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Abstract. We extract verified algorithms for exact real number computation from con-
structive proofs. To this end we use a coinductive representation of reals as streams of
binary signed digits. The main objective of this paper is the formalisation of a constructive
proof that real numbers are closed with respect to limits. All the proofs of the main theorem
and the first application are implemented in the Minlog proof system and the extracted
terms are further translated into Haskell. We compare two approaches. The first approach
is a direct proof. In the second approach we make use of the representation of reals by a
Cauchy-sequence of rationals. Utilizing translations between the two represenation and
using the completeness of the Cauchy-reals, the proof is very short.

In both cases we use Minlog’s program extraction mechanism to automatically extract a
formally verified program that transforms a converging sequence of reals, i.e. a sequence of
streams of binary signed digits together with a modulus of convergence, into the binary
signed digit representation of its limit. The correctness of the extracted terms follows
directly from the soundness theorem of program extraction.

As a first application we use the extracted algorithms together with Heron’s method to
construct an algorithm that computes square roots with respect to the binary signed digit
representation. In a second application we use the convergence theorem to show that the
signed digit representation of real numbers is closed under multiplication.

1. Introduction and motivation

1.1. Real numbers. Real numbers can be represented in several ways. One of the best-
known representations is as Cauchy sequences of rational numbers together with a Cauchy
modulus. Namely a Cauchy real is a pair ((an)n,M) consisting of a sequence (an)n of real
numbers and a modulus M : Z+ → N such that ∀p∀n,m>M(p)|an − am| ≤ 2−p, i.e. (an)n is a
Cauchy sequence with modulus M .
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However, in this paper the representation of real numbers as Cauchy reals will be just a
tool. The main theorems of this paper are concerned with the signed digit representation of
real numbers.

1.2. Binary representation vs. signed digit representation. The binary representa-
tion of a real number x in [−1, 1] is given by

x = s
∞∑
i=1

ai2
−i,

where s ∈ {−1, 1} and ai ∈ {0, 1} for every i. Here and further on, by equality = between
two reals we mean an equivalence relation that is compatible with the usual operations and
relations on the reals. In reality the specific of the real equality depends on the representation
of real numbers. The binary representation of some concrete real number corresponds to a
sequence of nested intervals. Reading the digits one after the other the interval is halved
in each step. Hence from the binary code we can approximate a real number to arbitrary
precision. Now consider the other direction, i.e. given a real number, compute the binary

Figure 1: Visualization of the binary code

representation. This is not always possible, since the ≤-relation is not decidable. Further it
is not possible to e.g. compute the binary representation of x+y

2 given representation of x
and y. Here “compute” means that there is an algorithm which takes as input the binary
streams of x and y and generates the binary stream representing x+y

2 . In particular, the
algorithm can only use finitely many binary digits of x and y in order to generate finitely
many binary digits of x+y

2 . For example, it is not possible to compute even the first digit

(i.e. + or -) of the average of +~0??? · · · and −~0??? · · · , where ~0 is a list with entries 0 of
arbitrary length and ? stands for an unknown digit. This is not possible due to the “gaps” in
the binary representation. They are illustrated in Figure 1 at 0, 1

2 , −1
2 , 1

4 and so on. From
the first digit of a representation of a real x, we can decide 0 ≤ x or x ≤ 0, which in general
can not be done if reasoning constructively about reals. The signed digit code fills these
gaps. For a real number x ∈ [−1, 1] it is defined by

x =
∞∑
i=1

di2
−i,

where di ∈ {1, 0, 1} for every i. As the illustration in Figure 2 makes clear, to compute the
first signed digit of a real number x ∈ [−1, 1] we have to decide which of the cases x ≤ 0,
−1

2 ≤ 0 ≤ 1
2 or 0 ≤ x holds. Now this is possible by application of the comparability theorem

∀x,y,z (x < y → z ≤ y ∨ x ≤ z) .
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Figure 2: Visualization of the signed digit code

Figure 2 also shows that the SD code of a real number (except −1 and 1) is not unique,
whereas the binary code is “almost” everywhere unique.

A stream of signed digits is an infinite list d1d2d3 . . . of elements in

Sd := {1, 0, 1}.

We will not use the signed digit streams directly, rather we use a coinductively defined
predicate coI, which is given in the next section. For a real number x a realiser of x ∈ coI
is a signed digit stream representing x. The desired algorithms are given by the extracted
terms of the proofs. The soundness theorem of program extraction [Sch21, SW12, Wie17]
gives correctness of these algorithms.

1.3. Historical background. One of the first papers where signed digits are used to
represent real numbers, was published by Edwin Wiedmer in 1980 [Wie80]. The idea to
use coinductive algorithms to describe the operators on the reals goes back to Alberto
Ciaffaglione and Pietro Di Gianantonio [CG06] and was revised by Ulrich Beger and Tie
Hou [BH08, Ber11]. The idea to use coinductively defined predicates together with the
soundness theorem in this context is due to Ulrich Berger and Monika Seisenberger [BS12].
The notation and definitions in this paper are taken from [MS15] written by Kenji Miyamoto
and Helmut Schwichtenberg. For the implementation of the translations between signed-digit
and Cauchy-representation in Minlog see [Köp18].

1.4. Implementation in Minlog. For computing the extraced terms and verifying the
correctness of the proofs, the proof assistant Minlog [Miy17] is used. An introduction to
Minlog can be found in [Wie18] or doc/tutor.pdf in the Minlog directory. The imple-
mentation of the proofs can be found in the file examples/analysis/sdlim.scm in the
directory of Minlog. After each proof we state its computational content not in the notation
of Minlog but in the notation of Haskell, since the runtime of the programs in Haskell is
shorter, and the terms can be defined in a more readable way. So after each proof we
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give the extracted term of the proof which was translated to Haskell using the command
terms-to-haskell-program.

1.5. Procedure of this paper. In the next section we define a coinductively defined
predicate coI on reals. Its computational interpretation is that a real number x ∈ coI has a
signed digit representation. Then we prove some basic properties about it. In the second part
of this chapter, we introduce the predicate R on reals. The computational interpretation
Rx is the existence of a sequence as of rationals and a modulus M such that as converges
to x with modulus M . We conclude the second section by showing that [−1, 1] ∩R and coI
are equivalent.

The third section contains two proofs of the main theorem. We show that the limit of a
converging sequence in coI is again in coI. The first proof is a direct proof. Computationally
it operates on the signed digit stream of real numbers only. In the second proof we use the
equivalence between coI and R and that R is closed under limit, which is known as the
completeness of Cauchy-reals. In both cases the computational content of the proof is a
function which takes a stream of signed digit streams and a modulus and returns a new
signed digit stream.

The last section contains two applications of the convergence theorem. To show the
square root of a real number in coI is again in coI we use Heron’s method and the convergence
theorem. Lastly we consider the multiplication of two reals numbers in coI. By representing
one factor as a limit of reals we obtain a multiplication program for signed digit streams as
a simple iteration of the average function.

2. Formalisation

2.1. The theory of computational functionals (TCF). We use the formal theory TCF
to formalize statements like “x is represented by some signed digit stream”. In this section
we give a short overview of TCF. For a complete and formal introduction we refer to
[SW12, Wie17].

In TCF all terms are typed. Types in TCF are either type variables, function types or
algebras. Algebras can be seen as fixpoints of their constructors. For examples, the type N of
natural numbers is the algebra with the constructors 0 : N and S : N→ N. In short notation
we express this as N := µξ(ξ, ξ → ξ), where µ is interpreted as least-fixed-point operator.
Since each variable comes with a type, we will use the following naming conventions to
supress type declarations.

Notation 2.1. The following table shows which variables have which type.

m,n : N a, b : Q M,N : Z+ → N
d, e, k : Z x, y : R as, bs : N→ Q
p, q : Z+ v, u : S xs, ys : N→ R

If other variables are used, their type is either not relevant or we declare it individually.

Here, Z+ is defined as the positive (binary) numbers, Z as the integers, Q as the rational
numbers and R as real numbers. How these algebras are defined in detail however is not
important for our purpose. In particular, in Minlog the type of real numbers R is explicitly
defined as the type (N → Q) × (Z+ → N). Since in the following proofs the concrete
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representation of real numbers is not important, we view R as an abstract datatype and
assume that we have abstract axiomatized reals with the usual operations including addition,
multiplication, less-than and an equivalence-relation such that the other operations are
compatible with it. We will refer to explicit representations by using predicates e.g. x ∈ R
and the computational content of a proof of this statement is a witness that x has an
R-representation.

In TCF predicates are defined (co-)inductively. Each inductively defined predicate comes
with introduction axioms, also called clauses, and an elimination axiom. A coinductively
defined predicate will be given by a closure axiom and a coinduction axiom. An example
of an inductivly defined predicate is the totality predicate T which we discuss below or
the predicate R defined in Section 2.5. In Section 2.3 we introduce a coinductively defined
predicate regarding the dinged digit representation. This coinductively defined predicate is
the main reason why TCF is the most suitable as underlying theory for our purpose. For an
unary predicate A, we write t ∈ A for At and ∀t∈AB, ∃t∈AB are short for ∀t(At→ B) and
∃t(At ∧B), respectively. Examples for these abbreviations that we later use include x ∈ coI,
x ∈ R, d ∈ SD.

Note that in TCF the existence quantifier as well as the conjunction and the distinction
are formally inductively defined predicates. For examples, A ∧B is defined by the clause
A → B → A ∧ B, in short notation A ∧ B := µX(A → B → X). As this notation
suggest, A ∧B is the least predicate X which fulfills A→ B → X. Furthermore, we have
A ∨B := µX(A→ X,B → X) and ∃tA := µX(∀t(A→ X)).

Another important property of TCF is that a term with a certain algebra as type does
not have to consist of finitely many constructors of this type. For example, a natural number
n : N does not have to be in the form S . . . S0. This means that terms in TCF are partial in
general. E.g. we can also consider an infinite natural number which behaves like SSS . . . .
However, we can not longer prove statements of the form ∀tA(t) by induction on t as we do
not know how t is constructed and hence we can ad hoc not use something like induction on
natural numbers. In order to use induction after all, we will use the totality predicate T
of TCF. Informally speaking, t ∈ T for some term t : τ means that t is a finite constructor
expression if τ is an algebra, or t maps total object to total objects, if τ is a function type.
E.g. for a sequence of natural numbers ns : N → N we have ns ∈ T := ∀n∈T(ns n) ∈ T
where n ∈ T is the inductive predicate given by the clauses 0 ∈ T and n ∈ T→ (n+ 1) ∈ T.
The elimination axiom of n ∈ T is induction over natural numbers. Formally, the totality
predicate is defined by recursion over the type. In particular, for each type we have an
individual totality predicate. However, we do not mention this explicitly in the notation.
For example, we just write n ∈ T instead of n ∈ TN, as the type is clear from the context.
We furthermore assume that predicates like ≤ on natural numbers or (positive) integers are
defined for total objects only. In particular, if we write something like ∀n≥M(p)A, we mean
∀n(n ∈ T ∧ n ≥M(p)→ A).

2.2. Program extraction from proofs. In this section we give an overview on the process
of program extraction from proofs in TCF. For formal definitions we refer to [Wie17, SW12,
Sch21, Köp18]. In this short section we do not give formal definition as they are quite
complex and we will use the proof assistant Minlog in any case to carry out the program
extraction.

The computational content arises from the (co-)inductively defined predicates. When
defining an (co-)inductively defined predicate or a predicate variable, it must also be
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determined whether it is computationally relevant (cr) or non computational (nc). For
example, the totality predicate T is defined as computationally relevant. The same goes for
the predicates coI, R and SD, which we introduce later. The equality and inequality on
real numbers are non computational. A formula is computational relevant (cr), if its last
conclusion is A~t where A is a computational relevant predicate. Note that the universal
and existence quantifier by themselves will not carry computational content, in particular
the type of the formulas A and ∀xA are the same. But we will use the abbreviations ∀t∈A
and ∃t∈A, where t ∈ A is computationally relevant (as long as A is). In the last section we
said that we use abstract axiomatized real numbers. Here, we require that the axioms are
non computational. This is the case for a usual axiomatisation as the axioms are about
equations and inequalities.

In a first step, from a cr formula A the type type τ(A) and realizer predicate Ar are
defined. Formally, this is done by recursion on the structure of the formula. The realiser
predicate is a predicate which takes a term of the type of the formula and states that a term
is a realizer of the formula, i.e. it adheres to the computational requirements stated in the
formula.

In a second step, the extracted term et(M) of the formalized proof M of A is computed.
The extracted term is a λ-term with the type of the formula and is defined by recursion
over proofs. It represents the extracted algorithm from the formal proof. In our case we will
state this term after each proof which was formalized in Minlog, translated to the notation
of Haskell.

In the last step of program extraction we generate a proof that the extracted term is
indeed a realizer of the realizer predicate, i.e. Ar et(M). This is the so-called soundness
proof. Note that this proof can be generated automatically in Minlog.

In a nutshell, the result of formal program extraction is an algorithm in the form of a
λ-term and the proof of its correctness. However, as it is hardly possible to describe a formal
proof on paper, we use the proof assistant Minlog. In Minlog the last three steps above can
be done automatically, so the laborious part is to find the right formulation of the theorem
and the implementation of the constructive proof in Minlog. For the right formulation, we
use the predicate coI which is given in the next section.

2.3. Coinductive definition of the signed digit representation.

Definition 2.2 (sd-code representation). We define coI as the greatest fixed point of the
operator

Φ(X) :=

{
x

∣∣∣∣ ∃d∈SD,x′ (Xx′ ∧ |x′| ≤ 1 ∧ x =
d+ x′

2

)}
.

A realiser of coIx has the type

τ(coI) = µτ(X)(τ(Φ(X))→ τ(X)) = µξ(Sd→ ξ → ξ).

Here we have identified τ(Sd) = µξ(ξ, ξ, ξ) with Sd itself. We define Str := τ(coI) and by C
we denote the only constructor of Str. In Haskell notation Sd and Str are given by

data Sd = SdR | SdM | SdL

data Str = C Sd Str

In this notation we see that an element Cdv is a Sd-stream with first digit d and tail v.
Sometimes we abbreviate Cdv by just writing dv. We will also use this notation for reals: If
we write something like dx for a real number x and a signed digit d, we mean d+x

2 .
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The definition of coI as greatest fixpoint of Φ can be expressed by the two axioms

coI− : coI ⊆ Φ(coI)

coI+ : X ⊆ Φ(coI ∪X)→ X ⊆ coI,

where X is an unary predicate variable on real numbers. It is called competitor predicate.
The first axiom coI− says that coI is a fixpoint of Φ. Expressed in elementary formulas it is
given by

∀x∈coI∃d∈Sd,x′
(
x′ ∈ coI ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

)
.

The type of this axiom is τ(coI−) = Str→ Sd× Str and a realiser is the destructor D given
by the computation rule

D(Cdv) := 〈d, v〉.
The destructor takes a stream and returns a pair consisting of its first digit and its tail.
Using the projectors π0 and π1 one gets the first digit and the tail, respectively. E.g. consider
a cr formula of the form x ∈ coI → A of type Str → τ(A). Now assume that in its proof,
coI− is used with x ∈ coI at some point. On the computational level this corresponds to
reading the head of the input stream and storing its tail.
The second axiom coI+ expresses that coI is the greatest fixpoint in a strong sense. It is
explicitly given by:

∀x
(
Xx→ ∀x

(
Xx→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪X) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
→ x ∈ coI

)
(?)

The type depends on the type of the predicate variable X, namely

τ(coI+) = τ(X)→ (τ(X)→ Sd× (Str + τ(X)))→ Str.

A realiser of coI+ is the corecursion operator coR which is given by the computation rule

coRtf :=

{
C(π0(ft))v if π1(ft) = in0(v)

C(π0(ft))
coRt′f if π1(ft) = in1(t

′).

Here in0 and in1 are the two constructors of the type sum Str + τ(X). If π1(ft) has the
form in0v, the corecursion stops and we have C(π0(ft))v as signed digit representation. If it
has the form in1t

′, the corecursion continues with the new argument t′. In both cases we
have obtained at least the first digit π0(ft) of the stream. By iterating the corecursion we
can generate each digit one by one. In Haskell we have

strDestr :: (Str -> (Sd, Str))

strDestr (C s u) = (s , u)

strCoRec :: (alpha -> ((alpha -> (Sd, (Either Str alpha))) -> Str))

strCoRec g h = (C (fst (h g))

(case (snd (h g)) of

{ Left u0 -> u0 ;

Right g1 -> (strCoRec g1 h) })).

Moreover we sometimes use the following functions.

hd :: (Str -> Sd)

hd u = fst(strDestr u)
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tl :: (Str -> Str)

tl u = snd(strDestr u)

sdtoint :: Sd -> Integer

sdtoint SdR = 1

sdtoint SdM = 0

sdtoint SdL = -1

id :: Pos -> Nat

id p = p

Here fst and snd are the pair-projections.

2.4. Basic lemmas. We prove two basic lemmas, which will often occur in the proofs
following:

Lemma 2.3 (CoICompat). The predicate coI is compatible with real equality, i.e.

∀x∈coI∀y (x = y → y ∈ coI )

Proof. We apply (?) to the predicate Px := ∃y∈coI(x = y):

∀x
(
Px→ ∀x

(
Px→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
→ x ∈ coI

)
It is sufficient to prove the second premise. So assume x and y ∈ coI with x = y are given.

Using y ∈ coI with coI− we get e ∈ Sd and y′ ∈ coI with |y′| ≤ 1 and y = e+y′

2 . Hence d := e
and x′ := y′ have the desired properties.

In the following proofs, this theorem is used tacitly. In Minlog it has the name CoICompat.
The extracted term of this theorem is given by

cCoICompat :: (Str -> Str)

cCoICompat u0 = strCoRec u0 (\ su1 -> (case su1 of

{s2 u2 -> (s2,Left u2)}))

Assume f is the costep-function above, then for C s u some stream we have f(C s u) =

(s,Left u). So if we unfold the strCoRec we get

cCoICompat (C s u) = C s u,

i.e. the computational content of this lemma is actually the identity. Hence to increase
readability, we will leave it out in the following.

Lemma 2.4 (CoIClosureInv).

∀x∈coI,d∈Sd
d+ x

2
∈ coI

Proof. We use (?) with the predicate

Px := ∃d∈Sd,x′∈coIx =
d+ x′

2
,

Again, in order to prove the goal formula, it is sufficient to prove the second premise.
Therefore our goal is

∀x
(
∃d∈Sd,x′∈coI

(
x =

d+ x′

2

)
→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
.
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But this follows immediately from coI ⊆ coI ∪ P and x ∈ coI→ |x′| ≤ 1.

In Minlog this lemma has the name CoIClosureInv and its extracted term is given by

cCoIClosureInv :: (Sd -> (Str -> Str))

cCoIClosureInv s0 u1 = strCoRec (s0 , u1)

(\ su2 -> (

(case su2 of

{ (,) s u -> s }) ,

(Left (case su2 of

{ (,) s0 u0 -> u0 })))),

which is an elaborate way to write the constructor C, namely if f is the costep-function
above then f (s0,u1) = (s0,Left u1) and by unfolding strCoRec

cCoIClosureInv s0 u1 = C s0 u1.

2.5. Cauchy reals and signed digit streams. We now formalize the relation between
reals represented by Cauchy-sequences of rationals and signed digit streams.

Definition 2.5 (Cauchy representation). We denote as : N → Q and M : Z+ → N and
define

Mon(M) := M ∈ T ∧ ∀p≤q (Mp ≤Mq) .

For a real x we write x ∈ R, if there exist M ∈Mon and as ∈ T with

∀p∈T∀n≥M(p)

(
|x− (as n)| < 2−(p+1)

)
,

i.e. there is a sequence of rationals converging to x.

In Haskell this representation is given by the datatype

data Rea = RealConstr (Nat -> Rational) (Pos -> Nat),

with the pair-projections

realSeq :: (Rea -> (Nat -> Rational))

realSeq (RealConstr as m) = as

realMod :: (Rea -> (Pos -> Nat))

realMod (RealConstr as m) = m.

In the following we will prove that for some x ∈ coI and n ∈ T there exists a rational
approximation to x with precision 1

2n . To get a sequence of rationals representing x we need
dependent choice. Moreover later we will use countable choice.

Definition 2.6 (Choice Principles). We denote f : N → α, then the axiom of dependent
choice DC is given by

∃αP (0, α)→ ∀n∈T,α (P (n, α)→ ∃αP (n+ 1, α))→ ∃f∀n∈TP (n, fn).

It has the type
τ(P )→ (N→ τ(P )→ τ(P ))→ N→ τ(P )

and the realizer is given by the recursion operator for N, i.e.

natRec :: Nat -> a -> (Nat -> a -> a) -> a

natRec 0 g h = g

natRec n g h | n > 0 = h (n - 1) (natRec (n - 1) g h).
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The axiom of countable choice CC is given by

∀n∈T∃α∈TP (n, α)→ ∃f∈T∀n∈TP (n, fn)

Its type is (N→ α× τ(P ))→ (N→ α)× (N→ τ(P )) and the realizer is basically given by
the identity, namely

λF 〈λn(F n)0, λn(F n)1〉.

Theorem 2.7 (StrToCs). Any real x represented by a signed digit code can be represented
by a Cauchy-sequence, i.e.

∀x∈coI(x ∈ R ∧ |x| ≤ 1).

Proof. Assume x ∈ coI, then |x| ≤ 1 holds by coI−. Now let

P (n, a) := a ∈ T ∧ ∃y∈coI
(
x = 2−(n+1)y + a

)
We want to apply DC, hence we first prove ∃aP (0, a). By coI− there is y ∈ coI, d ∈ Sd with

x = y+d
2 , so let a := d

2 . For the second premise of DC assume n ∈ T, a ∈ T and P (n, a)

i.e. there exists y ∈ coI with x = 1
2n+1 y + a. We need to prove

∃b
(
b ∈ T ∧ ∃z∈coI

(
x = 2−(n+2)z + b

))
Since y ∈ coI we get d ∈ Sd, y′ ∈ coI with y = y′+d

2 . Now we choose b := a+ d
2n+2 and z = y′,

then

x =
1

2n+1
y + a =

1

2n+2
y′ + b

Hence by DC there exists as ∈ T with

∀n∈T∃y∈coI
(
x = 2−(n+1)y + (as n)

)
.

Hence with Mp := p and |y| ≤ 1 we get x ∈ R.

The extracted term of the proof is given by

cStrToCsInit :: (Str -> (Rational, Str))

cStrToCsInit u0 = (sdtoint(hd u0) % 2 , tl u0)

cStrToCsStep :: (Nat -> ((Rational, Str) -> (Rational, Str)))

cStrToCsStep n0 (a,u0)= (a + sdtoint(hd u0) % (((2 ^ n0) * 2) * 2) ,

tl u0)

cStrToCs :: (Str -> Rea)

cStrToCs u0 = (\ n1 -> (fst (natRec n1 (cStrToCsInit u0) cStrToCsStep)) ,

id).

Here cStrToCsInit corresponds to the first premise and cStrToCsStep to the second premise
of DC in the proof. DC itself only appears as the natRec term in cStrToCs. Informally we
can represent the computational content by

d0d1d2 · · · 7→

((
n∑
i=1

di2
−i

)
n

, ι

)
,

where ι : Z+ → N is the canonical inclusion.
For the converse of Theorem 2.7 we first prove the following two lemmas.
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Lemma 2.8 (Special case of ApproxSplit). Let a, b : Q then

∀a,b∈T,x∈R (a < b→ a ≤ x ∨ x ≤ b) .

Proof. Given (as,M) a Cauchy-sequence converging to x. Find p be such that 1
2p < b− a

(which is possible since a, b ∈ T). Then for n ≥M p

|x− (as n)| ≤ 2−(p+1),

i.e. x ∈
[
(as n)− 1

2p+1 , (as n) + 1
2p+1

]
. Case (as n) ≤ a+b

2 . In that case x ≤ (as n)+ 1
2p+1 < b.

Otherwise a ≤ x.

Note that it can be proven more generally for y, z ∈ R and y < z instead of a, b, but we
will actually only need it for for the special cases 0 < 1

2 and −1
2 < 0. The extracted term for

the former case is:

cApproxSplitZeroPtFive :: (Rea -> Bool)

cApproxSplitZeropPtFive (RealConstr as m) = (as (m 3)) <= (1/4)

where cRatLeAbsBound is the extracted term of a proof of ∀a∈T∃n∈T|a| ≤ 2n.
For the converse of Theorem 2.7 we first prove the following lemma.

Lemma 2.9 (CsToStrAux). For all x ∈ R with |x| ≤ 1

∃d∈SD,y∈R
(
|y| ≤ 1 ∧ x =

y + d

2

)
.

Proof. Let (as,M) a Cauchy-sequence converging to x. We use Lemma 2.8 with 0 < 1
2

respectively −1
2 < 0. We define

d :=


1 if x < 0,

0 if − 1
2 < x < 1

2 ,

1 if 0 < x,

bs n := 2(as n)− d, Np := M(p+ 1) and y = 2x− d. Then (bs,N) is a Cauchy-sequence
converging to y. Furthermore x = 1

2(y + d) and |y| ≤ 1 by definition.

The extracted term is given by

cCsToStrAux :: (Rea -> (Sd, Rea))

cCsToStrAux (RealConstr as m) =

(if ((as (m 3)<=-1/4) then

(SdL , (RealConstr (\ n3 -> (((2) * (as n3)) + (1)))

(\ p3 -> (m (p3 + 1)))))

else

(if ((as (m 3)<=1/4) then

(SdM , (RealConstr (\ n3 -> ((2) * (as n3)))

(\ p3 -> (m (p3 + 1)))))

else

(SdR , (RealConstr (\ n3 -> (((2) * (as n3)) + (-1)))

(\ p3 -> (m (p3 + 1))))))))).

Again we can represent the computational content informally, namely

(as,M) 7→ (g(as,M), (h(as,M), N)),
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where N p := M(p+ 1) and g, h are the functions

g(as,M) :=


1̄ if as(M 3) ≤ −1

4 ,

0 if |as(M 3)| ≤ 1
4 ,

1 otherwise.

h(as,M) := 2as− g(as,M)

Using this lemma the proof of the translation from Cauchy-sequences to stream is very short:

Theorem 2.10 (CsToStr).

∀x (x ∈ R→ |x| ≤ 1→ x ∈ coI)

Proof. Assume x ∈ R and |x| ≤ 1. We use (?) with

Px := ∃d∈Sd,y∈R
(
|y| ≤ 1 ∧ x =

y + d

2

)
.

By the previous lemma it suffices to prove the second premise, namely

∀x
(
Px→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
.

But this follows immediately by another application of the lemma, namely let d ∈ Sd, y ∈ R
with |y| ≤ 1 and x = y+d

2 . Then by the lemma there are e ∈ Sd, z ∈ R with |z| ≤ 1 and

y = z+e
2 and hence y ∈ P ⊆ coI ∪ P .

The extracted term is

cCsToStr :: (Rea -> Str)

cCsToStr x0 = strCoRec

(cCsToStrAux x0)

(\ sx1 -> (case sx1 of { (,) s0 x0 ->

(case (cStrToCsAux x0) of { (,) s1 x1 ->

(s0 , (Right (s1 , x1))) }) })),

and informally

x 7→ π0(cCsToStrAux x) :: cCsToStr(π1(cCsToStrAux x)).

3. Convergence theorem

The convergence theorem states that the signed digit representation is closed under limits.
In this section we consider a direct proof of this theorem, which only relies on the signed
digit representation of real numbers, and an indirect proof, which works with Cauchy reals
and uses the translation between the signed digit code and Cauchy reals. After proving the
convergence theorem in these two ways, we compare the extracted terms of both proofs.

Definition 3.1 (Convergence). Let xs : N→ R and M ∈Mon then xs is a Cauchy-sequence
with modulus M iff

∀p∈T∀n,m≥M(p)|(xs n)− (xs m)| ≤ 2−p,
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we also write Cauchy(xs,M). The sequence xs converges to x with Modulus M iff

∀p∈T∀n≥M(p)|x− (xs n)| ≤ 2−p,

we write Conv(xs, x,M).

The convergence theorem can now be stated in the following way.

Theorem 3.2 (SdLim). Let xs : N → R be a sequence of reals in coI which converges to
some real x with modulus M . Then x ∈ coI, i.e.

∀x,xs;M∈Mon (∀n∈T(xs n) ∈ coI→ Conv(xs, x,M)→ x ∈ coI) .

3.1. Direct approach. The following approach was already considered in [Wie21] and is
adjusted here to our setting.

Lemma 3.3 (CoINegToCoIPlusOne, CoIPosToCoIMinusOne).

∀x∈coI(x ≤ 0→ coI(x+ 1))

∀x∈coI(0 ≤ x→ coI(x− 1))

Proof. Since the proofs are very similar, we only prove the first formula. We use (?) with
Px := ∃y∈coI (y ≤ 0 ∧ y + 1 = x). We need to prove the second premise, namely

∀x
(
Px→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
Let x ∈ P , y ∈ coI with y ≤ 0 and y + 1 = x be given. Our goal is

∃d∈Sd,x′
(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

)
.

From y ∈ coI we get e and y′ with e ∈ Sd, y′ ∈ coI, |y′| ≤ 1 and y = e+y′

2 . We make a case
distinction on Sd e:
If e = −1, we define d := 1 ∈ Sd and x′ := y′. Then |x′| ≤ 1 and x′ ∈ coI by definition.
Furthermore we have

x = y + 1 =
−1 + y′

2
+ 1 =

1 + y′

2
=
d+ x′

2
.

If e = 0, we define d := 1 and x′ := y′ + 1. In this case we prove Px′, namely we show
y′ ∈ coI, y′ ≤ 0 and x′ = y′ + 1. We only need to prove y′ ≤ 0 which follows directly from

y ≤ 0 and y = 0+y′

2 .

The last case is e = 1. Because of y ≤ 0, y = −1+y′
2 and |y′| ≤ 1, this is only possible if

y is equal to 0, and therefore x = 1. Hence we define d := 1 and x′ := 1. Then x = d+x′

2
and x′ = 1 ∈ coI is easily proven by coinduction. (For details we refer to the Minlog
implementation of the theorem CoIOne in examples/analysis/sddiv.scm.)

A realizer of the first formula is a function f, which takes a signed digit stream of a real
number x and returns a signed digit stream of x+ 1 if x ≤ 0. The extracted term of the
proof of the first statement translated to Haskell is
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cCoINegToCoIPlusOne :: (Str -> Str)

cCoINegToCoIPlusOne u0 = aiCoRec u0

(\ u1 -> (case (hd u1) of

{ SdR -> (SdR , (Left cCoIOne)) ;

SdM -> (SdR , (Right (tl u1))) ;

SdL -> (SdR , (Left (tl u1))) })),

where

cCoIOne :: Str

cCoIOne = (aiCoRec () (\ g -> (SdR , (Right ()))))

is the stream representing 1. Unfolding strCoRec once yields cCoIOne = C SdR cCCoIOne,
i.e. it is a constant stream of SdR.

Another way to characterise this function f is to give its computation rules:

f(C1v) := C1v

f(C0v) := C1(fv)

f(C1v) := [1, 1, . . . ]

Analogously as extracted term of the second statement of this lemma, we get a function
g : Str→ Str which is characterised by the rules

g(C1v) := [1, 1, . . . ]

g(C0v) := C1(gv)

g(C1v) := C1v.

It takes a signed digit stream of a real x and returns a signed digit stream of x− 1 if 0 ≤ x.
Using this lemma, we are now able to prove the following lemma:

Lemma 3.4 (CoIToCoIDouble).

∀x∈coI
(
|x| ≤ 1

2
→ 2x ∈ coI

)
Proof. We apply coI− and get d ∈ Sd, x′ ∈ coI with |x′| ≤ 1 and x = d+x′

2 . We distinguish
cases on d ∈ Sd:
d = 1: Then 2x− 1 = x′ and |x| ≤ 1

2 which imply x′ ≤ 0. By the first part of Lemma 3.3
1 + x′ = 2x ∈ coI.
d = −1: As the first case but with the second part of Lemma 3.3.
d = 0: In this case 2x = x′ and x′ ∈ coI by assumption.

In Haskell notation the extracted term is given by

cCoIToCoIDouble :: (Str -> Str)

cCoIToCoIDouble u0 = case (hd u0) of

{ SdR -> (cCoINegToCoIPlusOne (tl u0)) ;

SdM -> (tl u0) ;

SdL -> (cCoIPosToCoIMinusOne (tl u0)) }
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Again we give a more readable characterisation of the extracted term D by the computation
rules

D(C1u) := gu

D(C0u) := u

D(C1u) := fu,

where f, g are the computational content of the previous lemma. The following lemma is a
special case of

∀x∈coI,y∈coI
x+ y

2
∈ coI.

This theorem is implemented as the theorem Average in examples/analysis/average.scm

of Minlog and was considered in [BS12, MS15]. But here we give a direct proof of a special
case because it is instructive and elementary.

Lemma 3.5 (Special case of CoIAverage).

∀x∈coI
(
x

2
± 1

4

)
∈ coI

Proof. Applying coI− yields x′ ∈ coI and d ∈ Sd with x = d+x′

2 . We show only coI
(
x
2 + 1

4

)
,

the other case is proven analogously. We distinguish cases on d ∈ Sd:
d = 1: Then x

2 + 1
4 = 2+x′

4 = 1
2(1 + x′

2 ).

d = 0: Then x
2 + 1

4 = 1+x′

4 = 1
2
1+x′

2 .

d = −1: Then x
2 + 1

4 = x′

4 = 1
2
x′

2 .

In each case we apply Lemma 2.4 twice to get
(
x
2 + 1

4

)
∈ coI

We denote the extracted term of the proven statement by q+. From the proof and the
fact that the extracted term of Lemma 2.4 is given by C, one easily sees that q+ has the
following computation rules:

q+(1u) := 00u

q+(0u) := 01u

q+(1u) := 10u

Analogously, the extracted term q− of the statement ∀x.coIx→ coI
(
x
2 −

1
4

)
is characterised

by

q−(1u) := 10u

q−(0u) := 01u

q−(1u) := 00u.

In the direct proof of sdlim below we will make use of the following case-distinction. To
shorten the extracted term we outsource this case-distinction into a separate lemma.

Lemma 3.6 (TripleCases). For x ∈ coI

x ∈
[

1

8
, 1

]
∨ x ∈

[
−1,−1

8

]
∨ x ∈

[
−1

4
,
1

4

]
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Proof. Triple application of coI− to x ∈ coI gives d1, d2, d3 ∈ Sd and y′ ∈ coI such that

x = 4d1+2d2+d3+y′

8 . The claim follows by case-distinction on d1, d2 and d3. Namely writing
x = d1d2d3y

′ we have

11d3y
′

10d3y
′

111y′

110y′

011y′

010y′


→ 1

8
≤ x

11d3y
′

10d3y
′

111y′

110y′

011y′

010y′


→ x ≤ −1

8

00d3y
′

111y′

111y′

011y′

011y′


→ −1

4
≤ x ≤ 1

4
.

We omit the extracted term in Haskell here since it is quite long and unreadable due to
the 17 case-distinctions. The computational content is basically the diagram in the proof
above.

With these preparations we are now able to give the direct proof of Theorem 3.2.

Proof.( SdLim, direct). We show that

∀x
(
∃xs;M∈Mon

(
∀n∈T(xs n) ∈ coI ∧ ∀p∈T∀n≥Mp|x− (xs n)| ≤ 2−p

)
→ coIx

)
,

which is equivalent. We use (?) with P the premise of the formula above:

Px := ∃xs;M∈Mon

(
∀n∈T(xs n) ∈ coI ∧ ∀n≥M(p)|x− (xs n)| ≤ 2−p

)
Again, we need to prove the second premise, namely

∀x
(
Px→ ∃d∈Sd,x′

(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

))
So let x, xs and M ∈Mon be given and assume ∀n∈T(xs n) ∈ coI and ∀p∈T∀n≥M(p)|(xs n)−
x| ≤ 2−p. We use the lemma above with (xs(M4)) ∈ coI and get three cases:

(i) 1
8 ≤ xs(M(4)). In this case we choose

d := 1 and x′ := 2x− 1.

Then |x′| ≤ 1 and x = d+x′

2 follow directly. We show that Px′, so we define

ys n := 2(xs((M(4)) t n))− 1,

where m t l := max{m, l} and N(p) := M(p + 1) ∈Mon. The statement ∀n≥Np|ys(n) −
x′| ≤ 2−p is a direct consequence of ∀n≥M(p)|xs(n) − x| ≤ 2−p and it remains to show
∀n∈T(ys n) ∈ coI. We calculate

ys n = 4

(
xs(M(4) t n)

2
− 1

4

)
,

and conclude 1
4(ys n) ∈ coI by Lemma 3.5. Furthermore, we have xs(M(4)) ≥ 1

8 and

∀n≥M(4)|xs(n)− x| ≤ 1
16 and therefore

xs(M(4) t n) = (xs(M(4) t n)− x) + (x− xs(M(4))) + xs(M(4))

≥ − 1

16
− 1

16
+

1

8
= 0.
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Hence 0 ≤ xs(M(4) t n) ≤ 1, which implies
∣∣∣xs(M(4)tn)

2 − 1
4

∣∣∣ ≤ 1
4 and by double application

of Lemma 3.4 we finally get ys n ∈ coI.
(ii) xs(M(4)) ≤ −1

8 . In this case we define

d := −1, x′ := 2x+ 1, ys n := (2xs(M(4) t n) + 1), Np := M(p+ 1).

The proof in this case is analogous to the proof of the first case.
(iii) −1

4 ≤ f(M(4)) ≤ 1
4 . We define

d := 0 and x′ := 2x.

Again we show Px′, namely

∃ys;N∈Mon

(
∀n∈T(ys n) ∈ coI ∧ ∀n≥Np|x′ − (ys n)| ≤ 2−p

)
.

To this end we define

ys n := 2xs(M(4) t n) and Np := M(p+ 1).

Again, the right side of the conjunction follows from the assumptions. For the left side
consider

|2(ys n)| = |xs(M(4) t n)| ≤ |xs(M(4) t n)− x|+ |x− xs(M(4))|+ |xs(M(4))| ≤ 1

2
,

which implies (ys n) ∈ coI by Lemma 3.4.

The extracted term is

coilim :: (((Pos -> Nat), (Nat -> Str)) -> Str)

coilim (m,us0) = aiCoRec (m,us0)

(\ mus1 -> (case mus1 of

{ (,) m us -> (case (cTripleCases (us (m 4))) of

{ Left() -> (cSdLimCaseR m us) ;

Right(Left ()) ->(cSdLimCaseL m us) ;

Right(Right()) -> (cSdLimCaseM m us)}}.

The terms cSdLimCaseR,cSdLimCaseL and cSdLimCaseM are given by

cSdLimCaseR :: ((Pos -> Nat) -> ((Nat -> Str) ->

(Sd, (Either Str ((Pos -> Nat), (Nat -> Str))))))

cSdLimCaseR m0 us1 = (SdR ,

(Right ((\ p2 -> (m0 (p2 + 1))) ,

(\ n2 -> (cCoIToCoIDoublePlusOne (us1 ((m0 3) + n2)))))))

cSdLimCaseM :: ((Pos -> Nat) -> ((Nat -> Str) ->

(Sd, (Either Str ((Pos -> Nat), (Nat -> Str))))))

cSdLimCaseM m0 us1 = (SdM ,

(Right ((\ p2 -> (m0 (p2 + 1))) ,

(\ n2 -> (cCoIToCoIDouble (us1 ((m0 3) + n2)))))))

cSdLimCaseL :: ((Pos -> Nat) -> ((Nat -> Str) ->

(Sd, (Either Str ((Pos -> Nat), (Nat -> Ai))))))

cSdLimCaseL m0 us1 = (SdL ,

(Right ((\ p2 -> (m0 (p2 + 1))) ,
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(\ n2 -> (cCoIToCoIDoubleMinusOne (us1 ((m0 3) + n2)))))))

In the following we will discuss the computational content, we will denote it by Lim, in more
detail. It has the type

Lim : (Z+ → N)→ (N→ Str)→ Str.

It takes as inputs the modulus of convergence and the sequence of streams and returns the
stream representing the limit. In order to give a more readable characterisation of Lim, we
define the following sets

R := {11v, 10v, 111v, 110v, 011v, 010v | v : Str}
M := {00v, 111v, 111v, 011v, 011v | v : Str}
L := {11v, 10v, 111v, 110v, 011v, 010v | v : Str}.

which correspond to the intervals from Lemma 3.6. According to the proof we then have the
following rule for Lim:

Lim M F :=


C 1 (Lim λpM(p+ 1) λn(DDq−F (M(4) t n))) if F (M(4)) ∈ R

C 0 (Lim λpM(p+ 1) λn(DF (M(4) t n))) if F (M(4)) ∈M

C 1 (Lim λpM(p+ 1) λn(DDq+F (M(4) t n))) if F (M(4)) ∈ L

The functions D, q+ and q− are the computational content of the lemmas above. Note that
the definition of the new sequence is not unique. For reasons of efficiency one should be
flexible with the choice of the new sequence, which is called ys in the proof above. For
example by choosing ys one can replace M(4) t n by M(4) + n. The efficiency depends on
the concrete sequence. In the Minlog file we have chosen M(4) + n because the proofs are
simpler with the addition instead of the maximum.

3.2. Indirect approach. Now we redo the proof using translations between the Cauchy
and sd-representation. First we state the completeness of Cauchy-reals, which will be used.

Theorem 3.7 (RealComplete). Assume xs and M ∈Mon such that ∀n∈T(xs n) ∈ R and
Cauchy(xs,M) then there exists x ∈ R such that Conv(xs, x,M).

Proof. We refer to Theorem 2.3 in [Sch03].

The extracted term is:

cRealComplete :: ((Nat -> Rea) -> ((Pos -> Nat) -> Rea))

cRealComplete xs0 m1 = RealConstr

(\ n -> (realSeq (xs0 n)

(realMod (xs0 n) (cNatPos n))))

(\ p -> ((m1 (p + 1)) ‘max‘ ((p + 1) + 1)))

Note the following: Given witnesses (asn,Mn)n to ∀n∈T(xs n) ∈ R, the rational sequence
witnessing the limit is given by as n := asn(Mn n) and the Cauchy-modulus of the limit-real
is given by Np := max(M(p+ 1), p+ 2) where M is the modulus of convergence.

As preparation for the indirect proof we state some elementary properties of limits and
sequences that we will need but do not have any computational content.
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Lemma 3.8. Assume xs is a sequence of reals, x is another real and M ∈Mon such that
Conv(xs, x,M). Then we have

(i) Cauchy(xs,N), where Np := M(p+ 1),
(ii) ∀n∈T|(xs n)| ≤ 1→ |x| ≤ 1 and
(iii) ∀y,N∈Mon(Conv(xs, y,N)→ x = y).

Proof. (i) Follows directly by using the triangle inequality and the definitions.
(ii) For arbitrary p ∈ T let n := M(p). Then |x| ≤ |x−xs(n)|+ |xs(n)| ≤ 2−p + 1. As p ∈ T
is arbitrary it follows |x| ≤ 1.
(iii) We have xs(n)− x converges to 0 with modulus M and xs(n)− y converges to 0 with
modulus N . Therefore, x− y converges to zero with modulus p 7→ max{M(p+ 1), N(p+ 1)}.
I.e. |x− y| ≤ 2p for all p and therefore x− y = 0.

Using the lemmas above, the indirect proof of the convergence theorem becomes quite
short:

Proof.( SdLim, indirect). Assume x, xs, M ∈Mon, ∀n∈T(xs n) ∈ coI and ∀n≥M(p)|(xs n)−
x| ≤ 2−p. We apply Theorem 2.7 to ∀n∈T(xs n) and get

∀n∈Txs ∈ R ∧ |xs n| ≤ 1.

By the lemma above xs is a Cauchy-sequence. So we apply Theorem 3.7 to get y ∈ R with
Conv(xs, y,N). By the above lemma x = y ∈ R and |y| ≤ 1, so x ∈ coI by Theorem 2.10
and 2.3.

The extracted term for this proof is given by

cCoILim :: ((Pos -> Nat) -> ((Nat -> Str) -> Str))

cCoILim m g = cCsToStr (cRealComplete

(\ n -> (cStrToCs (g n)))

(\ p -> (m (p + 1))))),

i.e. given a sequence u0u1 . . . of Sd-streams we apply cRealComplete to the sequence of
translated stream cStrToCs(u0)cStrToCs(u1) . . . and then translate the result back.

3.3. Comparison. We now compare the two algorithms obtained by the direct and indirect
method. To understand the results of the runtime-experiments we analyze the lookahead of
the algorithms first. Both limit algorithms have a sequence F : N→ Str of streams and a
modulus M : Z+ → N of convergence as inputs and they produce one output-stream. Here,
the lookahead for some n ∈ N is given by two natural numbers m0,m1 ∈ N. Namely, to
compute the first n output digits we need the first m0 digits of the first m1 elements of F .

Unfolding cRealComplete in the definition of the indirect case leads to

cCoILim(M,F ) = cCsToStr

((
n∑
i=1

(F (n))i
2i

)
n

, λpM(p+ 2)

)
,

where cCsToStr(as,M) compares as(M 3) with ±0.25. Hence, to compute the n-th digit of
cCoILim(M,F ) we need to examine the first M(n+ 4) digits of F (M(n+ 4)). The algorithm
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in the direct case was given by

Lim M F :=


C 1 (Lim λpM(p+ 1) λn(DDq−F (M(4) t n))) if F (M(4)) ∈ R

C 0 (Lim λpM(p+ 1) λn(DF (M(4) t n))) if F (M(4)) ∈M

C 1 (Lim λpM(p+ 1) λn(DDq+F (M(4) t n))) if F (M(4)) ∈ L

By examining the defining equations of D, q± one easily sees that all these functions needs at
most the first n+ 1 digits of the input stream to compute the first n digits of the output
stream. For the first digit we need to decide whether F (M(4)) is in R,M or L which
requires the first three digits of F (M(4)), since we apply cCoITripleClosure. All in all, to
compute the n-th digit of Lim M F we need to examine the first 3n digits of F (M(n+ 3)).
This follows as M is monotone and hence M(4) t · · · tM(n+ 3) = M(n+ 3).

As we can see, in the direct case the lookahead depends in a way linearly on the modulus
M of convergence, whereas in the indirect case it depends quadratically on M . Furthermore,
if the modulus of convergence is asymptotically lower than λn3n, the indirect algorithm
should outperform the direct one.

As a first test we run both algorithms in Haskell on the constant sequence F := λnu0
which converges with the constant modulus λp0. Here u0 is a pseudo-random stream of
Sd generated with the Haskell System.Random package. To test the dependence of the two
algorithms on the modulus of convergence we artificially set different moduli and compute
different amounts of digits. All measurements are the average for n = 10 tries with different
random numbers in seconds.

Mod 50 digits 100 digits 200 digits
λpp 1.78 12.2 87
λpp

2 1.84 12.7 90
λpp

3 2.25 13.4 95

Figure 3: First test - Constant sequences with different moduli for the direct algorithm

Mod 10 digits 20 digits 50 digits 100 digits
λpp - < 0.05 0.075 0.21
λpp

2 0.084 0.41 16.38 1140
λpp

3 4.3 503 >1500 -

Figure 4: Constant sequences with different moduli for the indirect algorithm

As a second experiment we take the geometric series (xn)n for some |x| ≤ 0.5. This is a
Cauchy-sequence converging to 0 with modulus λpp, since for n ≤ m and |x| ≤ 0.5 we have

|xn − xm| ≤ |xn||1− xn−m| ≤ 1

2n
.

Again we generate pseudorandom sequences u and here we put a 0 in front to ensure that
the absolute value is bounded by 0.5. Then we run both algorithms for the sequence F given
by

F 0 := 0 :: u F (n+ 1) = cCoIMult(0 :: u)(F n),

where cCoIMult is the algorithm from [Sch22]. The results below are the average over n = 15
tests. The direct algorithm did not terminate in a reasonable amount of time (≤ 30 minutes)



Vol. 18:3 LIMITS OF SIGNED DIGIT STREAMS 24:21

for n ≥ 30 digits. As expected the indirect algorithm is better here, since the modulus of
convergence is the identity here.

digits indirect direct
5 0.74 0.69
10 3.3 23.4
20 26 1227
30 87 >1500
40 239 -
50 502 -

Figure 5: Second test - Geometric sequence

4. Applications

4.1. Heron’s method. To show an application of the two algorithms extracted in the last
section, we define the Heron sequence and show that it converges to the square root.

Definition 4.1 (Heron). We define H : R→ N→ R by the computation rules

H(x, 0) := 1, H(x, n+ 1) :=
1

2

(
H(x, n) +

x

H(x, n)

)
.

For every non-negative x the sequence H(x, ·) =: H(x) : N→ R is the sequence, we get from
Heron’s method with initial value 1. Note that H is well-defined for non-negative x since
H(x, n) ≥ 2−n.

Lemma 4.2. For every x ∈ [0, 1] H(x) converges to
√
x with modulus ι : Z+ → N.

Furthermore we have that
∀n∈T

√
x ≤ H(x, n).

Proof. Let x ∈ [0, 1] be given. We define ∆(x, n) := H(x, n)−
√
x. We calculate

∆(x, n+ 1) =
1

2

(
H(x, n) +

x

H(x, n)

)
−
√
x =

(H(n, x))2 − 2H(x, n)
√
x+ x

2H(x, n)

=
(∆(x, n))2

2H(x, n)
.

By induction on n we immediately get 0 ≤ H(x, n) and therefore 0 ≤ ∆(x, n + 1). Since
∆(x, 0) = 1−

√
x ≥ 0 we have ∀n∈T

√
x ≤ H(x, n).

Furthermore, we calculate:

∆(x, n+ 1) =
(∆(x, n))2

2H(x, n)
=

1

2
∆(x, n)

∆(x, n)

H(x, n)
=

1

2
∆(x, n)

(
1−

√
x

H(x, n)

)
≤ 1

2
∆(x, n)

Therefore, by induction we have |H(x, n)−
√
x| = ∆(x, n) ≤ 2−n and this implies

∀p∈T∀n≥p|H(x, n)−
√
x| ≤ 2−p,

i.e. H(x) converges to
√
x with modulus ι.
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This lemma by itself does not have any computational content, but it states that ι is a
modulus of convergence of Hx to

√
x. In some special cases we can improve on the modulus.

Definition 4.3 (Poslog). For a positive integer p we define poslog(p) as the least natural
number n with p ≤ 2n. Equivalently it is the number of digits in the binary representation.

One possibility to implement the function poslog is to define an auxiliary function
auxlog : Z+ → N→ N with the computation rules

auxlog p n :=

{
n, if p ≤ 2n

auxlog p (n+ 1), otherwise,

and then set poslog(p) := auxlog p 0.

Proposition 4.4. If x ∈ [14 , 1] then poslog : Z+ → N is a modulus of convergence of H(x)
to
√
x.

Proof. Let x ∈ [14 , 1]. From Lemma 4.2 we know ∀n∈T
√
x ≤ H(x, n) and therefore ∀n∈T 1

2 ≤
H(x, n). In the proof of Lemma 4.2 the formula

∆(x, n+ 1) =
(∆(x, n))2

2H(x, n)

is proven. This implies ∆(x, n+ 1) ≤ (∆(x, n))2. Since 1
2 ≤
√
x, by induction we get

∆(x, n) ≤ 2−2
n

for all n ∈ T. Hence for given p and n ≥ poslog(p) we get p ≤ 2n and∣∣H(x, n)−
√
x
∣∣ = ∆(x, n) ≤ 2−2

n ≤ 2−p.

Lemma 4.5. For all x ∈ coI with 1
16 ≤ x we have ∀n∈TH(x, n) ∈ coI. Expressed as a

formula

∀x∈coI
(

1

16
≤ x→ ∀n∈TH(x, n) ∈ coI

)
.

Proof. We use the results of [MS15], [SW21] and of Section 3.3 from [Wie17]. Namely we
have

∀x∈coI,y∈coI
x+ y

2
∈ coI. (4.1)

In Minlog this theorem is implemented in average.scm in the folder examples/analysis

and has the name CoIAverage. Furthermore

∀x∈coI,y∈coI
(
|x| ≤ y → 1

4
≤ y → x

y
∈ coI

)
(4.2)

is proven there. In Minlog this theorem is implemented in sddiv.scm in the folder
examples/analysis and has the name CoIDiv. Using these, the proof of this lemma
is done by induction on n: For n = 0 it is easy since H(x, 0) = 1 and 1 ∈ coI. For any total
n we have

H(x, n+ 1) =
1

2

(
H(x, n) +

x

H(x, n)

)
.
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By Lemma 4.2 we get
√
x ≤ H(n, x) and therefore√
1

16
=

1

4
≤ H(x, n) and x ≤

√
x ≤ H(x, n).

Additionally, by the induction hypothesis, H(x, n) ∈ coI. By (4.2) we have x
H(x,n) ∈

coI, so

with (4.1) we get H(x, n+ 1) ∈ coI.

By cCoIAverage and cCoIDiv we denote the computational content of (4.1) and (4.2).
Each of these terms takes two streams of reals and returns a stream of their average and
their quotient, respectively. Then the extracted term is

cCoIHeron :: (Str -> (Nat -> Str))

cCoIHeron u0 n1 = natRec n1

cCoIOne

(\ n2 -> (\ u3 -> (cCoIAverage u3 (cCoIDiv u0 u3))))

Informally the computational content Heron is defined by recursion:

Heron v 0 := [1, 1, . . . ]

Heron v (n+ 1) := cCoIAverage(Heron v n)(cCoIDiv v (Heron v n))

Which is Definition 4.1 in the notation of streams.

Theorem 4.6.

∀x∈coI
(
0 ≤ x→

√
x ∈ coI

)
Proof. We apply (?) with

Px := ∃y∈coI (0 ≤ y ∧√y = x) .

To show the goal formula, we need to show the second premise, namely for all x

∃y∈coI (0 ≤ y ∧√y = x)→ ∃d∈Sd,x′
(
x′ ∈ (coI ∪ P ) ∧ |x′| ≤ 1 ∧ x =

d+ x′

2

)
.

Let y ∈ coI with 0 ≤ x and
√
y = x be given. Triple application of coI− to y ∈ coI yields

d1, d2, d3 ∈ Sd and y′ ∈ coI with y = d1d2d3y
′. We distinguish three different cases:

If y has one of the forms 1d2d3y
′, 01d3y

′ or 001y′ we have y ≤ 0 and therefore x =
√
y = 0.

Hence we define d := 0 and x′ := 0 and the claim follows immediately.
If y has one of the forms 000y′, 001y′, 011y′ or 111y′ we can rewrite y = 00ey′ for some

e ∈ {0, 1}. Here we define d := 0 and x′ :=
√

e+y′

2 . Then

x =
√
y =

√
e+ y′

8
=

√
e+y
2

2
=
d+ x′

2
.

Furthermore e+y′

2 ∈ coI by Lemma 2.4 and 0 ≤ e+y′

2 since 0 ≤ y = e+y′

8 . Altogether we get
Px′.

The remaining case is that y has one of the forms 010y′, 011y′, 111y′, 110y′, 10d3y
′ or

11d3y
′. In that case we have 1

8 ≤ y. Hence by Lemma 4.5 ∀n∈TcoI(H(y, n)) and we know
that H(y) converges to

√
y with modulus ι : Z+ → N by Lemma 4.2 . Thus we use Theorem

3.2 to get x ∈ coI and by one application of coI−

∃d∈Sd,x′∈coI
(
|x′| ≤ 1 ∧ x =

d+ x′

2

)
,
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which proves the goal formula.

We omit the description of the extracted term as Haskell code as it is quite long due to
the case distinctions. But we give an informal description of the extracted term:

By the definitions of cSdLim as the computational content of Theorem 3.2 and Heron as
the computational content of Lemma 4.5 we have the following rules for the computational
content sqrt : Str→ Str of this theorem:

sqrt(1u) := [0, 0, . . . ]

sqrt(01u) := [0, 0, . . . ]

sqrt(00u) := 0 sqrt u

sqrt(011u) := 0 sqrt 1u

sqrt(111u) := 0 sqrt 1u

sqrt u := cSdLim ι (Heron u)

The last rule shall only be applied if the other rules do not fit.

4.2. Multiplication. Our last application is motivated by Helmut Schwichtenberg and the
Minlog file sdmult.scm in examples/analysis. There it is proven that for any x, y ∈ coI
the product xy is also in coI. In the following we use the limit-theorem to formulate another
proof of this theorem. Our approach is based on repeated applications of coI− to y ∈ coI,
namely

xy =
xd1 + xy1

2
=
x(d1 + d1

2 ) + xy22
2

= · · · = x
n∑
i=1

di
2i

+ x
yn
2n
,

and the sequence xs n :=
∑n

i=1
di
2i

converges to y. In order to realize this idea we first define
a constant Sum : L(Sd)→ Q by

Sum [] = 0 Sum l :=

lth(l)∑
i=1

(l)i
2i
,

where lth : L→ N is the length-function for lists and (l)i is the i-th element of the list l.
We prove the following.

Lemma 4.7 (CoIMultSum). Let x ∈ coI then for all l : L(Sd) in T we have

x · Sum l ∈ coI.

Proof. We use the theorem CoIAverage, which was already mention in the proof of Lemma
4.5 and CoISdTimes (i.e. ∀x∈coI,d∈Sddx ∈ coI).

The proof is done by induction on l ∈ T. Namely if l = [] then x · 0 = 0 ∈ coI (see
CoIZero in Minlog). Now assume that x · Sum l ∈ coI and d ∈ Sd. We calculate

x · Sum(d :: l) = x

n+1∑
i=1

(l)i
2i

=
1

2

(
x

n∑
i=1

(l)i+1

2i
+ x · (l)1

)
.

Now we can apply CoIAverage, namely x · l1 ∈ coI by CoISdTimes and the first summand
is in coI by the induction hypothesis.
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Note that the induction hypothesis is applied to the list (l)2 :: · · · :: (l)n+1, so the stream
computed in the previous step is not used. Therefore, the runtime of the algorithm must
be at least quadratic in the length of the list in the output. We will later see that the
runtime of the algorithm that is obtained is worse than the one extracted in [Sch22]. The
Haskell-translation of the extracted term is

cCoIMultSum :: Str -> [Sd] -> Str

cCoIMultSum u0 l1 = listRec

l1

cCoIZero

(\ s2 -> (\ l3 -> (\ u4 -> (cCoIAverage (cCoISdTimes s2 u0) u4))))

And the computational content of the lemma, here denoted f : Str→ L(Sd)→ Str, can
also be represented in the more readable form by

f(u, []) = cCoIZero

f(u, d :: l) = cCoIAverage(f(u, l), cCoISdTimes(d, u)),

where cCoIZero is analogous to cCoIOne:

cCoIZero :: Str

cCoIZero = (aiCoRec () (\ g -> (SdM , (Right ()))))

The next lemma is basically repeated application of coI−. The proof is very similar to the
proof of Theorem 2.7 and so are the extracted terms.

Lemma 4.8 (CoIToConvSeq). Let x ∈ coI then there exists G : N→ L(Sd) in T such that

Conv(λnSumG(n), x, ι).

Proof. For x ∈ coI we first show that

∃G∈T∀n∈T∃y∈coI
(
lth(Gn) = n ∧ x = Sum (Gn) +

y

2n

)
.

By application of CC it suffices to show

∀n∈T∃l∈T∃y∈coI
(
lth(l) = n ∧ x = Sum l +

y

2n

)
,

which is done by induction on n ∈ T. If n = 0 then choose y := x and l = [].
Now assume we have l′ ∈ T with lth(l′) = n and z ∈ coI with

x = Sum l′ +
z

2n
.

We apply coI− to z and get d ∈ Sd, y ∈ coI with z = y+d
2 , then l := l′ ? d (Note that ?

denotes concatenation of lists) will do the trick.
So assume we have G with the properties above and n ∈ T. Then there exists some yn ∈ coI
with x = Sum (Gn) + y

2n and

|x− Sum (Gn)| ≤ |yn|
2n
≤ 2−n.

Hence Sum (G ·) converges to x with modulus PosToNat.

The extracted term is
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cCoIToConvSeq :: Str -> Nat -> [Sd]

cCoIToConvSeq u0 n1 = fst

(natRec n1 ([] , u0)

(\ n2 -> (\ g -> (case g of

{ (,) l u1 -> ((l ++ ((head u1) : [])) , (tail u1)) }))))

Let g : Str→ N→ L(Sd) denote a simplified iterative version of the computational content
of the last lemma. It can be given by the computation rules

g(u, 0) = ([], u) g(C s v, n+ 1) = g(v, n) ? s,

so this is the function that returns the first n elements of the stream. The last lemma we
need states that limits are closed under multiplication, namely:

Lemma 4.9. Assume Conv(ys, y,M) and |x| ≤ 1 then Conv(λn(x · (ys n)), xy,M).

The proof is elementary. Now we can apply the limit theorem.

Theorem 4.10. For all x, y ∈ coI we have x · y ∈ coI.

Proof. We apply Lemma 4.8 to y ∈ coI in order to obtain G ∈ T with

Conv(Sum(G, ·), y, PosToNat).

By Lemma 4.9 x · (Sum(Gn)) ∈ coI for all n and it converges to x · y by Lemma 4.9. Hence,
we apply Theorem 3.2.

The extracted term from Haskell is given by

cCoIMultLim :: Str -> Str -> Str

cCoIMultLim u0 u1 = cCoILim

id

(\ n2 -> (cCoIMultSum u0 (cCoIToConvSeq u1 n2))).

Now let Mult : Str → Str → Str denote the computational content in human-readable.
Then

Mult(u, v) := coilim(PosToNat, λnf(u, g(v, n))).

We compare the algorithms obtained in this way using the indirect and direct limit theorem
with the algorithm from [Sch22] that was obtained from a direct proof. To this end we
apply all three algorithms to two randomly generated sequences and measure the runtime
in Haskell. The result is the average over n = 10 tests. Although the algorithm using the

number of digits mult(schwicht) mult(lim,indirect) mult(lim,direct)
5 0.056 0.51 0.1
10 0.061 15 0.71
15 0.063 432 11.6
30 0.095 - 60.8
100 0.43 - -

Figure 6: Third test - Runtime of different multiplication algorithms

direct limit is better here, the algorithm from [Sch22] still performs best. It seems that in
order to obtain efficient algorithms, completeness results should only be used if they are
really needed.
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5. Conclusion and further work

We presented a formal method for extracting verified algorithms for exact real number
arithmetic using different representations. All the proofs up to Section 4 have been carried
out in the proof assistant Minlog. Furthermore automatic generation of correctness proofs
and translation to Haskell was carried out. Even though the proofs from 4 have only been
partially carried out in a proof assistant, the program extraction by hand was still a reliable
method to get certified algorithms.

Although algorithms extracted via the indirect method by translations tend to have a
low lookahead, they do rely on rational arithmetic, so the direct method should outperform
the indirect one in most cases. Our aim was to obtain verified algorithms and we do not
claim that our programs are the most efficient. Some inefficiency stems from overestimation
of bounds in formal proofs. These can usually be removed by careful analysis of the proofs
involved.

Since we have proven that the signed digit representation is closed under multiplication,
average, division and limits we can now easily prove that a lot of functions are represented
by stream-transformers, e.g. trigonometric functions, using their Taylor-expansion directly
as was done for Herons algorithm. Another viable approach to limits should be to use the
completeness of metric spaces, i.e. prove that signed-digits-reals satisfy the axioms of a
metric space and then use a completeness theorem for abstract metric spaces.
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