-th round to bπ−1(1)bπ−1(2) · · · bπ−1(n). Then, it holds that

T (x) = π−1(T (x′)) or equivalently, π(T (x)) = T (x′), so RR is n-round symmetric.

Example 6.1 shows that RR exhibits round symmetry w.r.t. all permutations. In the
general sense, round symmetry might hold w.r.t. some permutations but not others, as is
the case in the following.

Example 6.2. Fix P = {0, 1, 2} and let T be the 2P/2P transducer illustrated in fig. 7. It
is not difficult to see that T satisfies 2-round symmetry w.r.t. π = (0 1) but not w.r.t. e.g.
(0 2).

q0start

{0}

{1}

{2}

{1} behave like q0

{0} behave like q0

{2} behave like q0

0 ∈ σ

0 /∈ σ, 1 ∈ σ

0, 1 /∈ σ

Σ

Σ

Σ

Figure 7: Transducer T satisfying round symmetry w.r.t. π = (0 1) but not (0 2).

The central decision problems in round symmetry are akin to those of round simulation:
in fixed round symmetry we are given T and k and we ask whether T is k-round symmetric,

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:19

and in existential round symmetry we ask whether there exists k > 0 for which this holds.
Observe that for round symmetry we have Λ = (2P)∗, and is therefore ignored in the
following.

From round symmetry to round simulation. As we now show, round symmetry can
be cast to the setting of round simulation. We start with the case where the permutation π
is given.

Consider a transducer T , we obtain from T a new transducer T π by applying the
permutation π to the actions and labels. Formally, T π =

〈
2P , 2P , Q, q0, δ

π, ℓπ
〉
where

δπ(q, σ) = δ(q, π−1(σ)) and ℓπ(q) = π(ℓ(q)). It is easy to verify that for every x ∈ (2P)∗

we have T π(x) = π(T (π−1(x))). Figure 8 shows the transducer T π that corresponds to T
of Example 6.2 for π = (0 1).

q0start

{1}

{0}

{2}

{0} behave like q0

{1} behave like q0

{2} behave like q0

1 ∈ σ

0 ∈ σ, 1 /∈ σ

0, 1 /∈ σ

Σ

Σ

Σ

Figure 8: Transducer T π for the T in Example 6.2 and π = (0 1).

Once we have T π, round symmetry can be expressed as round simulation, so we can
use the tools developed in sections 4 and 5 to solve the problems at hand.

Lemma 6.3. For a permutation π and k > 0, T is k-round symmetric w.r.t. π iff T π ≺k T .

Proof. By definition, we have that T π ≺k T iff for every x ∈ (2P)∗ there exists x′ ≍ x such
that T π(x) ≍ T (x′). We show that this is equivalent to the definition of round symmetry.

For the first direction, assume T is k-round symmetric w.r.t. π, and let x ∈ (2P)∗.
Applying the definition of k-round symmetry to y = π−1(x), there exists x′ ≍ π(y) such
that π(T (y)) ≍ T (x′). Since π(y) = x we get that x′ ≍ x and π(T (π−1(x))) ≍ T (x′). By
the above, T π(x) = π(T (π−1(x))), so we have T π(x) ≍ T (x′).

For the second direction, assume T π ≺k T , and let x ∈ (2P)∗. Applying the definition
of round simulation to z = π(x), there exists x′ ≍ z such that T π(z) ≍ T (x′). Thus,
π(T (π−1(z))) ≍ T (x′), but π−1(z) = x, so we get π(T (x)) ≍ T (x′), and we are done.

Closure under composition. Lemma 6.3 enables us to naively solve fixed round symmetry
by checking against all permutations. We show, however, that the definition above is closed
under composition of permutations, allowing us to establish round symmetry by checking
only two permutations, forming a generating set of Sn.

Lemma 6.4. Consider two permutations π, χ. If T π ≺k T and T χ ≺k T then T π◦χ ≺k T .

Proof. Using the first definition of round symmetry, let x ∈ (2P)∗, then there exists x′ ≍k π(x)
such that T (x′) ≍k π(T (x)). Moreover, there exists x′′ ≍k χ(x

′) ≍k χ(π(x)) such that
T (x′′) ≍k χ(T (x′)) ≍k χ(π(T (x))), and we are done.

Recall that the group of all permutations of P = {1, . . . ,m} is generated by two
permutations: the transposition (1 2) and the cycle (1 2 · · · m) [C+99]. By Lemma 6.4 it is

19:20 A. Abu Nassar and S. Almagor Vol. 19:4

sufficient to check symmetry for these two generators in order to obtain symmetry for every
permutation. Note that for the existential variant of the problem, even if every permutation
requires a different k, by taking the product of the different values we conclude that there is
a uniform k for all permutations. We thus have the following.

Theorem 6.5. Both fixed and existential round symmetry are decidable. Moreover, fixed
round symmetry is in PSPACE.

Finally, the reader may notice that our definition of round symmetry w.r.t. π is not
symmetric, as was the case with round simulation compared to round equivalence. However,
when we consider round symmetry w.r.t. to all permutations, the definition becomes
inherently symmetric, as a consequence of Lemma 6.4.

Lemma 6.6. In the notations above, if T π ≺k T then T ≺k T π.

Proof. Recall that for every permutation π we have πm! = id, where id is the identity
permutation. In particular, πm!−1 = π−1.

By Lemma 6.4, we now have that if T π ≺k T , then T πm!−1 ≺k T , so T π−1 ≺k T .
Applying π to both sides gives us T ≺k T π.

Thus, for symmetry, the notions of round simulation and round equivalence coincide.

7. The Simulation Mapping

The definition of round simulation in section 3 has an existential flavour: given input x we
consider the existence of a word x′ that satisfies the requirement of round simulation. In
some cases it may be desirable to compute an x′ that “witnesses” the simulation of x.

For example, recall the monitor of Example 1.1 modelled by a transducer T1. Recall
that we presented a simpler transducer T2 that round-simulates T1. This allowed us then
to verify e.g., the property “if there is no error, then Process 3 works at least once every
20 steps” against the much smaller T2. When a designer wishes to gain understanding as
to why the verification on T2 is sound, they may want to see how input sequences/output
sequences for T1 are translated to T2. In this example, the transformation is simple, and
consists of ordering the process by their id.

Clearly one can compute x′ from x by simply trying all permutations of x and finding a
successful one. This, however, is expensive, and raises the question of whether we can output
x′ using a finite-state transducer. Unfortunately, we show in the following that computing
x′ cannot be done locally, in the sense that arbitrary lookahead is needed.

Consider two transducers T1 and T2 such that T1 ≺k T2, and an input word x ∈
(
Σk
I

)∗
.

This means, by definition, that there is a way to permute the rounds in x to obtain a word
x′ such that T2(x′) is a permutation of T1(x). A simulation mapping4 between T1 and T2 is a
function ψT1,T2 : Σ∗ → Σ∗ such that for every x ∈ ΣkR we have that x′ = ψT1,T2(x) satisfies
x′ ≍k x and T1(x) ≍k T2(x′) (we omit the subscripts when the transducers are clear from
context).

We start by showing that the simulation mapping is not a morphism, in the sense that
it cannot act on each round separately.

Example 7.1. Consider the transducers T1 and T2 depicted in fig. 9, with input and output
alphabets ΣI = {a, b} and ΣO = {0, 1} and round length 2. T1 expects to see either ab or ba

4We omit Λ for brevity. However, it can easily be incorporated.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:21

in every 2-round, outputting 00 in both cases, and otherwise outputs 01 in that round. T2
expects the first round to be ab and the second to be ba, otherwise outputs 01 in the round
not meeting expectations; and beginning from the third round, it behaves like T1. We have
that T1 ≺2 T2 by a permutation that corrects the order of the letters in the first two rounds of
the input. Moreover, we have ψ(ab) = ψ(ba) = ab whereas ψ(abba) = abba ̸= ψ(ab) · ψ(ba).

0

start

0

0 1

a

b a
b

a
b
a

b

start

0

0

0

1

0

0

0

1

0 0

0 1

a
b a

b

a, b

a
b

a
b

a, b

a
b

a

b

a

b

a

b a
b

a
b
a

b

Figure 9: The transducers T1 (left) and T2 (right) in Example 7.1. The states of T2 in red,
green and blue manage the first, second and later rounds, respectively.

Next, we show that in fact the simulation mapping cannot be described by any fixed
lookahead machine.

Example 7.2. Set Λ = L[ab ·(cc)∗ ·(ab+ba)] and k = 2, and let T1 and T2 be the transducers
in fig. 10, satisfying T1 ≺k,Λ T2. Denote the simulation mapping by ψ∗ : (Σk

I)
∗ → (Σk

I)
∗.

start

1

1

2 3

5

4

6

a

b

b

a

c

a

b

b

a

start

1

1

2

2

3

5

4

6

a

b

b

a

c

c

a

b

b

a

Figure 10: The transducers T1 (left) and T2 (right) in Example 7.2.

We claim that for any r, there is no lookahead machine that defines a function ψr :
(Σrk

I)∗ → (Σrk
I)∗ such that ψ∗(x) = ψ(x) for all input words x.

Indeed, let r ∈ N, and assume by way of contradiction that such ψr exists. Now consider
the input word x = ab · crk−2. ψr(x) must start with either ab or ba. Without loss of
generality, assume the former, and consider the input word x′ := x · ba · crk−2. Since ψr

works on r rounds each time, the first r rounds are fixed when it reads the (r + 1)-th round.
Moreover, since ψr(x

′) must induce a valid path in T2, the only option for the (r + 1)-th
round of ψr(x

′) is ab. Hence, the output of T1 on x′ is different from the output of T2 on
ψ(x′), and we have a contradiction.

Example 7.2 essentially shows that it is generally impossible to determine the output of
the first round without knowing the entire input. In section 9 we discuss possible models
that may be able to capture it, and are weaker than general Turing machines.

19:22 A. Abu Nassar and S. Almagor Vol. 19:4

8. Additional Notions of Symmetry and Simulation

Recall that under our definition from section 2, we have that x ≍k y if every k-round of x
can be permuted to a k-round of y. This permutation, however, can vary between rounds.
In some settings, we would want the rounds to be transformed uniformly, with the same
permutation. To this end, we introduce below the notion of uniform round simulation. In
addition, if the underlying alphabet consists of set of signals, as in the setting of section 6,
we can also consider simulation where one is allowed to permute the index of each signal,
instead of entire letters. To capture this notion, we introduce signal-wise simulation. Finally,
recall that simulation is defined by permutation of both the input and output letters. Given
the new definitions, one can consider simulations where the inputs and outputs are not
similarly permuted, e.g., the inputs can be permuted arbitrarily, but the outputs need to be
permuted uniformly. In the following, we discuss these notions and their interrelations.

For brevity, we omit Λ from this discussion, as it is an orthogonal restriction and can be
easily incorporated to the setting.

8.1. Variations of Round Symmetry and Round Simulation. We start by formally
defining new notions of simulation. For this section, we consider 2P/2P transducers5 for
P = {1, . . . , n}.

Consider two words x, y ∈ (2P)∗ of length kR. We say that x, y are uniformly round
equivalent and denote by x ≍u

k y if x ≍k y and there exists a single permutation τ ∈ Sk

which transforms the rounds of x to those of y. We say that x, y are signal-wise round
equivalent, denoted x ≍s

k y, if for each k-round, x and y have the same number of occurrences
of each signal. More precisely, for each signal p ∈ P and round 0 ≤ i < R, we have
|{j : p ∈ xik+j , 1 ≤ j ≤ k}| = |{j : p ∈ yik+j , 1 ≤ j ≤ k}|. For clarity, we explicitly denote

our original definition of round equivalence by x ≍ℓ
k y, where ℓ stands for “letter” round

equivalence. We refer to the three types of round equivalence as modes.
The new definitions lift to simulation of transducers, by specifying which type of round

equivalence is used on the inputs and outputs. We thus obtain 9 definitions of simulation, as
follows. Consider transducers T1, T2, and let µ, µ′ ∈ {s, ℓ, u} be modes of round equivalence.

We write T1 ≺µ,µ′

k T2 if for every input x there exists x′ ≍µ
k x such that T1(x) ≍µ′

k T2(x′).
This definition is in turn lifted to symmetry, as per section 6, by replacing T2 with T π for a
permutation π of the signals.

Example 8.1 (Round Robin is uniform symmetric). Consider the RR scheduler for n
processes, shown to be n-round symmetric in Example 6.1. Recall that in the proof of
its symmetry when the permutation π was applied to the signals, we had to change the
order of handling the requests such that it matched the new order of received requests:
given input x, for the i-th round b1b2 · · · bn of π(x) (the input under permutation π) we set
the corresponding round in x′ to bπ−1(1)bπ−1(2) · · · bπ−1(n). Since the same permutation π

was applied for all rounds of the input x, the permutation by which the rounds of x′ were
obtained was identical for all rounds. It follows that RR exhibits uniform round symmetry,
i.e., T ≺u,u

k T π.

The modes of equivalence can be compared by their strictness, with uniform equivalence
implying letter-wise, which in turn implies signal-wise. This can be lifted to round equivalence,
yielding a partial order on the strictness of the various definitions, as depicted in fig. 11.

5the choice of 2P as both the input and output alphabet is arbitrary.

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:23

⟨s, s, k⟩

⟨s, ℓ, k⟩ ⟨ℓ, s, k⟩

⟨ℓ, ℓ, k⟩

⟨ℓ, u, k⟩ ⟨u, ℓ, k⟩

⟨u, u, k⟩

⟨s, u, k⟩ ⟨u, s, k⟩

Figure 11: A Hasse diagram for the partial order on the strictness of the definitions, where
α→ β means α implies β.

In the remainder of the section, we give some examples separating some of the definitions,
thus showing the order in fig. 11 is strict. Similar examples can be constructed for separating
the rest of the definitions.

Example 8.2 (Symbol-wise symmetry does not imply letter-wise symmetry). We warm
up by showing that ⟨ℓ, ℓ, k⟩ is more strict than ⟨s, s, k⟩ (we will later reuse this example to
establish finer strictness results). Set π = (0 1) and let k ∈ N and m ≥ 3. We construct a
transducer that is symbol-wise k-round symmetric, but not letter-wise k′-round symmetric
for any k′.

Consider the 2P/2P transducer T =
〈
2P , 2P , S, s0, δ, ℓ

〉
depicted in fig. 12, where

P = [m] = {0, · · · ,m− 1}.

q0start

∅ ∅ · · · ∅ {0} behave like q0

∅ ∅ · · · ∅ {1} behave like q0

∅
1

∅
2

· · · ∅
k − 1

∅ behave like q0
k

{0
}

{1, 2}

else

ΣI ΣI ΣI {1, 2}

else

ΣI ΣI ΣI {0}
else

ΣI ΣI ΣI ΣI

Figure 12: T exhibits symbol, but not letter-wise, round symmetry (see Example 8.2).

Observe that every round starts at q0. There are three possible forms for the output of
each round depending on the input, as summarized in table 3.

We first show that T is symbol-wise round symmetric. Let x be an input word. Similarly
to section 6, π(x) is the word obtained from x by permuting every signal according to π. If
x is of one of the first two forms in table 3, then by moving the signal 2 ∈ P (fixed in π)
between the first and last letters, we get x′ ≍s π(x) such that T (x′) ≍s π(T (x)), as desired.
Now assume x is of some other form, having the output ∅k. If 2 ∈ P appears in both the first

19:24 A. Abu Nassar and S. Almagor Vol. 19:4

Table 3: The inputs and their corresponding outputs in T of Example 8.2.

Input Output

{0}σ2 · · ·σk−1{1, 2} ∅k−1{0}
{1, 2}σ2 · · ·σk−1{0} ∅k−1{1}

else ∅k

and last letters, or it appears in neither, then set x′ = π(x); otherwise, move the signal 2 to
the other letter, and the output will remain ∅k. Thus, T is symbol-wise round symmetric.

On the other hand, T is not letter-wise k′-round symmetric for any k′ > 0. To see
this, take the input x = {0}k−1 · {1, 2} · ∅k′k−k. We have |x| = k′k which is divisible by

k′, T (x) = ∅k−1 · {0} · ∅k′k−k. It holds that π(x) = {1}k−1 · {0, 2} · ∅k′k−k, which contains
neither the letter {0} nor {1, 2}. Thus, regardless of how we permute π(x) to obtain x′, the

output of any x′ ≍ℓ π(x) is always ∅k′k, which is not a permutation of T (x).

Example 8.3 (Showing ⟨s, s, k⟩ ⪇ ⟨ℓ, s, k⟩). Let T be the transducer from Example 8.2, and
consider the transducer T π obtained from T by permuting both the input and the output
by π = (0 1) as in section 6. We have shown that T is symbol-wise round symmetric. By a
reasoning analogous to the transition from symmetry to simulation as per section 6, this gives

T ≺s,s
k T π. However, it does not hold that T ≺ℓ,s

k T π: for the input x := {0}σ2 · · ·σk−1{1, 2}
having output y := ∅k−1{0} (cf. table 3), any permutation x′ ≍ℓ

k x will lead to an output of

∅k ̸≍s
k y. Thus T ̸≺ℓ,s

k T π (and in particular, T ̸≺ℓ,ℓ
k T π so T is not letter-wise symmetric).

In the general sense, we conclude that T1 ≺s,s
k T2 does not imply T1 ≺ℓ,s

k T2.

Example 8.4 (Showing ⟨s, s, k⟩ ⪇ ⟨s, ℓ, k⟩). Consider the transducer T in fig. 13, whose
round-by-round behaviour can once more be summarized in a table (see table 4). T is
symbol-wise round symmetric: for an input x, choose x′ = π(x). It is not difficult to show
that T (x′) ≍s

k π(T (x)) by considering the possible forms of x according to table 4. To

see that T ⊀s,ℓ
k T π, consider the word x = {0}∅∅. The output of T on x is {0}∅{2}. Any

round equivalent word x′ of x either starts with {1} or ∅, the respective outputs being either
{1, 2}∅∅ or ∅3. In all cases, we have T (x′) ̸≍ℓ

k T π(x).

Table 4: The inputs and their corresponding outputs in T of Example 8.4.

Input Output

{0}(2 /∈ σ)σ {0}∅{2}
{0}(2 ∈ σ)σ {0}{2}∅
{1, 2}(2 ∈ σ)σ {1}∅{2}
{1, 2}(2 /∈ σ)σ {1}{2}∅

{0, 2}σσ {0, 2}∅∅
{1}σσ {1, 2}∅∅
else ∅∅∅

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:25

q0start

{0}

{1}

{0, 2}

{1, 2}

∅

∅

{2}

∅

{2} behave like q0

∅ behave like q0

∅ behave like q0

{0}

{1, 2}

{0, 2}
{1}
else

2 /∈ σ

2 ∈
σ

2 /∈ σ
2 ∈

σ

Σ

Σ

Σ

Σ

Σ

Σ

Figure 13: The transducer T for Example 8.4. The transitions i ∈ σ and i /∈ σ mean all
letters from ΣI that, respectively, contain or do not contain i.

The transducers used in Examples 8.3 and 8.4 have established two gaps from fig. 11.
In fact, these same transducers can be used to establish the remaining two dual gaps as
well, as follows. The transducer T in Example 8.3 satisfies ⟨s, ℓ, k⟩-round simulation with its
corresponding T π; indeed, observe that the output labels are either singleton sets or empty
sets, so that a signal permutation of the output is equivalent to permuting the letters. The
transducer T in Example 8.4 satisfies ⟨ℓ, s, k⟩-round simulation with its corresponding T π,
which is inferred from the choice of x′ = π(x), satisfying in particular x′ ≍ℓ π(x). However,
neither of the two satisfy ⟨ℓ, ℓ, k⟩-round simulation, since they are not symbol-wise round
symmetric. This completes the proof of strictness of top diamond in fig. 11. In appendix B
we provide constructions to complete some of the remaining strictness results.

Finally, Example B.1 presents a pair of transducers T1 and T2 such that T1 ≺ℓ,s
2 T2 and

T1 ≺s,ℓ
2 T2, but T1 ̸≺ℓ,ℓ

2 T2. This proves that although ⟨ℓ, ℓ, k⟩-round simulation implies both
⟨s, ℓ, k⟩ and ⟨ℓ, s, k⟩-round simulation, the converse does not hold.

8.2. Deciding Round Simulation. We briefly discuss the decidability of round simulation
for the new notions. We start by considering ⟨s, s, k⟩-round simulation, where the following
arguments also apply when replacing one of the s with ℓ. The main idea is to tweak the
definitions of sections 4 and 5, and specifically the permutation-closure NFA, to look at
permutations of the signals, not just the letters. To this end, we simply modify the notion
of Parikh image over an alphabet 2P to be with respect to P. That is, for x ∈ (2P)∗, let
P(x) ∈ NP be the vector counting the number of occurrences of each signal p ∈ P in the
letters of x.

Under this definition, the analysis of sections 4 and 5 follows without any changes. Indeed,
the crucial property that is needed for these arguments is that the permutation-closure
NFA is indeed closed under permutation, which clearly holds also for the new definition. In
particular, the proof of Lemma 4.4 hold, from which the rest of the analysis follows. Thus,
adding s to the model retains the decidability and complexity of both fixed round simulation
and existential round simulation.

19:26 A. Abu Nassar and S. Almagor Vol. 19:4

In contrast, uniform round simulation is conceptually different: the constraint on the
permutations of each round is now global for the word. That is, we need a single permutation
to be used in all rounds. This means that the techniques of sections 4 and 5 no longer apply.
Moreover, uniform round simulation is not invariant to (letter or signal) round permutations.
Indeed, clearly there are words x ≍ℓ

k x
′ and y such that x ≍u

k y but x′ ̸≍u
k y.

For fixed round simulation, enforcing the global condition is not too difficult, as we now
show.

Theorem 8.5. Given transducers T1, T2 and k > 0 in unary, the problem of deciding whether
T1 ≺u,u

k, T2 is in PSPACE.

Proof. Recall that T1 ≺u,u
k T2 iff for every x there exist permutations π, τ such that π(x) = y

(where π(x) is the word obtained by applying π to each k-round of x) and τ(T1(x)) = T2(y).
Let Dk

1 and Dk
2 be the trace DFAs of T1 and T2 as per section 4, where we modify them

to read the alphabet Σk
I × Σ

)
O (in this setting ΣI = ΣO = 2P). Next, for permutations

π, τ as above, define Aπ,τ
1 to be the DFA obtained from Dk

1 by, intuitively, applying π, τ
to Σk

I × Σk
O. Formally, let δ : Q × (Σk

I × Σk
O) → Q be the transition function of Dk

1 , then
the transition function of Aπ,τ

1 is given by µ(q, (α, β)) = δ(q, (π(α), τ(β))). We now obtain
an NFA A by taking the union of Aπ,τ

1 over all permutations π, τ . It is easy to see that
T1 ≺u,u

k T2 iff L(A) ⊆ Dk
2 .

Since the size of A is single-exponential in that of Dk
1 , but can be construction on-the-fly,

the latter containment can be decided in PSPACE.
Theorem 8.5 can be easily combined with the remaining notions to obtain the decidabilty

of all nine definitions of fixed round simulation.

Remark 8.6. Unfortunately, the construction in the proof of Theorem 8.5 significantly
modifies the state space of Dk

1 . This is in contrast to the construction in Lemma 4.4, which
only modifies the transition function.

In particular, it is not clear if the construction can be symbolically defined via e.g.,
Presburger Arithmetic (or some other decidable logic) in order to extend decidability to the
existential-bound setting. We therefore leave the latter as an open problem.

9. Conclusion and Open Questions

In this work, we introduced round simulation and provided decision procedures and lower
bounds (some with remaining gaps) for the related algorithmic problems. Our framework
can be viewed as a notion of “approximate simulation”, by which we can significantly reduce
the state space for verification, at the cost of invariance to permutations.

Round simulation, and in particular its application to round symmetry, is only an
instantiation of a more general framework of symmetry, by which we measure the stability
of transducers under local changes to the input. In particular, there is place for additional
notions of symmetry and simulation to be studied, and the existing ones extended. Some
such variants were presented and discussed in section 8.1, but others, e.g., sliding-window
symmetry, or the setting of infinite words may also be of interest in future works.

A few gaps have remained open in this work. Most notably are tightening the complex-
ity gap of existential simulation Remark 5.9, and implementing the simulation mapping
from section 7 using a simpler computational model than Turing machines. Some possible
candidates for the latter are streaming-string transducers and bi-machines [MP19].

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:27

References

[AA22] A. Abu Nassar and S. Almagor. Simulation by rounds of letter-to-letter transducers. In Florin
Manea and Alex Simpson, editors, 30th EACSL Annual Conference on Computer Science Logic,
CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of LIPIcs,
pages 3:1–3:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[Alm20] S. Almagor. Process symmetry in probabilistic transducers. In 40th International Conference on
Foundation of Software Technology and Theoretical Computer Science, FSTTCS 2020, 2020.

[BS73] J. A. Brzozowski and I. Simon. Characterizations of locally testable events. Discrete Mathematics,
4(3):243–271, 1973.

[BT76] I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine equations.
Proceedings of the American Mathematical Society, 55(2):299–304, 1976.

[C+99] P. J. Cameron et al. Permutation groups, volume 45. Cambridge University Press, 1999.
[CEFJ96] E. M. Clarke, R. Enders, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic model

checking. Formal methods in system design, 9(1-2):77–104, 1996.
[CHVB18] E.M. Clarke, T.A. Henzinger, H. Veith, and R. Bloem, editors. Handbook of Model Checking.

Springer, 2018.
[Coo72] D. C Cooper. Theorem proving in arithmetic without multiplication. Machine intelligence, 7(91-

99):300, 1972.
[ES96] E. A. Emerson and A. P. Sistla. Symmetry and model checking. Formal methods in system design,

9(1-2):105–131, 1996.
[FPS15] H. Fernau, M. Paramasivan, and M. L. Schmid. Jumping finite automata: characterizations and

complexity. In International Conference on Implementation and Application of Automata, pages
89–101. Springer, 2015.

[FR74] M.J. Fischer and M.O. Rabin. Super-exponential Complexity of Presburger Arithmetic. Project
MAC: MAC technical memorandum. Massachusetts Institute of Technology Project MAC, 1974.
URL: https://books.google.co.il/books?id=ijoNHAAACAAJ.

[Haa18] C. Haase. A survival guide to presburger arithmetic. ACM SIGLOG News, 5(3):67–82, 2018. URL:
https://dl.acm.org/citation.cfm?id=3242964.

[HKR97] T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. In Proc. 8th Conferance on
Concurrency Theory, volume 1243 of Lecture Notes in Computer Science, Warsaw, July 1997.
Springer-Verlag.

[Hof20] S. Hoffmann. State complexity bounds for the commutative closure of group languages. In
International Conference on Descriptional Complexity of Formal Systems, pages 64–77. Springer,
2020.

[HW87] M. P. Herlihy and J. M. Wing. Axioms for concurrent objects. In Proceedings of the 14th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 13–26, 1987.

[ID96] C. N. Ip and D. L. Dill. Better verification through symmetry. Formal methods in system design,
9(1-2):41–75, 1996.

[KRS09] J. Kao, N. Rampersad, and J. Shallit. On nfas where all states are final, initial, or both. Theoretical
Computer Science, 410(47-49):5010–5021, 2009.

[LNRS16] A. W. Lin, T. K. Nguyen, P. Rümmer, and J. Sun. Regular symmetry patterns. In International
Conference on Verification, Model Checking, and Abstract Interpretation, pages 455–475. Springer,
2016.

[Mil71] R. Milner. An algebraic definition of simulation between programs. In Proc. 2nd Int. Joint Conf.
on Artificial Intelligence, pages 481–489. British Computer Society, 1971.

[MP19] A. Muscholl and G. Puppis. The Many Facets of String Transducers (Invited Talk). In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical Aspects of
Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 2:1–2:21, Dagstuhl, Germany, 2019. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.STACS.2019.2.

[MZ12] A. Meduna and P. Zemek. Jumping finite automata. International Journal of Foundations of
Computer Science, 23(07):1555–1578, 2012.

[Opp78] D. C. Oppen. A 222pn upper bound on the complexity of presburger arithmetic. Journal of
Computer and System Sciences, 16(3):323–332, 1978.

[Par66] R. J. Parikh. On context-free languages. J. of the ACM, 13(4):570–581, 1966.

https://books.google.co.il/books?id=ijoNHAAACAAJ
https://dl.acm.org/citation.cfm?id=3242964
https://doi.org/10.4230/LIPIcs.STACS.2019.2

19:28 A. Abu Nassar and S. Almagor Vol. 19:4

[VSS05] K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational horn clauses. In
International Conference on Automated Deduction, pages 337–352. Springer, 2005.

Appendix A. PSPACE Hardness

Lemma A.1. Universality of NFAs over alphabet Σ = {0, 1}, where all states are accepting,
and the degree of nondeterminism is at most 2, is PSPACE-complete.

Proof. In [KRS09], it is shown that universality of NFAs remains PSPACE-complete even for
NFAs over alphabet Σ = {0, 1} and all states accepting. Thus, we only need to show that
this remains the case under the restriction that |δ(q, σ)| ≤ 2 for every state q and letter σ.

To see this, we start by observing that universality remains PSPACE-complete for NFAs
over alphabet {0, 1, $} with nondeterminism degree at most 2. Indeed, given an NFA over
{0, 1} with maximal nondeterminism degree d > 2, we can replace each transition of the
form6 δ(q, σ) = {q1, . . . , qd} with a binary tree of depth ⌈log d⌉, reading $ on all transitions,
which starts at q and ends in q1, . . . , qd. Thus, we introduce at most d states for every
transition. By marking these states as accepting, this reduction maintains universality, and
requires a polynomial blowup.

Next, we observe that the reductions in [KRS09, Lemma 2] first transform an NFA over
alphabet size k to an NFA over alphabet size k+1 with all states accepting and with identical
nondeterminism degree (indeed, the only added transitions are in fact deterministic), and
then transforms an NFA with all states accepting and alphabet size 4 to an NFA with all
states accepting and alphabet size 2, with an equal nondeterminism degree (essentially by
encoding each of the 4 letters as two letters in {0, 1}).

Since we start this chain of reductions with an NFA of nondeterminism degree at most
2, we maintain this property throughout the proof.

A.1. Proof of Theorem 4.7. We show a reduction from the universality problem for NFAs
over alphabet {0, 1} where all states are accepting and the degree of nondeterminism is at
most 2, to round equivalence with k = 2 and with Λ given as a DFA of constant size. The
former is shown to be PSPACE-hard in Lemma A.1.

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and
σ ∈ {0, 1}. We construct two transducers T1 and T2 over input and output alphabets
ΣI = {a, b, c, d} and ΣO = {⊤,⊥} and Λ ⊆ Σ∗

I , such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.
Set Λ = (ab + cd)∗ (described as a 4-state DFA). Intuitively, our reduction encodes

{0, 1} into {a, b, c, d}2 by setting 0 to correspond to ab and to ba, and 1 to cd and to dc.
Then, T1 keeps outputting ⊤ for all inputs in Λ, thus mimicking “accepting” every word in
{0, 1}∗. We then construct T2 so that every nondeterministic transition of N on e.g., 0 is
replaced by two deterministic branches on ab and on ba. Hence, when we are allowed to
permute ab and ba by round equivalence, we capture the nondeterminism of N .

We now proceed to define the reduction formally. We construct T1 independently of N ,
as depicted in fig. 14, containing 4 states. For every x ∈ Λ we have T1(x) = ⊤|x|, and for

every other x /∈ Λ we have T1(x) = ⊤m⊥|x|−m where m is the length of the maximal prefix
of x in (ab+ cd)∗(a+ c+ ϵ).

We proceed to construct T2. We can think of the outgoing transitions from every state
q as δ(q, 0) = {q0,0, q0,1} and δ(q, 1) = {q1,0, q1,1} (unless N has no outgoing transitions on

6We can assume all transitions have degree exactly d by adding redundant transitions

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:29

⊤ ⊤⊤

⊥

ac
b, d

b

a, c, d

d

a, b, c

Figure 14: The transducer
T1 in the proof
of Theorem 4.7.

q

q0,0

q0,1

q1,0

q1,1

0

0

1

1 q

⊤
qa

⊤
qb

⊤
qc

⊤
qd

⊤
q0,0

⊤
q0,1

⊤
q1,0

⊤
q1,1

a

b

c

d

b

a

d

c

Figure 15: Every state and its 4 transitions in N (left) turn
into 8 transitions in T2 (right). All transitions
not drawn in the right figure lead to q⊥, a sink
state labelled ⊥.

one of the letters, see below). We obtain T2 from N by introducing 4 new states qa, qb, qc, qd
for every state q ∈ Q, and setting the transitions and labels as depicted in fig. 15. In case N
does not have a transition on e.g., 0 from q, then instead of going to qa or qb, we proceed
to a new state q⊥ labelled ⊥, which is a sink state. In addition, q⊥ is reached upon any
transition not yet defined. Observe that for every x ∈ Λ we have T2(x) = ⊤m⊥|x|−m for
some 0 ≤ m ≤ |x| (since q⊥ is a sink).

We now claim that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2. For the first direction, assume
L(N) = {0, 1}∗. Observe that T2 ≺2,Λ T1 independently: for every x ∈ (ab+ cd)∗, denote

T2(x) = ⊤m⊥|x|−m, then we can construct x′ ≍2 x such that T1(x′) = ⊤m⊥|x|−m by leaving
x unchanged m steps, and then permuting the letters such that the run of T1 moves to the
sink labelled ⊥ (indeed, observe that m must be even by the construction of T2, and hence
T1 can permute e.g., ab to ba in order to start outputting ⊥ on an even step).

Next, we show that T1 ≺2,Λ T2. Consider x ∈ (ab+ cd)∗, so that T1(x) = ⊤|x|, and let
w ∈ {0, 1}∗ be the word obtained from x by identifying ab with 0 and cd with 1. Since
L(N) = {0, 1}∗, there exists a run (and hence an accepting run) of N on w, denoted
s0, s1, . . . , sn. We now obtain x′′ ≍2 x by identifying each letter 0 in x with either ab or ba,
and each letter 1 with cd or dc, such that the run of T2 on x′′ simulates the run of N on w.
Thus, T2(x′′) = ⊤|x′′|, and T2(x′′) ≍2 T1(x), so we are done.

Conversely, if T1 ≡2,Λ T2, then in particular T1 ≺2,Λ T2. We claim that L(N) = {0, 1}∗.
Consider w ∈ {0, 1}∗. Dually to the above, we obtain from w a word x ∈ (ab + cd)∗ by

identifying 0 with ab and 1 with cd, so that T1(x) = ⊤|x|. Since T1 ≺2,Λ T2, there exists

x′ ≍2 x such that T2(x′) = ⊤|x|. Observe that x′ must be obtained from x by (possibly)
changing each ab to ba and each cd to dc. In particular, the run of T2 on x′ induces a run of
N on w by identifying both ab and ba as 0 and both cd and dc as 1. This gives w ∈ L(N),
so L(N) = {0, 1}∗, which concludes the proof.

A.2. Proof of Theorem 5.10. In order to show that existential round equivalence is
PSPACE-hard, we build upon the reduction in the proof of Theorem 4.7: we again show a
reduction from the universality problem for NFAs over alphabet {0, 1} where all states are
accepting and the degree of nondeterminism is at most 2 (cf. Lemma A.1).

Consider an NFA N = ⟨Q, {0, 1}, δ, q0, Q⟩ where |δ(q, σ)| ≤ 2 for every q ∈ Q and
σ ∈ {0, 1}. We construct two transducers T1 and T2 over input and output alphabets
ΣI = {a, b, c, d,#} and ΣO = {⊤,⊥} and Λ ⊆ Σ∗

I , such that L(N) = {0, 1}∗ iff T1 ≡2,Λ T2.

19:30 A. Abu Nassar and S. Almagor Vol. 19:4

Intuitively, the idea is to use a similar encoding of {0, 1} in {a, b, c, d} whereby 0
corresponds to either ab or ba and 1 to cd or dc. Now, however, since k is not fixed to 2, we
also allow arbitrary padding with sequences of ##.

Set Λ = (ab+ cd+##)∗ (given as a 5 state DFA). We construct T1 and T2 similarly to
the proof of Theorem 4.7, by adding self-cycles of length 2 upon reading ##, from every
state except the sink q⊥. See figs. 16 and 17 for an illustration.

⊤ ⊤⊤

⊤

⊥

ac
#

b, d

b

a, c, d,#

d

a, b, c,#

#

a, b, c, d

Figure 16: The transducer T1 in the proof of Theorem 5.10.

q

q0,0

q0,1

q1,0

q1,1

0

0

1

1
q

q# ⊤

qa

⊤

qb

⊤

qc

⊤

qd

⊤ q0,0

⊤ q0,1

⊤q1,0

⊤q1,1

a

b

c

d

#

b

a

d

c

#

Figure 17: Every state and its 4 transitions in N (left) turn into 10 transitions in T2 (right).
All transitions not drawn in the right figure lead to q⊥, a sink state labelled ⊥.

We claim that L(N) = {0, 1}∗ iff there exists k > 0 such that T1 ≡k,Λ T2. For the first
direction, assume L(N) = {0, 1}∗, then we can show that T1 ≡2,Λ T2 by following the proof
of Theorem 4.7 line for line, with the addition that blocks of the form ## leave the state of
both T1 and T2 unchanged.

For the converse direction, assume T1 ≡k,Λ T2, and in fact we only assume T1 ≺k,Λ T2
for some k > 0. We further assume w.l.o.g. that k is even, otherwise we can just take 2k
(since we also have T1 ≺2k,Λ T2).

Consider w ∈ {0, 1}∗. We obtain from w a word x ∈ (ab+ cd+##)∗ by identifying 0

with ab#k−2 and 1 with cd#k−2. Observe that T1(x) = ⊤|x|, and that x is indeed a k-round
word in Λ, with each round being either ab#k−2 or cd#k−2.

Since T1 ≺k,Λ T2, there exists x′ ≍k x such that T2(x′) = ⊤|x|. Observe that x′ must be
obtained from x by (possibly) changing each ab to ba and each cd to dc, and by shifting
the location of this pair within the # symbols. Indeed, otherwise the run of T2 on x′ ends
in q⊥. In particular, the run of T2 on x′ induces a run of N on w by identifying both ab

Vol. 19:4 SIMULATION BY ROUNDS OF LETTER-TO-LETTER TRANSDUCERS 19:31

and ba as 0 and both cd and dc as 1. Thus, w ∈ L(N), so L(N) = {0, 1}∗, and the proof is
concluded.

Appendix B. Variants of Round Simulation

We start by presenting some transducers that aid us in the proof of strictness of the remaining
notions, all being variants of RR:

(1) RR that expects all requests in the beginning of every round, but outputs like the
original (e.g. {0, 2}{1}{1} would output {0}∅{2}), modelled by T1.

(2) RR that expects input as in the original, but outputs all grants in the end of the round
(e.g. {0, 2}{1}{1} would output ∅∅{0, 1}), modelled by T2.

(3) RR such that every other round begins by considering requests of Process 1 before
Process 0 (e.g. {0}{1}∅ · {0}{1}∅ would output {0}∅∅ · ∅{1}∅), modelled by T3.

Denote by T the transducer for RR. It is not difficult to see that T1 ≺s,u T but T1 ̸≺ℓ,u T ;
that T2 ≺u,s T but T2 ̸≺u,ℓ T ; and that T3 ≺ℓ,ℓ T but T3 ̸≺ℓ,u T and T3 ̸≺u,ℓ T .

Example B.1. The transducers in fig. 18 satisfy T1 ≺ℓ,s
2 T2 and T1 ≺s,ℓ

2 T2. This is proved
in table 5, which considers all possible forms of each round and gives round equivalent words
xℓ ≍ℓ

2 x and xs ≍s
2 x that satisfy the requirements of the definitions.

q0start ∅

∅

∅

∅

{0, 1} behave like q0

{0} behave like q0

∅

{0, 1}

{0}

{1}
{0, 1}

∅

{1
}

{0
}

elseelse

else
else

q0start {0}

{0}

∅

∅

{1} behave like q0

∅ behave like q0

{0, 1} behave like q0

{0} behave like q0

∅

{0, 1}

{0}

{1}

{0, 1}

∅

{1}

{0}

else

else

else

else

Figure 18: Transducers T1 (up) and T2 (down) in Example B.1, satisfying T1 ≺ℓ,s
2 T2 and

T1 ≺s,ℓ
2 T2, but T1 ̸≺ℓ,ℓ

2 T2. See table 5 for a table summarizing the possible inputs
and outputs for T1.

19:32 A. Abu Nassar and S. Almagor Vol. 19:4

However, T1 ̸≺ℓ,ℓ
k′ T2 for any k′ > 0. Indeed, consider the word x = {0, 1}∅k′−1 having

output T1(x) = ∅{0, 1}∅k′−2. For T2 to output the letter {0, 1}, it must see one of the input
letters {0} and {1}, since the only state labelled {0, 1} has two incoming transitions with
{0} and {1}. But any x′ ≍ℓ

k′ x will not contain the letters {0} and {1}, so T1(x) ̸≍ℓ
k′ T2(x′).

Therefore T1 ̸≺ℓ,ℓ
k′ T2.

Table 5: A table summarizing the outputs of transducer T1 in Example B.1 on words x of
length 2, and round equivalent words xℓ and xs that satisfy the requirement of x′

in the definition of T1 ≺ℓ,s
2 T2 and T1 ≺s,ℓ

2 T2.

x T1(x) xs : T2(xs) ≍p
2 T1(x) T2(xs) xp : T2(xp) ≍s

2 T1(x) T2(xp)

∅∅ ∅{0} ∅∅ {0}∅ ∅∅ {0}∅
∅{0} ∅{0} ∅{0} {0}∅ ∅{0} {0}∅
∅{1} ∅{0} ∅{1} {0}∅ ∅{1} {0}∅
∅{0, 1} ∅{0, 1} ∅{0, 1} {0}{1} {0}{1} ∅{0, 1}

{0}∅ ∅{0} {0}∅ ∅{0} {0}∅ ∅{0}
{0}{0} ∅{0} {0}{0} ∅{0} {0}{0} ∅{0}
{0}{1} ∅{0, 1} {0}{1} ∅{0, 1} {0}{1} ∅{0, 1}
{0}{0, 1} ∅{0} {0}{0, 1} ∅{0} {0}{0, 1} ∅{0}

{1}∅ ∅{0} {1}∅ ∅{0} {1}∅ ∅{0}
{1}{0} ∅{0, 1} {1}{0} ∅{0, 1} {1}{0} ∅{0, 1}
{1}{1} ∅{0} {1}{1} ∅{0} {1}{1} ∅{0}
{1}{0, 1} ∅{0} {1}{0, 1} ∅{0} {1}{0, 1} ∅{0}

{0, 1}∅ ∅{0, 1} {0, 1}∅ {0}{1} {0}{1} ∅{0, 1}
{0, 1}{0} ∅{0} {0, 1}{0} {0}∅ {0, 1}{0} {0}∅
{0, 1}{1} ∅{0} {0, 1}{1} {0}∅ {0, 1}{1} {0}∅
{0, 1}{0, 1} ∅{0} {0, 1}{0, 1} {0}∅ {0, 1}{0, 1} {0}∅

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse 2,
10777 Berlin, Germany

	1. Introduction
	Related Work
	Paper Organization

	2. Preliminaries
	3. Round Simulation and Round Equivalence
	4. Deciding Fixed Round Simulation
	5. Deciding Existential Round Simulation
	5.1. Intuitive Overview
	5.2. Proof of Theorem 5.1
	5.3. Lower Bounds for Existential Round Simulation

	6. From Process Symmetry to Round Equivalence
	7. The Simulation Mapping
	8. Additional Notions of Symmetry and Simulation
	8.1. Variations of Round Symmetry and Round Simulation
	8.2. Deciding Round Simulation

	9. Conclusion and Open Questions
	References
	Appendix A. PSPACE Hardness
	A.1. Proof of Theorem 4.7
	A.2. Proof of Theorem 5.10

	Appendix B. Variants of Round Simulation

