
Logical Methods in Computer Science
Vol. 7 (3:06) 2011, pp. 1–31
www.lmcs-online.org

Submitted Jan. 3, 2011
Published Aug. 25, 2011

CONSTRAINT SOLVING IN NON-PERMUTATIVE NOMINAL

ABSTRACT SYNTAX

MATTHEW R. LAKIN

University of Cambridge Computer Laboratory, Cambridge CB3 0FD, UK, and Department of
Computer Science, University of New Mexico, Albuquerque, NM 87131
e-mail address: Matthew.Lakin@cl.cam.ac.uk

Abstract. Nominal abstract syntax is a popular first-order technique for encoding, and
reasoning about, abstract syntax involving binders. Many of its applications involve con-
straint solving. The most commonly used constraint solving algorithm over nominal ab-
stract syntax is the Urban-Pitts-Gabbay nominal unification algorithm, which is well-
behaved, has a well-developed theory and is applicable in many cases. However, certain
problems require a constraint solver which respects the equivariance property of nominal
logic, such as Cheney’s equivariant unification algorithm. This is more powerful but is
more complicated and computationally hard. In this paper we present a novel algorithm
for solving constraints over a simple variant of nominal abstract syntax which we call
non-permutative. This constraint problem has similar complexity to equivariant unifica-
tion but without many of the additional complications of the equivariant unification term
language. We prove our algorithm correct, paying particular attention to issues of termi-
nation, and present an explicit translation of name-name equivariant unification problems
into non-permutative constraints.

1. Introduction

Constraint solving over the abstract syntax of programming languages is vital in many ar-
eas of logic and computer science. For example, many compiler optimisations are typically
phrased as constraint problems. The abstract syntax in question often involves binding
constructs, such as λ-expressions or ∀-quantifiers. In these cases we would want the ab-
stract syntax encoding to respect α-equivalence of binding structures—this is known as the
Barendregt variable convention [Bar84].

One approach to representing and manipulating abstract syntax with binders is nominal
abstract syntax [GP02], which was developed as a first-order theory of abstract syntax
involving bound names. The theory is based on permuting, rather than substituting, names,
as this has more convenient logical properties. Bindable names in the object-language are
represented by meta-level names ranged over by n (these are often called atoms in the
literature). These names follow Gabbay’s permutative convention [GM08] which states that

1998 ACM Subject Classification: D.3.1, D.3.3.
Key words and phrases: Constraint solving, alpha-equivalence, nominal abstract syntax.
Research supported by: UK EPSRC grant EP/D000459/1.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-7 (3:06) 2011

c© M. R. Lakin
CC© Creative Commons

http://creativecommons.org/about/licenses

2 M. R. LAKIN

distinct meta-variables n1 and n2 over names always denote distinct names. The object-
level binding of a name n in a term t is is represented by the abstraction term <n>t. This
is not itself a binder, so <n1>n1 and <n2>n2 are considered to be distinct terms if n1 6= n2

(though they should behave similarly as they are α-equivalent).
Logic programming over nominal abstract syntax requires a unification algorithm which

can unify nominal terms modulo α-equivalence. One such algorithm is nominal unification
[UPG04], which is a simple, well-studied constraint solving algorithm for nominal abstract
syntax. The algorithm extends first-order unification to work on nominal terms modulo
α-equivalence by adding freshness constraints which are satisfied if a given name does not
appear free in a term. This allows terms involving binders to be equated by checking that
they have the same topology of name bindings. Nominal unification enjoys unique, most
general solutions [UPG04, Theorem 3.7] and is known to be decidable in quadratic time
[LV08, LV10, CF11].

Resolution using nominal unification is the basis of the αProlog nominal logic program-
ming language [CU04]. However, here we encounter a problem—resolution using nominal
unification is incomplete for nominal logic [Pit03]. The issue is that nominal unification
does not respect the equivariance property of nominal logic, that is, closure under name-
permutations. A standard example, taken from [Che10], concerns capture-avoiding sub-
stitution over λ-terms encoded in nominal abstract syntax. Writing subst(M,M ′, n) to
represent the capture-avoiding substitution function M [M ′/n], the following two rewrite
rules implement the case when M is a variable.

subst(var(n),M ′, n) → M ′
subst(var(n′),M ′, n) → var(n′)

From the first rule we infer that subst(var(n), var(n′), n) → var(n′). However, nominal
unification cannot compute a substitution for M ′ such that

subst(var(n),M ′, n) =α subst(var(n′), var(n), n′).

In nominal logic this equation holds modulo a permutation, and hence nominal unification
does not suffice for complete proof search in all cases.

A workaround is to define a well-formedness condition on αProlog programs to isolate
those which can be executed correctly using nominal unification [UC05]. A more general
solution is to use a more powerful constraint solving algorithm which takes equivariance
into account, such as Cheney’s equivariant unification algorithm [Che10]. Equivariant uni-
fication generalises the term language of nominal unification to include name variables A
which stand for unknown names (and which do not follow the permutative convention) and
permutation variables Q which stand for unknown permutations. The syntax of names and
permutations in equivariant unification is non-trivial—for example, the terms involved in a
swapping may themselves contain nested swappings! Furthermore, these compound name
expressions may appear in abstraction position, so we can write terms such as

<(((Q ◦Q′)A) (Q−1A))n>(Q′ n)

even though the meaning of such a term is by no means obvious. The equivariant unification
algorithm uses “permutation graphs” to solve generalised equality and freshness constraints.
This constraint problem is NP-hard [Che10], and there are no longer unique, most general
solutions. However, the main issue with equivariant unification are that the term language
is complicated (see below), making it difficult to implement the algorithm and interpret the
resulting answers.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 3

1.1. Contributions. In this paper we present an alternative to equivariant unification, in
the form of a constraint algorithm over non-permutative nominal abstract syntax (NPNAS).
This is a mild generalisation of standard nominal abstract syntax and is a syntactic subset
of the equivariant unification term language. We use the term non-permutative because no
meta-variables, not even those representing names in binding position, follow the permuta-
tive convention. The contributions of this paper are as follows:

• the presentation of non-permutative nominal abstract syntax as a simple yet powerful
extension of existing nominal techniques;

• a novel decision procedure for solving equality and freshness constraints over non-permutative
nominal terms, and a proof of its correctness; and

• a reduction of name-name equivariant unification problems to non-permutative nominal
constraints.

We do not address the fact that equivariant unification is NP-hard, since the NPNAS con-
straint problem is also NP-hard. However, the simplicity of the NPNAS term language
and algorithm offer practical advantages over equivariant unification when it comes to im-
plementing a nominal logical programming or rewriting system. The constraint solving
algorithm described in this paper can be used to implement sound and complete resolution
over inductive definitions involving binders, as described in [Lak10]. This is an important
result given the ubiquity of binders in logic and computer science.

The rest of this paper is organised as follows. Section 2 presents important background
on nominal abstract syntax, nominal unification and equivariant unification. In Section 3
we present the syntax of NPNAS terms and constraints and define their semantics. We
present a constraint transformation algorithm in Section 4 and use it to derive a correct
decision procedure in Section 5, paying particular attention to termination. We address the
relationship between NPNAS and equivariant unification in Section 6 by defining an explicit
translation of name-name equivariant unification problems into NPNAS. We discuss related
and future work in Section 7 and conclude in Section 8.

2. Background

This section presents the basics of nominal abstract syntax, nominal terms, nominal uni-
fication and equivariant unification. This suffices to demonstrate the relationship of the
non-permutative terms and constraints studied in this paper to existing work. We refer the
reader to [Pit03] for a full introduction to nominal logic, to [UPG04] for details on nominal
unification and [Che10] for an in-depth treatment of equivariant unification.

2.1. Nominal abstract syntax. As is standard in the world of nominal techniques, we
use nominal signatures [UPG04] to specify binding structures in the object-language.

Definition 2.1 (Nominal signatures). A nominal signature Σ consists of:

• a finite set NΣ of name sorts, ranged over by N ;
• a finite set DΣ of data sorts, disjoint from NΣ and ranged over by D; and

4 M. R. LAKIN

• a finite set CΣ of constructors K:T → D, where the argument type T ∈ TyΣ is generated
by the following grammar.

T ∈ TyΣ ::= D (data sorts)
| N (name sorts)
| [N]T (name abstractions)
| T * · · · * T (tuples)
| unit (unit)

For simplicity we will assume that Σ is such that every type T ∈ TyΣ is inhabited by
some ground tree (defined below). This property of nominal signatures can be checked
straightforwardly—see [Lak10, Section 3.3.2] for details.

In standard approaches to nominal abstract syntax [GP02], bindable names are repre-
sented explicitly in the syntax of ground syntax trees. We fix a countably infinite set Name
of names to stand for object-language names which may be bound. The meta-variable n
ranges permutatively over these. We assume the existence of a total function sort which
maps every name n to a name sort N ∈ NΣ such that there are infinitely many names
assigned to every name sort. We say that n ∈ Name(N) if sort(n) = N .

Definition 2.2 (Ground trees). We write TreeΣ for the set of all syntax trees over the
nominal signature Σ. We refer to these as ground trees following the terminology of [Lak10],
though they are often referred to as (ground) nominal terms. With names (and unit) as
our building blocks, we define classes g ∈ TreeΣ(T) of syntax trees of the various types by
constructor application, tupling and name abstraction, as follows.

sort(n) = N

n ∈ TreeΣ(N) () ∈ TreeΣ(unit)

g1 ∈ TreeΣ(T1) · · · gk ∈ TreeΣ(Tk)

(g1, . . . ,gk) ∈ TreeΣ(T1 * · · · * Tk)

g ∈ TreeΣ(T) (K:T → D) ∈ Σ

K g ∈ TreeΣ(D)

sort(n) = N g ∈ TreeΣ(T)

<n>g ∈ TreeΣ([N]T)

The abstraction <n>g represents a term with a bound name. This term-former is not
regarded as a binder, which means that, for distinct names n and n′, we regard <n>n and
<n′>n′ as distinct ground trees. This is a consequence of following Gabbay’s permutative
convention [GM08].

Definition 2.3 (Permutations and permutation actions). Let Perm be the set of all finite
permutations over Name, that is, the set of all bijections π such that π(n) = n for all but
finitely many n. Any element of Perm can be represented as a finite list of name-swappings
of the form (nn′). The action of a permutation π on a ground tree g is to rename all names
appearing in g (including those in abstraction position) according to π. This is defined as
follows.

π · n , π(n) π · () , () π · (g1, . . . ,gk) , (π · g1, . . . ,π · gk)

π · (K g) , K (π · g) π · (<n>g) , <π(n)>(π · g)

Using the definition of permutation action, Figure 1 defines a type-directed equality
relation between two ground trees and a freshness relation between a name and a ground
tree. The equality relation corresponds (g =α g′:T) to α-equivalence [GP02]. This defini-
tion of α-equivalence paraphrases that of [Bar84], as shown by Gabbay and Pitts [GP02,

NON-PERMUTATIVE NOMINAL CONSTRAINTS 5

sort(n) = N

n =α n:N () =α ():unit

g1 =α g′1:T1 · · · gk =α g′k:Tk

(g1, . . . ,gk) =α (g′1, . . . ,g
′
k):T1 * · · · * Tk

g =α g′:T (K:T → D) ∈ Σ

K g =α K g′:D

g =α g′:T sort(n) = N

<n>g =α <n>g′:<N>T

sort(n) = sort(n′) = N
n 6= n′ n ≈� g′ g =α (nn′) · g′:T

<n>g =α <n′
>g′:[N]T

n 6= n′

n ≈� n′ n ≈� ()

n ≈� g1 · · · n ≈� gk

n ≈� (g1, . . . ,gk)

n ≈� g

n ≈� K g n ≈� <n>g

n 6= n′ n ≈� g

n ≈� <n′
>g

Figure 1: Equality and freshness for ground trees

Proposition 2.2]. The freshness relation (n ≈� g) holds when the name n is not free in the
ground tree g. We write FN (g) for the set of names n which appear in g and are such that
n ≈� g holds.

Finally, a relation R ⊆ TreeΣ(T1)* · · ·*TreeΣ(Tk) is equivariant if, for all permutations
π, R(g1, . . . , gk) holds iff R(π · g1, . . . , π · gk) holds. It is not hard to show that the equality
and freshness relations from Figure 1 are both equivariant.

2.2. Nominal unification. Nominal unification [UPG04] is a simple, well-studied con-
straint solving algorithm which extends first-order unification to work on ground trees with
binders modulo α-conversion. The language of ground trees from Definition 2.2 is extended
to include metavariables with suspended permutations π X. When X is instantiated by a
substitution σ the permutation must be applied to produce the result π · (σ(X)). Problems
consist of equality (t = t′) and freshness (n # t′) constraints. These are solved in the con-
text of a freshness environment ∇ of freshness assumptions n # X between a name and a
meta-variable which constrain the free names in an unknown term: if (n #X) ∈ ∇ then X
cannot be replaced by any term which has a free occurrence of n.

2.3. Equivariant unification. As mentioned above, equivariant unification [Che10] con-
siderably extends the term language of nominal unification, with complex permutation
expressions involving unknown names and unknown permutations. For the purposes of this
paper it suffices to consider equivariant unification problems involving only terms of a fixed
name sort N , ranged over by a. These are generated by the grammar below. We write n
where [Che10] uses a, for consistency with the rest of this paper.

Vertices v,w ::= n (name)
| A (name variable)

Name-terms a, b ::= Π · v (suspended permutation)

Permutation-terms Π ::= ι (identity)
| (a b) (swap)
| Q (permutation variable)

6 M. R. LAKIN

“Vertices” is a term used in [Che10], where equivariant unification problems are represented
as “permutation graphs”. A compound permutation expression Π may be an unknown
permutation Q, a swapping (a a′) or an explicit permutation composition or inversion.
Equivariant unification name-terms may be either concrete names n or name-variables A.
We abbreviate ι · v as just v in most cases. We write n;A;Q ⊢ a ok to mean that n ⊇
names(a), A ⊇ namevars(a) and Q ⊇ pvars(a), and extend this definition to other elements
of equivariant unification syntax in the obvious way.

The semantics of equivariant unification problems was defined in [Che10] and we briefly
summarise the relevant details here. We concern ourselves with ground valuations θ applied
to name-terms, in particular, the portion of the valuation that provides values for name
variables A and permutation variables Q, in terms of ground names n.

• If A ∈ dom(θ) then θ(A) = n, for some n ∈ Name.
• If Q ∈ dom(θ) then θ(Q) is a ground permutation, which can be represented as a finite
(possibly empty) list of name-swappings (nn′).

The semantics of name-name equivariant unification problems is as follows, after [Che10].

• θ |= a ≈ b iff θ(a) =α θ(b):N , using the rules for α-equivalence from Figure 1.
• θ |= a # b iff θ(a) ≈� θ(b), using the rules for freshness from Figure 1.
• If S is a finite set of equivariant unification constraints c (referred to as a problem) then
Sat(S) = {θ | ∀c ∈ S. θ |= c}.

Name-name equivariant unification problems are known to be NP-complete, whereas full
equivariant unification (at an arbitrary type T) is known to be NP-hard, but not necessarily
NP-complete [Che10].

The additional constructs supported by equivariant unification give it the power to solve
equations modulo a permutation. One can compute whether there exists a permutation π
such that (π · t) =α t′ holds by choosing a fresh permutation variable Q and solving the
equivariant unification problem {(Q · t) ≈ t′}. This suffices to allow complete matching and
proof-search in nominal logic programming.

3. Syntax and semantics of non-permutative constraints

In this section we present the syntax of non-permutative nominal terms and constraints
over these. We also define a semantics for non-permutative nominal constraints.

Schematic terms are used in informal mathematics as templates which may be used to
produce a (potentially infinite) set of ground instances, quotiented by α-equivalence. To
permit this, they contain variables which are instantiated with (α-equivalence classes of)
ground terms according to certain rules. We fix a countably infinite set Var of variables as
placeholders for unknown α-equivalence classes. We will use various symbols, typically x,
y, etc., to range non-permutatively over these.

Definition 3.1 (Non-permutative nominal terms and atomic constraints). The sets TermΣ

of (schematic) non-permutative nominal terms t and ConstrΣ of atomic constraints over the

NON-PERMUTATIVE NOMINAL CONSTRAINTS 7

x ∈ dom(∆) ∆(x) = T

∆ ⊢Σ x:T

∆ ⊢Σ t:T (K:T → D) ∈ Σ

∆ ⊢Σ K t:D ∆ ⊢Σ ():unit

∆ ⊢Σ t1:T1 · · · ∆ ⊢Σ tk:Tk

∆ ⊢Σ (t1, . . . ,tk):T1 * · · · * Tk

∆ ⊢Σ x:N ∆ ⊢Σ t:T

∆ ⊢Σ <x>t:[N]T

∆ ⊢Σ t:T ∆ ⊢Σ t′:T

∆ ⊢Σ t = t′ ok

∆ ⊢Σ x:N ∆ ⊢Σ t:T

∆ ⊢Σ x # t ok

Figure 2: Typing rules for non-permutative nominal terms and atomic constraints

nominal signature Σ are defined as follows.

t ∈ TermΣ ::= x (variable)
| <x>t (abstraction)
| K t (data)
| (t, . . . ,t) (tuple)
| () (unit)

c ∈ ConstrΣ ::= t = t (equality constraint)
| x # t (freshness constraint)

Our main departure from traditional approaches to nominal abstract syntax is that there
are no permutative names in the syntax—all object-level names are represented by non-
permutative variables at the meta-level, even those which appear in binding position. Since
the variables are non-permutative, distinct variables may be instantiated with the same
ground tree, which we call aliasing. As we shall see, the fact that bound names may be
aliased means that a schematic term can be instantiated to multiple different α-equivalence
classes in general. The abstraction term-former is not a binder, so there are no meta-level
binding constructs in schematic terms. Hence it is meaningless to define α-equivalence on
schematic terms directly.

Remark 3.2 (Omission of name-constants). Unlike the equivariant unification term lan-
guage, we have not included explicit permutative name-constants in the grammar of non-
permutative nominal terms from Definition 3.1. We omit them in part because they do not
add expressive power—a combination of non-permutative variables and name inequality
(freshness) constraints can be used to imitate permutative name-constants in constraints,
as mentioned in Remark 6.12. Furthermore, permutative name-constants are not needed to
achieve a sound and complete encoding of inductive definitions over terms involving binders,
as shown in [LP09, Lak10].

We let ∆ range over typing environments, which are finite partial functions from Var
to TyΣ which assign types to variables. We write dom(∆) for the domain of definition of ∆.
Figure 2 provides rules which define typing judgements of the form ∆ ⊢Σ t:T for terms and
∆ ⊢Σ c ok for atomic constraints. Note that if ∆ ⊢Σ t:N holds then t must be a variable
x such that ∆(x) = N for some name sort N ∈ NΣ.

8 M. R. LAKIN

Definition 3.3 (Non-permutative nominal constraint problems). Let c range over finite
conjunctions c1 & · · · & ck of atomic constraints, where each ci ∈ ConstrΣ. Then, a non-
permutative nominal constraint problem in ProbΣ has the form ∃∆(c), and is well-formed
(written ∅ ⊢Σ ∃∆(c) ok) iff ∆ ⊢Σ c ok holds for all c ∈ c.

Having specified the syntax of non-permutative terms and constraint problems, we now
turn to their semantics. We will give a semantics to atomic constraints and constraint
problems in terms of instantiations of their variables with α-equivalence classes of ground
abstract syntax trees. To do so, we must first define a notion of ground trees quotiented by
α-equivalence.

Definition 3.4 (α-trees). Let α-TreeΣ(T) be the set of all =α-equivalence classes of ground
trees of type T , which we call α-trees. We let a range over α-trees. If g ∈ TreeΣ(T) then
we write [g]α for the set {g′ | g =α g′:T} of all ground trees which are α-equivalent to g. If
g ∈ TreeΣ(T) then [g]α ∈ α-TreeΣ(T). In the special case where g ∈ α-TreeΣ(N) it follows
that g = [n]α = {n}, for some n ∈ Name(N) (since constructors cannot produce trees of
name sorts).

α-trees represent the object-language terms quotiented by α-equivalence which are so
frequently used in informal mathmatical parlance. They will form the basis for the semantics
of non-permutative nominal constraints. We now extend the standard notions of “free
names” and “freshness” from nominal abstract syntax to α-trees.

Definition 3.5 (Free names and freshness for α-trees). Suppose that a ∈ α-TreeΣ(T).
Then, we write FN (a) for the finite set FN (g) for some/any1 ground tree g ∈ TreeΣ(T)
such that a = [g]α. Furthermore, if a ∈ α-TreeΣ(N) then we know that a = [n]α for some
n ∈ Name(N). Then, we write a ≈� a

′ and say “a is fresh for a′” iff n /∈ FN (a′).

We now describe the instantiation of schematic terms, which involves replacing the
variables with α-trees to produce specific ground instances.

Definition 3.6 (α-tree valuations). An α-tree valuation V is a finite partial function which
maps variables to α-trees. We write dom(V) for the domain of the partial function. Given
a type environment ∆ we write α-TreeΣ(∆) for the set of all α-tree valuations V such that
dom(V) = dom(∆) and V (x) ∈ α-TreeΣ(∆(x)) for all x ∈ dom(V). This ensures that the
valuation respects types.

Using the proof techniques from [Pit06] we can show that there exists an instantiation
operation JtKV which respects both types and α-equivalence classes, i.e. if ∆ ⊢Σ t:T and
V ∈ α-TreeΣ(∆) then JtKV ∈ α-TreeΣ(T) holds, where JtKV is as follows.

JxKV = V (x)

JtKV = [g]α =⇒ JK tKV = [K g]α

J()KV = [()]α

Jt1KV = [g1]α ∧ · · · ∧ JtkKV = [gk]α =⇒ J(t1, . . . ,tk)KV = [(g1, . . . ,gk)]α

V (x) = [n]α ∧ JtKV = [g]α =⇒ J<x>tKV = [<n>g]α

Since variables stand for unknown α-trees, not unknown trees, we see that schematic terms
describe an α-tree as opposed to a tree. Precisely which one depends on how the variables

1Some/any properties are characteristic of nominal techniques for representing abstract syntax—see
[Pit06] for a rigorous mathematical treatment.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 9

in the term are instantiated. This reflects the common practice of leaving α-equivalence
implicit and using representatives to stand in place of the whole class [Bar84, Conven-
tion 2.1.13].

Applying an α-tree valuation to a schematic term is “possibly-capturing” with regard to
the binders in the underlying language of ground abstract syntax trees, even when in abstrac-
tion position. For example, given distinct variables x, y, z we cannot regard the schematic
terms <x>z and <y>z as equivalent because if we let V = {x 7→ [n]α, y 7→ [n′]α, z 7→ [n]α}
(with n 6= n′) then we get

J<x>zKV = [<n>n]α 6= [<n′
>n]α = J<y>zKV .

Barendregt [Bar84] does not draw a distinction between names and schematic variables,
but in our presentation there is a clear distinction between non-permutative variables x
and permutative names n. Even when in abstraction position, we allow non-permutative
variables to be aliased, that is, we allow syntactically distinct variables to be assigned with
the same underlying name. We can model names which behave permutatively by imposing
additional constraints that the variables must be mutually distinct [Lak10, Section 6.4].

Lemma 3.7 (Substitution lemma). If ∆ ⊢Σ t′:T and ∆ ⊢Σ x = t ok and V ∈ α-TreeΣ(∆)
all hold then V (x) = JtKV implies Jt′KV = Jt′[t/x]KV .

We are now in a position to define the semantics of non-permutative nominal constraint
problems, in terms of satisfying ground instantiations by α-tree valuations.

Definition 3.8 (Satisfaction of atomic constraints). For an atomic constraint c such that
∆ ⊢Σ c ok and an α-tree valuation V ∈ α-TreeΣ(∆), we write V |= c to mean that “V
satisfies c”, which is defined by cases on c.

JtKV = Jt′KV

V |= t = t′
V (x) ≈� JtKV

V |= x # t

In the case of freshness constraints, this relation is well-defined by virtue of the points noted
in Definition 3.5.

Definition 3.9 (Satisfiable constraint problems). For a constraint problem ∃∆(c) such that
∅ ⊢Σ ∃∆(c) ok , we say that |= ∃∆(c) holds iff there exists a valuation V ∈ α-TreeΣ(∆)
such that V |= c for all c ∈ c.

For example, suppose that we have variables x and y of some name sort N . Then, the
α-tree constraint problem <x>y=<y>x is satisfied by any valuation V such that V (x) = V (y),
as both sides of the equality constraint are then instantiated to the same α-equivalence class
[<n>n]α. Note that if we used permutative names nx and ny then the corresponding con-
straint problem <nx>ny =<ny>nx would not be satisfiable, because the two terms are ground
but are not in the same α-equivalence class. This corresponds to the non-permutative con-
straint problem <x>y = <y>x & x # y where we simulate permutative behaviour by adding
appropriate freshness constraints. This constraint problem is also unsatisfiable, because the
first constraint <x>y = <y>x is only satisfiable by a valuation V if V (x) = V (y). However,
no such valuation can satisfy the freshness constraint x # y.

Definition 3.10. We write NonPermSat for the decision problem {(∆ , c) | |= ∃∆(c)}.

It is trivial to see that NonPermSat is decidable because it is a syntactic subset of
the equivariant unification problem, which was shown to be decidable by Cheney in his

10 M. R. LAKIN

thesis [Che04, Chapter 7]. In previous work [LP09] we showed that NonPermSat is is
NP-hard by a reduction of graph 3-colourability. In Section 6 of this paper we present
an alternative proof of NP-hardness by defining an encoding of name-name equivariant
unification problems (which are known to be NP-complete [Che10]) into NPNAS. It follows
from [Che10, Theorem 1] that NonPermSat is in NP and hence that NonPermSat is NP-
complete.

Remark 3.11 (Permutations and equivariance). This section has hardly mentioned name-
permutations, which are a staple of most nominal techniques for abstract syntax involving
binders (as discussed in Section 2.1). They are not required because α-equivalence is handled
by the explicit use of α-equivalence classes of ground trees in the semantics. However, it is
not hard to show that the semantics of non-permutative nominal constraints is equivariant,
that is, that (for any c) the set {V | V |= c} is closed under name-permutations.

4. Constraint transformation algorithm

We define a non-deterministic transition relation, −→, which transforms a single constraint
problem into a finite, non-empty set of constraint problems. Figure 3 presents transition
rules for the transformation relation. To save space, we write x # x1··k for the conjunction
x # x1 & · · · & x # xk. We also write <x1··k>t as a shorthand for the iterated abstraction
term <x1> · · · <xk>t, where the list of abstractions may be empty unless explicitly stated
otherwise. Note that Figure 3 does not contain explicit rules for handling constraints of
the form <x1··k><x>t = <y1··k><y>t

′ or x # <y1··k><y>t
′ because the additional abstraction

term-former is implicitly folded into the initial abstraction list during pattern-matching.
Rules (F1)–(F3) and (E1)–(E3) deal with unit, data and tuple terms in the usual way:

the only difference is that we work within nested abstractions. The abstractions do not
play any part in these six rules, except that the lists on both sides of an equality constraint
must be of the same length. The rules (F5) and (E5) dispose of trivial constraints: in the
case of (F5), two names of different sorts will always be fresh for each other and in the case
of (E5), any term is equal to itself.

The most interesting rules are (F4) and (E4), which deal with the scopes of bound
names with respect to the nested abstractions. We first consider (F4). In order for x to
not appear free anywhere in <y1··k>y, either x should map to the same name as one of the
abstracted variables y1, . . . , yk or x should be distinct from all of the abstracted variables
and be constrained to be fresh for the unknown term y. Unlike in nominal unification,
transforming a freshness constraint with this rule may produce new equality constraints to
solve.

Rule (E4) deals with equality constraints between variables of some name sort N . We
handle these constraints by noting that the way to resolve the binding scope of the names
x and y is to start at the innermost binding occurrence and work towards the outside.
Therefore, it should be the case that either x and y both unify with the innermost binder
(xk and yk respectively), or that they should both be distinct from the innermost binder
and unify with the next one moving outwards (i.e. xk−1 and yk−1), and so on, or that x and
y should be distinct from all of the potential binders and equal to each other. This method
of dealing with equality constraints between bound names seems more natural than existing
methods based on name-swapping.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 11

The final two rules, (E6) and (E7), eliminate variables from the problem by substituting
throughout the remaining constraints. They use a notion of substitution c[t/x] which re-
places all occurrences of the variable x in c by the term t. These substitutions are capturing
with respect to the abstraction term-former. Rule (E6) is the standard variable elimination
rule from first-order (syntactic) unification. The side-condition x /∈ vars(t) on this rule en-
forces the occurs check which is necessary to avoid cyclic substitutions. The side-condition
x ∈ vars(c) ensures that this rule can only be invoked once per variable, which is necessary
for termination.

Rule (E7) deals with equality constraints of the form <x1··k>x=<y1··k>t, where k > 0, the
occurs check succeeds and t is not a variable, i.e. t is some compound term. This includes
the case where there are more initial nested abstractions on one side than the other. We
cannot simply substitute t for x here because of the preceding abstractions: x might need
to be instantiated with a term syntactically different from t. For example, to satisfy the
constraints (x # y) & (<x>x∗ = <y>K y) it is clear that x∗ must be mapped to K x, not K y.
This is where swappings are necessary in both nominal and equivariant unification: however,
this is not an elegant solution when bound names are represented using variables, because
the potential for aliasing means that the result of a “variable swapping” such as (x y) · z is
not unique.

Since we cannot make progress using a swapping, we note that the side-condition that t
may not be a variable means that we know the outermost constructor of t. This allows us to
impose some structure on the unknown term represented by x by narrowing [AEH00]. The
rules from Figure 4 define a narrowing relation which factors out this common functionality
at unit, tuple, data and abstraction types.

The intuitive reading of [∆; t] Z=⇒ [∆∗; t∗] is that the term t∗ represents a “pattern” for
terms with the same outermost constructor as t. The subterms of t∗ are variables which
stand for the (as-yet unknown) subterms of the term referred to by the variable x. The
extra type environment ∆∗ is needed to ensure that the variables used to create t∗ do not
appear elsewhere in the constraint problem. They must also be mutually distinct, as in
rules (N3) and (N4). This gives rise to the following lemma, which is proved by cases on
the narrowing rules.

Lemma 4.1 (Narrowing and typing). If [∆; t] Z=⇒ [∆∗; t∗] and ∆ ⊢Σ t:T then dom(∆) ∩
dom(∆∗) = ∅ and ∆∗ ⊢Σ t∗:T .

The narrowing procedure is lazy in the sense that each narrowing step using rule (E7)
does not replicate the entire structure of the term t but just its outermost constructor. If
there is further structure on one side, rule (E7) may be applied repeatedly. There is no rule
for narrowing against variables because they have no internal structure to copy. Constraints
of the form <x1··k>x = <y1··k>y are simply left alone when ∆(x) is not a name sort—this is
in direct contrast to nominal unification. It is not immediately obvious that this is correct,
and we will address this point in the proof of Lemma 5.28 below.

Remark 4.2 (Relationship to existing algorithms). Since NonPermSat is a syntactic subset
of the full equivariant unification problem studied by Cheney, the problems considered here
could be handled using a subset of the rules presented in [Che10] for solving “general nominal
unification” problems. The main difference is that our rules use the lazy narrowing approach
to delay case analysis until the body of the abstractions is itself a variable of name sort.
We also note that a simplified narrowing-based approach was used to solve swapping-free
equivariant matching problems in polynomial time in [Che10, Section 5.2].

12 M. R. LAKIN

(F1): ∃∆((x # <y1··k>()) & c) −→ ∃∆(c)
(F2): ∃∆((x # <y1··k>K t) & c) −→ ∃∆((x # <y1··k>t) & c)
(F3): ∃∆((x # <y1··k>(t1, . . . ,tj)) & c)

−→ ∃∆((x # <y1··k>t1) & · · · & (x # <y1··k>tj) & c)
(F4): ∃∆((x # <y1··k>y) & c)

−→

∃∆((x = y1) & c) if ∆(x) = ∆(y1).
∃∆((x # y1) & (x = y2) & c) if ∆(x) = ∆(y2).
· · · · · ·
∃∆((x # y1··k−1) & (x = yk) & c) if ∆(x) = ∆(yk).
∃∆((x # y1··k) & (x # y) & c)

if k > 0.
(F5): ∃∆((x # y) & c) −→ ∃∆(c)

if ∆(x) = N , ∆(y) = N ′ and N 6= N ′.
(E1): ∃∆((<x1··k>() = <y1··k>()) & c) −→ ∃∆(c)
(E2): ∃∆((<x1··k>K t = <y1··k>K t′) & c) −→ ∃∆((<x1··k>t = <y1··k>t

′) & c)
(E3): ∃∆((<x1··k>(t1, . . . ,tj) = <y1··k>(t

′
1, . . . ,t

′
j)) & c)

−→ ∃∆((<x1··k>t1 = <y1··k>t
′
1) & · · · & (<x1··k>tj = <y1··k>t

′
j) & c)

(E4): ∃∆((<x1··k>x = <y1··k>y) & c)

−→

∃∆((x = xk) & (y = yk) & c) if ∆(x) = ∆(xk).
∃∆((x # xk) & (x = xk−1) & (y # yk) & (y = yk−1) & c) if ∆(x) = ∆(xk−1).
· · · · · ·
∃∆((x # xk··2) & (x = x1) & (y # yk··2) & (y = y1) & c) if ∆(x) = ∆(x1).
∃∆((x # xk··1) & (y # yk··1) & (x = y) & c)

if k > 0 and ∆(x) = N , for some N .
(E5): ∃∆((x = x) & c) −→ ∃∆(c)

(E6):
∃∆((x = t) & c)
∃∆((t = x) & c)

}

−→ ∃∆((x = t) & c[t/x])

if x /∈ vars(t) and x ∈ vars(c).

(E7):
∃∆((<x1··k>x = <y1··k>t) & c)
∃∆((<y1··k>t = <x1··k>x) & c)

}

−→ ∃∆,∆∗((x = t∗) & (<x1··k>t
∗ = <y1··k>t) & c[t∗/x])

if t is not a variable, x /∈ vars(t), k > 0 and [∆; t] Z=⇒ [∆∗; t∗].

Figure 3: Constraint transformation rules

(N1)
[∆; ()] Z=⇒ [∅; ()]

(N2)
x /∈ dom(∆) (K:T → D) ∈ Σ

[∆;K t] Z=⇒ [{x:T};K x]

(N3)
∆ ⊢Σ (t1, . . . ,tk):T1 * · · · * Tk x1 6= · · · 6= xk /∈ dom(∆)

[∆; (t1, . . . ,tk)] Z=⇒ [{x1:T1, . . . , xk:Tk}; (x1, . . . ,xk)]

(N4)
∆ ⊢Σ <x>t:[N]T x′ 6= x′′ /∈ dom(∆)

[∆; <x>t] Z=⇒ [{x′:N,x′′:T}; <x′>x′′]

Figure 4: Narrowing rules

NON-PERMUTATIVE NOMINAL CONSTRAINTS 13

We conclude this section with the straightforward result that well-formedness of con-
straint problems is preserved by the transformation rules. The proof is by cases on the
transformation rules from Figure 3. In the case for rule (E7) we require Lemma 4.1 to
deduce that the narrowing step preserves well-formedness.

Lemma 4.3 (Preservation of well-formedness). If ∅ ⊢Σ ∃∆(c) ok and ∃∆(c) −→ ∃∆′(c′)
then ∅ ⊢Σ ∃∆′(c′) ok. Furthermore, ∆′ ⊇ ∆.

5. A correct decision procedure

We now present an algorithm for deciding satisfiability of non-permutative nominal con-
straint problems. We begin by considering the correctness of individual transformation
rules from the previous section and prove that, with careful consideration of termination,
the transformation rules can be used to give a correct decision procedure for NonPermSat.

5.1. Soundness and completeness of transformations. We first prove soundness and
completeness results for the individual constraint transformation rules from Figure 3. We
begin by stating a lemma which relates substitution and constraint satisfaction, which will
be needed for the cases for rules (E6) and (E7) which involve substitution.

Lemma 5.1 (Substitution property of satisfaction). Suppose that ∅ ⊢Σ ∃∆, x:T (c) ok,
∆ ⊢Σ t:T , V ∈ α-TreeΣ(∆, x:T) and V (x) = JtKV . Then V |= c[t/x] iff V |= c.

We now prove that the transformation rules are sound, i.e. that the transformation
steps do not introduce any additional satisfying valuations to the problem.

Theorem 5.2 (Soundness of transformations). Suppose that ∅ ⊢Σ ∃∆(c) ok, ∃∆(c) −→
∃∆′(c′) and V ′ |= c′ all hold, where V ′ ∈ α-TreeΣ(∆

′). Then V |= c holds, where V is the
restriction of V ′ to dom(∆).

Proof. By case analysis on the transformation rule used to derive ∃∆(c) −→ ∃∆′(c′). The
cases for rules (F1)–(F4) and (E1)–(E4) are straightforward, using standard facts about the
definition of constraint satisfaction. The case for (E5) follows because V |= x = x holds for
any V and x. Similarly, the case for (F5) follows because V |= x # y holds for any V , x and
y if ∆(x) and ∆(y) are different name sorts. The case for (E6) relies on Lemma 5.1. The
remaining case, for (E7), is dealt with in detail below.

(E7): In this case we have c = (<x1··k>x = <y1··k>t) & c∗ and furthermore that c′ = (x = t∗) &
(<x1··k>t

∗ = <y1··k>t) & c[t∗/x], where t is not a variable, x /∈ vars(t), k > 0 and [∆; t] Z=⇒
[∆∗; t∗]. Furthermore, ∆′ = ∆,∆∗. By assumption we get that V ′ |= x = t∗, V ′ |=
<x1··k>t

∗ = <y1··k>t and V ′ |= c∗[t∗/x] all hold, for some V ′ ∈ α-TreeΣ(∆,∆∗). From
V ′ |= x = t∗ we know that V ′(x) = Jt∗KV ′ , (since x /∈ vars(t)) and then by Lemma 5.1 and
V ′ |= c∗[t∗/x] we get that V ′ |= c∗ holds. Furthermore, we know that <x1··k>t

∗ = <y1··k>t
is (<x1··k>x = <y1··k>t)[t

∗/x], because x /∈ vars(t). Therefore, by V ′ |= <x1··k>t
∗ = <y1··k>t

and Lemma 5.1 we can show that V ′ |= <x1··k>x = <y1··k>t holds. Thus we get that V
′ |= c

holds, and hence that V |= c, as required.

14 M. R. LAKIN

Next we prove that the constraint transformation rules are complete, i.e. that every satisfying
valuation is preserved across some transformation of a constraint problem. We present some
preliminary lemmas concerning narrowing before moving on to the main proof.

Lemma 5.3 (Possibility of narrowing). If t is not a variable and ∆ ⊢Σ t:T then there exist
∆∗ and t∗ such that [∆; t] Z=⇒ [∆∗; t∗] holds.

Proof. By cases on the narrowing rules from Figure 4, which cover all syntactic cases for t
except for when t is a variable. In each case, the types from the typing assumption ∆ ⊢Σ t:T
match those required by the appropriate narrowing rule, so we can apply that rule to find
∆∗ and t∗ such that [∆; t] Z=⇒ [∆∗; t∗], as required.

Lemma 5.4 (Narrowing and satisfaction). Suppose that ∆ ⊢Σ <x1··k>x = <y1··k>t ok and
that V ∈ α-TreeΣ(∆) is such that V |= <x1··k>x = <y1··k>t holds. If [∆; t] Z=⇒ [∆∗; t∗]
then there exists V ∗ ∈ α-TreeΣ(∆,∆∗) which agrees with V on dom(∆) and is such that
V ∗(x) = Jt∗KV ∗.

Proof. From [∆; t] Z=⇒ [∆∗; t∗] and Lemma 4.1 we get that dom(∆) ∩ dom(∆∗) = ∅. Thus
it follows that there exist a family of valuations V ∗ ∈ α-TreeΣ(∆,∆∗) which agree with V
on dom(∆), and it just remains to show that V ∗(x) = Jt∗KV ∗ holds for some such V ∗. We
prove this by cases on the narrowing rule used to derive [∆; t] Z=⇒ [∆∗; t∗]. In each case,
V |= <x1··k>x = <y1··k>t implies that the outermost term-former of V ∗(x) is the same as that
of JtKV ∗ , and since [∆; t] Z=⇒ [∆∗; t∗] this is also the same as the outermost term-former of
Jt∗KV ∗ . Thus we can choose a valuation V ∗ which instantiates the variables in dom(∆∗)
such that V ∗(x) = Jt∗KV ∗ holds, as required.

Definition 5.5 (Successor sets). We write succ(∃∆(c)) for the successor set of ∃∆(c),
which we define as the set {∃∆′(c′) | ∃∆(c) −→ ∃∆′(c′)}.

Theorem 5.6 (Completeness of transformations). Suppose that ∅ ⊢Σ ∃∆(c) ok, V ∈
α-TreeΣ(∆) and V |= c all hold, and that succ(∃∆(c)) 6= ∅. Then there exists ∃∆′(c′) ∈
succ(c) and V ′ ∈ α-TreeΣ(∆

′) such that V ′ |= c′, where V and V ′ agree on dom(∆).

Proof. Since succ(∃∆(c)) 6= ∅ it follows that c matches the left-hand side of one of the
constraint transformation rules from Figure 3 and satisfies any side-conditions. Then, the
proof is by case analysis on c. The cases of c which match rules (F1)–(F4) and (E1)–(E4)
are straightforward and follow from standard properties of constraint satisfaction.

If c is (x = x) & c the transition uses rule (E5) and the result is trivial by assumption,
the problem on the right-hand side being a subset of the problem on the left-hand side. If c
is (x # y) & c, where x and y are distinct variables of different name sorts, then (F5) applies
and again the result follows trivially. We invoke Lemma 5.1 in the case for (E6). The case
for (E7) is less straightforward, and we give details for this below.

Case c = (<x1··k>x = <y1··k>t) & c∗: We also assume that t is not a variable, x /∈
vars(t), and k > 0 all hold. Furthermore, we assume that V ∈ α-TreeΣ(∆), where
V |= <x1··k>x = <y1··k>t and V |= c∗ both hold. Since t is not a variable, by Lemma 5.3
we get that [∆; t] Z=⇒ [∆∗; t∗] holds for some ∆∗ and t∗. We can then match against
rule (E7) and get that c′ = (x = t∗) & (<x1··k>t

∗ = <y1··k>t) & c∗[t∗/x] and ∆′ = ∆,∆∗. By
Lemma 5.4 there exists V ′ ∈ α-TreeΣ(∆

′) which agrees with V on dom(∆) and is such
that V ′(x) = Jt∗KV ′ . It follows that V ′ |= x = t∗ and V ′ |= <x1··k>t

∗ = <y1··k>t both hold.
Finally, we can use Lemma 5.1 to deduce that V ′ |= c∗[t∗/x], and hence that V ′ |= c′

holds, as required.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 15

The following corollary follows immediately from Theorem 5.2 and Theorem 5.6, and sum-
marises the results of this section.

Corollary 5.7 (Soundness and completeness of transformations). Assume ∅ ⊢Σ ∃∆(c) ok
and succ(∃∆(c)) = {∃∆,∆1(c1), . . . ,∃∆,∆k(ck)} both hold. Then, for any V ∈ α-TreeΣ(∆),
V |= c iff there exists a valuation V ′ which extends V to dom(∆,∆i) and is such that
V ′ |= ci, for some i ∈ {1, . . . , k}.

5.2. Termination. A key feature of any decision procedure is that it must always termi-
nate, but here we run into a problem: for some constraint problems it is possible to get
infinite reduction sequences. For example, given a datatype nat for natural numbers, if
n > 0 then the constraint problem

∃∆((<x1··k>x = <y1··k>S y) & (<y1··k>y = <x1··k>Sx))

can be reduced to

∃∆, x′:nat, y′:nat((x = Sx′) & (y = S y′) & (<x1··k>x
′ = <y1··k>S y

′) & (<y1··k>y
′ = <x1··k>Sx

′)).

There is clearly the possibility of divergence as we have recovered a variant of the original
problem. In this section we attempt to address this problem by defining a decidable test on
constraint problems and proving that this test allows us to avoid reducing may-divergent
problems. We begin by introducing some terminology—we say that a constraint problem
∃∆(c) is

• terminal (written ∃∆(c) 6−→) if there does not exist a constraint problem ∃∆′(c′) such
that ∃∆(c) −→ ∃∆′(c′).

• a−→-normal form of ∃∆∗(c∗) if there exists a finite transformation sequence from ∃∆∗(c∗)
to ∃∆(c) and ∃∆(c) is terminal.

• strongly normalising if all transformation sequences starting from ∃∆(c) eventually reach
a terminal constraint problem.

• may-divergent if there exists an infinite transformation sequence starting from ∃∆(c).

Our termination check will involve translating elements of ProbΣ into a subset of ProbΣ
which corresponds to first-order unification problems. Since first-order unification is known
to be decidable, we can check whether the first-order unification problem that underlies a
given non-permutative constraint problem is satisfiable. From this we will deduce whether
the non-permutative constraint problem is strongly normalising.

We refer to this abstraction interpretation process as “first-order reduction”, and begin
by reducing nominal signatures and types to first-order versions.

Definition 5.8 (Reducing nominal signatures). For every nominal signature Σ we write Σ♭

for the underlying first-order signature, which has NΣ♭ , ∅ and DΣ♭ , DΣ. Furthermore, if

(K:T → D) ∈ Σ then (K:T ♭ → D) ∈ Σ♭ holds, where T ♭ is defined as follows.

N ♭ , unit ([N]T)♭ , unit * (T ♭) D♭ , D unit♭ , unit

(T1 * · · · * Tk)
♭
, (T1

♭) * · · · * (Tk
♭).

16 M. R. LAKIN

Note that we reduce all name sorts to the unit type and all abstraction type-formers [N]T
to the product type unit * (T ♭). Thus we lose all information on the types of object-level
names but retain some information on the locations of abstractions in the original type.

Definition 5.9 (Reducing type environments). For any type environment ∆ we write ∆♭

for the type environment such that

• dom(∆♭) = {x | x ∈ dom(∆) and ∆(x) is not a name sort}; and

• ∆♭(x) = (∆(x))♭ for all x ∈ dom(∆♭).

Note that dom(∆♭) ⊆ dom(∆) by definition. We now define a similar first-order reduc-
tion operation on non-permutative nominal terms—this definition includes a type environ-
ment ∆ as a parameter, which is necessary to decide how to handle variables when they
are encountered during the reduction process. This definition is related to the morphism
between nominal and first-order terms defined in [CF11].

Definition 5.10 (Reducing terms). For a term t, let ∆ be any type environment such that

∆ ⊢Σ t:T holds for some T . Then, define the first-order reduction of t under ∆, t♭∆, as
follows.

x♭∆ ,

{

() if ∆(x) is a name sort

x if ∆(x) is not a name sort
(<x>t)♭∆ , ((), t♭∆) ()

♭
∆ , ()

(K t)♭∆ , K (t♭∆) (t1, . . . ,tk)
♭
∆ , ((t1

♭
∆), . . . ,(tk

♭
∆))

Mirroring Definition 5.8, we turn any variables of name sort into unit terms and translate
abstraction term-formers into a pair consisting of unit and the reduced abstraction body.
This will be convenient later on because it ensures that the “size” of a reduced term t♭∆
(defined below) is the same as the size of the original term t. It is straightforward to show

that if ∆ ⊢Σ t:T then ∆♭ ⊢Σ♭ t♭∆:T
♭. We also get a “weakening” result: if ∆ ⊢Σ t:T and

∆′ ⊇ ∆ then t♭∆′ = t♭∆. We now extend the definitions to constraint problems.

Definition 5.11 (Reducing constraint problems). The reduction c♭∆ of constraints c under
∆, where ∆ ⊢Σ c ok , is defined as follows.

c♭∆ , {t1
♭
∆ = t2

♭
∆ | (t1 = t2) ∈ c}.

For a constraint problem ∃∆(c), we write (∃∆(c))♭ for the corresponding reduced constraint

problem ∃∆♭(c♭∆). It is trivial to show that if ∅ ⊢Σ ∃∆(c) ok holds then ∅ ⊢Σ♭ (∃∆(c))♭ ok
also holds.

When reducing constraint problems we discard any freshness constraints, since these
are not present in first-order unification problems. This is not an issue since freshness
constraints cannot cause may-divergence in our constraint transformation rules. For equality
constraints, we simply apply the first-order reduction defined in Definition 5.10 to both
terms separately.

In order to reason about the satisfaction of reduced constraint problems we must define
first-order reductions of ground trees, α-trees and α-tree valuations.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 17

Definition 5.12 (Reducing ground trees). We define the first-order reduction g♭ of a ground
tree g as follows.

n♭ , () ()
♭ , () (<n>g)♭ , ((), g♭) (K g)♭ , K (g♭)

(g1, . . . ,gk)
♭ , (g1

♭, . . . ,gk
♭).

It is easy to show that g ∈ TreeΣ(T) implies g♭ ∈ TreeΣ♭(T ♭) for any ground tree g.

Regarding α-equivalence, if g ∈ TreeΣ(T) then [g♭]α = {g♭} and [g♭]α ∈ α-TreeΣ♭(T ♭).

Furthermore, if g1 =α g2:T then g1
♭ = g2

♭, since the first-order reduction process erases
all names. This property means that we can define the first-order reduction of α-trees

as follows: [g]α
♭ = [g♭]α = {g♭}. In turn, this allows us to define a first-order reduction

operation on α-tree valuations.

Definition 5.13 (Reducing α-tree valuations). If V ∈ α-TreeΣ(∆) then we write V ♭ for the

valuation which has dom(V ♭) = dom(∆♭) (and hence dom(V ♭) ⊆ dom(V)) and is such that

V ♭(x) = (V (x))♭ for all x ∈ dom(V ♭). It is straightforward to show that if V ∈ α-TreeΣ(∆)

then V ♭ ∈ α-TreeΣ♭(∆♭).

We will use W to range over valuations in α-TreeΣ♭(∆♭) if the starting α-tree valuation
in α-TreeΣ(∆) is irrelevant. Now, a key task is to show that satisfaction is preserved by the
process of reduction to first-order form.

Lemma 5.14 (Reduction and valuation). For any Σ, V , ∆, t and T , if ∆ ⊢Σ t:T and

V ∈ α-TreeΣ(∆) then (JtKV)
♭ = Jt♭∆KV ♭.

Proof. The proof is by induction on the structure of t. In the base case where t is a variable
which is not of name sort, we use the defining properties of V ♭.

Lemma 5.15 (Reduction and satisfaction). For any Σ, ∆, c and V , if ∆ ⊢Σ c ok and

V ∈ α-TreeΣ(∆) then V |= c implies V ♭ |= c♭∆.

Proof. Since Definition 5.11 discards all freshness constraints in c and translates all freshness
constraints, it suffices to show that, for any equality constraint (t1 = t2) ∈ c, if Jt1KV = Jt2KV
then Jt1

♭
∆KV ♭ = Jt2

♭
∆KV ♭ . If we assume that Jt1KV = Jt2KV then (Jt1KV)

♭ = (Jt2KV)
♭, and by

Lemma 5.14 we get that Jt1
♭
∆KV ♭ = Jt2

♭
∆KV ♭ , as required.

We can now prove an important result about the satisfaction of non-permutative con-
straint problems and state its corollary.

Theorem 5.16 (Reduction and satisfiability). For any Σ, ∆ and c, if ∅ ⊢Σ ∃∆(c) ok then

|= ∃∆(c) implies |= (∃∆(c))♭.

Proof. If |= ∃∆(c) then there exists a valuation V ∈ α-TreeΣ(∆) such that V |= c. By

Lemma 5.15 it follows that V ♭ |= c♭∆, where V
♭ ∈ α-TreeΣ♭(∆♭). Thus we have |= (∃∆(c))♭,

as required.

Corollary 5.17 (Reduction and unsatisfiability). For any Σ, ∆ and c, if ∅ ⊢Σ ∃∆(c) ok

then 6|= (∃∆(c))♭ implies 6|= ∃∆(c).

18 M. R. LAKIN

Corollary 5.17 tells us that if the first-order reduction (∃∆(c))♭ is unsatisfiable then the
original problem ∃∆(c) is unsatisfiable. This is one of the properties that we require of a
correct termination check for non-permutative constraint problems. It just remains to show

that if the first-order reduction (∃∆(c))♭ is satisfiable then ∃∆(c) is strongly normalising.
We begin by showing that satisfaction of reduced constraint problems is preserved by

substitution, in the following sense.

Lemma 5.18 (Satisfaction and substitution). For any Σ, ∆, c, x, t and W , suppose that

∆ ⊢Σ c ok and ∆ ⊢Σ x = t ok and W ∈ α-TreeΣ♭(∆♭). Then, if W |= c♭∆ and W |= x♭∆ = t♭∆
then W |= (c[t/x])♭∆.

Proof. If W |= x♭∆ = t♭∆ then we know that Jx♭∆KW = Jt♭∆KW . By Definition 5.11 it suffices
to prove that a similar substitution property holds for all equality constraints (t1 = t2) ∈
c. We assume that ∆ ⊢Σ t1:T and ∆ ⊢Σ t2:T (for some T) and that ∆ ⊢Σ x = t ok
and W ∈ α-TreeΣ♭(∆♭), and show that Jt1

♭
∆KW = Jt2

♭
∆KW and Jx♭∆KW = Jt♭∆KW imply

J(t1[t/x])
♭
∆KW = J(t2[t/x])

♭
∆KW . We now perform a case split: if T is a name sort, the result

follows from the fact that t′♭∆ = (t′[t/x])♭∆ if t and x are both of name sort; otherwise it

follows from Lemma 3.7 and the fact that (t′[t/x])♭∆ = t′♭∆[t
♭
∆/x].

We can now show that solutions to reduced problems are preserved by reduction of the
original problem.

Lemma 5.19 (Preservation of reduced solutions). If ∅ ⊢Σ ∃∆(c) ok and W ∈ α-TreeΣ♭(∆♭)

and W |= c♭∆ and ∃∆(c) −→ ∃∆′(c′) then there exists a valuation W ′ ∈ α-TreeΣ♭(∆′♭) which

agrees with W on dom(∆♭) and is such that W ′ |= c′♭∆′.

Proof. We assume that ∅ ⊢Σ ∃∆(c) ok and W ∈ α-TreeΣ♭(∆♭) and W |= c♭∆ and ∃∆(c) −→
∃∆′(c′) all hold, and proceed by case analysis on the constraint transformation rule used to
derive ∃∆(c) −→ ∃∆′(c′).

The cases for rules (F1)–(F3) and (F5) are straightforward since c′♭∆′ = c♭∆. In the

case for rule (E1) the new constraints in c′♭∆′ are all trivially satisfied. The cases for rules
(E2) and (E3) follow directly from the semantics of non-permutative constraints, defined in

terms of JtKV . The case for (E5) follows because c
′♭
∆′ is obtained from c♭∆ simply by deleting

a constraint. In the cases for (F4) and (E4) the additional constraints in c′♭∆′ are all simple
equality constraints in involving tuples and unit, which are trivially satisfied. The cases for
(E6) and (E7) both rely on Lemma 5.18 to deal with substitution. In the case of (E7) we
also use the fact that the variables in the “patterns” generated by the narrowing rules from
Figure 4 always use fresh variables. This allows us to safely extend W to produce a larger
valuation W ′.

In order to prove a termination result we will need to define some kind of size metric
on constraint problems, by interpreting them into a well-founded set.

Definition 5.20 (Sizes of ground trees). Let N+ be the set {n ∈ N | n ≥ 1}. Then we
define a size function size(g) which maps from ground trees into N+, as follows.

size(n) , 1 size(K g) , 1 + size(g) size(<x>g) , 2 + size(g)

size(()) , 1 size((g1, . . . ,gk)) , 1 +
∑

i∈{1,...,k}

size(gi).

NON-PERMUTATIVE NOMINAL CONSTRAINTS 19

Since g =α g′ implies that size(g) = size(g′), the above definition induces a well-defined size
function on α-trees: size([g]α) = size(g) for some/any representative g of the α-equivalence
class. Furthermore, size(g) ≥ 1 for all g.

Definition 5.21 (Sizes of terms and atomic constraints). If ∆ ⊢Σ t:T (for some type T)

then we define a function ⌈t⌉:(α-TreeΣ♭(∆♭)) → N+ as follows.

⌈x⌉(W) ,

{

1 if ∆(x) = N , for some N

size(W (x)) otherwise
⌈<x>t⌉(W) , 2 + ⌈t⌉(W)

⌈()⌉(W) , 1 ⌈K t⌉(,)1 + ⌈t⌉(W) ⌈(t1, . . . ,tk)⌉(W) , 1 +
∑

i∈{1,...,k}

⌈ti⌉(W).

We now extend this definition to atomic constraints—if ∆ ⊢Σ c ok we define a function
⌈c⌉:(α-TreeΣ♭(∆♭)) → N+, as follows.

⌈t = t′⌉(W) , ⌈t⌉(W) + ⌈t′⌉(W) ⌈x # t′⌉(W) , ⌈t′⌉(W).

Note that ⌈t⌉(W) ≥ 1 and ⌈c⌉(W) ≥ 1 both always hold.

Lemma 5.22 (Equality constraints and sizes). For all Σ, ∆, t, t′ and W , if ∆ ⊢Σ t = t′ ok

and W ∈ α-TreeΣ♭(∆♭) and W |= t♭∆ = t′♭∆ then ⌈t⌉(W) = ⌈t′⌉(W).

Proof. If W |= t♭∆ = t′♭∆ then Jt♭∆KW = Jt′♭∆KW . Hence size(Jt♭∆KW) = size(Jt′♭∆KW). It is

straightforward to show that size(Jt♭∆KW) = ⌈t⌉(W) (the crucial cases are for names and
abstractions) and hence we get that ⌈t⌉(W) = ⌈t′⌉(W), as required.

Definition 5.23 (Solved variables). We say that a variable x is solved in ∃∆(c) iff there is
precisely one occurrence of x in c, where that occurrence is in a constraint of the form x = t
or t = x. We say that a variable is unsolved when it is not solved.

Definition 5.24 (Measure on constraint problems). Write M for the set of finite multisets
of elements of N+ and write {{f(x) | x ∈ S,P (x)}} for the multiset of values f(x) where x ∈
S and x satisfies the property P (x). Now, we begin by defining two intermediate measure
functions from constraint problems ∃∆(c) into M, each parameterised by a valuation W ∈
α-TreeΣ♭(∆♭).

µ1(W)(∃∆(c)) , {{⌈x⌉(W) | x ∈ dom(∆), x is unsolved}}

µ2(W)(∃∆(c)) , {{⌈c⌉(W) | c ∈ c}}

We now define a measure function µ on constraint problems in terms of µ1, µ2 and a
valuation W ∈ α-TreeΣ♭(∆♭).

µ(W)(∃∆(c)) , (µ1(W)(∃∆(c)) , µ2(W)(∃∆(c)))

Since µ1 and µ2 are functions into M it follows that µ is a function into M×M. There is a
well-founded ordering ≺M on M induced by the usual well-founded ordering < on natural
numbers, via the multiset ordering construction from [DM79]. From the lexicographic
product of ≺M with itself we derive a well-founded ordering ≺M×M on M×M, which we
will use to provide a well-founded ordering on the results of the µ function.

We now have the necessary tools to show that transformation of any constraint problem
whose first-order reduction is satisfiable will terminate. The proof uses the standard strategy

20 M. R. LAKIN

of interpreting constraint problems in a set equipped with a well-founded ordering, using
the measure function defined above.

Theorem 5.25 (Termination). If ∅ ⊢Σ ∃∆(c) ok holds and |= (∃∆(c))♭ then there is no
infinite sequence of −→ transformations starting from ∃∆(c).

Proof. We will proceed by showing that

∃∆(c) −→ ∃∆′(c′) =⇒ µ(W ′)(∃∆′(c′)) ≺M×M µ(W)(∃∆(c)) (5.1)

holds, for any W ∈ α-TreeΣ♭(∆♭) such that W |= c♭∆ and any W ′ ∈ α-TreeΣ♭(∆′♭) which

agrees with W on dom(∆♭) and is such that W ′ |= c′♭∆′ .
This suffices to prove termination because (by Lemma 5.19) solutions to reduced prob-

lems are preserved by the transformation rules. By assumption, if |= (∃∆(c))♭ holds then

there exists some W ∈ α-TreeΣ♭(∆♭) such that W |= c♭∆. Therefore, for any solution W

of the reduced problem (∃∆(c))♭ we get a family of derived solutions W ′ for the reduced

problem (∃∆′(c′))♭, each of which produces a strictly smaller value for µ(W ′)(∃∆′(c′)) in
the well-founded ordering ≺M×M. If we repeat this argument along the transformation
sequence it follows that the chain must eventually terminate.

To prove that (5.1) holds, we proceed by case analysis on the rule used to derive
∃∆(c) −→ ∃∆′(c′). We will present the case for rule (E7) in full, as it is the most involved.

(E7): We assume that c = (<x1··k>x = <y1··k>t) & c∗ and that W |= c♭∆, where c♭∆ =

(<x1··k>x = <y1··k>t)
♭
∆ & c∗♭∆ and W ∈ α-TreeΣ♭(∆♭). We also assume that c′ = (x = t∗) &

(<x1··k>x = <y1··k>t) & (c∗[t∗/x]) and ∆′ = ∆,∆∗ both hold, where [∆; t] Z=⇒ [∆∗; t∗]

holds. Furthermore, we let W ′ ∈ α-TreeΣ♭(∆′♭) be such that W ′ |= c′♭∆′ holds and such

that W and W ′ agree on dom(∆♭). By assumption, x /∈ vars(t) and since dom(∆∗) ∩
dom(∆) = ∅ by definition, it follows that rule (E7) changes x from unsolved to solved and
replaced it with unsolved variables dom(∆∗). Thus we must show that ⌈z⌉(W ′) < ⌈x⌉(W)
for all z ∈ dom(∆∗).

Now, since W ′ |= c′♭∆′ we know that W ′ |= x♭∆′ = t∗
♭
∆′ holds, and by Lemma 5.22 we get

that ⌈x⌉(W ′) = ⌈t∗⌉(W ′) holds. Since t is not a variable we know that ∆(x) cannot be a
name sort and hence x ∈ dom(∆♭). Thus we get that W (x) = W ′(x) and it follows that
⌈x⌉(W) = ⌈x⌉(W ′). Therefore we know that ⌈x⌉(W) = ⌈t∗⌉(W ′). It is easy to see that
⌈z⌉(W ′) < ⌈t∗⌉(W ′) holds for all z ∈ dom(∆∗), from which it follows that ⌈z⌉(W ′) <
⌈x⌉(W) holds for all z ∈ dom(∆∗). Hence we have shown that µ1(W

′)(∃∆′(c′)) ≺M

µ1(W)(∃∆(c)) holds, from which it follows that µ(W ′)(∃∆′(c′)) ≺M×M µ(W)(∃∆(c)),
as required.

In the case for rule (E6), one unsolved variable becomes solved. In each of the remain-
ing cases, there are no more unsolved variables in dom(∆′) than in dom(∆). Further-
more, µ2(W

′)(∃∆′(c′)) is formed from µ2(W)(∃∆(c)) by removing ⌈c∗⌉(W) (for some c∗)
and replacing it with zero or finitely many elements ⌈c∗i ⌉(W

′), where i ∈ {1, . . . , k} for
some k, and where W ′ = W since ∆′ = ∆. Now we get that ⌈c∗i ⌉(W

′) < ⌈c∗⌉(W) for
all i ∈ {1, . . . , k}. Thus we get µ2(W

′)(∃∆′(c′)) ≺M µ2(W)(∃∆(c)), and it follows that
µ(W ′)(∃∆′(c′)) ≺M×M µ(W)(∃∆(c)), as required.

Thus we have shown that (1) if the reduced problem (∃∆(c))♭ is satisfiable then the

original problem ∃∆(c) is strongly normalising, and (2) if (∃∆(c))♭ is unsatisfiable then

NON-PERMUTATIVE NOMINAL CONSTRAINTS 21

∃∆(c) is unsatisfiable. These properties mean that satisfiability of reduced problems is a
suitable decidable check for detecting may-divergent constraint problems.

5.3. Soundness and completeness of the algorithm. In this section we prove correct-
ness of a decision procedure for non-permutative nominal constraint problems which uses
the constraint transformation rules from Figure 3. We proceed by relating the syntactic
forms of constraint problems in −→-normal form to their satisfiability.

Definition 5.26 (Solved constraint problems). A constraint problem ∃∆(c) is solved iff all
constraints in c have one of the following forms.

(1) x # y, where x and y are distinct variables and either ∆(x) = ∆(y) or ∆(y) is not a
name sort;

(2) x = t, where x /∈ vars(t) and x does not appear elsewhere in c;
(3) <x1··k>x = <y1··k>y, where k > 0 and ∆(x)(= ∆(y)) is not a name sort and x and y are

distinct variables; or
(4) <x1··k>x = <y1··k>x, where k > 0 and ∆(x) is not a name sort.

Lemma 5.27. Any solved constraint problem ∃∆(c) is also terminal.

Proof. By cases on the possible constraints that may appear within a solved constraint
problem, according to Definition 5.26.

The relationship between terminal and solved constraints and their satisfiability is cru-
cial to the correctness of our algorithm. We now show that once a problem has been
reduced as far as possible using −→ we can determine whether it is satisfiable by examining
its syntax.

Lemma 5.28 (Terminal constraints and satisfiability). Let ∃∆(c) be a terminal constraint
problem such that ∅ ⊢Σ ∃∆(c) ok . Then ∃∆(c) is satisfiable iff it is solved.

Proof. We assume that ∅ ⊢Σ ∃∆(c) ok . By inspection of the constraint transformation rules,
the possible forms of constraint in a terminal constraint problem consist of the possibilities
presented in Definition 5.26 as well as the following:

(5) x # x.
(6) <x1··k>K t = <y1··k>K

′ t′, where K 6= K ′.
(7) x = t, where x ∈ vars(t) and t is not x.
(8) <x1··k>x = <y1··k>t, where k > 0 and x ∈ vars(t).

In particular, an equality constraint between two terms which have different numbers of
outermost nested abstractions is not terminal, as it can be reduced by narrowing using
rule (E7). It suffices to show that any single constraint conforming to possibilities 5–8 is
unsatisfiable, and that any solved constraint problem is satisfiable. We prove these below.

Any constraint of the form 5–8 is unsatisfiable: Constraints of form 5 are not sat-
isfiable because a name cannot be fresh for itself, and constraints of form 6 are not
satisfiable because the constructors do not match. Finally, constraints of forms 7 and 8
are not satisfiable because the occurs check fails.

Any solved constraint problem is satisfiable: For a solved constraint problem ∃∆(c)
we will construct a satisfying valuation V . We write ci for the partition of c where the
constraints are all of the form i ∈ {1, 2, 3, 4}.

We observe that we can form a satisfying valuation V3,4 for c3⊎c4 because the variables
x and y in constraints of form 3 and x in form 4 cannot be of name sort and hence cannot

22 M. R. LAKIN

coincide with any of the abstracted variables. Therefore we can simply instantiate the
abstracted variables distinctly (i.e. avoiding aliasing) and instantiate the variables within
the nesting to avoid the abstracted variables and satisfy the appropriate constraints.

Now we note that if (x # y) ∈ c1 and x, y ∈ vars(c3 ⊎ c4) then V3,4 |= x # y by con-
struction. Therefore we can extend V3,4 with additional mappings which ensure that all
freshnesss in c1 are satisfied, to produce a valuation V1,3,4 which satisfies c1 ⊎ c3 ⊎ c4.

Finally it is always possible to extend V1,3,4 to a satisfying valuation V for the entire
problem c. We begin by providing an arbitrary instantiation for any variable z ∈ vars(c2)
which only appears on the right-hand side of constraints in c2 and which has not already
been instantiated. This just leaves the variables x which appear on the left-hand side of
the constraints in c2. By assumption on solved constraints these variables cannot appear
elsewhere in c and hence cannot have been instantiated already. Hence we are free to
choose instantiations for these variables which satisfy c2. Thus we get that V |= c, as
required.

With these results under our belt we can begin to examine the correctness of the constraint
transformation algorithm. We begin by proving a soundness result: if a constraint problem
has a solved −→-normal form then it is satisfiable.

Theorem 5.29 (Soundness of transformation algorithm). For any constraint problem ∃∆(c)
where ∅ ⊢Σ ∃∆(c) ok holds, if there exists a −→-normal form ∃∆′(c′) of ∃∆(c) which is
solved then ∃∆(c) is satisfiable.

Proof. Suppose that ∃∆′(c′) is a −→-normal form of ∃∆(c). If ∃∆′(c′) is solved then ∃∆′(c′)
is satisfiable by Lemma 5.28, i.e. there exists some V ′ ∈ α-TreeΣ(∆

′) such that V ′ |= c′.
Finally, by Theorem 5.2 we get that V |= c holds (where V is the restriction of V ′ to
dom(∆)) and hence that ∃∆(c) is satisfiable, as required.

We now prove a partial completeness result which is not quite the converse of Theo-
rem 5.29 because it only applies to strongly normalising constraint problems. The assump-
tion that ∃∆(c) is strongly normalising is needed to ensure that it has a −→-normal form,
which we then show is satisfied by V .

Theorem 5.30 (Partial completeness of transformation algorithm). Let ∃∆(c) be a strongly
normalising constraint problem such that ∅ ⊢Σ ∃∆(c) ok holds. If ∃∆(c) is satisfiable then
there exists a −→-normal form ∃∆′(c′) of ∃∆(c) which is solved.

Proof. If ∃∆(c) is satisfiable then there exists a valuation V ∈ α-TreeΣ(∆) such that V |= c
holds. Since ∃∆(c) is strongly normalising we know that every transformation sequence
eventually terminates. Then, by Theorem 5.6 we know that there is some sequence of
transformations from ∃∆(c) which terminate at a problem ∃∆′(c′) such that V ′ |= c′ holds,
where V ′ extends V to dom(∆′). Finally, by Lemma 5.28 it follows that the −→-normal
form ∃∆′(c′) is solved, as required.

Now we use the termination checking procedure from Section 5.2 to close the gap in
Theorem 5.30, giving us a correct decision procedure for NonPermSat.

Theorem 5.31 (Correct decision procedure). There exists a correct decision procedure for
NonPermSat based on the constraint transformation rules from Figure 3.

Proof. Using the termination check from Theorem 5.25 we can dismiss may-divergent con-
straint problems as unsatisfiable without having to rewrite them using the rules from Fig-
ure 3. This allows us to restrict our attention to strongly normalising constraint problems

NON-PERMUTATIVE NOMINAL CONSTRAINTS 23

∃∆(c), for which we can compute the finite set S of −→-normal forms, that is, the set
S = {∃∆′(c′) | ∃∆(c) −→ · · · −→ ∃∆′(c′) 6−→}, in finite time. By Theorem 5.29 and The-
orem 5.30, the constraint problem ∃∆(c) is satisfiable precisely when there exists a solved
constraint problem in S, which is a decidable property of the syntax of S.

The algorithm presented in this section decides satisfiability of non-permutative nominal
constraint problems: it does not enumerate solutions. Recalling Definition 5.26 we see
that solved constraint problems may contain constraints of the form <x1··k>x = <y1··k>y or
<x1··k>x=<y1··k>x, where k > 0 and where x and y are not variables of name sort. Constraints
of these forms may be satisfied by infinitely many different ground valuations, as x and y
may range over some recursive datatype. Since these may be the only occurrences of x and
y in the constraint problem, it follows that a satisfiable non-permutative nominal constraint
problem may have infinitely many satisfying ground valuations. However, Theorem 5.31
demonstrates that our algorithm only needs to check the finite number of elements of S to
ascertain the patterns that all satisfying ground valuations must follow.

6. Encoding name-name equivariant unification

In this section we present a reduction of equivariant unification between name-terms into
non-permutative nominal constraints. This will make explicit the link between equivariant
unification and non-permutative nominal constraints alluded to in Section 3. It is sufficient
for our purposes to consider equivariant unification between terms of name sort because that
sub-problem of equivariant unification is known to be NP-complete [Che04, Section 7.1]. We
recall the grammar of equivariant unification name-terms from Section 2.3.

Vertices v,w ::= n (name)
| A (name variable)

Name-terms a, b ::= Π · v (suspended permutation)

Permutation-terms Π ::= ι (identity)
| (a b) (swap)
| Q (permutation variable)

We also refer back to Section 2.3 for the semantics of name-name equivariant unification
problems. To simplify our presentation we assume (without loss of generality) that all sub-
terms of the forms Π−1 · v and (Π ◦Π′) · v have been expanded away by the addition of
fresh name variables (to represent intermediate values) and additional equality constraints.
This process is described as “phase two” of the equivariant unification algorithm [Che10,
Section 4.2.2]. For example, the name-term Π−1 · v can be translated to the fresh name
variable A, given the constraint that Π · A = v (where Π has been recursively expanded out
in the same way). Furthermore, we assume that all names are of a single name sort N .

6.1. Defining the encoding. In order to encode equivariant unification we must use dif-
ferent collections of variables to represent names, name variables and permutation variables.
Thus we assume that the countably infinite set of variables Var is partitioned into finitely
many disjoint, countably infinite subsets VarName, VarNvar, and VarQ1

, . . . ,VarQk
, where

Q1, . . . , Qk is the finite set of permutation variables which appear in the problem of interest.
These will be used to represent the permutative names, the name variables and the results
of applying the unknown permutations Q1, . . . , Qk to other name-terms, respectively. For

24 M. R. LAKIN

the translation we will also need additional variables to store intermediate values—for these
will use another disjoint, countably infinite set of variables VarTemp. We fix bijections into
these sets, as follows:

• a bijection from Name to VarName, where xn ∈ VarName stands for n ∈ Name;
• a bijection from Nvar to VarNvar, where xA ∈ VarNvar stands for A ∈ Nvar ; and
• for each permutation variable Q a bijection from Name ⊎ Nvar to VarQ, where x(Q,v) ∈
VarQ stands for Q · v for v ∈ (Name ⊎ Nvar).

For the translation we fix a trivial nominal signature Σ where CΣ = DΣ = ∅ and where
NΣ = {N} for some fixed name type N . Given finite sets n, A and Q and a finite set x ⊂
VarTemp we define a typing environment for the corresponding non-permutative variables:

∆(n,A,Q,x) , {xn:N | n ∈ n} ⊎ {xA:N | A ∈ A} ⊎

{x(Q,v):N | Q ∈ Q ∧ v ∈ (n ⊎A)} ⊎ {x:N | x ∈ x}

where N is the single name sort from Σ. Note that ∆
(n′,A

′
,Q

′
,x′)

⊇ ∆(n,A,Q,x) holds if

n′ ⊇ n, A
′
⊇ A, Q

′
⊇ Q and x′ ⊇ x all hold. The following rules specify the translation

of an equivariant unification name-term a into a variable x and associated constraints c′ in
NPNAS, which involve the new variables x′. We write this as tr(a)x = ∃x′(x where c′).

tr(ι · v)x = ∃∅(xv where ∅) tr(Q · v)x = ∃∅(x(Q,v) where ∅)

tr(a)x = ∃x1(xa where c1) tr(b)(x⊎xa) = ∃x2(xb where c2) z /∈ (x ⊎ x1 ⊎ x2)

tr((a b) · v)x = ∃(x1 ⊎ x2 ⊎ {z})(z where c1 & c2 & (<xa><xb>z = <xb><xa>xv))

Here, and throughout, x ⊂ VarTemp is a finite set of temporary variables which have already
been used and must be avoided in the rest of the translation. The following result states
the semantics of the “swapping” construction.

Lemma 6.1 (Swapping constraints). Suppose that x, y, u,w ∈ dom(V), V ∈ α-TreeΣ(∆)
and ∆(x) = ∆(y) = N for some name sort N , and where V (x) = {n} and V (y) = {n′},
for some n, n′. Then we get that V |= <x><y>u = <y><x>w iff V (u) = (nn′) · V (w).

The NPNAS translation of an equivariant unification constraint can now be defined
straightforwardly. We write tr(c)x = ∃x′(c′) if the equivariant unification constraint c is
translated to the NPNAS problem c′, involving new variables x′ and avoiding x.

tr(a)x = ∃x1(xa where c1) tr(b)(x⊎xa) = ∃x2(xb where c2)

tr(a ≈ b)x = ∃(x1 ⊎ x2)(c1 & c2 & xa = xb)

tr(a)x = ∃x1(xa where c1) tr(b)(x⊎xa) = ∃x2(xb where c2)

tr(a # b)x = ∃(x1 ⊎ x2)(c1 & c2 & xa # xb)

In order to model permutative names and permutation variables using the standard non-
permutative variables from Section 3, we must impose some additional consistency con-
straints on the variables to ensure that they reflect the correct semantics. In particular, we
will want to express pairwise distinctness constraints between finite sets of name variables.
For a finite set x = {x1, . . . , xk} of variables of name sort, we write #x for the set of atomic
freshness constraints {xi # xj | 1 ≤ i < j ≤ k}.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 25

Definition 6.2 (Consistency constraints). Given finite sets n, A and Q we write C(n,A,Q)
for the consistency constraints over n, A and Q, which are defined as follows.

C(n,A,Q) , #{xn|n∈n} & {<xv><xv′>xv = <x(Q,v)><x(Q,v′)>x(Q,v)

| Q ∈ Q ∧ v 6= v′ ∧ {v, v′} ⊆ (n ⊎A)}

Consistency constraints will be crucial in the proof that our encoding of equivariant uni-
fication is correct. The first part of C(n,A,Q) requires that the variables which rep-
resent the names in n should all be distinct—this encodes the fact that names n are
permutative in equivariant unification. The following result states the semantics of the
<xa><xb>z = <xb><xa>xv constraints used in the second part.

Lemma 6.3 (Bijection constraints). Suppose that x, y, x′, y′ ∈ dom(V), V ∈ α-TreeΣ(∆)
and ∆(x) = ∆(y) = ∆(x′) = ∆(y′) = N for some name sort N . Then we get that
V |= <x><y>x = <x′><y′>x′ iff V (x) = V (y) ⇐⇒ V (x′) = V (y′).

Thus the second part of C(n,A,Q) requires that all instantiations of the variables x(Q,v)

(which represent the application of Q to v) respect the fact that Q denotes an unknown
bijection.

We now have all the ingredients needed to define the NPNAS translation of a name-
name equivariant unification problem S, using similar notation to above.

n = names(S) A = nvars(S) Q = pvars(S) S ≡ {c1, . . . , ck}
tr(c1)∅ = ∃x1(c1) · · · tr(ck)(x1⊎···⊎xk−1) = ∃xk(ck)

tr(S) = ∃(x1 ⊎ · · · ⊎ xk)(c1 & · · · & ck & C(n,A,Q))

Lemma 6.4 (Typing lemma for problem translation). If n;A;Q ⊢ S ok and tr(S) = ∃x(c)
then ∆(n,A,Q,x) ⊢Σ c ok.

6.2. Correctness of the encoding. In this section we prove that every satisfying ground
valuation θ for a name-name equivariant unification problem can be translated into an
NPNAS valuation which satisfies the corresponding NPNAS constraint problem, and vice
versa. We begin with the translation of ground equivariant unification (EU) valuations.

Definition 6.5 (Translating EU ground valuations). Given a ground valuation θ and a
finite set n of names, write V(θ,n) for the NPNAS valuation where

• dom(V(θ,n)) = {xn | n ∈ n} ⊎ {xA | A ∈ dom(θ)} ⊎ {x(Q,v) | Q ∈ dom(θ) ∧ v ∈ (n ⊎A)};
• ∀xn ∈ dom(V(θ,n)). V(θ,n)(xn) = {n};
• ∀xA ∈ dom(V(θ,n)). V(θ,n)(xA) = {θ(A)}; and
• ∀x(Q,v) ∈ dom(V(θ,n)). V(θ,n)(x(Q,v)) = {θ(Q) · θ(v)}.

The definition of V(θ,n) uses the partitions of Var described above to encode the different
kinds of variables and names from equivariant unification. The additional n parameter is
needed because the valuation in EU does not provide instantiations for names, whereas the
valuation in NPNAS must provide instantiations for the variables corresponding to those
names. Note that V(θ,n) ∈ α-TreeΣ(∆(n,A,Q,∅)), where A = {A | A ∈ dom(θ)} and Q =

{Q | Q ∈ dom(θ)}. Recalling that a “vertex” v is either a name n or a name variable A, it
is straightforward to show that, for any v, if names(v) ⊆ n and namevars(v) ⊆ dom(θ) then
V(θ,n)(xv) = {θ(v)}. We now show that translated EU valuations satisfy the appropriate
consistency constraints.

26 M. R. LAKIN

Lemma 6.6 (Translated valuations and consistency constraints). If A = {A | A ∈ dom(θ)}
and Q = {Q | Q ∈ dom(θ)} then V(θ,n) |= C(n,A,Q).

Proof. We must show that (1) if n 6= n′ and {n, n′} ⊆ n then V(θ,n)(xn) 6= V(θ,n)(xn′); and (2)

if Q ∈ Q and {v, v′} ⊆ (n ⊎A) then V(θ,n) |= <xv><xv′>xv = <x(Q,v)><x(Q,v′)>x(Q,v). In both
cases we use the definition of V(θ,n). For the second we furthermore rely on the fact that θ(Q)
is a permutation, and hence that V(θ,n)(xv) = V(θ,n)(xv′) iff V(θ,n)(x(Q,v)) = V(θ,n)(x(Q,v′)),
and the result follows by Lemma 6.3.

We now show that any solution to a problem in EU can be translated into a satisfying
valuation for the corresponding NPNAS problem.

Lemma 6.7 (Problem satisfaction from EU into NPNAS). Suppose that n = names(S),
A = nvars(S) = {A | A ∈ dom(θ)} and Q = pvars(S) = {Q | Q ∈ dom(θ)}. If θ |= S and
tr(S) = ∃x(c) then there exists a valuation V ∗ ∈ α-TreeΣ(∆(n,A,Q,x)) which extends V(θ,n)

and is such that V ∗ |= c.

Proof. By induction on the structure of EU name-terms a, we can show that if tr(a)x =
∃x′(z where c) (where A = {A | A ∈ dom(θ)}, Q = {Q | Q ∈ dom(θ)} and n;A;Q ⊢ a ok)
then there exists a valuation V ∗ ∈ α-TreeΣ(∆(n,A,Q,(x⊎x′))) which extends V(θ,n) and is such

that V ∗ |= c and V ∗(z) = {θ(a)}. This relates the result of instantiating a name-term in
EU to the corresponding term instantiation in NPNAS.

We can then prove a similar result for atomic constraints: if θ |= c and tr(c)x = ∃x′(c)
(where A = {A | A ∈ dom(θ)}, Q = {Q | Q ∈ dom(θ)} and n;A;Q ⊢ c ok) then there exists
a valuation V ∗ ∈ α-TreeΣ(∆(n,A,Q,(x⊎x′))) which extends V(θ,n) and is such that V ∗ |= c. This

uses the above result and relates constraint satisfaction in EU to constraint satisfaction in
NPNAS.

Then, if θ |= S then θ |= c holds for all c ∈ S, where we suppose that S = {c1, . . . , ck}.
We assume that tr(S) = ∃x(c) holds, where tr(ci)(x⊎x1⊎···⊎xi−1) = ∃xi(ci) holds for all
i ∈ {1, . . . , k}. Using the above result about constraint satisfaction we can construct a
single NPNAS valuation V ∗ which extends V(θ,n) and is such that V ∗ |= ci holds for all
i ∈ {1, . . . , k}. Thus we have that V ∗ |= c1 & · · · & ck holds. By Lemma 6.6 we know that
V(θ,n) |= C(n,A,Q) holds: hence V ∗ |= C(n,A,Q) holds also. Hence we get that V ∗ |= c
holds, as required.

We now turn to the other direction—we begin by proving that any NPNAS valuation
which satisfies a set of consistency constraints can be translated back into a corresponding
EU valuation.

Lemma 6.8 (Consistency constraints imply an EU valuation). If V ∈ α-TreeΣ(∆(n,A,Q,x))

and V |= C(n,A,Q) then there exists a permutation πV and a ground EU valuation θV
(with (A ⊎Q) ⊆ dom(θV)) such that

(1) ∀n ∈ n. V (xn) = {πV (n)};
(2) ∀A ∈ A. V (xA) = {πV · (θV (A))}; and
(3) ∀Q ∈ Q. ∀v ∈ (n ⊎A). V (x(Q,v)) = {πV · ((θV (Q))(θV (v)))}.

Proof. We prove the three points separately.

(1) This follows from the fact that V |= #{xn|n∈n} holds, which implies that we can fix a
permutation πV which is a bijection between n and {V (xn) | n ∈ n}, as required.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 27

(2) We note that {xA | A ∈ A} ∩ {xn | n ∈ n} = ∅. Thus we can construct a ground EU
valuation θV such that ∀A ∈ A. V (xA) = {πV · (θV (A))}, by setting θV (A) = πV

−1(n)
if V (xA) = {n}.

(3) Since V |= C(n,A,Q) we know that V |= <xv><xv′>xv = <x(Q,v)><x(Q,v′)>x(Q,v) holds

for all Q ∈ Q and all v, v′ ∈ (n ⊎A). By Lemma 6.3 we get that there is a bijection
between {V (xv) | v ∈ (n ⊎A)} and {V (x(Q,xv)) | v ∈ (n ⊎A)}. We represent this bijec-
tion as a permutation π. From the first two proof obligations we know that V (xv) =
{πV · (θV (v))} for all v ∈ (n ⊎A), and hence that V (x(Q,v)) = {π · (πV · (θV (v)))},

i.e. that V (x(Q,v)) = {(π ◦ πV) · (θV (v))}, for all v ∈ (n ⊎A). Now, we can de-

compose π into the form πV ◦ πQ ◦ πV
−1 for some πQ. Thus we get that, for all

v ∈ (n ⊎A), V (x(Q,v)) = {(πV ◦ πQ ◦ πV
−1 ◦ πV) · (θV v)} = {(πV ◦ πQ) · (θV v)} =

{πV · (πQ · (θV (v)))}. Thus if we let θV (Q) = πQ then we get that ∀Q ∈ Q. ∀v ∈
(n ⊎A). V (x(Q,v)) = {πV · ((θV (Q))(θV (v)))} holds, as required.

We now show that any satisfying valuation for the NPNAS translation of an EU problem
can be translated back into a solution of the original EU problem.

Lemma 6.9 (Problem satisfaction from NPNAS into EU). Suppose that n = names(S),
A = nvars(S) and Q = pvars(S), and that tr(S) = ∃x(c), V ∈ α-TreeΣ(∆(n,A,Q,x)) and

V |= c all hold. Then there exists a ground EU valuation θV (with (A ⊎Q) ⊆ dom(θV))
such that θV |= S.

Proof. The structure of this proof rather mirrors that of Lemma 6.7. We begin by showing
that if n;A;Q ⊢ a ok , tr(a)x = ∃x′(z where c), V ∈ α-TreeΣ(∆(n,A,Q,(x⊎x′))) and V |= c all

hold then V (z) = {πV · θV (a)} holds, for some θV and πV which satisfy the three conditions
stated in Lemma 6.8. This relates instantiations of translated EU name-terms in NPNAS
back to instantiations of the original EU term, up to a permutation.

We proceed to prove a similar result about constraint satisfaction—if n;A;Q ⊢ c ok ,
tr(c)x = ∃x′(c), V ∈ α-TreeΣ(∆(n,A,Q,(x⊎x′))) and V |= c all hold then θV |= c, where θV
satisfies the three conditions stated in Lemma 6.8 (for some πV). This uses the previous
result and shows that satisfaction of translated EU constraints in NPNAS can be related
back to the semantics of the original constraint in EU. There is a twist here, as we must use
the equivariance property of the NPNAS semantics (Remark 3.11) to strip off the unwanted
permutation πV .

Thus, if tr(S) = ∃x(c) then c ≡ (c1 & · · · & ck & C(n,A,Q)), S ≡ {c1, . . . , ck} and
x = x1 ⊎ · · · ⊎ xk all hold, where n = names(S), A = nvars(S), Q = pvars(S) and where
tr(ci)(x1⊎···⊎xi−1) = ∃xi(ci) holds for all i ∈ {1, . . . , k}. It follows that n;A;Q ⊢ S ok holds.

We assume that V |= c, i.e. that V |= C(n,A,Q) holds and that V |= ci holds for all
i ∈ {1, . . . , k}. By Lemma 6.8 we get that there exists a permutation πV and a ground EU
valuation θV (with (A ⊎Q) ⊆ dom(θV)) which satisfy the three conditions laid out in the
statement of that lemma. Then, using the above result on constraint satisfaction, we can
show that θV |= ci holds for all i ∈ {1, . . . , k}, i.e. that θV |= S holds, as required.

The key result of this section is the following theorem, which demonstrates the correct-
ness of the encoding of name-name equivariant unification into non-permutative nominal
constraints.

28 M. R. LAKIN

Theorem 6.10 (Correctness of encoding). Suppose that n;A;Q ⊢ S ok and tr(S) = ∃x(c)
both hold. Then, S is satisfiable iff ∃∆(n,A,Q,x)(c) is satisfiable.

Proof. For the forward direction: if |= S then there exists a ground EU valuation θ
such that θ |= S. If tr(S) = ∃x(c) then by Lemma 6.7 there exists a valuation V ∗ ∈
α-TreeΣ(∆(n,A,Q,x)) such that V ∗ |= S, from which it follows that |= S holds. For the

reverse direction: if |= c then there exists a valuation V ∈ α-TreeΣ(∆(n,A,Q,x)) such that

V |= c. By Lemma 6.9 we can construct a ground EU valuation θV such that θV |= S,
which shows that |= S holds.

Example 6.11 (A translated EU problem). As an example, consider the following equi-
variant unification problem which involves permutation variables and swappings.

S = {(Q ·A) = ((Q · A) (Q ·B)) · (Q ·A), (Q′ ·A) # (Q′ ·B)}

We would expect this to be unsatisfiable because the first constraint implies that A = B
whereas the second implies that A 6= B. The translation of S into NPNAS is as follows,
where z is a freshly chosen variable.

<x(Q,A)><x(Q,B)>z = <x(Q,B)><x(Q,A)>x(Q,A) (6.1)

& x(Q,A) = z (6.2)

& x(Q′,A) # x(Q′,B) (6.3)

& <xA><xB>xA = <x(Q,A)><x(Q,B)>x(Q,A) (6.4)

& <xA><xB>xA = <x(Q′,A)><x(Q′,B)>x(Q′,A) (6.5)

To see that the NPNAS problem is also unsatisfiable, we observe that 6.1 and 6.2 imply
that x(Q,A) = x(Q,B). This fact, along with 6.4, implies that xA = xB which, together with
6.5, implies that x(Q′,A) = x(Q′,B) holds. However, this contradicts 6.3 and thus it follows
that the NPNAS problem is unsatisfiable.

In solving this problem, the decision procedure outlined in the proof of Theorem 5.31
must first construct and solve the first-order reduction of the NPNAS problem, as a termina-
tion check. In this case, this is straightforward as the names are erased and the abstractions
replaced by tuples as outline above. Writing (()k, t) for ((), ((), · · · ((), t))) if there are
k nested occurrences of (), this leaves the following first-order unification problem which is
trivially satisfiable.

((()2, ()) = (()2, ())) & (() = ()) & ((()2, ()) = (()2, ())) & ((()2, ()) = (()2, ()))

Having ascertained that the problem is strongly normalising, we proceed to compute the set
of −→-normal forms using the reduction rules from Figure 3. There are 27 cases to check
in total, since for each of 6.1, 6.4 and 6.5 there are 3 branches according to reduction rule
(E4). We do not specify a particular search strategy, provided that the entire reduction
space is explored. In this case, none of the −→-normal forms turn out to be solved in the
sense of Definition 5.26, which corresponds to the fact that the problem is unsatisfiable, as
argued above.

To see that the encoding presented in this section is a polynomial time reduction, sup-
pose that there are kn names, kA name variables, kQ permutation variables, kswap swappings
and kc constraints in S. Then there are kn(kn − 1) + kQ(kn + kA) + kc + kswap constraints
and kn + kA + kQ(kn + kA)+ kswap variables in c, where tr(S) = ∃x(c) (for some x). These
are both polynomial functions of the size of S.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 29

Note that the translation defined in this section only deals with name-name equivariant
unification problems. We can use the results from this section to derive a translation of
full equivariant unification into NPNAS by using the “first phase” of Cheney’s algorithm
[Che10, Section 4.2.1] to reduce the problem into a name-name problem (if possible) before
using the algorithm described herein to translate it into NPNAS. Note, however, that this
is not a polynomial time reduction because the “first phase” of Cheney’s algorithm has an
exponential upper bound.

Remark 6.12 (A tractable subproblem). Say that a non-permutative constraint problem
∃∆(c) is permutative iff every valuation V ∈ α-TreeΣ(∆) such that V |= c also has V |=
#nvars(∆), where nvars(∆) is the set of all variables x in dom(∆) such that ∆(x) is a name
sort. It was shown in [Lak10, Section 6.4] that satisfiability of problems in this subset can
be decided in polynomial time via translation to nominal unification. This makes sense
because the non-permutative behaviour which provides the additional power in NPNAS
has been disallowed.

7. Related and future work

We have already discussed at length the relationship between non-permutative nominal
constraints and the equivariant unification problem. The nominal unification problem of
Urban, Pitts and Gabbay [UPG04] can be thought of as a ground subproblem of equivariant
unification and hence its relationship to the work reported in this paper is subsumed by
that of equivariant unification.

Our algorithm bears some similarities to Huet’s algorithm for higher-order unification,
that is, unification for typed λ-terms [Hue75]. That algorithm ignores equations between two
terms on the basis that they are always satisfiable, much as our constraint transformation
procedure ignores constraints of the form <x1··k>x=<y1··k>y (where x and y are not of name
sort). There may be other parallels worthy of investigation. However, it is worth noting
that higher-order unification is known to be undecidable [Gol81] whereas we have shown
that a decision procedure exists for satisfiability of non-permutative nominal constraints
(see Theorem 5.31).

Higher-order unification forms the basis of an alternative technique for representing
abstract syntax with binders known as higher-order abstract syntax (HOAS) [PE88] which
has been used in various tools for specifying, and reasoning about, formal systems with
binding constructs [NM88, PS99]. These tools often exploit higher-order patterns, which
are a restricted class of λ-terms for which unification (modulo αβ0η-equivalence) is decidable
[Mil91]. Higher-order pattern unification has been shown to be equivalent to nominal unifi-
cation [Che05, LV08] and it follows that our non-permutative nominal constraint language
subsumes higher-order pattern unification just as it does nominal unification.

Future work is needed on the relationship between non-permutative nominal constraints
and the full equivariant unification problem (i.e. not just for name terms). This may involve
finding an equivalent of the bijection constraint construction from Lemma 6.3 which works
for variables of any type, not just name sorts. The termination checker described above
could be run initially or in parallel with the constraint transformation algorithm, or omitted
altogether to give a semi-decision procedure. An alternative implementation strategy could
be to encode non-permutative constraint problems as boolean formulae and use a SAT
solver to decide their satisfiability. With more work it may be possible to improve the

30 M. R. LAKIN

algorithm for deciding satisfiability of constraint problems in NPNAS, in particular with
regard to termination and non-deterministic search. The ideal algorithm would avoid the
use of name-swappings and not require a separate termination check.

A key motivation for the development of equivariant unification was to give complete
implementations of nominal logic programming [CU08] and nominal rewriting [FG07] in
cases where the nominal unification [UPG04] is not sufficiently powerful. In other work
[LP09, Lak10] we have investigated the use of non-permutative nominal constraints in the
context of the functional-logic programming language αML—further work may be to inves-
tigate the theory of rewriting over non-permutative nominal terms.

8. Conclusion

Non-permutative nominal abstract syntax is a means of encoding terms with binders with-
out the need for globally-fresh permutative names. We have defined a semantics for equality
and freshness constraints over non-permutative nominal terms, and presented an algorithm
for deciding satisfiability of these constraint problems. Our constraint solving procedure is
novel in that it does not use permutations, which are standard in most nominal approaches
to abstract syntax. This simplifies the term language but complicates the analysis, in
particular the proof of termination. Our translation of name-name equivariant unification
problems into non-permutative nominal constraints is also novel and demonstrates explicitly
how the additional features of equivariant unification can be encoded using just permutative
variables in binding position. Studies of non-permutative nominal constraints are important
from both a theoretical and a practical perspective, as this algorithm could be used instead
of the more complicated equivariant unification algorithm in situations where nominal uni-
fication cannot compute all solutions.

Acknowledgements

The author would like to thank Andrew Pitts for invaluable discussions on the subject
matter of this paper, as well as Paul Blain Levy and an anonymous reviewer for help
debugging proofs.

References

[AEH00] S. Antoy, R. Echahed, and M. Hanus. A needed narrowing strategy. Journal of the ACM, 47(4):776–
822, 2000.

[Bar84] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-Holland, revised edition,
1984.

[CF11] C. Calvès and M. Fernandéz. The first-order nominal link. In M. Alpuente, editor, Logic-Based
Program Synthesis and Transformation, volume 6564 of Lecture Notes in Computer Science, pages
234–248. Springer-Verlag, 2011.

[Che04] J. Cheney. Nominal Logic Programming. PhD thesis, Cornell University, 2004.
[Che05] J. Cheney. Relating nominal and higher-order pattern unification. In L. Vigneron, editor, Proceed-

ings of the 19th International Workshop on Unification (UNIF 2005), pages 104–119, 2005. LORIA
research report A05-R-022.

[Che10] J. Cheney. Equivariant unification. Journal of Automated Reasoning, 45(3):267–300, 2010.
[CU04] J. Cheney and C. Urban. Alpha-Prolog: A logic programming language with names, binding and

alpha-equivalence. In B. Demoen and V. Lifschitz, editors, Proceedings of the 20th International
Conference on Logic Programming (ICLP 2004), number 3132 in Lecture Notes in Computer
Science, pages 269–283. Springer-Verlag, 2004.

NON-PERMUTATIVE NOMINAL CONSTRAINTS 31

[CU08] J. Cheney and C. Urban. Nominal logic programming. ACM Transactions on Programming Lan-
guages and Systems, 30(5):1–47, 2008.

[DM79] N. Dershowitz and Z. Manna. Proving termination with multiset orderings. Communications of
the ACM, 22(8):465–476, 1979.

[FG07] M. Fernández and M. J. Gabbay. Nominal rewriting. Information and Computation, 205:917–965,
2007.

[GM08] M. J. Gabbay and A. Mathijssen. Capture-avoiding substitution as a nominal algebra. Formal
Aspects of Computing, 20(4–5):451–479, 2008.

[Gol81] W. D. Goldfarb. The undecidability of the second-order unification problem. Theoretical Computer
Science, 13(2):225–230, 1981.

[GP02] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable binding. Formal
Aspects of Computing, 13(3–5):341–363, 2002.

[Hue75] G. Huet. A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1(1):27–57,
1975.

[Lak10] M. R. Lakin. An executable meta-language for inductive definitions with binders. PhD thesis, Uni-
versity of Cambridge, 2010.

[LP09] M. R. Lakin and A. M. Pitts. Resolving inductive definitions with binders in higher-order typed
functional programming. In G. Castagna, editor, Proceedings of the 18th European Symposium on
Programming (ESOP 2009), volume 5502 of Lecture Notes in Computer Science, pages 47–61.
Springer-Verlag, 2009.

[LV08] J. Levy and M. Villaret. Nominal unification from a higher-order perspective. In A. Voronkov,
editor, Proceedings of the 19th International Conference on Rewriting Techniques and Applications
(RTA 2008), volume 5117 of Lecture Notes in Computer Science, pages 246–260. Springer-Verlag,
2008.

[LV10] Jordi Levy and Mateu Villaret. An efficient nominal unification algorithm. In Christopher Lynch,
editor, Proceedings of the 21st International Conference on Rewriting Techniques and Applications,
volume 6 of Leibniz International Proceedings in Informatics (LIPIcs), pages 209–226, Dagstuhl,
Germany, 2010. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[Mil91] D. Miller. A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation, 1(4):497–536, 1991.

[NM88] G. Nadathur and D. Miller. An overview of λProlog. In R. A. Kowalski and K. A. Bowen, editors,

Proceedings of the 5th International Conference on Logic Programming (ICLP 1988), pages 810–
827. MIT Press, 1988.

[PE88] F. Pfenning and C. Elliott. Higher-order abstract syntax. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI 1988), volume 23 of
ACM SIGPLAN Notices, pages 199–208. ACM Press, 1988.

[Pit03] A. M. Pitts. Nominal logic, a first order theory of names and binding. Information and Computa-
tion, 186(2):165–193, 2003.

[Pit06] A. M. Pitts. Alpha-structural recursion and induction. Journal of the ACM, 53(3):459–506, 2006.
[PS99] F. Pfenning and C. Schürmann. System description: Twelf—a meta-logical framework for de-

ductive systems. In H. Ganzinger, editor, Proceedings of the 16th International Conference on
Automated Deduction (CADE 1999), volume 1632 of Lecture Notes in Artifical Intelligence, pages
202–206. Springer-Verlag, 1999.

[UC05] C. Urban and J. Cheney. Avoiding equivariance in Alpha-Prolog. In P. Urzyczyn, editor, Pro-

ceedings of the 7th International Conference on Typed Lambda Calculus and Applications (TLCA
2005), number 3461 in Lecture Notes in Computer Science, pages 74–89. Springer-Verlag, 2005.

[UPG04] C. Urban, A. M. Pitts, and M. J. Gabbay. Nominal unification. Theoretical Computer Science,
323(1–3):473–497, 2004.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Contributions

	2. Background
	2.1. Nominal abstract syntax
	2.2. Nominal unification
	2.3. Equivariant unification

	3. Syntax and semantics of non-permutative constraints
	4. Constraint transformation algorithm
	5. A correct decision procedure
	5.1. Soundness and completeness of transformations
	5.2. Termination
	5.3. Soundness and completeness of the algorithm

	6. Encoding name-name equivariant unification
	6.1. Defining the encoding
	6.2. Correctness of the encoding

	7. Related and future work
	8. Conclusion
	Acknowledgements
	References

