Logical Methods in Computer Science
Vol. 11(1:2)2015, pp. 1-66 Submitted Oct. 17, 2012
www.Imcs-online.org Published Feb. 27, 2015

PERMISSION-BASED SEPARATION LOGIC FOR
MULTITHREADED JAVA PROGRAMS*

AFSHIN AMIGHI®, CHRISTIAN HAACK®, MARIEKE HUISMAN ¢, AND CLEMENT HURLIN ¢

¢ University of Twente, The Netherlands
e-mail address: a.amighi,Qutwente.nl, marieke.huisman@ewi.utwente.nl

b aicas GmbH, Karslruhe, Germany

e-mail address: christian.haack@aicas.de

4 Prove & Run, Paris, France
e-mail address: clement.hurlin@provenrun.com

ABSTRACT. This paper presents a program logic for reasoning about multithreaded Java-
like programs with dynamic thread creation, thread joining and reentrant object monitors.
The logic is based on concurrent separation logic. It is the first detailed adaptation of
concurrent separation logic to a multithreaded Java-like language.

The program logic associates a unique static access permission with each heap location,
ensuring exclusive write accesses and ruling out data races. Concurrent reads are sup-
ported through fractional permissions. Permissions can be transferred between threads
upon thread starting, thread joining, initial monitor entrancies and final monitor exits. In
order to distinguish between initial monitor entrancies and monitor reentrancies, auxiliary
variables keep track of multisets of currently held monitors. Data abstraction and behav-
ioral subtyping are facilitated through abstract predicates, which are also used to represent
monitor invariants, preconditions for thread starting and postconditions for thread joining.
Value-parametrized types allow to conveniently capture common strong global invariants,
like static object ownership relations.

The program logic is presented for a model language with Java-like classes and interfaces,
the soundness of the program logic is proven, and a number of illustrative examples are
presented.

2012 ACM CCS: [Theory of computation|: Semantics and reasoning—Program reasoning—Program
verification.
Key words and phrases: Program Verification, Java, Multithreaded Programs, Separation Logic.

* This work was funded in part by the 6th Framework programme of the EC under the MOBIUS project IST-
FET-2005-015905 (Haack, Hurlin and Huisman) and ERC grant 258405 for the VerCors project (Huisman
and Amighi).

“¢ Amighi and Huisman are supported by ERC grant 258405 for the VerCors project.

® Part of the work done while the author was at Radboud University Nijmegen, Netherlands.

¢ Part of the work done while the author was at INRIA Sophia Antipolis — Méditerranée, France.

4 Part of the work done while the author was at INRIA Sophia Antipolis — Méditerranée, France, and
visiting the University of Twente, Netherlands; and then at INRIA — Bordeaux Sud-Ouest, France, Microsoft
R&D, France and IRISA /Université de Rennes 1, France.

|E |LOGICAL METHODS © A. Amighi, C. Haack, M. Huisman, and C. Hurlin
IN COMPUTER SCIENCE DOI:10.2168/LMCS-11(1:2)2015 © Creative Commons

http://creativecommons.org/about/licenses

2 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

1. INTRODUCTION

1.1. Motivation and Context. In the last decade, researchers have spent great efforts
on developing advanced program analysis tools for popular object-oriented programming
languages, like Java or C#. Such tools include software model-checkers ﬂm, static
analysis tools for data race and deadlock detection [NAWOG, NPSGQO9], type-and-effect
systems for atomicity [AFF06], and program verification tools based on interactive
theorem proving [Hui01].

A particularly successful line of research is concerned with static contract checking tools,
based on Hoare logic. Examples include ESC/Java — a highly automatic, but
deliberately unsound, tool based on a weakest precondition calculus and a SMT solver, the
Key tool — a sound verification tool for Java programs based on dynamic logic
and symbolic execution, and Spec# — a sound modular verification tool for
C# programs that achieves modular soundness by imposing a dynamic object ownership
discipline. While still primarily used in academics, these tools are mature and usable enough,
so that programmers other than the tool developers can employ them for constructing
realistic, verified programs. A restriction, however, is that support for concurrency in static
contract checking tools is still limited. Because most real-world applications written in Java
or C# are multithreaded, this limitation is a serious obstacle for bringing assertion-based
verification to the real world. Support for concurrency is therefore the most important next
step for this technique.

What makes verification of shared-variable concurrent programs difficult is the possi-
bility of thread interference. Any assertion that has been established by one thread can
potentially be invalidated by any other thread at any time. Some traditional program
logics for shared-variable concurrency, e.g., Owicki-Gries [OGT5] or Jones’s rely-guarantee
method [Jon83], account for thread interference in the most general way. Unfortunately, the
generality of these logics makes them tedious to use, perhaps even unsuitable as a practical
foundation for verifying Java-like programs. In comparison to these logics, Hoare’s logics for
conditional critical regions [Hoa72] and monitors [Hoa74] are much simpler, because they
rely on syntactically enforceable synchronization disciplines that limit thread interference
to a few synchronization points (see [And91] for a survey).

Because Java’s main thread synchronization mechanism is based on monitors, Hoare’s
logic for monitors is a good basis for the verification of Java-like programs. Unfortunately,
however, a safe monitor synchronization discipline cannot be enforced syntactically for Java.
This is so, because Java threads typically share heap memory including possibly aliased vari-
ables. Recently, O’Hearn [O’HO7] has generalized Hoare’s logic to programming languages
with heap. To this end, he extended separation logic [IO01] [Rey02], a new program logic,
which had previously been used for reasoning about sequential pointer programs. Concur-
rent separation logic (CSL) [O’HO7, enforces correct synchronization of heap accesses
logically, rather than syntactically. Logical enforcement of correct synchronization has the
desirable consequence that all CSL-verified programs are guaranteed to be data-race free.

CSL has since been extended in various directions to make it more suitable to reason
about more complex concurrent programs. For instance, Bornat and others have combined
separation logic with permission accounting in order to support concurrent reads [BOCP03],
while Gotsman et al. and Hobor et al. [HANOS] have generalized concurrent
separation logic to cope with Posix-style threads and locks, that is they can reason about
dynamic allocation of locks and threads.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 3

In this paper, we further adapt CSL and its extensions, to make it suitable to reason
about a Java-like language. This requires several challenges to be addressed:

e Firstly, in Java locks are reentrant, dynamically allocated, and stored on the heap, and
thus can be aliased. Reasoning about storable locks has been addressed before by Gotsman
et al. and Hobor et al. [HANOS], however these approaches do not generalise to
reentrant locks. Supporting reentrant locks has important advantages, as they can avoid
deadlocks due to attempted reentrancy. Such deadlocks would, for instance, occur when
synchronized methods call synchronized methods on the current self: a very common call-
pattern in Java. Therefore, any practical reasoning method for concurrent Java programs
needs to provide support to reason about lock reentrancy.

e Secondly, Java threads are based on thread identifiers (represented by thread objects)
that are dynamically allocated on the heap, can be stored on the heap and can be aliased.
Additionally, a join-operation that is parametrized by a thread identifier allows threads to
wait for the termination of other threads. A crucial difference with Posix threads is that
Java threads can be joined multiple times, and the logic has to cater for this possibility.

e Finally, Java has a notifying mechanism to wake threads up while waiting for a lock. This
is an efficient mechanism to allow threads to exchange information about the current
shared state, without the need for continuous polling. A reasoning technique for Java
thus should support this wait-notify mechanism.

The resulting proof system supports Java’s main concurrency primitives: dynamically cre-
ated threads and monitors that can be stored on the heap, thread joining (possibly multiple
times), monitor reentrancy, and the wait-notify mechanism. Furthermore, the proof system
is carefully integrated into a Java-like type system, enriched with value-parametrized types.
The resulting formal system allows reasoning about multithreaded programs written in Java.
Since the use of Java is widespread (e.g., internet applications, mobile phones and smart
cards), this is an important step towards reasoning about realistic multi-threaded software.

1.2. Separation Logic Informally. Before discussing our contribution in detail, we first
informally present the features of separation logic that are most important for this paper.

1.2.1. Formulas as Access Tickets. Separation logic combines the usual logical op-
erators with the points-to predicate z.f +— v and the resource conjunction F'* G.

The predicate x.f — v has a dual purpose: firstly, it asserts that the object field x.f
contains data value v and, secondly, it represents a ticket that grants permission to access

the field z.f. This is formalized by separation logic’s Hoare rules for reading and writing
fields (where x.f +— _ is short for (Jv)(z.f — v)):

{z.f— Je.f=v{z.f— v} {z.f=vly=z.flz.f— v *x v==y}

The crucial difference to standard Hoare logic is that both these rules have a precondi-
tion of the form x.f — _: this formula functions as an access ticket for x.f. It is important
that tickets are not duplicable: one ticket is not the same as two tickets! Intuitively, the
formula F'* G represents two access tickets F' and G to separate parts of the heap. In other
words, the part of the heap that F' permits to access is disjoint from the part of the heap
that G permits to access. As a consequence, separation logic’s * implicitly excludes inter-
fering heap accesses through aliases: this is why the Hoare rules shown above are sound. It
is noteworthy that given two objects a and b with field x, the assertion a.x — _*b.x > _

4 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

does not mean the same as a.x — _Ab.x — _: the first assertion implies that a and b are
distinct, while the second assertion can be satisfied even if a and b are aliases.

1.2.2. Local Reasoning. A crucial feature of separation logic is that it allows local reasoning,
as expresssed by the (Frame) rule:

{F}e{F'}

{F*xG}c{F' *G}

This rule expresses that given a command c¢ that only accesses the part of the heap

described by F', one can reason locally about command ¢ ((Frame)’s premise) and deduce

something globally, i.e., in the context of a bigger heap F'* G ((Frame)’s conclusion). In

this rule, G is called the frame and represents the part of the heap unaffected by executing

c. It is important that the (Frame) rule can be added to our verification rules without

harming soundness, because it enables modular verification, and in particular it allows one

to verify method calls. When calling a method, from its specification one can identify the

(small) part of the heap accessed by that method and use the frame rule to establish that
the rest of the heap is left unaffected.

(Frame)

1.3. Contributions. Using the aspects of separation logic described above, we have de-
veloped a sound (but not complete) program logic for a concurrent language with Java’s
main concurrency primitives. Our logic combines separation logic for Java [Par05] with
fraction-based permissions [Boy03]. This results in an expressive and flexible logic, which
can be used to verify many realistic applications. The logic ensures the absence of data
races, but is not overly restrictive, as it allows concurrent reads. This subsection summa-
rizes our system and highlights our contributions; for a detailed comparison with existing
approaches, we refer to Section Bl

Because of the use of fraction-based permissions, as proposed by Boyland [Boy03], our
program logic prevents data races, but allows multiple threads to read a location simultane-
ously. Permissions are fractions in the interval (0, 1]. Each access to the heap is associated
with a permission. If a thread has full permission (i.e., with value 1) to access a location, it
can write this location, because the thread is guaranteed to have exclusive access to it. If a
thread has a partial permission (less than 1), it can read a location. However, since other
threads might also have permission to read the same location, a partial permission does not
allow to write a location. Soundness of the approach is ensured by the guarantee that the
total permissions to access a location are never more than 1.

Permissions can be transferred from one thread to another upon thread creation and
thread termination. If a new thread is forked, the parent thread transfers the necessary
permissions to this new thread (and thus the creating thread abandons these permissions, to
avoid permission duplication). Once a thread terminates, its permissions can be transferred
to the remaining threads. The mechanism for doing this in Java is by joining a thread: if a
thread t joins another thread wu, it blocks until u has terminated. After this, ¢ can take hold
of u’s permissions. In order to soundly account for permissions upon thread joining, a special
join-permission is used. Only threads that hold (a fraction of) this join-permission can take
hold of (the same fraction of) the permissions that have been released by the terminating
thread. Note that, contrary to Posix threads, Java threads allow multiple joiners of the
same thread, and our logic supports this. For example, the logic can verify programs where

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 5

multiple threads join the same thread t in order to gain shared read-access to the part of
the heap that was previously owned by t.

Just as in O’Hearn’s approach [O’HO7], locks are associated with so-called resource
invariants. If a thread acquires a lock, it may assume the lock’s resource invariant and
obtain access to the resource invariant’s footprint (i.e., to the part of the heap that the
resource invariant depends upon).

If a thread releases a lock, it has to establish the lock’s resource invariant and transfers
access to the resource invariant’s footprint back to the lock. Previous variants of concurrent
separation logic prohibit threads to acquire locks that they already hold. In contrast, Java’s
locks are reentrant, and our program logic supports this. To this end, the logic distinguishes
between initial lock entries and lock reentries. Permissions are transferred upon initial lock
entries only, but not upon reentries.

Unfortunately, distinguishing between initial lock entries and reentries is not well-
supported by separation logic. The problem is that this distinction requires proving that,
upon initial entry, a lock does not alias any currently held locks. Separation logic, how-
ever, is designed to avoid depending on such global aliasing constraints, and consequently
does not provide good support for reasoning about such. Fortunately, our logic includes
a rich type system that can be used towards proving global aliasing constraints in many
cases. The type system features value-parametrized types, which naturally extend Java’s
type system that already includes generic types. Value parameters are used for static type
checking and static verification only, thus, do not change the dynamic semantics of Java.
Value-parametrized types can be useful in many ways. For instance, in [HH09] we use them
to distinguish read-only iterators from read-write iterators. Value-parametrized types can
also express static object ownership relations, as done in parametric ownership type systems
(e.g., [CD02]). Similar ownership type systems have been used in program verifica-
tion systems to control aliasing (e.g, [Miil02]). In Section 6] we use type-based ownership
towards proving the correctness of a fine-grained lock-coupling algorithms with our verifi-
cation rules for reentrant locks. The type-based ownership relation serves to distinguish
initial lock entries from lock reentries.

To allow the inheritance of resource invariants, we use abstract predicates as introduced
in Parkinson’s object-oriented separation logic [Par(05]. Abstract predicates hide implemen-
tation details from clients but allow class implementers to use them. Abstract predicates
are highly appropriate to represent resource invariants: in class Object a resource invariant
with empty footprint is defined, and each subclass can extend this resource invariant to
depend on additional fields.

1.4. Earlier Papers and Overview. This paper is based on several earlier papers, pre-
senting parts of the proof system. The logic to reason about dynamic threads was presented
at AMAST 2008 [HHO8a], the logic to reason about reentrant locks was presented at APLAS
2008 [HHHOS|. However, compared to these earlier papers, the system has been unified and
streamlined. In addition, novel specifications and implementations of sequential and paral-
lel merge sort illustrate the approach. The work as it is presented here is adapted from a
part of Hurlin’s PhD thesis [Hur(09].

The remainder of this paper is organized as follows. Section Pl presents the Java-like
language, permission-based separation logic and basic proof rules for single-threaded pro-
grams. Section [3extends this to multithreaded programs with dynamic thread creation and
termination, while Section] adds reentrant locks. Finally, Sections bl and [6] discuss related

6 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

work, future work and conclusions. The complete soundness proof for the system can be
found in Hurlin’s PhD thesis [Hur(9).

2. THE SEQUENTIAL JAVA-LIKE LANGUAGE

This section presents a sequential Java-like (programming and specification) language that
models core features of Java: mutable fields, inheritance and method overriding, and inter-
faces. Notice that we strongly base our work here on Parkinson’s thesis and in par-
ticular reuse his notion of abstract predicate. Later sections will extend the language with
Java-like concurrency primitives. Sequential programs written in the Java-like language can
be specified and verified with separation logic. However, to simplify the presentation of the
program logic, we assume that Java expressions are written in a form so that all intermediate

results are assigned to local read-only variables (cf. e.g., [CWM99, [SWMO00|, JTW06, [PB0S]).

2.1. Syntax. The language distinguishes between read-only variables : € RdVar, read-write
variables ¢ € RdWrVar, and logical variables o € LogVar. Method parameters (including
this) are always read-only, and local variables can be both read-only or read-write. Logical
variables can only occur in specifications and types. We treat read-only variables specially,
because their use often avoids the need for syntactical side conditions in the proof rules
(see Section 2:4.2]). The model language also includes class identifiers (Classld), interface
identifiers (Intld), field identifiers (Fieldld), method identifiers (Methld) and predicate iden-
tifiers (Predld). Object identifiers (Objld) are used in the operational semantics, but must
not occur in source programs. Variable Var is the union of RdVar, RdWrVar and LogVar. In
addition, type identifiers are defined as the union of Classld and Intld.

Figure [[defines syntax of our Java-like language. (Open) values are integers, booleans,
object identifiers, null, and read-only variables. Open values are values that are not vari-
ables. Initially, specifications values range over logical variables and values; this will be
extended in subsequent sections. To simplify later developments, our grammar for writing
programs imposes that (1) every intermediate result is assigned to a local variable and
(2) the right hand sides of assignments contain no read-write variables. Since interfaces
and classes can be parametrized with specification values, object types are of the form
t<w>. We introduce two special operators: instanceof and classof, where C classof v
tests whether C' is v’s dynamic class. Note that these last two operators depend on object
types, as stored on the heap. Classes do not have constructors: fields are initialized to a
default value when objects are created. Later, for clarity, methods that act as constructors
are called init. Abstract predicates and class azioms are part of our spec-
ification language. Interfaces may declare abstract predicates and classes may implement
them by providing concrete definitions as separation logic formulas. Appendix [Al defines
syntactic functions to lookup fields, axioms, method types and bodies, and predicate types
and bodies.

To write method contracts, we use intuitionistic separation logic [IO01] [Par05].
Contrary to classical separation logic, intuitionistic separation logic admits weakening i.e.,
it is invariant under heap extension. Informally, this means that one can ”forget” a part of
the state, which makes it appropriate for garbage-collected languages.

The resource conjunction F * G (a.k.a separating conjunction) expresses that resources
F and G are independently available: using either of these resources leaves the other one

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 7

I

ne€lnt w,v,weOpenVal == null | n | b | o | ¢ b € Bool = {true,false}
Val = OpenVal\ RdVar 7 € SpecVal = a | v

T,U,V,WW € Type == void | int | bool | perm | ¢<7>

op 2 {==,1,& |} U {C classof | C € Classld} U {instanceof T | T € Type}
e€kxp =7 | £ | op(e)

fd == Tf; field declarations

pd = pred P<T a>=F; predicate definitions

ar := axiom F class axioms

md == <T &> spec U m(V7){c} methods (scope of @,7 is T, spec, U, V, c)
spec = requires F;ensures [pre/postconditions

F € Formula specification formulas

cl € Class = class C<T &> ext U impl V {fd* pd* az* md*}

classes(scope of a is T, U, V, fd*, pd*, ax*, md*)

pt = pred P<T a>; - predicate types - -
mt = <T'a>spec U m(V7) - method types (scope of @,7is T, spec, U, V)
int € Interface ::= interface I<T a>ext U {pt* az™* mt*}

interfaces (scope of & is T, U, pt*, ax*, mt*)

ceCmd == wv | Tle | Ti=l;c | hec
hc € HeadCmd == {f=v | L=0p(D) | £=v.f | v.f=v | {=new C<7> |
L=v.m (@) | if (v){cYelse{c} | while (e){c}
lop € {*,—*,&, |} gt € {ex, fa} Kk € Pred := P | PeC
F € Formula ::= e | PointsTo(e.f,m e) | m.k<> | F lop F' | (¢t T x) (F)

FIGURE 1. Sequential Java-Like Language (JLL)

intact. Resource conjunction is not idempotent: F' does not imply F'* F. Because Java is
a garbage-collected language, we allow dropping assertions: F' * G implies F.

The resource implication F -x G (a.k.a. linear implication or magic wand) means ”con-
sume F' yielding G”. Resource I’ —* G permits to trade resource F' to receive resource G in
return. Most related work omit the magic wand. Parkinson and Bierman [PBO05] entirely
prohibit predicate occurrences in negative positions (i.e., to the left of an odd number of
implications). We allow negative dependencies of predicate P on predicate @ as long as
@ does not depend on P (cyclic predicate dependencies must be positive). We include it,
because it can be added without any difficulties, and we found it useful to specify some
typical programming patterns. Blom and Huisman show how the magic wand is used to
state loop invariants over pointer data structures [BH13|, while Haack and Hurlin use the
magic wand to capture the behaviour of the iterator [HHQ9]. To avoid a proof theory with
bunched contexts (see Section 2.4.1]), we omit the =-implication between heap formulas
(and did not need it in later examples).

The points-to predicate PointsTo(e.f,m,v) is a textual representation for e.f ——
v [BOCPOQS]. Superscript 7 must be a fractional permission i.e., a fraction 2%
(n > 0) in the interval (0,1]. The predicate application m.k<7> applies abstract predicate x

8 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

to its receiver parameter m and the additional parameters 7. As explained above, predicate
definitions in classes map abstract predicates to concrete definitions. Predicate definitions
can be extended in subclasses to account for extended object state. Semantically, P’s predi-
cate extension in class C' gets *-conjoined with P’s predicate extensions in C’s superclasses.
The qualified predicate w.P@C<T> represents the *-conjunction of P’s predicate extensions
in C’s superclasses, up to and including C. The unqualified predicate w.P<7> is equivalent
to m.P@C<7>, where C is m’s dynamic class. We allow predicates with missing parameters:
semantically, missing parameters are existentially quantified. Predicate definitions can be
preceded by an optional public modifier. The role of the public modifier is to export the
definition of a predicate in a given class to clients (see e.g., the predicates in class List
in the merge sort example in Section [2.6]). For additional usage and formal definitions of
public, we refer to [Hur09l §3.2.1] and Sections B.5] and

To be able to make mutable and immutable instances of the same class, it is crucial
to allow parametrization of objects and predicates by permissions. For this, we include a
special type perm for fractional permissions. Because class parameters are instantiated by
specification values, we extend specification values with fractional permissions. Fractional
permissions are represented symbolically: 1 represents itself, and if symbolic fraction 7
represents concrete fraction fr then split(m) represents % - fr.

m € SpecVal = .. | 1] split(m) |

Quantified formulas have the shape (gt T'«a) (F), where ¢t is a universal or existential
quantifier, « is a variable whose scope is formula F', and T is o’s type. Because specification
values 7 and expressions e may contain logical variables «, quantified variables can appear
in many positions: as type parameters; as the first, third, and fourth parameter in PointsTo
predicatesﬂ; as predicate parameters etc.

Class and interface declarations define class tables (¢t C Interface U Class) ordered by
subtyping. We write dom(ct) for the set of all type identifiers declared in ct. Subtyping is
defined in a standard way.

We define several convenient derived forms for specification formulas:

PointsTo(e.f,m, 1) 2 (exTa)(PointsTo(e.f,m, a))
Perm(e.f,m) = (ex T'a) (PointsTo(e.f,m, a)) where T is e.f’s type
Fx*G= (F-+G) & (G-+F)
F assures G = F - (F*G)
F ispartof G = G —* (F* (F-*G))
Intuitively, F' ispartof G says that I’ is a physical part of G: one can take G apart
into I’ and its complement F'-* G, and can put the two parts together to obtain G back.

2.2. Operational Semantics. The operational semantics of our language is fairly stan-
dard, except that the state does not contain a call stack, but only a single store to keep
track of the current receiver. It operates on states, consisting of a heap (Heap), a command
(Cmd), and a stack (Stack). Section B will extend the state, to cope with multithreaded
programs. Given a heap h and an object identifier o, we write h(0), to denote o’s dynamic

INote that we forbid to quantify over the second parameter of PointsTo predicates, i.e., the field name.
This is intentional, because this would complicate PointsTo’s semantics. We found this not to be a restriction,
because we did not need this kind of quantification in any of our examples.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 9

type and h(o0), to denote o’s store. We use the following abbreviation for field updates:
hlo.f — v] = hlo — (h(0),,h(0)s[f + v])]. For initial states, we define function init to
denote a newly initialized object. Initially, the heap and the stack are empty.

Heap, Stack and State:

ObjStore = Fieldld — Val & € Heap = Objld — Type x ObjStore
s € Stack = RdWrVar — Val st € State = Heap x Cmd x Stack

The semantics of values, operators and specification values are standard. The formal
semantics of the built-in operators is presented in and the formal semantics of specifica-
tion values is defined in [A.3]l In addition, we allow one to use any further built-in operator
that satisfies the following two axioms:

(a) If Jop]"(¥) = w and h C K/, then [op[" (7) = w.

(b) If b = hlo.f — u], then Jop]" = Jop]" .

The first of these axioms ensures that operators are invariant under heap extensions. The
second axiom ensures that operators do not depend on values stored on the heap.

Auziliary syntaz for method call and return. We introduce a derived form, ¢ « ¢; ¢ that
assigns the result of a computation ¢ to variable £. In its definition, we write fv(c) for the set
of free variables of ¢. Furthermore, we make use of some auxiliary syntax £=return(v); c.
This construct is not meant to be used in source programs. Its purpose is to mark method-
return-points in intermediate program states. The extra return syntax allows us to associate
a special proof rule with the post-state of method calls that characterizes this state. Tech-
nically, these definitions are chosen to support Lemma [2.3] which is central for dealing with
call/return in the preservation proof.

{—v;c 2 {=return(v); c
(= (T0;c);d = TV lecd if ¢ & fv(c) and ¢ # ¢
(—(T=l;c);d & Tau=lilecd ifidfv(d)
0 (he;e)id = he;bec
¢ n= ... | £=return(v);c |

Restriction: This clause must not occur in source programs.
We can now also define sequential composition of commands as follows:

e d = voidl; l« ¢;c where/ ¢ fv(c,)

Small-step reduction. The state reduction relation —; is given with respect to a class table
ct. Where it is clear from the context, we omit the subscript c¢t. The complete set of the
rules are defined in [A.4] here we only discuss the most important cases.

State Reductions, st —.; st':

I 1
(Red Dcl) ¢ & dom(s) s = s[> df(T)]
(h, T 4;c,s) — (h,c,s)
(Red Fin Del) s(¢) =v ¢ = c[v/1]
(h, T1=0;c,s) — (h, ,s)
(Red New) o ¢ dom(h) A’ = hlow (C<T>,initStore(C<7>))] s = s[l — o]
(h, L=new C<7T>; ¢,s) — (I, ¢, ')

10 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Red Call) h(o); = C<7> mbody(m, C<T>) = (10;7).c,. ¢ = em[0/10,7/7]
(h, L=0.m(0); ¢c,8) — (h, L+ ;¢,s)

In [(Red Dcl)| read-write variables are initialized to a default value. In |[(Red Fin Dcl)

declaration of read-only variables is handled by substituting the right-hand side’s value for
the newly declared variable in the continuation. In the heap is extended to
contain a new object. In 19 is the formal method receiver and 7 are the formal
method parameters. Like for declaration of read-only variables, both the formal method
receiver and the formal method parameters are substituted by the actual receiver and the
actual method parameters.

2.3. Validity of Resource Formulas.

2.3.1. Augmented heaps. To define validity of our resource formulas, we augment the heap
with a permission table. Augmented heaps H as models of our formulas, range over the set
AugHeap with a binary relation # C AugHeap x AugHeap (the compatibility relation) and
a partial binary operator * : # — AugHeap (the augmented heap joining operator) that
is associative and commutative. Concretely, augmented heaps are pairs H = (h,P) of a
heap h and a permission table P € Objld x Fieldld — [0,1] . To prove soundness of the
verification rules for field updates and allocating new objects, augmented heaps must satisfy
the following axioms:

(a) P(o, f) > 0 for all o € dom(h) and f € dom(h(0),).

(b) P(o, f) =0 for all o ¢ dom(h) and all f.

Axiom@ ensures that the (partial) heap h only contains cells that are associated with
strictly positive permissions. Axiom @ ensures that all unallocated objects have minimal
permissions (with respect to the augmented heap order presented below).

Each of the two augmented heap components defines # (compatibility) and * (joining)
operators. Heaps are compatible if they agree on shared object types and memory content:

(Vo € dom(h) Nndom(h)) (
h#th' iff h(o), = W (o), and
(V.f € dom(h(0),) N dom(h/(0)y))(h(0)y(f) = h'(0)y(f)))
To define heap joining, we lift set union to deal with undefinedness: fVvg = fUg,
f Vundef = undef V f = f. Similarly for types: TV undef =undef VT =TV T =T.

(h* 1)(0), = h(o); V H(0); (h*h)(0)y = h(0)yV 1 (0),

Permission tables join by point-wise addition: (P *P’)(0) = P(0) + P’(0), where com-
patibility ensures that the sums never exceed 1, i.e., P#P’ iff (Vo)(P(o) + P'(0) < 1).

We define projection operators: (h,P)hp £ h and (h,P)pe,m £ P. Moreover, ordering
on heaps, permission tables, and augmented heaps are defined as follows:

h<h = 3 (h*h" =h) : h contains less memory cells than b’
P<P £ @P)P*P'=7P) :P’spermissions are less than P'’s permissions
H<H = GH)YH+H' =H) :H’s components are all less than H'’s components

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 11

I'E&(h,P)s = e iff [e]" = true
. . . N [e]l2 = 0,h(0),(f) =[],
I'+&;(h,P);s | PointsTo(e.f,m,€') iff { and [r] < P(o,)
& H;s E null.k<m> iff true
a1 _ . Hip(0), <: C<a’> and
& H;s E o PeC<T> iff { £(PeC) (7, M, 0,7) = 1
" i (3 (Hap(0), = C<i> and
Phens b opa L nad s ey
(FH1, Ha)(H = H1* Ha,
F'F&EHs = Fx*xG iff ¢ T'F&Hi;sk=F and
T'F & Ha s = Q)
(VI Dnp T, HY)(
'E&H;s E F-xG iff HH#H and TV EH ;s = F
= TVFEEH*H;sEG)
'-&H;s E F&G iff THEH;sEFandTHEH;sEG
r'E&H;s E FIG iff TEFEH;sEForT'HFEH; s EG
4 . (Fm)(Thp 7 T and
FFEH;s E (exTa)(F) iff { ThE&M:s = Flr/a])
(VI Dpp T, H! > H,)
'E&H;s = (FaTa)(F) iff N, FHy,i0 and IY Fm:T

= I"HFEH s E Fln/a])
FIGURE 2. Meaning of formulas

2.3.2. Meaning of Formulas. To define the meaning of predicates, the notion of predicate
environments is used. A predicate environment £& maps predicate identifiers to concrete
heap predicates. Following Parkinson [Par03], it is defined as a least fixed point of an
endofunction F, on predicate environments. We do not detail its definition further, but
instead refer to Parkinson’s thesis.

An augmented heap H is well-formed under typing environment T', i.e., (I' H H : ©),
whenever the heap and the permission table are well-formed, i.e. I' = Hp, : o and P(o, f) > 0
implies 0 € dom(I"). Furthermore, given formula F' and stack s, we say (I' - &, H, s, F : ©)
whenever the predicate environment is a least fixed point, and the augmented heap, stack,
and formula are well-formed, i.e., 'FH : o, I'F s: ¢, and I' b F : o, respectivelyl. Now
we define a forcing relation of the form I' F £;H; s = F, which intuitively expresses that
if ' F & H;s E F holds, then the augmented heap H is a state that is described by F.
The relation (I' - &;H; s | F) is the unique subset of (I' - &, H, s, F' : ©) that satisfies the
clauses in Figure 2

2.4. Verification. This section first presents the proof theory, and next, Hoare triples to
verify Java-like programs are introduced.

2All typing judgments are defined in

12 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

2.4.1. Proof Theory. As usual, Hoare triples use a logical consequence judgment. We define
logical consequence proof-theoretically. The proof theory has two judgments:

Iiv;F -G G is a logical consequence of the *-conjunction of F'
o F F'is an axiom

where F' is a multiset of formulas, and parameter v represents the current receiver. The
receiver parameter is needed to determine the scope of predicate definitions: a receiver
v knows the definitions of predicates of the form v.P, but not the definitions of other
predicates. In source code verification, the receiver parameter is always this and can thus
be omitted. We explicitly include the receiver parameter in the general judgment, because
we want the proof theory to be closed under value substitutions.

Semantic Validity of Boolean Expressions. The proof theory depends on the relation I' = e
(“e is valid in all well-typed heaps”), which we do not axiomatize (in an implementation,
we would use an external and dedicated theorem prover to decide this relation) but instead
we define as validity over all closing substitutions. Let o range over closing substitutions,
i.e, elements of Var — Val:

dom(o) = dom(I') " Var (Vo € dom(0))(I'np F o(x) : I'(2z)[0])
I'kFo:o
ClosingSubst(I) = { o | TFo:o}
We say that a heap h is total iff for all o in dom(h) and all f € dom(fld(h(0),)),

f € dom(h(0),). Then we have: Heap(T) = { h | I'np = h o and his total }. Now, we
define I' |= e as follows:

Ple iff I'Fe:bool and
© ! VI Dpp I', h € Heap(I”), o € ClosingSubst(I") : ([e[o]]}f = true)

Natural Deduction Rules. The logical consequence judgment of our Hoare logic is defined
in a standard way based on the natural deduction calculus of (affine) linear logic [Wad93],
which coincides with BI’s natural deduction calculus [OP99] on our restricted set of logical
operators. The complete list is presented in [A.6

Azioms. In addition to the logical consequence judgment, sound axioms capture additional
properties of our model. These additions do not harm soundness, as shown by Theorem 2.1
below. Table [l presents the different axioms that we use:

e |(Split/Merge)| regulates permission accounting (where v denotes the current receiver and
7 abbreviates split(m)).

o allows predicate receivers to toggle between predicate names and predicate
definitions (where — as defined in [AT] - pbody(o.P<7'>, C<7>) looks up o0.P<7’'>’s defi-
nition in the type C'<7m> and returns its body F' together with C<7>’s direct superclass
D<7">): Note that the current receiver, as represented on the left of the -, has to match
the predicate receiver on the right. This rule is the only reason why our logical conse-
quence judgment tracks the current receiver. Note that P@C' may have more parameters
than P@D: following Parkinson [Par05] we allow subclasses to extend predicate arities.

e |(Missing Parameters)| expresses that missing predicate parameters are existentially quan-
tified.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 13

PointsTo(e.f, 5, ¢€")
;v F PointsTo(e.f,m, e') *x—x * (Split/Merge)
PointsTo(e.f, 5, €")

(T'F v : C<7”"> A pbody(v.P<7t, @'>, C<7”">) = F ext D<7""’>)

= vk 0.PeC<T, 7'> x—* (F *xv.PQD<7T>) (Open/Close)
[;v b 7.P<> *—% (ex T &) (7. P<7,&a>) (Missing Parameters)
I';v B n.PC<7> ispartof w.P<7> (Dynamic Type)
C <D = T;vt m.PeD<7> ispartof 7.PeC<7,7'> (ispartof Monotonic)
o F (m.PRC<T> * (' classof w) —* 7m.P<7> (Known Type)
;v F null.k<m> (Null Receiver)
;v F true (True)
[;ok false—* F (False)
(Thee:T ANT,x:TEF:0) e
Tk (Fle/z]*e==¢/) - F¢' /2] (Substitutivity)
TE'tegllea |l €) = Tiok (eg*xey) =€ (Semantic Validity)

(PointsTo(e.f, 7, €e') & PointsTo(e.f, 7, e"))

ok assures ¢ —= o (Unique Value)
TFe:T) = Thuk (exT) (e==a) (Well-typed)
ok (F&e)—*(Fxe) (Copyable)

(I'E 7w t<7’> A axiom(t<7’>) = F) = T';v b Fln/this] (Class)
TABLE 1. Overview of Axioms

e |(Dynamic Type)| states that a predicate at a receiver’s dynamic type (i.e., without @-
selector) is stronger than the predicate at its static type. In combination with the axiom
[(Open/Close)| this allows us to open and close predicates at the receiver’s static type.
The axiom |(ispartof Monotonic)|is similar.

e [(Known Type)|allows one to drop the class modifier C' from 7.P@C' if we know that C'
is m’s dynamic class.

o Axioms |(Null Receiver)| (True)|and |(False)| define the semantics of predicates with null-
receiver, and of true and false, respectively.

e The |(Substitutivity)| axiom allows to replace expressions by equal expressions, while
[(Semantic Validity)|lifts semantic validity of boolean expressions to the proof theory.

e |(Unique Value)| captures the fact that fields point to a unique value. Recall that we write
" F assures G” to abbreviate " F —-x (F'* G)” (see Section 2.1]).

e |(Well-typed)| captures that all well-typed closed expressions represent a value (because
built-in operations are total).

¢ |(Copyable)| expresses copyability of boolean expressions.
e |(Class)| allows the application of class axioms where axiom (¢<7’>) is the *-conjunction

of all class axioms in ¢t<7’> and its supertypes.

14 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Soundness of the proof theory. We define semantic entailment I' - &; F = G-

FE&EH;s R, Fy iff THEEH; sl Fi*x--- xE,
r&EFEG M VILH,s) THEH;sEF = T'FEH; s EQ)

Now, we can express the proof theory’s soundness:

Theorem 2.1 (Soundness of Logical Consequence). If F(€) = & and (L;0; F = G), then
TF&FEQ).

Proof. The proof of the theorem is by induction on (T;v; F' - G)’s proof tree. The pen and
paper proof can be found in [HHOSD, §R]. O

Remark. Note that the receiver parameter o is only used in the assumption, and does
not play a role in the semantics of logical consequence. The reason why we included the
receiver parameter in the logical consequence judgment is the axiom. This
axiom permits the opening/closing of only those abstract predicates that are defined in
the receiver-parameter’s class. While limiting the visibility of predicate definitions is not
needed for soundness of logical consequence, it is important from a software engineering
standpoint, because it provides a well-defined abstraction boundary.

2.4.2. Hoare Triples. Next we present Hoare rules to verify programs written in Section 2.1T's
language. Appendix B of Hurlin’s PhD thesis [Hur09] lists the complete collection of Hoare
rules, presented here and in the next sections. Hoare triples for head commands have the
following form: I'; v = {F}he{G}. Our judgment for commands combines typing and Hoare
triples: T;v B {F}c : T{(U «)(G)} where G is the postcondition, « refers to the return
value, and T" and U are types of the return value (possibly supertypes of the return value’s
dynamic type). In derivable judgments, it is always the case that U <: T.

Here we explain some important rules listed in Figure The rest of the rules are
standard and provided in [A.6l The field writing requires the full permission (1)
on the object’s field and it ensures that the heap has been updated with the value assigned.
The rule for field reading requires a PointsTo predicate with any permission 7. The
rule for creating new objects has precondition true, because we do not check for
out of memory errors. After creating an object, all its fields are writeable: the f.init
predicate (formally defined in [A]) *-conjoins the predicates PointsTo(/.f,1,df(T")) for
all fields T'f in ¢’s class, i.e., expressing that all fields have their default values. The
rule for method calls is verbose, but standard. Importantly, our system includes
the |(Frame)| rule, which allows to reason locally about methods. To understand this rule,
note that fv(F') is the set of free variables of F' and that we write z ¢ F to abbreviate
x & fv(F'). Furthermore, we write writes(hc) for the set of read-write variables ¢ that occur
freely on the left-hand-side of an assignment in hc. s side condition on variables is
standard [O’HO7, [Par05]. Bornat showed how to get rid of this side condition by treating
variables as resources [BCY05]. We should stress here that the rule applies

only for head commands. Therefore, the correctness proof for a method body can never end
in an application of a rule of However, it is possible to apply this rule at the
caller site and in the proof of the method body at any point before applying the rule
that introduces the outer existential. Notice that since we do not have the conjunction rule
in our rule set, we do not need the preciseness condition of the resource invariant [GBCII].

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 15

FFu,w:UW W fefldU) (Fld Set)
;v F {PointsTo(u.f, 1, W) }u.f =w{PointsTo (u.f,1,w)}
F'tu,mow:Uperm, W W fefldU) W <:T'(¢) (Get)

;v F {PointsTo(u.f, m, w) }=u.f{PointsTo (u.f, m,w) *{ == w}

C<Ta>ecct TrH7:T[r/a) C<a><:T(¥) (New)
I';o F {true}l=new C<7>{l.init * C classof {}

mtype(m, t<7>) = <T' @> requires G; ensures (o) (G);
Um (t<7>0,W)
o= (u/19, 7 Ja,w/1) T Fu,a, w:t<w>Tlo),Wlo] Ule] <:T() (Call)
[;o b {u'!l=null* Glo|=um(@){(ex Ulo] /) (&' ==L * G'[o]}

o {F}he{G} T+ H:o fv(H)Nwrites(hc) =10

(Frame)
Tiob{F*H}he{Gx*H}
;o {F'}he{G'}
Lo / el
Gy FEE TvGEG (Consequence)
;0 {F}he{G}
Dya: Tk {Fihe{G} (Exists)

Fiok{(ex T) (F)}he{(ex T a) (G) }
v FEGw/al TRFw:U<:T Ta:UFG:o (Val)
o {Flw:T{(WU o) (G)}

FI1GURE 3. Hoare triples

The following lemma states that Hoare proofs can be normalized for head commands,
which is needed in the preservation proof in order to deal with structural rules.

Lemma 2.2 (Proof Normalization). If T';v & {F}hc{G} is derivable, then it has a proof

where every path to the proof goal ends in zero or more applications of |(Consequence) and

(Exists) preceded by exactly one application of [(Frame)|, preceded by a rule that is not a
structural rule (i.e., a rule different from|(Frame), |(Consequence) and|(Exists).)

Proof. See [Hur(9, Chap. 6]. O

2.5. Verified Programs. To prove soundness of the logic, we need to define the notion
of a verified program. We first define judgments for verified interface and classes, which in
turn depend on the notions of method and predicate subtyping, and soundness of axioms.

Subtyping. We define method and predicate subtyping. We present the method subtyping
rule in its full generality, accounting for logical parameters:

T2 : Vos;true - (fa T7) (@) (fa V') (@) (F —x*
(ex W &) (F* (fa Uresult) (G-+G")))
I'F<Ta,W a'>requires F;ensures G; U m (Vg 19, V' 7)
<: <T"a>requires F';ensures G'; U m (V{ 1, V'%)

16 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Predicate type pt is a subtype of pt’, if pt and pt’ have the same name and pt’s parameter
signature “extends” pt’’s parameter signature:

pred P<T'a,T' &> <: pred P<T a>

Soundness of Class Axioms. So far axioms are used to export useful relations between
predicates to clients. A class is sound if all its axioms are sound (the lookup function for
axioms (axiom) is defined in [AT]). To prove soundness of axioms, we define a restricted
logical consequence judgment that disallows the application of class axioms for proving
their soundness, in order to avoid circularities:

F 2 b without class axioms

Verified Interfaces and Classes. Next, we define same sanity conditions on classes and
interfaces, which are later used to ensure that we only verify sane programs. Judgment
C<T a> ext U expresses that: (1) class C does not redeclare inherited fields, and (2) meth-
ods and predicates overridden in class C are subtypes of the corresponding methods and
predicates implemented in class U. Judgment I<T &> type-extends U expresses that: meth-
ods and predicates overridden in interface I are subtypes of the corresponding methods
and predicates declared in U. Judgment C<T &> impl U expresses that: (1) methods and
predicates declared in interface U are implemented in C, and (2) methods and predicates
implemented in C are subtypes of the corresponding methods and predicates declared in U.
These judgments are defined formally in [A.6l

Finally, verified methods, verified interfaces and verified classes are defined formally
in Later, when we verify a user-provided program, we will assume that the class table
is verified.

Soundness of the Program Logic. We now have all the machinery to define what is a verified
program. To do so, we extend our verification rules to runtime states. Of course, the
extended rules are never used in verification, but instead define a global state invariant,
st : o, which is preserved by the small-step rules of our operational semantics. Our forcing
relation = from Section assumes formulas without logical variables: we deal with
those by substitution, ranged over by o € LogVar — SpecVal. We let (I' - o : ") whenever
dom(c) = dom(I”) and (T'[o] F o(a) : T’ (a)[o]) for all o in dom(o).
Now, we extend the Hoare triple judgment to states:
I'to:T" dom(I)Nncfv(e)=0 T, I"EFs:o
Lo - &;H; s = Flo] L, T;r - {F}c:void{G}
(h,c, s):¢

(State)

where cfv(c) denotes the set of variables that occur freely in an object creation command
in c.

The rule for states ensures that there exists an augmented heap H to satisfy the state’s
command. The object identifier r in the Hoare triple (last premise) is the current receiver,
needed to determine the scope of abstract predicates. Rule enforces the current
command to be verified with precondition F' and postcondition G. No condition is required
on F and G, but note that, by the semantics of Hoare triples, I’ represents the state’s

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 17

allocated memory before executing c¢: if ¢ is not a top level program (i.e., some memory
should be allocated for ¢ to execute correctly), choosing a trivial F' such as true is incorrect.
Similarly, G represents the state’s memory after executing c.

The judgment (ct : ¢) is the top-level judgment of our source code verification system,
to be read as “class table ct is verified”. Before presenting the preservation theorem, we first
give the following lemma, which illustrates how we handle method calls in the preservation
proof.

Lemma 2.3. If (ToF{ F}c:T{ (exT a)(G)}), T <:T() and (T;ptk
{ (exT a)(a==(xG) }:U{H})then(T;ob{F}{l<c;d:U{H}).

Proof. By induction on the structure of c. O

The following theorem shows that the Hoare rules from Section 2.4.2] are sound.
Theorem 2.4 (Preservation). If (ct : ¢), (st : o) and st —o st’, then (st’ : o).

Proof. In order to deal with structural rules we need Lemma in the preservation proof.
Based on the assumptions and Lemma there is a proof tree for st : ¢ ending in
[(Consequence)| |(Exists)| or [(Frame)l Using case analysis on the shape of the head com-
mand we prove that there exists a proof tree for st’ : ¢ in all the cases
[(Exists)| and [(Frame)| Details can be found in [Hur09, Chap. 6]. O

From the preservation theorem, we can draw two corollaries: verified programs never
dereference null and verified programs satisfy partial correctness. To formally state these
theorems, we say that a class table ct together with a “main” program c is sound (written
(ct,c) : o) iff (¢t : o and null; () + {true}c : void{true}). In the latter judgment, 0
represents that the type environment is initially empty, null represents that the receiver
is initially vacuous, and true represents that the top level program has true both as a
precondition and as a postcondition. Notice that true is a correct precondition for top
level programs (Java’s main), because when a top level program starts to execute, the heap
is initially empty.

Lemma 2.5. If (ct,c) : o, then init(c) : ©.
Proof. See [Hur(9, Chap. 6]. O

We can now state the first corollary (no null dereference) of the preservation theorem.
A head command hc is called a null error iff it tries to dereference a null pointer, i.e.,
he = ((=null.f) or he = (null.f=v) or he = ({=null.m<7>(v)) for some ¢, f,v,m, T, .

Theorem 2.6 (Verified Programs are Null Error Free). If (ct,c) : ¢ and init(c) —7%,
st = (h, he; ', s), then he is not a null error.

Proof. By init(c) : ¢ (lemma 2] and preservation theorem (Theorem 2.4)), we have st : ¢.
Suppose by contradiction that hc is a null error. An inspection of the last rules of (st : ¢)’s
derivation reveals that there must be an environment, predicate environment, augmented
heap, stack and value such that the result is a null error. But by definition of |= this is not
possible (details in [Hur09, Chap. 6]). O

To state the second corollary of the preservation theorem, we extend head commands
with specification commands. Specification commands sc are used by the proof system, but
are ignored at runtime. The specification command assert(F') makes the proof system
check that F' holds at this program point:

18 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

hc € HeadCmd == ... | sc |
sc € SpecCmd 1= assert(F)
We update Section 2.2's operational semantics to deal with specification commands.
Operationally, specification commands are no-ops:

State Reductions, st —.; st':
1 1

(Red No Op)
(h, sc; ¢,s) = (h, c,s)

Now, we can state the partial correctness theorem. It expresses that if a verified pro-
gram contains a specification command assert (F), then F' holds whenever the assertion
is reached at runtime:

Theorem 2.7 (Partial Correctness).
If (ct,c) : o and init(c) =%, st = (h,assert(F);c, s), then (I' - &;(h,P);s = Flo]) for
some I', €& = Foi(€),P and o € LogVar — SpecVal.

Proof. By init(c) : ¢ (lemma [Z5]) and preservation theorem (Theorem 24)), we know that
st : o. An inspection of the last rule of (st : ¢)’s derivation reveals that there must be
I'E = Fu(E),H,o € LogVar — SpecVal such that (I'+ &; (h, P);s = Flo]) . O

2.6. Example: Sequential Mergesort. To show how the verification system works, we
specify a (sequential) implementation of mergesort. In the next section, when we add
multithreading, we extend this example to parallel mergesort and we verify the parallel
implementation w.r.t its specification.

Since our model language has no arrays, we use linked lists. For simplicity, we use
integers as values. Alternatively, as in the Java library, values could be objects that imple-
ment the Comparable interface. Our example contains two classes: List and MergeSort,
definedd and specified in Figures H [, B and [

Class List. Figure M contains the implementation of class List. This class has three
methods): method append adds a value to the tail of the list; method concatenate(1,1)
concatenates the i-th first elements of list 1 to the receiver list; and method get returns the
sub-tail of the receiver starting at the i-th element. Note that these methods use iteration
in different ways. In method append’s loop, iteration is used to reach the tail of the receiver
list, while in method concatenate’s second loop, iteration is used to reach elements up to
a certain length of list 1. This means that, in the first case, the executing method should
have permission to access the whole list, while in the second case, it suffices to have access
to the list up to a certain length. To capture this, class List defines t two state predicates
(see Figure[l): (1) state<n,p,q> gives access to the first n elements of the receiver list with
permissions p on the field next and q on the field val; and (2) state<n,1,p,q> additionally
requires the successor of the n-th element to point to list 1. Both predicates ensure that
the receiver list is at least of length n, because of the test for non-nullness on the next
element (1b!=null). As a consequence, predicate state<n,null,p,q> represents a list of
exact length n.

3For clarity of presentation, these classes are written using a more flexible language than our formal
language. E.g. we allow reading of fields in conditionals and write chains of fields dereferencing.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 19

class List extends Object{
int val; List next;

void init(val v){ val = v; }

void append(int v){
List rec; rec = this;
while(rec.next!=null){ rec = rec.next; }

List novel = new List; novel.init(v); rec.next = novel;
}

void concatenate(List 1,int i){
List rec; rec = this;
while(rec.next!=null){ rec = rec.next; }

while(i>0){ List node = new List; node.init(l.val);

rec.next = node; 1 = l.next; rec = rec.next; i = i-1; }

}

List get(int i){

List res;

if (i==0) res = this;

if(i > 0) res = next.get(i-1);
res;

}
}

FIGURE 4. Implementation of class List

class List extends Object{

public pred state<nat n,perm p, perm g> = (n==0 -* True) *
(n==1 -* [ex List 1. PointsTo(next,p,l) * Perm(val,q)]) *

(n>1 -* [ex List 1b. PointsTo(next,p,lb) * Perm(val,q) *
1b!=null * 1lb.state<n-1,p,q>1);

public pred state<nat n,List 1, perm p, perm gq>
(n==1 -* [PointsTo(next,p,1l) * Perm(val,q)]) *

(n>1 -* [ex List 1b. PointsTo(next,p,lb) * Perm(val,q) *
1b!=null * 1b.state<n-1,1,p,q>1);

}

= (n==0 -* True) *

FIGURE 5. List state predicates

Finally, Figure [6]) provides the method specifications for the methods in class List.
We should note here that in the specifications provided for the methods, the binders for
logical variables are considered implicit. Method init’s postcondition refers explicitly to
the List class. This might look like breaking the abstraction provided by subtyping. How-
ever, because method init is meant to be called right after object creation (new List),
init’s postcondition can be converted into a form that does not mention the List class.

20 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

class List extends Object{

requires init; ensures state@List<1,null,1,1>;

List init(val v)

requires state<i,null,1,g> * i>0; ensures state<i+1l,null,1,g>;
void append(int v)

requires state<j,null,1,q> * j>0 * 1l.state<k,1,g9> * k>=i;
ensures state<j+i,null,1,q> * 1l.state<k,1,q>;

void concatenate(List 1,int i)

requires state<j,p,q> * j>=i * i>=0;

ensures state<i,result,p,g> * result.state<j-i,p,q>;

List get(int i)

}
FIGURE 6. Method contracts of class List

E.g. after calling | = new List and [.init (), the caller knows that List is I’s dynamic
class (recall that s postcondition includes an classof predicate) and can therefore
convert the access ticket [.state@List<1,null,1,1>to [.state<1,null,1,1> (using ax-
iom [(Known Type)|). Because they are standard, we do not detail the proofs of the methods
in class List.

Class MergeSort. Figure [present the mergesort algorithm. Class MergeSort has two
fields: a pointer to the list to be inspected, and an integer indicating how many nodes
to inspect. The algorithm itself is implemented by methods sort and merge. For space
reasons, we omit the full implementation, as it is standard: method sort distinguishes three
cases: (i) if there is only one node to inspect, nothing is done; (ii) if there are only two
nodes to inspect, the value of the two nodes are compared and swapped if necessary; and
(iii) if the list’s length is greater than 2, two recursive calls are made to sort the left and
the right parts of the list. The next section will present both the implementation and the
proof outline of the parallel mergesort algorithm in more detail.

We have proved that mergesort is memory safe (references point to valid memory loca-
tions) and that the length of the sorted list is the same as the input list’s length. We do not
prove, however, that sorting is actually performed. This would require heavier machinery,
because we would have to include mathematical lists in our specification language.

Instances of class MergeSort are parameterized by the number of nodes they have to
inspect. This is required to show that the input list’s length is preserved by the algorithm
after the two recursive calls in method sort ().

In the proof (and also in the proof of the parallel version presented in the next section)
we use two special-purpose axioms. Axiom states that a list of length n can be split
into a list of length m1 and a list of length m2 if (1) m1+m2==n and (2) m1’s tail points to m2’s
head. It can be proved by induction over n. Axiom relates the two versions
of predicate state. This allows - for example - to obtain the access ticket state<1,1,1>
after a call to init (in combination with axiom |(Known Type)).

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 21

class MergeSort<int length> extends Object{

List list; int num;

pred state = PointsTo(list,1,1) * PointsTo(num,1,n) *
1!=null * n >= 1 * n==length * 1l.state<length,1,1>;

requires init * l.state<length,1,1> * i>=1 * i==length * 1l!=null;
ensures state@MergeSort;
init(List 1, int i){ list = 1; num = i; }

requires state; ensures result.state<length,1,1>;
List sort(){ /* uses merge, sorts the elements */ }

requires 1ll.state<lenleft,1,1> * rl.state<lenright,1,1> *
lenleft+lenright==length;

ensures result.state<length,1,1>;

List merge(List 11,int lenleft,List rl,int lenright){ ... }

}

FIGURE 7. Specification of sequential mergesort algorithm

(m1+m2==n * state<n,p,q>) *—*
(ex List 1. state<ml,l,p,q> * l.state<m2,p,q>) (Split)
state<n,l,p,q> —* state<n,p,q> (Forget-tail)

3. SEPARATION LOGIC FOR DYNAMIC THREADS

This section extends Section s language with threads with fork and join primitives, a
la Java. The assertion language and verification rules are extended to deal with these
primitives. The rules support permissions transfer between threads upon thread creation
and termination. The resulting program logic is sound, and its use is illustrated on two
examples: a parallel implementation of the mergesort algorithm and an implementation of
a typical signal-processing pattern.

Convention: In formal material, we use grey background to highlight what are the changes
compared to previous sections.

3.1. A Java-like Language with Fork/Join.

Syntaz. First, we extend the syntax of Section 2ITs language with fork and join primitives.
We assume that class tables always contain the declaration of class Thread, where class
Thread contains methods fork, join, and run:

class Thread extends Object{
final void fork();

final void join();

void run() { null }

}

22 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

As in Java, the methods fork and join are assumed to be implemented natively and
their behavior is specified by the operational semantics as follows: o.fork() creates a new
thread, whose thread identifier is o, and executes o.run() in this thread. Method fork
should not be called more than once on o. Any subsequent call results in blocking of the
calling thread. A call 0.join() blocks until thread o has terminated. The run-method is
meant to be overridden, while methods join and fork cannot be overridden (as indicated
by the final modifiers). In Java, fork and join are not final, because in combination
with super calls, this is useful for custom Thread classes. However, we leave the study of
overrideable fork and join methods together with super calls as future work.

Runtime Structures. In Section [2.2] our operational semantics —; is defined to operate on
states consisting of a heap, a command, and a stack. To account for multiple threads, states
are modified to contain a heap and a thread pool. A thread pool maps object identifiers
(representing Thread objects) to threads. Threads consist of a thread-local stack s and

a continuation c¢. For better readability, we write “s in ¢” for threads ¢t = (s,c), and
“opisty| -+ | onist,” for thread pools ts = {01 = t1,...,0, > t, }:
t € Thread = Stack x Cmd = sinc
ts € ThreadPool = Objld — Thread == ojisty | - | 0y isty
st € State = Heap x ThreadPool

Initialization. The definition of the initial state of a program is extended to account for
multiple threads. Below, main is some distinguished object identifier for the main thread.
The main thread has an empty set of fields (hence the first (), and its stack is initially
empty (hence the second 0):

init(c) = ({main — (Thread, ()}, mainis (§ in c))

Semantics. The operational semantics defined in Section is straightforwardly modi-
fied to deal with multiple threads. In each case, one thread proceeds, while the other
threads remain untouched. In addition, to model fork and join, we change the reduction

step |(Red Call)|to model that it does not apply to fork and join. Instead, fork and join
are modeled by two new reductions steps ((Red Fork)| and |(Red Join))):

State Reductions, st —.; st':
1 1

Red Call m fork, join
() #{ join}
h(0); = C<7> mbody(m, C<7>) = (10;7).cn. ¢ = ¢m|0/10,7/7)
(h, ts | pis (sinl=0.m(0); ¢)) = (h, ts|pis(sinl < c; c))
h(0)1 = C<@> o ¢ (dom(ts) U {p})
(Red Fork) mbody(run, C<7>) = (1).¢, ¢, = ¢r[0/1]
(h, ts | pis (sinf=0.fork(); c)) — (h, ts|pis (sinf=null;c)|ois (D inc,))
(Red Join)
(h, ts | pis (sinf=0.join(); c) | 0is (s’ inv)) —
(h, ts | pis (sin€=null;c) | ois (s inv))

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 23

In a new thread o is forked. Thread o’s state consists of an empty stack ()
and command ¢,. Command ¢, is the body of method run in o’s dynamic type where the
formal receiver this and the formal class parameters have been substituted by the actual
receiver and the actual class parameters. In thread p joins the terminated thread
0. Our rule models that join finishes when o is terminated, i.e., its current command is
reduced to a single return value. However, notice that the semantics blocks on an attempt
to join o, if 0 has not yet been started. This is different from real Java programs.

3.2. Assertion Language for Fork/Join. This section extends the assertion language
to deal with fork and join primitives. To this end, we introduce a Join predicate that
controls how threads access postconditions of terminated threads. We also introduce groups,
which are a restricted class of predicates.

3.2.1. The Join predicate. To model join’s behavior, we add a new formula Join(e,7) to
the assertion language. The intuitive meaning of Join(e,) is as follows: it allows one
to pick up fraction w of thread e’s postcondition after e terminated. As a specific case,
if 7 is 1, the thread in which the Join predicate appears can pick up thread e’s entire
postcondition when e terminates. Thus this formula is used (see Section B3) to govern
exchange of permissions from terminated threads to alive threads:

F == ... | Join(e,m) | ...

Notice that the same approach can be used to model other synchronisation mechanisms
where multiple threads can obtain part of the shared resources.

When a new thread is created, a Join predicate is emitted for it. To model this,
we redefine the init predicate (recall that init appears in s postcondition) for
subclasses of Thread and for other classes. We do that by (1) adding the following clause
to the definition of predicate lookup:

plkup(init, Thread) = pred init=Join(this, 1) ext Object
and (2) adding C # Thread as a premise to the original definition [(Plkup init)|l Intuitively,

when an object o inheriting from Thread is created, a Join(o, 1) ticket is issued.

Augmented Heaps. To express the semantics of the Join predicate, we need to change our
definition of augmented heaps. Recall that, in Section 2.3.1] augmented heaps were pairs of
a heap and a permission table of type Objld x Fieldld — [0, 1]. Now, we modify permission
tables so that they have type Objld x (Fieldld U {join}) — [0, 1]. The additional element in
the domain of permission tables keeps track of how much a thread can pick up of another
thread’s postcondition. Obviously, we forbid join to be a program’s field identifier.

In addition, we add an additional element to augmented heaps; so that they become
triples of a heap, a permission table, and a join table J € Objld — [0, 1]. Intuitively, for a
thread o, J (o) keeps track of how much of o’s postcondition has been picked up by other
threads: when a thread gets joined, its entry in J drops. The compatibility and joining
operations on join tables are defined as follows:

J#T M T=79 T*J =27

24 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Because # is equality, join tables are “global”: in the preservation proof, all aug-
mented heaps will have the same join tabldl. As usual, we define a projection operator:
(h77)7 j)join é j

Further, we require augmented heaps to satisfy these additional axioms:

(¢) For all o ¢ dom(h) and all f (including join), P(o, f) = 0 and J (o) = 1.
(d) Yo.P(o,join) < J(0).

Axiom ensures that all unallocated objects have minimal permissions, which is
needed to prove soundness of the verification rule for allocating new objects. Axiom @
ensures that a thread will never try to pick up more than is available of a thread’s postcon-
dition.

Semantics. We update the predicate environments with an axiom to ensure that when a
thread is joined, its corresponding entry drops in all join tables. The semantics of the Join
predicate is as follows:

I'F(h,P,J);s [Join(e,m) iff [e]* =0 and [] < P(o, join)

Aziom. In analogy with the PointsTo predicate, we have a split/merge axiom for the Join
predicate:

I';v F Join(e,) *— (Join(e, 5) * Join(e, 5)) (Split/Merge Join)

3.2.2. Groups. In order to ensure that multiple threads can join a terminated thread, we
introduce the notion of groups. Groups are special predicates, denoted by keyword group
that satisfy an additional split/merge axiom. Formally, group desugars to a predicate and
an axiom:
= s pred P<T'z>=F;
< >= = — _

group P<l'z>=F axiom P<Z> % (P<split(T,Z)>* P<split(T,%)>)
where split is extended to pairs of type and parameter, so that it splits parameters of type
perm and leaves other parameters unchanged:

' a [split(z) iff T' = perm
split(T,z) = { otherwise

The meaning of the axiom for groups is as follows: (1) splitting (reading *-* from left
to right) P’s parameters splits predicate P and (2) merging (reading *-* from right to left)
P’s parameters merges predicate P.

AThis suggests that join tables could be avoided all together in augmented heaps. It is unclear, however,
if an alternative approach would be cleaner because rules [(State)| [(Cons Pool)| and |(Thread)| would need
extra machinery.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 25

3.3. Contracts for Fork and Join. Next, we discuss how the verification logic for the
sequential language, presented in Section is adapted to cater for the multithreaded
setting with fork and join primitives. Since we can specify contracts in the program
logic for fork and join in class Thread, we do not need to give new Hoare rules for them.
Instead, rules for fork and join are simply instances of the rule for method call
The contracts for fork and join model how permissions to access the heap are exchanged
between threads. Intuitively, newly created threads obtain a part of the heap from their
parent thread. Dually, when a terminated thread is joined, (a part of) its heap is transferred
to the joining thread(s).

Class Thread. In SectionB.I] we introduced class Thread but did not give any specifications.
Class Thread is specified as follows:

class Thread extends Object{

pred preFork = true;
group postJoin<perm p> = true;

requires preFork; ensures true;
final void fork();

requires Join(this,p); ensures postJoin<p>;
final void join();

final requires preFork; ensures postJoin<1>;
void run() { null }

¥

Predicates preFork and postJoin describe the pre- and postcondition of run, respec-
tively. Notice that the contracts of fork, join, and run are tightly related: (1) fork’s
precondition is the same as run’s precondition and (2) run’s postcondition is the predicate
postJoin<1> while join’s postcondition is postJoin<p>. Point (1) models that when a
thread is forked, part of the parent thread’s state is transferred to the forked thread. Point
(2) expresses that threads joining a thread pick up a part of the joined thread’s state. The
fact that permission p appears both as an argument to Join and to postJoin (in join’s
contract) models that joining threads pick up that part of the terminated thread’s state
which is proportional to Join’s argument. Because one Join(o, 1) predicate is issued per
thread o, and this cannot be duplicated, our system enforces that all threads joining o to-
gether do not pick up more than thread o’s postcondition. The signal-processing example
below illustrates reasoning about multiple joins.

Notice that defining postJoin as a group is needed because join’s postcondition
(i.e., postJoin) is split among several threads, and by declaring it as a group, we make
sure that this splitting is sound.

Although method run is meant to be overridden, we require that method run’s contract
cannot be modified in subclasses of Thread (as indicated by the final modifier). Subclasses
are able to redefine preFork and postJoin and add parameters to customize the specifi-
cation. In our examples, this proved to be convenient, however we have not investigated
consequences of this choice on more intricate examples. Enforcing run’s contract to be
fixed allows to express that join’s postcondition is proportional to the second parameter of
Join’s predicate in an easy way (because we can assume that run’s postcondition is always
postJoin<1>).

26 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Since run’s contract is fixed, run’s contract cannot be parameterized by logical param-
eters. But this is unproblematic; in fact it would be unsound to allow logical parameters
for method run. As run’s pre and postconditions are interpreted in different threads, one
cannot guarantee that logical parameters are instantiated in a similar way between callers
to fork and callers to join. Hence, logical parameters have to be forbidden for run.

We highlight that method run can also be called directly, without forking a new thread.
Our system allows such behavior which is used in practice to flexibly control concurrency
(cf Java’s Executors [Mid]).

Alternative Solutions. Alternatively, we could allow arbitrary contracts for run, as we did
in our earlier AMAST paper [HHO08a]. Yet another solution would be to combine (1) our
approach of specifying fork, join, and run with predicates in class Thread and (2) to use
scalar multiplication as a new constructor for formulas (i.e., not a derived form) to express
that run’s postcondition can be split among joiner threads. This solution, however, requires
a thorough study, because having scalar multiplication as a new constructor for formulas
may raise semantical issues (as studied by Boyland [Boy07]). Finally, as we stated before,
our rule is slightly different from the Java behaviour when a thread tries to join
a thread which is not in the thread pool. The contracts proposed here for fork, join and
run are adapted in [ABD¥14] for real Java programs.

3.4. Verified Programs. To extend the definition of a verified program to the multi-
threaded setting, we have to update Section [2.5's rules for verified programs to account for
multiple threads. First, we craft rules for thread pools:

/!
(Empty Pool) HEt:o H Ets:o
HED:o H*xH' Ft]ts:o

For sequential programs, the core rule extended Hoare triple judgments to states. In the

multithreaded setting, this is done in two steps: (1) the rule for states ensures that there

exists an augmented heap H to satisfy the thread pool t¢s, and (2) a rule for individual

thread states corresponds to the original state rule for sequential programs (as defined in
Section [2Z.0]). The new state rule looks as follows.

h = Hnp HEts: ¢
(h, ts) : o
The rule for individual threads additionally has to model that threads have a fraction

of postJoin<1> as postcondition. Therefore, we introduce symbolic binary fractions that
represent numbers of the forms 1 or > 7" ; bit; - %

bit € {0,1} bits € Bits ::== 1 | bit, bits fr € BinFrac == all | fr() | fr(bits)

Intuitively, we use symbolic binary fractions to speak about finite formulas of the form
r.P<1> * r.P<%> * T.P<%> * ... Formally, we define the scalar multiplication fr - r.P<w> as

(Cons Pool)

(State)

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 27

follows:
all - r.P<m> = r.P<m>

fr() -

fr(1) - r.P<m> = r.P<split(m)>

fr(0, bits) - r.P<m> = fr(bits) - r.P<split(m)>

fr(1, bits) - r.P<m> = r.P<split(m)> *fr(bits) - r.P<split(m)>

For instance, fr(1,0,1) - r.P<1> *-x (r.P<%> *r.P<%>). The map [-] : BinFrac
— Q interprets symbolic binary fractions as concrete rationals:

21 [FO]20 [fr)] 2L

[fr(0, bits)] = L[fr(bits)] [fr(1, bits)] = L + L[fr(bits)]
Now, the rule for individual threads is as follows:
Hioin(0) < [fr] TrHo:T" T'I"Fs:o cfv(c)Ndom(I') =0
Dlo|F & H;s = Flo] T,T;rt{F}c:void{ fr - o.postJoin<1> }
HEois(sinc):o

In rule fr should be bigger than the thread considered’s entry in the global
join table (condition Hjein(0) < [fr]). This forces joining threads to take back a part
of a terminated thread’s postcondition which is not larger than the terminated thread’s
“remaining” postcondition. This follows from the semantics of the Join predicate and
the semantics of join tables: T' = (h,P,J);s = Join(e,m) holds iff [e]* = o and [r] <
P(0, join). Moreover, we have that P (o, join) < J(0) (see axiom [(d)] on page 24).

As in Section 28] we have shown that the preservation theorem (Theorem 2:4]) holds,
and we have shown that verified programs satisfy the following properties: null error freeness
and partial correctness. To adapt the proof of Theorem 2.4 to our new settings the only
change for existing cases is that there is an extra level of indirection between the top level
augmented heap and the augmented heap for each thread regarding this fact that states
in multithreading settings include a thread pool. Then using this fact that the proof tree
for (st : ©) ends in an application of preceded by an application of
preceded by an application of we do case analysis for two additional reduction rule
[(Red Fork)land |[(Red Join)l The other cases remains the same (details in [Hur09, Chap. 6]).

In addition, verified programs are data race free. A pair (hc, h¢') of head commands
is called a data race iff hc = (o.f =v) and either h¢’ = (o.f =v") or h¢’ = ({=0.f) for some
o, f,v, v L.

Theorem 3.1 (Verified Programs are Data Race Free). If (ct,c) : o and init(c) —%,
st = (h, ts | o1 is (s1in hey;er) | o2 is (s in hea;ca)), then (hey, hes) is not a data race.

r.P<m> = true

(Thread)

Proof. By init(c) : ¢ (Lemma 23] and the adapted preservation theorem (Theorem 2.4]),
we know that (st : ¢). Suppose, towards a contradiction, that (hcy, heo) is a data race. An
inspection of the last rules of (st : ©)’s derivation reveals that there must be augmented heaps
H,H' and a heap cell o.f such that: H F o1 is (s1in heyser) 1o, H B ogis (s2in hea;es) : o,
HH#H', Hperm(o0, f) = 1 and Hj,, (0, f) > 0. But then Hperm(o, f) + Hperm (0, f) > 1, in
contradiction to H#H'.

U

28 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

class MergeSort<int length> extends Thread{
List list; int num;
void init(List 1, int i){ list = 1; num = i; }
void run(){

if (num == 1){}

else{ if (num == 2){

if(list.val > list.next.val){

int lval = list.val; list.val = list.next.val; list.next.val = lval,;
} else{

if (num > 2){

int lenleft; int lenright;

if(num % 2 == 0){ lenleft = num / 2; lenright = lenleft; }
else { lenleft = (num - 1) / 2; lenright = lenleft + 1; }

List tail = list.get(lenleft);
MergeSort<lenleft> left = new MergeSort;
left.init(list,lenleft); left.fork();
MergeSort<lenright> right = new MergeSort;
right.init(tail,lenright); right.fork();
left.join(); right.join(); merge(left,right);
133
void merge (MergeSort left, MergeSort right){ .../* standard */ %}
}

FIGURE 8. Implementation of parallel mergesort algorithm

class MergeSort<int length> extends Thread{

pred preFork = PointsTo(list,1,1) * PointsTo(num,1,n) *

1'=null * n >= 1 * n==length * 1l.state<length,1,1>;

group postJoin<perm p> = PointsTo(list,p,l) * PointsTo(num,p,n) *
1'=null * n >= 1 * n==length * 1l.state<length,p,1>;

requires init * l.state<length,1,1> * length>=1 * i==length * 1!=null;
ensures Join(this,1) * preFork@MergeSort;
void init(List 1, int i) {...}

requires preFork; ensures postJoin<i1>;
void run() {...}

requires Perm(list,1) * left.postJoin<1> * right.postJoin<1> * nl+nr==length;
ensures PointsTo(list,1,1) * l.state<length,1,1>;

void merge(MergeSort<nl> left, MergeSort<nr> right) {...}

}

FIGURE 9. Specification of class MergeSort (parallel version)

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 29

3.5. Examples of Reasoning. To illustrate the use of verification system in a multi-
threaded setting, we discuss two examples here. First we discuss the verification of a parallel
implementation of mergesort, concentrating in particular on on the changes in specification
and verification because of the use of threads. Second we discuss the verification of a typical
digital signal-processing algorithm using multiple joins.

Parallel Mergesort. The parallel mergesort algorithm is a perfect example of disjoint paral-
lelism, because the different threads all modify the same list simultaneously but in different
places. Figure[8]shows the parallel mergesort implementation, spread over the methods run
and merge. It reuses class List from Section Similar to the sequential implementation,
the class has two fields: a pointer to the list to be inspected, and an integer indicating how
many nodes to inspect. Again, method run distinguishes three cases, however, in the third
case, two new threads are created to sort the left and the right parts of the list, and the
parent thread waits for the two new threads and merges their results. Figure [@ shows the
adapted specifications for the parallel version.

Finally, Figure [I0 outlines the correctness proof of method run. It illustrates how in
the recursive case, the two child threads both receive access to part of the parent thread’s
list. We use the (Split) axiom (defined in Section [2.6)) to specify this behaviour in the proof.
This requires some arithmetic reasoning, because threads all have access to the same global
list, but then we can conclude that each thread’s access is confined to a limited number of
nodes in the list.

Data Plotter. Our next example uses a typical pattern of signal-processing applications to
demonstrate how we reason about multiple joins to the same thread. The application has
four threads: a sampler, filter processes A and B, and a plotter. The sampler collects the
raw data and delivers it to the two processors, which process the raw data in parallel, and
stores their results in an appropriate field. Finally, the plotter prints all data (raw and
processed). What is important for our example is that both processes A and B join the
sampler process, to obtain (read) access to the raw data. To store the data, Figure [
extends class List to contain multiple values. The list structure is captured by predicate
mvstate<n,p>, which defines a list with length n and permission p on all the fields of each
node of the list. This predicate is defined in terms of predicates state, adata, bdata and
plt. Predicate state<n,p/4,p> is inherited from class List; it provides permission p/4 to
the links and permission p to the field val of each node in the list. Similarly, adata and
bdata define permissions to probe the list and access the fields outa and outb, respectively.
Finally the predicate plt provides permissions to visit all nodes in the list.

Figures and [13] show the Sampler thread and process A, respectively, with a proof
outline for method run of process A. This shows how process A exchanges the half join
ticket on Sampler for half of the postJoin predicate. Process B is not given, as it similar
process A. For space reason, we also do not give the code for the plotter: essentially it joins
processes A and B to obtain full access to all data.

Figure [[4] shows the main application, with a proof outline of the process method.
Fach thread issues a Join(this, 1) ticket upon initialization. Method process splits the
ticket emitted by the sampler and passes each half to the processing threads. Additionally,
the join-tickets for the processing threads are transferred to the plotter. The method then
waits for the plotter to finish, after which it obtains all permissions on the list back again.

30 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Let F be the abbreviation of PointsTo(list,1,1) * PointsTo(num,1,n))
{F % 1!=null * n >= 1 * l.state<length,1,1> * n==length }
if (aum > 2){
int lenleft; int lenright;
if(num % 2 == 0){
lenleft = num / 2; lenright = lenleft;
((Split) aziom with ml == m2 == n/2 == lenleft == lenright)
{F *xn>2 % n==length *
1l.state<lenleft,r,1,1> * r.state<lenright,1,1> * lenleft+lenright==length }
} else { lenleft = (num - 1) / 2; lenright = lenleft + 1;
((Split) aziom with ml == (n-1)/2 and m2==[(n-1)/2]+1)
{F *xn>2 % n==length *
1l.state<lenleft,r,1,1> * r.state<lenright,1,1> * lenleft+lenright==length }
}
(In both cases, we have:)
{F *n > 2 % n==length *
1l.state<lenleft,r,1,1> * r.state<lenright,1,1> * lenleft+lenright==length }
((Split) axztom from right to left)
{ F *xn>2 % n==length * l.state<n,1,1> * lenleft+lenright==length }
(Thts matches get’s precondition, because 1/ n>=lenleft follows from
lenleft+lenright==1length and 2/ lenleft>=0 follows from
num==length and length>=0 (not shown in this proof outline).)
List tail = list.get(lenleft);
(Let G be the abbreviation of n>2 * lenleft+lenright==length * n==length)
{F * G * 1.state<lenleft,tail,1,1> * tail.state<n-lenleft,1,1> }
(aztom (Forget-tail) and arithmetic (n-lenleft==lenright))
{F * G *x 1.state<lenleft,1,1> * tail.state<lenright,1,1> }
MergeSort<lenleft> left = new MergeSort; left.init(list,lenleft);
{ F x G *x tail.state<lenright,1,1> * left.preFork * Join(left,1) }
left.fork();
{ F * G * tail.state<lenright,1,1> * Join(left,1) }
MergeSort<lenright> right = new MergeSort; right.init(tail,lenright);
right.fork();
{F x G * Join(left,1) * Join(right,1) }
left.join();
{ F * G *x left.postJoin<1> * Join(right,1) }
right.join(Q);
{ F * G *x left.postJoin<1> * right.postJoin<i> }
(This matches merge’s precondition because (1) the type system
tells us: left : MergeSort<lenleft> and right : MergeSort<lenright>
(2) F entails Perm(list,1), and
(3) G entails lenleft+lenright==length)
merge (left,right);
{ F x G * 1l.state<length,1,1> }
(Close)
{ postJoin<i> }

F1cURE 10. Correctness proof of method run in class MergeSort

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 31

Notice that this enables the main thread to iterate on the whole processing chain (not shown
here).

4. SEPARATION LOGIC FOR REENTRANT LOCKS

This section presents verification rules for Java’s reentrant locks. Together with fork and
join, reentrant locks are a crucial feature of Java for multithreaded programs. In particular,
locks serve to synchronize threads and to control access to resources.

Reentrant locks can be acquired more than once by the same thread. They are a
convenient tool for programmers, but they also require extra machinery in the verification
system, because initial acquirements have to be distinguished from reentrant acquirements.

After a short background discussion on modeling single-entrant locks in separation logic,
we discuss how syntax and semantics are extended to model reentrant locks. We develop
appropriate verification rules, and discuss how their soundness can be proven. We finish the
section by some examples that illustrate reasoning about re-entrant locks and the wait-notify
mechanisms.

4.1. Separation Logic and Single-Entrant Locks. Separation logic for a programming
language with locks as a concurrency primitive has been first explored by O’Hearn [O"HOT]
in which he elegantly adapted an old idea from concurrent programs with shared variables
[And91]. Each lock is associated with a resource invariant that describes the part of the
heap that the lock guards. When a lock is acquired, it lends its resource invariant to the

class MVList extends List {
int outa; int outb;

public pred adata<nat n, perm p, perm gq> = (n==0 —-* true) *

(n==1 -* [ex List 1. PointsTo(next, p, 1) * Perm(outa,q)]) *
(n>=1 -* [ex List 1. PointsTo(next, p, 1) * Perm(outa,q)] *
1!'=null * l.adata<n-1,p,q>);

public pred bdata<nat n, perm p, perm gq> = (n==0 -* true) *

(n==1 -* [ex List 1. PointsTo(next, p, 1) * Perm(outb,q)]) *
(n>=1 -* [ex List 1. PointsTo(next, p, 1) * Perm(outb,q)]
1!'=null * l.bdata<n-1,p,q>);

*

public pred plt<nat n, perm p> = (n==0 —* true) *
(n==1 -* [ex List 1. PointsTo(next, p, 1) 1) *
(n>=1 -* [ex List 1. PointsTo(next, p, 1)] *
1!=null * 1.plt<n-1,p>);

public pred mvstate<nat n,perm p> = super.state<n,p/4,p> *
adata<n,p/4,p> * bdata<n,p/4,p> * plt<n,p/4>;

FiGURE 11. Multi-valued list extending class List

32 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

class Sampler<int len> extends Thread {
MVList<len> 1st;

pred preFork = PointsTo(lst,1,1) * 1!=null * l.state<len,1/4,1>;
group postJoin<perm p> = PointsTo(lst,p,1l) * 1l!=null * l.state<len,p/4,p>;

requires init * Perm(lst,1) * 1l!=null;
ensures Join(this,1) * PointsTo(lst,1,1) * 1!'=null * 1l.state<len,1/4,1>;
void init(MVList 1) { 1st = 1; }

requires preFork; ensures postJoin<i>;
void run() { sample(); %}

requires lst.state<len, 1/4, 1>; ensures lst.state<len,1/4, 1>;
void sample() { ... /*(ftlls raw data fields (vals) with samples)*/ }

}

FIGURE 12. The Sampler thread

class AFilter<int len> extends Thread {
MVList<len> 1lst; Sampler<len> sampler;

pred preFork = PointsTo(lst,1,1) * 1!=null * l.adata<len,1/4,1> *
Perm(sampler,1) * Join(sampler,1/2) ;

group postJoin<perm p> = Perm(sampler,p) * PointsTo(lst,p,1l) * 1l!=null *
1l.state<len,p/8,p/2> * l.adata<len,p/4,p>;

requires init * Perm(sampler,1) * Perm(lst,1) * l.adata<len,1/4,1> * 1!=null;
ensures Join(this,1) * lst.adata<len,1/4,1> * len >= 1 * lst!=null;
void init(MVList 1, Sampler s) { lst = 1; sampler = s; }

requires preFork; ensures postJoin<1>;

void run() {

{ Join(sampler,1/2) * lst.adata<len,1/4,1> }
sampler.join();

{ 1lst.state<len,1/8,1/2> * 1lst.adata<len,1/4,1> }
processAQ);

{ 1lst.state<len,1/8,1/2> * 1lst.adata<len,1/4,1> }
}

requires lst.state<len,p,q> * lst.adata<len,r,1>;
ensures lst.state<len,p,g> * lst.adata<len,r,1>;
void processA() { ... /* using raw data computes outa fields. */ }

}

FIGURE 13. Processing thread A

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 33

class Process<int len> extends Object{
MVList<len> data;

requires Perm(data,1) * 1l!=null * 1l.mvstate<len,1>;
ensures PointsTo(data,1,1) * 1!=null * 1l.mvstate<len,1>;
void init(MVList 1) { data = 1; }

requires PointsTo(data,1,1) * 1 !=null * 1l.mvstate<len,1>;
ensures PointsTo(data,1,1) * 1 !=null * 1.mvstate<len,1>;
void process(MVList 1lst) {
(Let abbreviate: data.state<len,1/4,1> with S, data.adata<len,1/4,1> with A
data.bdata<len,1/4,1> with B, data.plt<len,1/4> with P
{S*xAx*xB=x*P}
Sampler<len> smp = new Sampler; smp.init(data);
{ Join(smp,1) * smp.preFork * A * B * P }
AFilter<len> af = new AFilter; af.init(data, smp);
{ Join(smp,1/2) * Join(af,1) * smp.preFork * af.preFork * B * P }
BFilter<len> bf new BFilter; bf.init(data, smp);
{ Join(af,1) * Join(bf,1) * smp.preFork * af.preFork * bf.preFork * P }
Plotter<len> plt = new Plotter; plt.init(data,af,bf);
{ Join(plt,1) * smp.preFork * af.preFork * bf.preFork * plt.preFork }
smp.fork(); af.fork(); bf.fork(); plt.fork();
{ Join(plt,1) }
plt.join();
{ plt.postJoin<i> }

}

FIGURE 14. The main process

acquiring thread. Dually, when a lock is released, it takes back its resource invariant from
the releasing thread. This is formally expressed by the following Hoare rules:

1 is x’s resource invariant 1 is x’s resource invariant
{true}z.lock O{I} {I}z.unlock () {true}
While these rules are sound for single-entrant locks, they are unsound for reentrant
locks, because they allow “duplicating” a lock’s resource invariant:

{ true }

x.lock(); // I is x’s resource invariant
{7}

z.lock();

{ I*I } < wrong!

4.2. A Java-like Language with Reentrant Locks. To recover soundness in the pres-
ence of reentrant locks, we design proof rules that distinguish between initial acquirement
and reentrant acquirement of locks. This allows transferring a lock’s resource invariant to

34 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

an acquiring thread only at initial acquirement. In contrast to existing work that studies

simple ”"while” languages and ” C-like” languages [O’HQO7, [HANOS, [GBCT07], we also handle

reentrancy.

Syntaz. First we extend the syntax and the semantics of our Java-like language to model
reentrant locks. We extend the list of head commands defined in Section 2] as follows:

he € HeadCmd == ... | v.lock() | v.unlock() |

Just as class invariants must be initialized before method calls, resource invariants
must be initialized before the associated locks can be acquired. In O’Hearn’s simple concur-
rent language [O'HOT], the set of locks is static and initialization of resource invariants is
achieved in a global initialization phase. This is not possible when locks are created dynam-
ically. Conceivably, we could tie the initialization of resource invariants to the end of object
constructors. However, this is problematic because Java’s object constructors are free to
leak references to partially constructed objects (e.g., by passing this to other methods).
Thus, in practice we have to distinguish between initialized and uninitialized objects seman-
tically. Furthermore, a semantic distinction enables late initialization of resource invariants,
which can be useful for objects that remain thread-local for some time before getting shared
among threads.

Therefore, we distinguish between fresh locks and initialized locks. A fresh lock does not
yet guard its resource invariant and thus it is not ready to be acquired yet. An initialized
lock, however, is ready to be acquired. Initially, locks are fresh and they might become
initialized later (and then will remain initialized). We require programmers to explicitly
change the state of locks (from fresh to initialized) with a commit command:

sc € SpecCmd == ... | 7m.commit | ...

Operationally, 7.commit is a no-op; semantically it checks that 7 is fresh and changes 7’s
state to initialized. For expressiveness commit’s receiver ranges over specification variables,
which include both program variables and logical variables (such as class parameters). In
real-world Java programs, a possible default would be to add a commit command at the
end of constructors.

We assume that class tables always contain the following class declaration:

class Object {

pred inv = true;

final void wait();
final void notify();
final void notifyAll();
}

The distinguished inv predicate assigns to each lock a resource invariant. The definition
true is a default and objects meant to be used as locks should extend inv’s definition in
subclasses of Object (just like any other abstract predicate). As usual [O"HO7], the resource
invariant o.inv can be assumed when o’s lock is acquired non-reentrantly and must be
established when o’s lock is released with its reentrancy level dropping to 0.

The methods wait, notify and notifyAll do not have Java implementations, but are
implemented natively. To model this, our operational semantics (page B6l) specifies their

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 35

I € LockTable = Objld — {free} W (Objld x N) (Lock Table)
st € State = Heap x LockTable x ThreadPool (States)
init(c) = ({main — (Thread,?)}, @, mainis (§ inc)) (Initialization)

FIGURE 15. Run-time structure, states and initialization in presence of locks

behavior explicitly. If o.wait () is called when object o is locked at reentrancy level n, then
o’s lock is released and the executing thread temporarily stops executing. If o.notify()
is called, one thread that is stopped (because this thread called o.wait() before) resumes
and starts competing for o’s lock. When a resumed thread reacquires o’s lock, its previous
reentrancy level is restored. The method notifyAll performs similar to notify except
that it resumes all the waiting threads. Since we can specify method contracts for wait and
notify, we do not put them in our set of commands (see Section [44]). In contrast, lock,
unlock, and commit are put in our set of commands, because the Hoare rules for these
methods cannot be expressed using the syntax of contracts available to programmers: we
need extra expressivity (see Section [£.4]).

Runtime Structures and Initialization. To represent locks in the operational semantics, we
use a lock table. Lock tables map objects o to either the symbol free, or to the thread object
t that currently holds o’s lock and a number that counts how often ¢ currently holds o.
Accordingly states and the initial state of a program are extended with a lock table (see
Figure [[H). Initially, the lock table of a program is empty (hence the second ().

Operational Semantics. We modify the operational semantics defined in Section [B.1] to
deal with locks. To represent states in which threads are waiting to be notified, we could
associate each object with a set of waiting threads (the “wait set”). However, we prefer
to avoid introducing yet another runtime structure, and therefore represent waiting states
syntactically as special head commands:

he == ... | owaiting(n) | o.resume(n) |
Restriction: These clauses must not occur in source programs.

If thread p’s head command is o.waiting(n), then p is waiting to be notified. If thread
p’s head command is o.resume(n), then p has been notified to resume competition for o’s
lock at reentrancy level n, and is now competing for this lock.

Below we list the existing cases of the operational semantics that are slightly modi-
fied: |(Red New)| and [(Red Call)} and the cases that are added: [(Red Lock)| [(Red Unlock)]
(Red Wait)| [(Red Notify)| [(Red Skip Notify), [(Red Notity All)l [(Red Skip Notify All)| and
(Red Resume)l Except that a lock table is added, most of the existing cases of the opera-
tional semantics are left untouched.

State Reductions, st —,; st':
1 1

o ¢ dom(h) h' = hlo +— (C<@>,initStore(C<7>))]

(Red New) s’ =s[l— o] I'=l]owr free]

(h, L,ts|pis(sinf=new C<7>; c)) — (W, ', ts|pis(s'inc))

36 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Red Call) m ¢ {fork, join, wait,notify,notifyAll }
h(0); = C<7> mbody(m, C<7>) = (19,7).c,. ¢ = ¢m[0/10,7/7)
(h, L,ts|pis(sinl=0m(@);c)) = (h, L,ts|pis(sinfl«c;c))
(Red Lock) (I(0) = free, I" =1[o+ (p,1)]) or (I(0) = (p,n), I' =10 (p,n+1)])
(h, I, ts | pis (sin 0.lock(); ¢)) — (h, I/, ts| pis (sinc))
l(0)=(p,n) n=1=1 =llow free
(Red Unlock) n>1=1=Io~ (p,n—1)]
(h, I, ts | pis (s in o.unlock(); ¢)) — (h, ', ts | pis (sinc))
(Red Wait) (o) = (p,n) ' =10 free]
(h, 1, ts | pis (sin £=0waitQ); ¢))
— (h, U, ts | pis (s in o.waiting(n); o.resume(n); c))
(Red Notify) (o) = (p,n)
(h, 1, ts | pis (sin £=0mnotify(); ¢) | ¢is (s’ in o.waiting(n’); ¢’))
= (h, I, ts|pis(sinec)|qis (s inc))
(Red Notify All) (o) = (p,n)
(h, I, ts | pis (sin £=0notifyAl1(); ¢) | qis (' in o.waiting(n'); ')
— (h, I, ts | pis (sin £=0mnotifyAll(); c) | qis (s' in))
(Red Skip Notify) (o) = (p,n)
(h, I, ts | pis (sin £=0mnotify(); ¢)) — (h, I, ts|pis (sinc))
(Red Skip Notify All) (o) = (p,n)
(h, I, ts | pis (sin £=0mnotifyAl1(); ¢)) — (h, [, ts|pis (sinc))
(Red Resume) (o) =free I’ =1[o— (p,n)]
(h, I, ts | pis (sin o.resume(n); ¢)) — (h, ', ts | pis (sin c))

Rule distinguishes two cases: (1) lock o is acquired for the first time (I(0) =
free) and (2) lock o is acquired reentrantly (I(o) = (p,n)). Similarly, rule
distinguishes two cases: (1) lock o’s reentrancy level decreases but o remains acquired
(I(o) = (p,n) and n > 1) and (2) lock o is released (I(0) = (p,1)). Rule [(Red Wait)
fires only if the thread considered previously acquired wait’s receiver. In this case, wait’s
receiver is released and the thread enters the waiting state. The thread’s reentrancy level
is stored in waiting’s argument.

Like rule [[Red Wait)] the rules [[Red Notify)| [Red Notify All)| [[Red Skip Notify)| and
[(Red Skip Notify All)|fire only if the thread considered previously acquired notifyAl1()’s
receiver. The rules|(Red Notify)|and|(Red Notify All)|fires if there exists at least one thread
waiting on notify’s receiver. In case of|(Red Notify)| one of the waiting threads (arbitrarily)
is resumed, while [(Red Notify All)| awakes all the waiting threads. If there is no thread
waiting on notify’s receiver, based on the calling command, either [(Red Skip Notify)| or
[(Red Skip Notify All)|fires. In this case, the call to notify and notifyAll has no effect on
other threads. In Java, if o.wait (), o.notify () and o.notifyAl1() are called by a thread
that does not hold o, an I1legalMonitorState exception is raised. In our semantics, this
is modeled by being stuck. In Section [4.4] we will give preconditions for wait and notify
that ensure that verified programs would never throw an I1legalMonitorState exception

(got stuck in our model). Rule [(Red Resume)| resumes a thread that previously waited on

some lock and restores the reentrancy level.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 37

4.3. Separation Logic for Reentrant Locks. In this section, we describe the new for-
mulas that we add to the specification language of Section

As explained earlier, a proof system for reentrant locks must keep track of the locks
that the current thread holds. To this end, we enrich our specification language:

m€SpecVal == ... | nil | -7 |
F € Formula == ... | Lockset(w) | mcontainse |

It is convenient to allow using objects as singleton locksets (rather than introducing ex-
plicit syntax for converting from objects to singleton locksets). We classify the new formulas
into copyable and non-copyable ones. Copyable formulas represent persistent state proper-
ties (i.e., properties that hold forever, once established), whereas non-copyable formulas
represent transient state properties (i.e., properties that hold temporarily). For copyable F,
we postulate the axiom (G & F) —x (G * F), whereas for non-copyable formulas we postu-
late no such axiom. Note that this axiom implies F'—* (F' * F'), hence the term “copyable”.
The new specification values and formulas have the following intuitive meaning:

e nil: the empty multiset.

e 71 - 7': the multiset union of multisets m and 7’

e Lockset(m): m is the multiset of locks held by the current thread. Multiplicities record
the current reentrancy level. (non-copyable)

e 7 contains e: multiset 7 contains object e. (copyable)

Initialization. When verifying the body of Thread.run(), we assume Lockset(nil) as
a precondition. As explained before, resource invariants must be initialized before the
associated locks can be acquired. To keep track of the state of locks in our verification
system, we introduce two more formulas:

F € Formula == ... | efresh | e.initialized |
Restriction: e.initialized must not occur in negative positions.

e e.fresh: e’s resource invariant is not yet initialized. (non-copyable)
e c.initialized: e’s resource invariant has been initialized. (copyable)

Because e.initialized is copyable, initialized formulas can “spread” to all threads,
allowing all threads to try to acquire locks (initialized will be a precondition for (initial)
lock acquirement; see Section [1.4]).

Types. We add a type to represent locksets and we postulate Object <: lockset:
T == ... | lockset| ...

Because we allow arbitrary specification values (including locksets) as type parameters,
we consider that types with semantically equal type parameters are type-equivalent. Tech-
nically, we let ~ be the least equivalence relation on specification values that satisfies the
standard multiset axioms:

Equivalence of Specification Values: 7 ~ 7

1 1
nil-w~m ror~7 -7 (-7 7" ~n-(x'-7")

L 1

Then we postulate that t<7> <: t<7’> when 7 ~ 7.

38 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Augmented heaps. To express the semantics of the new formulas, we need to extend aug-
mented heaps with three new components. From now on, augmented heaps are 6-tuples of
a heap, a permission table, a join table, an abstract lock table £ € Objld — Bag(Objld), a
fresh set F C Objld, and an initialized set Z C Objld.

Abstract lock tables map thread identifiers to locksets. Just as permission tables are an
abstraction of heaps, abstract lock tables are an abstraction of lock tables. The compatibility
relation captures that distinct threads cannot hold the same lock (we use I to denote bag
intersection, LI for bag union, and [] for the empty bag):

;. dom(L£) Ndom(L’) =0
cren { (Vo € dom(L),p € dom (L)) (L (o) 1 £'(p) = [])
Fresh set F keeps track of allocated but not yet initialized objects, while initialized set T
keeps track of initialized objects. We define # for fresh sets as disjointness to mirror that

o.fresh is non-copyable, and for initialized sets as equality to mirror that o.initialized
is copyable:

cand LxL 2LuUL

FH#F if FNF =0 ;and FxF = FUF
THT iff IT=T cand Ix7 = I (=7
We require augmented heaps to satisfy the following axioms (in addition to Section B.2I's
axioms):
(e) FNI =0.
(f) If o € L(p) then o € 7.
Axiom @ ensures that an object can never be both fresh and initialized. Axiom

ensures that locked objects are initialized.
As usual, we define projection operators:

(hvp7j7£7f7z)locké‘c (h7p7j7£7f7z)fresh éf.’ (h77)7‘77£7f71) éI

init
Semantics of Values. Before defining the semantics of formulas, we extend the semantics of
values to locksets. Recall that SemVal is the set of semantic values (defined in Section [2:3.2]).
Formerly, SemVal = {null} U Objld U Int U Bool U (0,1]. We extend this set to include
semantic domains for locksets:

peSemVal = ({null} U Objld U Int U Bool U (0,1] U Bag(Objld))/ =
where = is the least equivalence relation on SemVal such that o = [o] for all object ids o.
That is, = is the least equivalence relation that identifies object identifiers with singleton
bags.
Let WellTypCISpecVal be the set of well-typed, specification values:
WellTypClSpecVal = { = | (3T, T)(dom(I") C Objld and T' - 7 : T') }

To define the semantics of well-typed, open specification values, we simply define the
semantics of the two new specification values:

[]: WellTypCISpecVal — SemVal ~ [nil] =[] [r-7'] = [z] U [«']

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 39

I';v - 1 (nil contains e) (Member Nil)
;v bk (- 7') contains e *—* (7 contains e | 7’ containse) (Member Rec)
r~n = Iubkn==7n (Eq Bag)
Divbm==m (Eq Refl)
Divbn==0 = Tjuknx == (Eq Sym)
Divbkr=n'&n’=1" = Tjobn==10" (Eq Trans)

G € {e, mcontainse, e.initialized }
I (Copyable)

ok (F&G) —* (F*xG)

TABLE 2. Axioms to reasons about bags and copyable formulas

Semantics of Formulas. We now state the semantics of formulas introduced to deal with
reentrant locks:

r+&(hP,J,L,F,I);s = Lockset(nm) iff L(o) = [r] for some o
TH&((hP,J,L,FI)s | 7containse iff [e]? € [n]

L& (hP,J,L,F,I);s [efresh it [e]s € 7

L& (h,P,J,L,F,I);s | einitialized iff [e]t €

These clauses are self-explanatory, except perhaps the existential quantification in the
clause for Lockset (7). Intuitively, this clause says that there exists a thread identifier o in
L’s domain such that 7 denotes the current lockset associated with o. When we interpret
an assertion for a single thread, we restrict the models to the ones where £ only contains
a single entry for the current thread. Hence, the existential can only choose the current
thread id. This restriction is in the (Thread) rule on page

Axioms. Table [2 lists the new axioms that can be used as an extension to the logical con-
sequence judgement (similar to the axioms in Table [l These axiomatize bag membership
((Member Nil)| and [(Member Rec))); bag equality ((Eq Bag))); copyability and equality be-
tween specification values ((Eq Refl)] [Eq Sym)] [[Eq Trans)). Axiom updates
Section 2.4.1T's |(Copyable)| axiom about copyability of formulas. It is straightforward to
extend Theorem 2.1l to these new axioms.

4.4. Hoare Triples. In this section, we modify the Hoare triple for allocating new
objects and we present Hoare triples for the new commands of our language.
We modify rule so that it emits the fresh predicate in its postcondition:

C<Ta>cct TH7:T[r/a] C<a><:T(¥)
{true}
Tk {=new C<7>
{€.init * C classof {* ®p(u)<iopjectl '=u * (.fresh }

(New)

In addition to the usual init and classof predicates, s postcondition records
that the newly created object is distinct from all other objects that are in scope. This
postcondition is usually omitted in separation logic, because separation logic avoids explicit
reasoning about the absence of aliasing. Unfortunately, we need this kind of reasoning when

40 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

establishing the precondition for the rule below, which requires that the lock is not
already held by the current thread.

The specification command w.commit triggers 7’s transition from the fresh to the
initialized state, provided 7’s resource invariant is established:

'k, 7’ :Object,lockset
{Lockset (n") * m.inv * r.fresh}
ok m.commit
{Lockset (n') * ! (7' contains 7) *r.initialized}

Intuitively, the fact that 7. inv appears in s precondition but does not appear
in s postcondition indicates that after being committed, lock 7 guards its resource
invariant: the resource invariant 7.inv has been given to lock m and 7. inv is not available
anymore to the executing thread. Furthermore, because m.fresh only holds if 7 !=null,
this rule ensures that only non-null locks can become initialized.

The precondition of rule ensures that monitor invariants cannot mention
Lockset predicates as it mentions both a Lockset predicate and the lock’s monitor invariant
inv. This follows from the semantics of the Lockset predicate and the semantics of the
* operator: two Lockset predicates cannot be *-conjoined. This is important because
Lockset predicates are interpreted w.r.t. the current thread.

There are two rules each for locking and unlocking, depending on whether or not the
lock/unlock is associated with an initial entry or a reentry.

First, we present the two rules for locking:

(Commit)

I'F u, 7 :Object, lockset

I';v F {Lockset () * ! (w contains u) *u.initialized} (Lock)
u.lock()
{Lockset (u - 7) *u.inv}
'+ w.m: Object, lockset (Re-Lock)

I';v F {Lockset (u - w) }u.lock () {Lockset (u - u-7m)}

The rule applies when lock u is acquired non-reentrantly, as expressed by the
precondition Lockset (7) * ! (7 contains u). The precondition w.initialized makes sure
that (1) threads only acquire locks whose resource invariant is initialized, and (2) no null-
error can happen (because initialized values are non-null). The postcondition adds u to
the current thread’s lockset, and assumes u’s resource invariant. The resource invariant
obtained is w.inv (without @ selector).

Proving s precondition requires reasoning about aliases because one has to prove
I (m contains w). In practice, this assertion is proven by showing that u is different from
all elements of lockset 7. Such a reasoning is a form of alias analysis. On one hand this
is unfortunate, because separation logic’s power comes from the fact that it does not need
to reason about aliases. On the other hand, this seems unavoidable. Whether this is
problematic in practice needs to be investigated on large case studies. In Section [£.6] the
lock coupling example illustrates how ownership can be used as a possible solution to the
problem.

The rule [[Re-Lock)| applies when a lock is acquired reentrantly. The precondition
of [(Re-Lock)| contrary to |(Lock)} does not require u.initialized, because this follows
from Lockset (u - 7) (locksets contain only initialized values).

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 41

Based on rule one expects the lock’s resource invariant to hold. To have a
more accurate feedback, in practice, one may define a derived rule like [(Re-Lock-Accurate)|
to enforce the existence of the resource invariant:

I'Fwu,7:0bject,lockset
{Lockset (u - 7) *u.inv}
ok u.lock()
{Lockset (u - u - 7) *u.inv}

(Re-Lock-Accurate)

Next, we present the two rules for unlocking:

I'Fwu,7:0Object,lockset
I';v F {Lockset (u - u - 7) Ju.unlock () {Lockset (u - 7) }

(Re-Unlock)

I'wu,7:0bject,lockset
I';v F {Lockset (u - m) * u.inv}u.unlock () {Lockset (7) }
The rule|(Re-Unlock)|applies when u’s current reentrancy level is at least 2 and|(Unlock)|

applies when u’s resource invariant holds in the precondition.

(Unlock)

Other Hoare Rules that Do Not Work. One might wish to avoid the inequalities in s
postcondition. Several approaches for this come to mind. First, one could drop the inequal-
ities in [[New)[s postcondition, and rely on [[Commit)[s postcondition ! (7’ contains) to
establiss precondition. While this would be sound, in general it is too weak, as we
are unable to lock 7 if we first lock some other object x (because from ! (7’ contains m) we
cannot derive ! (x -’ contains 7) unless we know 7 !=2). Second, the Lockset predicate
could be abandoned altogether, using a predicate m.Held (n) instead, that specifies that the
current thread holds lock 7 with reentrancy level n. In particular, 7.Held(0) means that
the current thread does not hold 7’s lock at all. We could reformulate the rules for locking
and unlocking using the Held-predicate, and introduce £.Held(0) as the postcondition of
replacing the inequalities. However, this approach does not work, because it grants
only the object creator permission to lock the created object! While it is possible that a
clever program logic could somehow introduce 7.Held(0)-predicates in other ways (besides
introducing it in the postcondition of , we have not been able to come up with a
workable solution along these lines. Besides, it does not solve the aliasing problem.

Wait and notify. Methods wait, notify and notifyAll in class Object (introduced in
Section [£.2]) are specified as follows:

class Object{
pred inv = true;

requires Lockset(S) * S contains this * inv;
ensures Lockset(S) * inv;
final void wait();

requires Lockset(S) * S contains this;
ensures Lockset(S);
final void notify();

requires Lockset(S) * S contains this;
ensures Lockset(S);

42 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

final void notifyAl1(Q);
}

The preconditions for wait, notify and notifyAll require that the receiver is locked,
thus ensuring that if a program can be verified, it will never throw an I1legalMonitorState
exception (or be stuck, according to our formal semantics). The postcondition of o.wait ()
ensures 0.inv, because o is locked again just before o.wait () terminates.

Auziliary Syntaz. Recall that in Section 2] we added two new head commands waiting
and resume to represent waiting states. The Hoare rules for these commands are as follows:

I'Fm,0:lockset,Object

Waitin
{Lockset () *o.initialized} (8)
ST o.waiting(n)
{Lockset () *o.initialized}
I'Fo,7:0bject, lockset (Resume)

{Lockset (7) *o0.initialized}
L;rk o.resume (n)
{Lockset (0" -) *0.inv) }

In o™ denotes the multiset with n occurrences of o. Of course, the rules
[(Waiting)| and [(Resume)| are never used in source code verification, because source programs
do not contain the auxiliary syntax. Instead, the rules|(Waiting)| and |(Resume)| are used to
state and prove the preservation theorem.

The Thread class. Now we are ready to modify class Thread of Section BIs verification
system to handle reentrant locks. To handle reentrant locks, we modify class Thread’s
method contracts as shown in Figure Intuitively, we forbid fork and join’s contracts
(i.e., preFork and postJoin) to depend on the caller’s lockset. This would not make sense
since Lockset predicates are interpreted w.r.t. to the current thread. Obviously, a thread
calling fork (or join) differs from the newly created (or the joined) thread. We forbid fork
and join’s contracts to depend on the caller’s lockset by (1) adding Lockset (S) in fork’s
precondition: because callers of fork have to establish fork’s precondition, this forbids
preFork to depend on a Lockset predicate (recall that two Lockset predicates cannot be
*-combined) and (2) by adding Lockset (8) in run’s postcondition: this forbids postJoin
to depend on a Lockset predicate:

4.5. Verified Programs. We need to update Section B.4s rules for runtime states to ac-
count for reentrant locks. There are two changes to rule (1) premise dom(Hock) =
{o} is added to ensure that a thread’s augmented heap only tracks the locks held by this
thread and (2) the thread’s postcondition is modified to reflect the change in join’s post-
condition in class Thread.
(Thread)
Hioin(0) < [fr] ThHo:T" T'I"Fs:o
cfv(c) Ndom(I') =0 dom(Hioek) = {0} To] - & H;s = Flo]
I I";r = {F}c:void{ (ex lockset S) (Lockset(S)) * fr-o.postJoin<1>}
HEois(sinc):o

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 43

class Thread ext Object{

pred preFork = true;
group postJoin<perm p> = true;

requires Lockset(S) * preFork; ensures Lockset(S) ;
final void fork();

requires Join(this,p); ensures postJoin<p>;
final void joinQ);

final requires Lockset(nil) * preFork;
ensures (ex Lockset S)(Lockset(S)) * postJoin<i>;
void run() { null }

FIGURE 16. Class Thread

We define the set ready(#) of all initialized objects whose locks are not held, and the
function conc that maps abstract lock tables to concrete lock tables:

ready(H) = Hinic \ {0 | (3p)(0 € L(p)) }

conc(£)(0) 2 { (P, L(p)(0)) iff 0 € L(p)

free otherwise

In conc’s definition, we let £(p)(0) stand for the multiplicity of o in L(p). Note that
conc is well-defined, by axiom for augmented heaps (see page B8). The new rule for
states ensures that there exists a augmented heap H to satisfy the thread pool ts and
an augmented heap H’ to satisfy the resource invariants of the locks that are ready to
be acquired. In addition, function conc relates the program’s lock table to the top level
augmented heap’s abstract lock table:

h=Hx*H)hp

l = conc(Hiock) Hits:o HH#H Hg =0

fst(Hp,) C fst(h) =T T+ &M E @pereagyrpo-iny (State)
(h, 1, ts):o

As in Section B.4], using case analysis on the shape of the (st : ©)’s proof tree, we have
shown that the preservation Theorem [2.4] also holds for the language with reentrant locks.
As corollaries we have shown that verified programs satisfy the following properties: null
error freeness, partial correctness, and data race freeness (details in [Hur09, Chap. 6]).

Finally, we can also show that an I1legalMonitorException cannot occur in a verified
program. Suppose we model an IllegalMonitorException as a monitor error in our
language. A head command he is called a monitor error iff it tries to call wait, notify or
notifyAll on a lock that is not held. Now we can state the Monitor Error Free theorem
as a corollary of the preservation theorem for the language with reentrant locks (see page

118 in [Hur09, Chap. 6]).

44 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Theorem 4.1 (Verified Programs are Monitor Error Free). If (ct,c) : o and init(c) —%,
st = (h, ts | ois (s in he;e)) then he is not a monitor error.

Proof. Similar to Theorem 2.6] the theorem can be proved by contradiction. By init(c) : ¢
and the preservation theorem, we know that st : ¢. Inspecting the derivation of the cases
[(Red Wait)] [[Red Notify)| [[Red Notify All)](see page 125 of [Hur09, Chapter 6]) shows that
it is impossible for a thread to invoke wait (), notify () or notifyAl1() if the object is not
locked. As these are the only statements that could result in a monitor error, this concludes
the proof.

O

4.6. Examples of Reasoning with Reentrant Locks. In this section, we show examples
of reasoning with reentrant locks. We provide two examples: first we show a specification
of a typical container class, using reentrant locks, and the wait-notify mechanism; next we
discuss an advanced lock coupling example.

A Typical Container: class Set. For container classes of the Java library, lock reentrancy is
crucial to avoid duplication of method implementations, as they typically contain methods
that can be called by clients, and by other methods in the container. We illustrate this by
discussing a class Set, containing a public method has that is also called by other methods
in the class. Additionally, the container is developed for a concurrent setting, using the
wait-notify mechanism when a thread tries to retrieve an object that is not in the container
yet.

Class Set contains a method has that is used to check if some element belongs to the
receiver set. In addition, there is a method add, which adds an element to the receiver set
if not already present. Moreover, it defines a method visit, which blocks until a particular
element is present in the set. All methods lock the receiver set. Hence, as methods add and
visit call has, reentrant locks are crucial for class Set’s implementation.

Internally, class Set is backed up by a list, shown in Figure 7l Class List is a shallow
container: lists do not have permission to access their values. Instead, values must be
accessed by synchronizing on them. That is why the state predicate ensures that a list
only contains initialized values. Additionally, predicate state gives access to field next of
the list’s first node and to all next fields of subsequent nodes, and it provides references to
the values stored in the list.

Figure I8 presents the implementation of class Set, which ensures that an object cannot
appear twice in the underlying list. For simplicity, we identify two objects if they have the
same address in the heap (i.e., we use Java's ==

The resource invariant of a Set consists of (1) the field rep and (2) the list pointed
to by the field rep. This is specified in predicate inv’s implementation. A Set owns its
underlying list rep: while the receiver set is locked when clients call has, add or visit,
the underlying list is never locked. Access rights to the underlying list are packed into the
resource invariant of the set (see inv’s definition).

Elements of sets should be accessed by synchronizing on them. Although there is no get
method in class Set’s implementation, we make sure that elements of sets are initialized
(see state’s implementation in class List and o.initialized in various contracts). Hence,

E’Alternatively7 we could put Java’s equals in class Object and use it here.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 45

class List extends Object{
Object element; List next;

pred state = PointsTo(element,1,v) * PointsTo(next,1,n) *
v.initialized * n.state;

requires init * o.initialized; ensures state@List;
void init(Object o, List n){ element = o; next = n; }

requires state; ensures state;
bool has(Object 0){
bool result;

if (element == o0){ result = true; }

else{ if(next !'= null){ result = next.has(o); } }
result;

}

requires state * o.initialized; ensures state;
void add(Object o){ List 1 = new List; l.init(o,this); }
}

FIGURE 17. Class List

a get method would have result.initialized as a postcondition, allowing clients to lock
returned elements.

Method init both (1) initializes field rep and (2) initializes the set’s resource invariant
(with the commit command). Point (2) is formalized by having fresh in init’s precondition
and having initialized in init’s postcondition. In addition, init’s precondition includes
Set classof this. This is required to verify that commit is sound i.e., that the monitor
invariant is established before commit.

The contract of method has in class Set allows lock-reentrant calls. If a lock-reentrant
call is performed, however, inv is required (as expressed by (S contains this -* inv)).
Methods add and visit in class Set could be specified similarly allowing lock reentrant
calls. Notice that verification of all these methods is straightforward.

A simpler implementation of methods add and visit in class Set would call has on
the underlying list. In this way, the lock-reentrant call would be avoided. However, our
implementation is safer: if method has is overridden in subclasses of Set (but not method
add or method visit), our implementation is still correct; while the simpler implementation
could exhibit unexpected behaviors.

Class Set exemplifies a typical use of lock reentrancy and the wait-notify mechanism
in the Java library. We believe that our verification system fits well to verify such classes.
In addition, this example shows how our system supports programs that include objects
that must be locked before access and objects that are accessed without synchronization.
Importantly, the addition of locks does not force programmers to indicate Lockset predi-
cates everywhere in contracts: class List, which backs up class Set, does not mention any
Lockset predicates.

46 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

class Set extends Object{
List rep;

pred inv = PointsTo(rep,1,r) * r.state;

requires Lockset(S) * init * fresh *
Set classof this * o.initialized;
ensures Lockset(S) * ! (S contains this) * initialized;
void init(0Object o){ rep = new List; rep.init(o,null); commit; }

requires Lockset(S) * (S contains this -* inv) * initialized;
ensures Lockset(S) * (S contains this -* inv);

bool has(Object o){

lock(); List result = rep.has(o); unlock(); result;

}

requires Lockset(S) * !(S contains this) *
initialized * o.initialized;
ensures Lockset(S) * ! (S contains this);
void add(Object o){
lock(); if('has(o)){ rep.add(o); notifyAl1(); } unlock();
}

requires Lockset(S) * !(S contains this) * initialized;
ensures Lockset(S) * ! (S contains this) * initialized;
void visit(Object o){

lock(); while('has(o)){ wait(); } unlock();

}
}

Ficurk 18. Class Set in presence of reentrant locks

Finally, suppose class Set would be extended by a subclass BoundedSet containing a
field count to keep track of the number of elements stored in the set. The resource invariant
of BoundedSet would be defined as pred inv = PointsTo(count,1,_), which implicitly
would be conjoined with the inherited resource invariant from Set. Thus, locking any
instance of the BoundedSet would provide access to the field count, and to the underlying
list representation of the set.

Lock Coupling. Next we illustrate how our verification system handles lock coupling. We
use the following convenient abbreviations:
7.locked (1) = Lockset (7 - ')
munlocked(n’) = Lockset (7) * ! (x/ contains 7)
Suppose we want to implement a sorted linked list with repetitions. For simplicity,

assume that the list has only two methods: insert() and size(). The former inserts
an integer into the list, and the latter returns the current size of the list. To support a

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 47

constant-time size()-method, each node stores the size of its tail in a count-field. Each
node n maintains the invariant n.count == n.next.count + 1.

In order to allow multiple threads inserting simultaneously, we want to avoid using
a single lock for the whole list. We have to be careful, though: a naive locking policy
that simply locks one node at a time would be unsafe, because several threads trying to
simultaneously insert the same integer can cause a semantic data race, so that some integers
get lost and the count-fields get out of sync with the list size. The lock coupling technique
avoids this by simultaneously holding locks of two neighboring nodes at critical times.

Lock coupling has been used as an example by Gotsman et al. ﬂm for single-
entrant locks. The additional problem with reentrant locks is that insert ()’s precondition
must require that none of the list nodes is in the lockset of the current thread. This is
necessary to ensure that on method entry the current thread is capable of acquiring all
nodes’s resource invariants:

requires this.unlocked(S) * no list mode is in S;
ensures Lockset(S);
void insert(int x);

The question is how to formally represent the informal condition written in italic. Our
solution makes use of class parameters. We require that nodes of a lock-coupled list are
statically owned by the list object, i.e., they have type Node<o>, where o is the list object.
Then we can approximate the above contract as follows:

requires this.unlocked(S) * no this-owned object is in S;
ensures Lockset(S);
void insert(int x);

To express this formally, we define a marker interface, i.e., an interface with no content,
for owned objects:

interface Owned<Object owner> { /* a marker interface */ }

Next we define an auxiliary predicate w.traversable(s’) (read as “if the current
thread’s lockset is 7/, then the aggregate owned by object 7 is traversable”). Concretely,
this predicate says that no object owned by 7 is contained in 7’:

T.traversable(n’) =
(fa Object owner, Owned<owner> x) (! (7' contains x) | owner !=17)

Note that in our definition of w.traversable(s’), we quantify over a type parameter
(namely the owner-parameter of the Owned-type). Here we are taking advantage of the fact
that program logic and type system are inter-dependent.

Now, we can formally define an interface for sorted integer lists:

interface SortedIntList {
pred inv<int c>; // c is the number of list nodes

requires this.inv<c>; ensures this.inv<c> * result==c;
int size();
requires this.unlocked(S) * this.traversable(S);

ensures Lockset(S);
void insert(int x);

}

48 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Figure [[9 shows a tail-recursive lock-coupling implementation of SortedIntList. The
auxiliary predicate n.couple<c,¢’>, as defined in the Node class, holds in states where
n.count == ¢ and n.next.count == ¢’. Figure [Js implementation has been verified in our
system.

But how can clients of lock-coupling lists establish insert()’s precondition? The an-
swer is that client code needs to track the types of locks held by the current thread. For
instance, if C' is not a subclass of Owned, then list.insert()’s precondition is implied by
the following assertion, which is satisfied when the current thread has locked only objects
of types C' and Owned</>.

list.unlocked(S) * f!=list *
(fa Object z) (! (S contains z) | z instanceof C | z instanceof Owned</(>)

This example demonstrates that we can handle fine-grained concurrency despite the
technical difficulties raised by lock reentrancy (i.e., lock’s precondition is harder to prove).
However, we have to fall back on the type system to verify this example. Consequently,
ownership becomes static; however based on the design decision of the data structure this is
acceptable. Usually when it is necessary that nodes can be transferred from one container
to another, all nodes have to come from a dedicated node pool. In that case, our approach
would still work, but with the node pool as the owner.

5. RELATED WORK

The work that is closest related to our work is Parkinson’s thesis (recently repre-
sented in). This formalizes a subset of singlethreaded Java to specify and verify such
programs with separation logic. There are, however, a few differences: we feature value-
parameterized classes, we do not include casts (but it would be straightforward to add them,
as we did in our earlier work [HHO8a]), we do not model constructors, we do not provide
block scoping, and, contrary to Parkinson, programs written in our model language are not
valid Java programs. While Parkinson introduced abstract predicates and permissions, he
does not combine them as we do. Later, both Parkinson and Bierman and Chin et
al. [CDNQO8| provided a flexible way to handle subclassing.

Separation-logic-based approaches for parallel programs [O"H07, focused on a
theoretically elegant, but unrealistic, parallel operator. Notable exceptions are Hobor et
al. [TANOS] and Gotsman et al. [GBC*07] who studied (concurrently to us) Posix threads
for C-like programs. Contrary to us, Hobor et al. do not model join as a native method,
instead they require programmers to model join with locks. For verification purposes, this
means that Hobor et al. would need extra facilities to make reasoning about fork/join as
simple as we do. Gotsman et al.’s work is very similar to Hobor et al.’s work.

There are a number of similarities between our work and Gotsman et al. [GBCT07]’s
work. For instance in the treatment of initialization of dynamically created locks, our
initialized predicate corresponds to what Gotsman calls lock handles (with his lock han-
dle parameters corresponding to our class parameters). Since Gotsman’s language supports
deallocation of locks, he scales lock handles by fractional permissions in order to keep track
of sharing. This is not necessary in a garbage-collected language. In addition to single-
entrant locks, Gotsman also treats thread joining. We cover thread joining in a simpler and
more powerful way, because we allow multiple read-only joining. The essential differences
between Gotsman’s and our paper are (1) that we treat reentrant locks, which are a different

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 49

class LockCouplingList implements SortedIntList{
Node<this> head;

pred inv<int c> = (ex Node<this> n)(
PointsTo(head, 1, n) * n.initialized * PointsTo(n.count, 1/2, c));

requires this.inv<c>; ensures this.inv<c> * result==c;
int size() { return head.count; }

requires Lockset(S) * !(S contains this) * this.traversable(S);
ensures Lockset(S);
void imsert(int x) {
lock(); Node<this> n = head;
if (n'!'=null) {
n.lock();
if (x <= n.val) {
n.unlock(); head = new Node<this>(x,head); head.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }
} else { head = new Node<this>(x,null); unlock(); } } }

class Node<Object owner> implements Owned<owner>{
int count; int val; Node<owner> next;

public pred couple<int count_this, int count_next> =
(ex Node<owner> n) (
PointsTo(this.count, 1/2, count_this) * PointsTo(this.val, 1,int)
* PointsTo(this.next, 1, n) * n'!=this * n.initialized
* (n'!'=null -* PointsTo(n.count, 1/2, count_next))
* (n==null -* count_this==1));
public pred inv<int c> = couple<c,c-1>;
requires PointsTo(next.count, 1/2, c¢);
ensures PointsTo(next.count, 1/2, c)
* (next!=null -* PointsTo(this.count, 1, c+1))
* (next==null -* PointsTo(this.count, 1, 1))
* PointsTo(this.val, 1, val) * PointsTo(this.next, 1, next);
Node (int val, Node<owner> next) {
if (next!=null) { this.count = next.count+1; } else { this.count = 1; }
this.val = val; this.next = next; }

requires Lockset(this-S) * owner.traversable(S) * this.couple<c+l,c-1>;
ensures Lockset(S);
void imsert(int x) {
Node<owner> n = next;
if (n'!'=null) {
n.lock();
if (x <= n.val) {
n.unlock(); next = new Node<owner>(x,n); next.commit; unlock();
} else { unlock(); n.count++; n.insert(x); }
} else { next = new Node<owner>(x, null); unlock(); } } }

FIGURE 19. A lock-coupling list

50 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

synchronization primitive than single-entrant locks, and (2) that we treat subclassing and
extension of resource invariants in subclasses. Hobor et al.’s work [HANOS] is very similar
to ﬂm

Zhao in his thesis [Zha07] developed a permission-based type system for a concurrent
Java-like language to detect data races and deadlocks. His permission system is an exten-
sion of Boyland’s original permission system [Boy03]. Nested permission are used to model
protected objects, while guards can be passed as class parameters. The type syste handles
reentrant locks, but without counting the reentrancy level. Moreover, joins are not sup-
ported in his work, and the system can only verified a fixed set of properties, i.e., it has no
support for user-specified contracts.

A different approach is taken by Vafeiadis, Parkinson et al. [VP07, (WDPT0], combin-
ing rely/guarantee reasoning with separation logic. On one hand, this is both powerful
and flexible: fine-grained concurrent algorithms can be specified and verified. On the other
hand, their verification system is more complex than ours. This line of research has been ex-
tended by Dodds et al., proposing deny-guarantee reasoning [DFPV09] to tame dynamically
scoped threads. The idea of deny-guarantee reasoning is to lift separation logic to assert
about the possible interferences between threads. Recently, Concurrent Abstract Predicates
(CAP) have been proposed by Dinsdale-Young et al. as a further follow-up on
deny-guarantee reasoning. They proposed a logic by which interferences can be asserted
with actions instrumented by permissions. Permission-based actions can describe how a
thread can treat the state. Using CAP to specify a mutable data structure, one can distin-
guish between the internal shared states and local states of the data structure. Abstract
predicates in CAP encapsulate both resources and interferences which allows one to reason
about the client program without having to deal with all the underlying interferences and
resources. Initially, it was not possible to use CAP to reason about synchronizer object, be-
cause they protect ezternal shared resources. However, inspiring from and
Svendsen extended CAP for higher-order separation logic to specify library usage protocols.
The development of CAP and HOCAP seem to be an important progress to reason about
concurrent programs. However, there is no well-developed tool support for them yet, the
approach does not consider reentrant locks, and it results in a highly-complicated verifica-
tion technique, especially when it should be applied to a realistic programming language
such as Java.

Another related line of work is by Jacobs et al. [JSPS06] who extend the Boogie method-
ology for reasoning about object invariants ﬂm to a multithreaded Java-like language.
While their system is based on classical logic (without operators like * and —*), it includes
built-in notions of ownership and access control. Their system deliberately enforces a cer-
tain programming discipline (like concurrent separation logic and our variant of it also do)
rather than aiming for a complete program logic. In this approach, objects can be in two
states: unshared or shared. Unshared objects can only be accessed by the thread that
created them; while shared objects can be accessed by all threads, provided these threads
synchronize on this object. This partially correspond to our method: Jacobs et al.’s shared
objects (objects that are shared between threads) directly correspond to our initialized
objects (objects whose resource invariants are initialized). While Jacobs et al.’s policy is
simple, it is too restrictive: an object cannot be passed by one thread to another thread
without requiring the latter thread to synchronize on this object. Jacobs et al.’s system pre-
vents deadlocks, by imposing a partial order on locks. As a consequence of their order-based

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 51

deadlock prevention, their programming discipline statically prevents reentrancy, although
it may not be too hard to relax this at the cost of additional complexity.

Smans et al. [STPS08, [STP09] automatically verify sequential programs using implicit
dynamic frames. While their approach uses first-order logic, it is close to separation logic,
because their verification algorithm approximates the set of locations accessed by methods
(like specifications in separation logic). On the upside, Smans et al.’s approach alleviates the
burden of specifying the set of locations accessed by methods, because such sets are inferred
from functional specifications. Furthermore, (1) like other first-order logic based approaches;
they can use off-the-shelf theorem provers and (2) they implemented their approach. On
the downside, solving the verification conditions generated by Smans et al.’s tool is much
slower than using symbolic execution and separation logic (like [DP0§]). Another drawback
is that they cannot write specifications that mirrors separation logic’s magic wand —*. The
magic wand is crucial to specify data structures that temporarily “lend” a part of their
representation to clients, like iterators [HHO09].

Like Smans et al., Leino and Miiller [LM09] presented a verification system for multi-
threaded programs that uses implicit dynamic frames and SMT solvers. Contrary to their
previous work they do not impose a programming model: they use fractional per-
missions to handle concurrency. They do not support multiple readonly joiner threads but
they prevent deadlock. Consequently, even if they do not handle reentrant locks, these locks
could be handled without a major effort.

Finally, in a more traditional approach, De Boer [dB07] extends the results of Abra-
ham et al. m with a sound and complete proof system based on the Owicki/Gries
method, to generate interference freedom tests for dynamically created threads in Java. In
his approach, interferences between threads are annotated as global assertions and local
properties are proved in sequential Hoare logic. Java’s synchronized methods are consid-
ered as the programs’ synchronization mechanisms and static auxiliary variables are defined
to control the owner and reentrancy level of the lock. While this work covers dynamic thread
creation, it lacks support for reentrant locks and object-oriented features of Java.

6. CONCLUSION

In this paper, we have presented a variant of permission-based separation logic that allows
reasoning about object-oriented concurrent programs with dynamic threads and reentrant
locks. The main selling point of this logic is that it combines several existing specifica-
tion techniques, and that it is not developed for an idealized programming language. To-
gether this makes it powerful and practical enough to reason about real-life concurrent Java
programs, as has been demonstrated on several examples, both in a sequential and in a
concurrent setting.

An essential ingredient of the logic is the use of permissions. These ensure that in
a verified program, data races cannot occur, while shared readings are allowed. Thus
concurrent execution of the program is restricted as little as possible. Further, the logic
also contains abstract predicates, as proposed by Parkinson, which are suitable to reason
about inheritance, and class parameters. This paper is the first to combine these three
different features in a single specification language for a realistic programming language.

52 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

Currently, a tool is being developed for this logic in the context of
the VerCors projectﬁ. Throughout, the tool is developed with practical usability in mind:
eventually it should provide sufficient support for a programmer to prove correctness of his
or her applications.

To ensure practical usability involves several topics: (1) improving readability of the
specification language, for example by merging it with an an existing specification language
such as JML [LPCT07]; (2) development of appropriate proof theories to automatically
discharge proof obligations; and (3) development of techniques to reason about the absence
of aliasing in the context of lock-reentrancy. The first topic has also been investigated both
by Tuerk [TueQ9] and Smans et al. [SJTP10], while the second topic has been investigated by
Parkinson et al. [DP08]. However, in both cases the results have to be further extended to fit
in our framework, in particular because they do not consider the magic wand. Concerning
the third topic, the lock-coupling example (Section [L.0)), uses class parameters to model
ownership. We will investigate how this can be done more systematically. At present,
(simplified versions of) the examples in this paper can be verified by the tool.

Further we are also extending the application domain of the logic, to be able to reason
about a larger class of concurrent Java programs, and to verify also functional properties
of these applications. We mention in particular the following recent results and plans for
future work:

e We specified the BlockingQueue hierarchy from the java.util.concurrent library using
a history-based specification [ZSHB12|]. The specifications can be used to derive funcional
properties about queues, for example to show that in a concurrent environment the order
of elements is always preserved.

e We also developed formal specifications for several synchronization classes, such as the
(reentrant and read-write) locks, semaphores and latches from the Java API.

e We are developing techniques to reason about functional properties that have to hold
throughout an execution, so-called strong invariants.

e We are formally specify classes from atomic package from the Java API to support
reasoning about lock-free data structures. As a first step we have specified AtomicInteger
as a primitive synchronizer and proved the correctness of several synchronization patterns
on top of this.

e We also plan to investigate whether permission annotations can be generated, instead of
being written by the programmer.

e We have been adapting the current logic to reason about GPU kernels [HM13].

ACKNOWLEDGMENTS

We thank Ronald Burgman for working out a first version of the specification of the sequen-
tial and parallel mergesort algorithms.

REFERENCES

[ABD"14] Afshin Amighi, Stefan Blom, Saeed Darabi, Marieke Huisman, Wojciech Mostowski, and Ma-
rina Zaharieva-Stojanovski. Verification of concurrent systems with vercors. In SFM, pages
172-216, 2014.

Shttp://fmt.cs.utwente.nl/research /projects/VerCors/

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 53

[ABHZS12]

[AdBdRS03]

[AFF06]

[And91]
[BCOO5]

[BCY05]

[BDF04]
[BH13]

[BHS07]

[BOCPO5]

[Boy03]

[Boy07]
[Bro04]

[CD02)

[CDNQOS]

[CPNOSs]

[CWMY9)]

[dBO7]

[DFPV09)]

[DJP11]

A. Amighi, S. Blom, M. Huisman, and M. Zaharieva-Stojanovski. The vercors project: setting
up basecamp. In Proceedings of the sizth workshop on Programming languages meets program
verification, PLPV ’12, pages 71-82, New York, NY, USA, 2012. ACM.

E. Abrahém, F. S. de Boer, W.-P. de Roever, and M. Steffen. Tool-supported proof system for
multithreaded Java. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors,
Formal Methods for Components and Objects, number 2852 in Lecture Notes in Computer
Science, pages 1-32. Springer-Verlag, 2003.

M. Abadi, C. Flanagan, and S. Freund. Types for safe locking: Static race detection for Java.
ACM Transactions on Programming Languages and Systems, 28(2):207-255, 2006.

G. Andrews. Concurrent Programming: Principles and Practice. Benjamin/Cummings, 1991.

J. Berdine, C. Calcagno, and P. W. O’Hearn. Smallfoot: Modular automatic assertion checking
with separation logic. In F. S. de Boer, M. M. Bonsangue, S. Graf, and W.-P. de Roever, editors,
Formal Methods for Components and Objects, volume 4111 of Lecture Notes in Computer
Science, pages 115-137. Springer-Verlag, 2005.

R. Bornat, C. Calcagno, and H. Yang. Variables as resource in separation logic. In Mathemat-
ical Foundations of Programming Semantics, volume 155 of Electronic Notes in Theoretical
Computer Science, pages 247-276. Elsevier, 2005.

M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and W. Schulte. Verification of object-
oriented programs with invariants. Journal of Object Technology, 3(6):27-56, 2004.

S. Blom and M. Huisman. Witnessing the elimination of magic wands. STTT (conditionally
accepted), 2013.

B. Beckert, R. Héhnle, and P. H. Schmitt, editors. Verification of Object-Oriented Software:
The KeY Approach. Number 4334 in Lecture Notes in Computer Science. Springer-Verlag,
2007.

R. Bornat, P. W. O’Hearn, C. Calcagno, and M. Parkinson. Permission accounting in separation
logic. In J. Palsberg and M. Abadi, editors, Principles of Programming Languages, pages 259—
270. ACM Press, 2005.

J. Boyland. Checking interference with fractional permissions. In R. Cousot, editor, Static
Analysis Symposium, volume 2694 of Lecture Notes in Computer Science, pages 55—72. Springer-
Verlag, 2003.

J. Boyland. Semantics of fractional permissions with nesting. Technical report, University of
Wisconsin at Milwaukee, December 2007.

S. Brookes. A semantics for concurrent separation logic. In Conference on Concurrency Theory,
volume 3170 of Lecture Notes in Computer Science, pages 16-34. Springer-Verlag, 2004.

D. G. Clarke and S. Drossopoulou. Ownership, encapsulation and the disjointness of type
and effect. In ACM Conference on Object-Oriented Programming Systems, Languages, and
Applications, pages 292-310. ACM Press, 2002.

W. Chin, C. David, H. Nguyen, and S. Qin. Enhancing modular OO verification with separation
logic. In G. C. Necula and P. Wadler, editors, Principles of Programming Languages, pages
87-99. ACM Press, 2008.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias protection. In ACM
Conference on Object-Oriented Programming Systems, Languages, and Applications, volume
33:10 of ACM SIGPLAN Notices, pages 48—64, New York, October 1998. ACM Press.

K. Crary, D. Walker, and G. Morrisett. Typed memory management in a calculus of capabilities.
In Principles of Programming Languages, pages 262-275, 1999.

F. S. de Boer. A sound and complete shared-variable concurrency model for multi-threaded Java
programs. In International Conference on Formal Methods for Open Object-based Distributed
Systems, pages 252-268, 2007.

M. Dodds, X. Feng, M. Parkinson, and V. Vafeiadis. Deny-guarantee reasoning. In European
Symposium on Programming, Lecture Notes in Computer Science, pages 363-377. Springer-
Verlag, 2009.

Mike Dodds, Suresh Jagannathan, and Matthew J. Parkinson. Modular reasoning for deter-
ministic parallelism. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’11, pages 259270, New York, NY, USA, 2011.
ACM.

54

[DPOS]

[DYDG'10]

[FLL*02]

[FQO3]

[GBC107]

[GBC11]

[HANOS]

[HHO08a]

[HHOSb]
[HHOY]

[HHHOS]

[HM13]

[Hoa72]
[HoaT74]
[Huio1]
[Hur09]
[1001]

[Jon83]

[JP11]

[JSPS06]

[TW06]

A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

D. DiStefano and M. Parkinson. jStar: Towards practical verification for Java. In ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications, pages 213-226.
ACM Press, 2008.

T. Dinsdale-Young, M. Dodds, P. Gardner, M. Parkinson, and V. Vafeiadis. Concurrent
abstract predicates. In Proc. 24th European Conference on Object-Oriented Programming
(ECOOP’10), Lecture Notes in Computer Science. Springer, 2010.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for Java. In Programming Languages Design and Implementation, volume 37,
pages 234-245, June 2002.

C. Flanagan and S. Qadeer. A type and effect system for atomicity. In Programming Languages
Design and Implementation, volume 38 of ACM SIGPLAN Notices, pages 338-349. ACM Press,
May 2003.

A. Gotsman, J. Berdine, B. Cook, N. Rinetzky, and M. Sagiv. Local reasoning for storable
locks and threads. In Z. Shao, editor, Asian Programming Languages and Systems Symposium,
volume 4807 of Lecture Notes in Computer Science, pages 19-37. Springer-Verlag, 2007.
Alexey Gotsman, Josh Berdine, and Byron Cook. Precision and the conjunction rule in con-
current separation logic. Electron. Notes Theor. Comput. Sci., 276:171-190, September 2011.
A. Hobor, A. Appel, and F.Z. Nardelli. Oracle semantics for concurrent separation logic. In
S. Drossopoulou, editor, Programming Languages and Systems: Proceedings of the 17th Euro-
pean Symposium on Programming, ESOP 2008, volume 4960 of Lecture Notes in Computer
Science, pages 353—-367. Springer-Verlag, 2008.

C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with fork/join.
In J. Meseguer and G. Rosu, editors, Algebraic Methodology and Software Technology, volume
5140 of Lecture Notes in Computer Science, pages 199-215. Springer-Verlag, July 2008.

C. Haack and C. Hurlin. Separation logic contracts for a Java-like language with fork/join.
Technical Report 6430, INRIA, January 2008.

C. Haack and C. Hurlin. Resource usage protocols for iterators. Journal of Object Technology,
8(4):55-83, 2000.

C. Haack, M. Huisman, and C. Hurlin. Reasoning about Java’s reentrant locks. In G. Ra-
malingam, editor, Asian Programming Languages and Systems Symposium, volume 5356 of
Lecture Notes in Computer Science, pages 171-187. Springer-Verlag, December 2008.

M. Huisman and M. Mihelcic. Specification and verification of gpgpu programs using
permission-based separation logic. Technical Report TR-CTIT-13-12, Centre for Telematics
and Information Technology, University of Twente, Enschede, March 2013. This work was
presented at BYTECODE 2013, March 23, 2013, Rome, Italy.

C. A. R. Hoare. Towards a theory of parallel programming. In Operating Systems Techniques,
pages 61-71, New York, NY, USA, 1972. Academic Press.

C. A. R. Hoare. Monitors: an operating system structuring concept. Communications of the
ACM, 17(10):549-557, 1974.

M. Huisman. Reasoning about Java programs in higher order logic using PVS and Isabelle. PhD
thesis, Computing Science Institute, University of Nijmegen, 2001.

C. Hurlin. Specification and Verification of Multithreaded Object-Oriented Programs with Sep-
aration Logic. PhD thesis, Université Nice Sophia Antipolis, 2009.

S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data structures. In Principles
of Programming Languages, pages 14-26, 2001.

C. B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596-619, 1983.

Bart Jacobs and Frank Piessens. Expressive modular fine-grained concurrency specification. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium on Principles of program-
ming languages, POPL 11, pages 271-282, New York, NY, USA, 2011. ACM.

B. Jacobs, J. Smans, F. Piessens, and W. Schulte. A statically verifiable programming model
for concurrent object-oriented programs. In International Conference on Formal Engineering
Methods, pages 420-439, 2006.

L. Jia and D. Walker. ILC: A foundation for automated reasoning about pointer programs. In
European Symposium on Programming, pages 131-145, 2006.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 55

[LMO09]
[LPCT07]
[Mic]
[Miil02]
[INAWO6]
[NPSG09]
[0G75]
[O’HO7]
[OP99]

[Par05]
[PBO5]

[PBOS]
[PB13]
[Rey02]

[STP0Y]

[SJP10]

[SJPSO08]

[SWMO0]

[Tue09]

[VCT)
[VHB'03]

[VPO7]

[Wad93]

K. R. M. Leino and P. Miiller. A basis for verifying multi-threaded programs. In G. Castagna,
editor, Furopean Symposium on Programming, volume 5502 of Lecture Notes in Computer
Science, pages 378-393. Springer-Verlag, 2009.

G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. R. Cok, P. Miiller, J. Kiniry, and
P. Chalin. JML Reference Manual, February 2007. Department of Computer Science, lowa
State University. Available from http://www. jmlspecs.org.

Sun Microsystems. Java’s documentation: http://java.sun.com/.

P. Miiller. Modular Specification and Verification of Object-Oriented Programs, volume 2262 of
Lecture Notes in Computer Science. Springer-Verlag, 2002.

M. Naik, A. Aiken, and J. Whaley. Effective static race detection for Java. In Programming
Languages Design and Implementation, pages 308-319. ACM Press, 2006.

M. Naik, C. Park, K. Sen, and D. Gay. Effective static deadlock detection. In ICSE, pages
386—-396, 2009.

S. Owicki and D. Gries. An axiomatic proof technique for parallel programs. Acta Informatica
Journal, 6:319-340, 1975.

P. W. O’Hearn. Resources, concurrency and local reasoning. Theoretical Computer Science,
375(1-3):271-307, 2007.

P. W. O’Hearn and D. J. Pym. The logic of bunched implications. Bulletin of Symbolic Logic,
5(2):215-244, 1999.

M. Parkinson. Local Reasoning for Java. PhD thesis, University of Cambridge, 2005.

M. Parkinson and G. Bierman. Separation logic and abstraction. In J. Palsberg and M. Abadi,
editors, Principles of Programming Languages, pages 247-258. ACM Press, 2005.

M. Parkinson and G. Bierman. Separation logic, abstraction and inheritance. In Principles of
Programming Languages, pages 75-86. ACM Press, 2008.

M. Parkinson and G. Bierman. Separation Logic for Object-Oriented Programming, volume
7850 of Lecture Notes in Computer Science. Springer, 2013.

J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In Logic in
Computer Science, pages 55—74. IEEE Computer Society, 2002.

J. Smans, B. Jacobs, and F. Piessens. Implicit dynamic frames: Combining dynamic frames
and separation logic. In Sophia Drossopoulou, editor, Furopean Conference on Object-Oriented
Programming, volume 5653 of Lecture Notes in Computer Science, pages 148—172. Springer-
Verlag, 2009.

J. Smans, B. Jacobs, and F. Piessens. Heap-dependent expressions in separation logic. In
Proceedings of the 12th IFIP WG 6.1 international conference and 30th IFIP WG 6.1 inter-
national conference on Formal Techniques for Distributed Systems, FMOODS’10/FORTE’10,
pages 170-185, Berlin, Heidelberg, 2010. Springer-Verlag.

J. Smans, B. Jacobs, F. Piessens, and W. Schulte. An automatic verifier for Java-like programs
based on dynamic frames. In J. L. Fiadeiro and P. Inverardi, editors, Fundamental Approaches
to Software Engineering, volume 4961 of Lecture Notes in Computer Science, pages 261-275.
Springer-Verlag, 2008.

F. Smith, D. Walker, and G. Morrisett. Alias types. In G. Smolka, editor, Furopean Symposium
on Programming, volume 1782 of Lecture Notes in Computer Science, pages 366-381. Springer-
Verlag, 2000.

T. Tuerk. A formalisation of smallfoot in HOL. In Stefan Berghofer, Tobias Nipkow, Christian
Urban, and Makarius Wenzel, editors, Theorem Proving in Higher-Order Logics, volume 5674
of Lecture Notes in Computer Science, pages 469-484. Springer-Verlag, 2009.

Vercors verifier tool. Available from:
http://fmt.ewi.utwente.nl/puptol/vercors-verifier.

W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs. Auto-
mated Software Engineering, 10(2):203-232, 2003.

V. Vafeiadis and M. J. Parkinson. A marriage of rely/guarantee and separation logic. In
L. Caires and V. T. Vasconcelos, editors, Conference on Concurrency Theory, volume 4703
of Lecture Notes in Computer Science, pages 256-271. Springer-Verlag, 2007.

P. Wadler. A taste of linear logic. In Mathematical Foundations of Computer Science, pages
185-210, 1993.

http://www.jmlspecs.org
http://java.sun.com/
http://fmt.ewi.utwente.nl/puptol/vercors-verifier

56 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

[WDP10] J. Wickerson, M. Dodds, and M. Parkinson. Explicit stabilisation for modular rely-guarantee
reasoning. In Andrew D. Gordon, editor, Furopean Symposium on Programming, volume 6012
of Lecture Notes in Computer Science, pages 610-629. Springer-Verlag, 2010.

[Zha07] Y. Zhao. Concurrency analysis based on fractional permissions. PhD thesis, University of Wis-

consin at Milwaukee, Milwaukee, WI, USA, 2007.

[ZSHB12] M. Zaharieva-Stojanovski, M. Huisman, and S. Blom. A history of blockingqueues. In Gordon J.
Pace and Anders P. Ravn, editors, FLACOS, volume 94 of EPTCS, pages 31-35, 2012.

APPENDIX A. AUXILIARY DEFINITIONS

A.1. Definitions of lookup functions.

Field Lookup, fld(C<7>) =T f:

(Fields Base) (Fields Ind) ~ fld(D<7'[7/a]>) =T' f'
class C<T a> ext D<7’> impl U {T f pd* az* md*}
fld(Object) = () fld(C<m>) = (T f)[z/a), T' f'

Axiom Lookup, axiom(t<7w>) = F':

axiom(az*) = true if ac™ = ()
F xaxiom(ax*®) if az* = (axiom F, az™®)
. - A true if T'= () or T = (Object)
axiom(T) = { axiom(U) * axiom(V) if T = (U, V)
(Ax Class)

class C<T a> ext U impl V {fd* pd* az* md*}
axiom(C<7>) = axiom(az*[7/a)) * axiom((U, V)[7/a])

(Ax Interface) B B
interface I<T a>ext U {pt* az* mt*}

. axiom(I<7>) = axiom(az*[7/al) * axiom(U[7/a])

Remarks on method lookup (defined below):

e In mbody and mtype, we replace the implicit self-parameter this by an explicit method
parameter (separated from the other method parameters by a semicolon). This is techni-

cally convenient for the theory.

Method Lookup, mtype(m, t<7>) = mt¢ and mbody(m, C<7>) = (7).c:

I
(Mlkup Object) B B
class Object {... <T'@>spec U m(V){c} ...}

mlkup(m, Object) = <T &> spec U m (V) {c}

(Mlkup Defn) B B B
class C<T" @'> ext U/ impl V' {... <T'a> spec U m(V){c} ...}

mlkup(m, C<7>) = (<T a> spec U m(V D) {c})[7/a']

(Mlkup Inherit) — m ¢ dom(md*)

class O<T a> ext D<7'> impl U {fd* pd* md*} mlkup(m, D<7'[7/a]>) = md’

mlkup(m, C<7>) = md’

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS

a>requires F;ensures G; U m(V 2){c}, then:
(this;1).c
<T a>requires F; ensures (result); U m(C<7> this; V 7)

If mlkup(m, C<7>) =<
mbody(m, C<7>)
mtype(m, C<7>)

> 1> =

(Mtype Interface) B B B
interface I<T a>ext U{... <T"a@'>requires F;;ensuresG; U' m(V'7); ...}

mtype(m, I<7>) = (KT’ &'>requires F; ensures (result); U’ m(I<x>this; V'7))[7/a]

(Mtype Interface Inherit) — interface I<T a>ext U, V,U’ {pt* az* mt*}
m & dom(mt*) (VU € U,U’)(mtype(m,U[7/a]) = undef) mtype(m,V[7/al) = mt

mtype(m, I<7>) = mt

(Mtype Interface Inherit Object) — interface I<T a>ext U {pt* az* mt*}
m & dom(mt*) (YU € U)(mtype(m,U|[r/a]) = undef) mtype(m,Object) = mt
mtype(m, I<7>) = mt

57

Remarks on predicate lookup:

e The “ext Object” in plkup(init,Object) and |(Plkup Object)|is included to match the

format of the relation. There is nothing more to this.

e Each class implicitly defines the init-predicate, which gives write permission to all fields

of the class frame. In df(T) is the default value of type T' (df is formally

defined in Section [22).
Predicate Lookup, ptype(P,t<7>) = pt and pbody(n.P<7'> C<7">) = F ext T

I
plkup(init,Object) = pred init=true ext Object

(Plkup Object) B
class Object {... pred P<T'a>=F; ...}
plkup(P,O0bject) = pred P<T a>=F ext Object

(Plkup Defn) B B
class C<T" &> ext U impl V {... pred P<T'a>=F; ...}

plkup(P, C<7>) = (pred P<T a>=F ext Object)[7/d’]

(Plkup init) B
class O<T" &> ext U impl V {fd* pd* md*} F=@, fefd*PointsTo(this.f, 1,df(T)

plkup(init, C<7>) = (pred init=F ext U)[7/d’]
(Plkup Inherit) P ¢ dom(pd*) B
class C<T" &> ext U impl V {fd* pd* md*} plkup(P,U) = pred P<T a>=F ext U’
plkup(P, C<7>) = (pred P<T a>=true ext U)[7/a’]

If plkup(P, C<7>) = pred P<T a>= Fext V', then:
pbody (. P<7’'>, C<7>) (F ext V)[r/this, 7’ /a]
ptype(P, C<7>) pred P<T a>

> v

(Ptype Interface) B B
interface I<T a>ext U{... pred P<T’a’>; ...}

ptype(P, I<7>) = (pred P<T' &'>)[7/al

58 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Ptype Interface Inherit) — interface I<T a>ext U, V, U’ {pt* ax* mt*}
P ¢ dom(S) (VU € U,U’)(ptype(P,U[r/a]) = undef) ptype(P,V[7/a]) = pt
ptype(P, I<7>) = pt

(Ptype Interface Inherit Object) interface I<T a>ext U {pt* az* mt*}
P & dom(pt*) (YU € U)(ptype(P, U7 /a]) = undef) ptype(P,0bject) = pt
ptype(P, I<7>) = pt

The partial function ptype(P, t<7>) is extended to predicate selectors P@C' as follows:

B type(P, t<7w>) ift =C
ptype(PeC, t<7>) = {Endef(: otherwise

A.2. Semantics of operators. To define the semantics of the command assigning the

result of an operation (case £=op(v) of our command language), we define the semantics of
operators.

Let arity be a function that assigns to each operator its arity. We define:
arity(==) 2 2 arity(&) = 2 arity(1) £ 2
arity(1) 21 arity(C classof) = 1 arity(instanceof T') = 1
Let type be a function that maps each operator op to a partial function type(op) of
type {int,bool,O0bject, perm}(°?) _ fint bool,perm}. We define:

type(==) = { ((T,T),bool) | T € {int,bool,0bject, perm, lockset} }
type(!) = { (bool,bool) } type(&) = type(l) = { ((bool,bool),bool) }
type(C classof) = { (Object,bool) }
type(instanceof T') = { (Object,bool) }

We assume that each operator op is interpreted by a function of the following type:

[op] € Heap — U [T] — [U]
(T,U) € type(op)
For the logical operators !, | and &, we assume the usual interpretations. Operator ==

is interpreted as the identity relation. The semantics of isclassof and instanceof is as
follows:

true if 0 # null and h(o); = C<7> for some 7
h N false if 0 # null, h(o), = D<7>, and D # C
€ classof]*(0) = false if o =null
undef o ¢ dom(h)

true if 0 # null and h(o), <
. hoA false if 0 # null and h(o); £:
lo instanceof T] = false if o =null
undef if o & dom(h)

Formally, the semantics of operators is expressed as follows:

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 59

Semantics of Operators: [op(v)] : Heap — Stack — Val:
1 1

(Sem Op)
[wi]?t =v1 - Jw,]t =v, [op]"(vi,...,v,) =0

[op(wi, ... ,w,)]"

=

A.3. Semantics of specification values and expressions. Expressions contain speci-
fication values, read-write variables, and operators. Therefore, we give the semantics of
specification values and the semantics of expressions together. Let SemVal be the semantic
domain of specification values. For the moment, SemVal is simply Val; but it is extended in
Sec. as we extend specification values. We range over SemVal with meta-variable p.
Semantics of Specification Values and Expressions, [¢] : Heap — Stack — SemVal:

(Sem SpecVal) (Sem Var) (Sem Op)
[7] = 1 s(0) =w [ui]? = vy -+ [wa]? = v, [op]*(v1,...,v0) =0
[[W]]?:M [[é]]}sI =v [[Op(wlv"'awn)]]gzv

Note that, we do not have to define a semantics of logical variables «, because we deal
with them by substitution.

A.4. Small-step reduction. The state reduction relation —.; is given with respect to a
class table ct in Section In the reduction rules, we use the following abbreviation for
field updates: hlo.f + v] = hlo +— (h(0), h(0),[f +— v])].
State Reductions, st —.; st’:
(Red Dcl) ¢ & dom(s) s = s[> df(T)]
(h, pis(sinT £; ¢)) — (h, pis (s"in ¢))
(Red Fin Del) s(¢) =v ¢ = c[v/1]
(h,pis(sinT1=0;¢)) — (h, pis (sinc))
(Red Var Set) & = s[l 1]
(h, pis (sinfl=v;c)) — (h, pis (s’ inc))
(Red Op) arity(op) = |v] [op]"(0) =w & = s}l +— w]
(h, pis (sin€=0p(D); c)) = (h, pis (s'inc))
(Red Get) s" =s[l — h(0),(f)]
(h,pis(sinl=o.f; ¢)) = (h, pis (s"inc))
(Red Set) A’ = hlo.f — v]
(h, pis(sino.f=v;¢))y = (K, pis(sinc))
o ¢ dom(h) h' = hlo > (C<@>,initStore(C<7>))]
s’ =s[l— o] I'=l]owr free]

(Red New)

(h, L,ts|pis(sinf=new C<7>; c)) — (W, ', ts|pis(s'inc))

(Red Call) h(o); = C<> mbody(m,C<>) = (10;7).c, ¢ = em[0/10,7/7]
(h, pis (sin£=0.m(D); ¢)) — (h, pis(sinl« c;c))

(Red Return)
(h, pis (sin £=return(v); ¢)) — (h, pis (sin {=v; ¢))

60 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Red If True)

(h, pis (s in if (true){crelse{c'}; ")) — (h, pis(sinc; "))
(Red If False)

(h, pis (s in if (false){cYelse{c'}; ")) — (h, pis (sinc; "))
(Red While True) [e]? = true

(h, pis (sin while (ed{c};c")) — (h, pis (sin ¢; while (e){c};c))
(Red While False) [e]” = false

(h, pis (sinwhile (ed{c};c)) — (h, pis (sin))

A.5. Typing rules. Here we define typing rules needed for Section 221 Section [B] and
Section [

Rules for Section [2.3. Because the semantics of formulas depends on a typing judgment,
we need to define typing rules before giving the formulas’ semantics.

A type environment is a partial function of type Objld U Var — Type. We use the
meta-variable I' to range over type environments. I'y, denotes the restriction of I' to Objld:

A

I'np = {(0,T)eT | ocObjld}

A type environment is good when objects within its domain are well-typed:

Good Environments, I' - o:
1 1

(Env)
(Vz € dom(I))(T'FT'(z) :¢) (VYo € dom(I"))(I'(0) <: Object and I'ny - I'(0) : ©)
I'ko

We define a sanity condition on types: primitive types are always sane, while user-
defined types must be such that (1) type identifiers are in the class table and (2) type pa-
rameters are well-typed. Below, the existential quantification in|(Ty Ref)f's second premise
enforces typing derivations to be finite.

Good Types, ' T : ¢:

(Ty Primitive) (Ty Ref) t<Ta> € ct B
T € {void, int,bool, perm} AV ch)(Mko TH7:T[7/a))
'e=T:90 IF'Etm>:o

We define a heap extension order on well-formed type environments:
I"Dpp ' iff T'Fo, ko, IV DT and F"Var = I'\var

As models of formulas are tuples that contain a heap and a stack (see Section 2.3.1]),
we define a well-typedness judgment for objects, heaps, and stacks:
Well-typed Objects, I' - 0bj : ¢:
(Obj) dom(os) € dom(fld(C<7>))
I'EC<i>:0 (Vfedom(os))(T fefld(C<i>) = Tk os(f):T)
['F(C<7>, 08) : ¢

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 61

Note that we require dom(os) C dom(fld(C<7>)), not dom(os) =
dom(fld(C<7>)). Thus, we allow partial objects. This is needed, because * joins heaps on
a per-field basis.

Below, we use function fst : Heap — (Objld — Type) to extract the function that maps
object identifiers to their dynamic types from a heap:

h(o) = (T,-) = fst(h)(0) =T
We now define well-typed heaps and stacks:
Well-typed Heaps and Stacks, 'Fh:oand I'Fs:o:

(Heap)
T'ko [Cfst(h) (Yoedom(h))(T I+ h(o): o)
I'h:o

(Stack)
ko (Vxedom(s))(TF s(z):T'(x))
I'ks:o

Because formulas include expressions, we define a well-typedness judgment for values,
specification values, and expressions (recall that expressions include specification values of
type bool).

Well-typed Values and Specification Values, '+v:T and '+ 7: T

(Val Var) (Val Oid) (Val Sub) (Val Null)
F'kto T(x)=T Thko T(o)=T Ttrta:T T<U DHit<a>:0
I'tax:T I'o:T I'n:U I'Fnull : <>
(Val Int) (Val Bool) (Val Full) (Val Split)
T'kFo T'kFo T'kFo I'Fmx:perm
I'tkn:int I'-b:bool T'k1:perm 't split(n) : perm

Well-typed Expressions, I't-e:T:

I 1

(Exp Sub) (Exp Var) (Exp Op)

The:T T<U Tho D()=T Tke:
I'ke:U 'te:T

We now have all the machinery to define well-typed formulas. Below, the partial func-
tion ptype(P, C<7>) (formally defined in [Al) looks up the type of predicate P in the least
supertype of C'<w> that defines or extends P.

Well-typed Formulas, I' - F': ¢:

(Form Bool) (Form Points To)

'k e:bool 'te:U Thra:perm TfefldlU) ThHe: T
T'kFe:o '+ PointsTo(e.f,m ') : o

(Form Log Op) (Form Pred) B B
I'FEFEF :o Pkn:U ptype(k,U) =pred P<T'a> I'k-7':T

THFlop F':o T'Ere<i’> 0

62 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(Form Quant)
I'tT:o Tha: THF:o

F'E(gTa)(F):o

Rules for Section[d. To cover Section s Join formula, we extend the judgment for well-
typed formulas as follows:

Well-typed Formulas, I' - F': ¢:
I

(Form Join)
I'Fe:Thread It 7:perm

I'Join(e,) : ¢

Rules for Section[f To accommodate Section [4.3ls lockset’s type, we update the previous
typing rule for good types:

Good Types, ' T :o:
1
(Ty Primitive)
T € {void, int,bool, perm, lockset }
T'FT:o

The following typing rule extends typing to values representing locksets:
u € Bag(Objld)
I'F p:lockset

To cover formulas about locksets and the state of locks, we extend the judgment for
well-typed formulas:

Well-typed Formulas, I' - F': o:
1

(Form Lockset) (Form Contains) (Form Fresh)
I'F 7 :lockset I'- 7, e: lockset,Object I'-e:0bject
I' - Lockset(m) : ¢ I'- 7 containse: o I'efresh:o

(Form Initialized)
I'Fe:0bject

'+ e.initialized: ¢
L]

A.6. Verification. In this section we present a complete list of natural deduction rules
(Section 24.1)) and Hoare rules (Section Z4.2]). In addition, the formal definitions of the
sanity conditions required for the verification of the interfaces and classes (see Section 2.5])
will be given.

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS

Logical Consequences.

Logical Consequence, I';v; F I G:

63

(Id) B (Ax) B

I'kwv, F,G :0Object, o IivFG T'kFo,F,G:0bject, o
o, F,GFG Iiu; FEG

(* Intro) B (* Elim) B

o FEHy Thv,GE Hy v PG xGy Thu E,Gy,Go H
;v F,GF Hy * Hy Iiv;F,E+-H

(- Intro) (-* Elim) B

o, F,Gy F Gy o, F-Hy—xHy T;0,GHHy

Liv; FEGL-*Go [0, F,G - Hy

(& Intro) B (& Elim 1) (& Elim 2)

Ty FEGy Tho FEGo v, FEGL& Gy v, FEGL& Gy
Iiv; FEGL& Gy ;v F Gy ;v F + Go

(I Intro 1) (I Intro 2) (I Elim) T;v;F Gy |Gy
o, F -Gy o, F -Gy v, E,Gi+H T';u,E,Go+H

T;v;F -Gy |Gy Lo F Gyl Gy Iiv;F,E+-H

(Ex Intro) T,a:TkHG:o (Ex Elim) o« ¢ F,H B

Fkn:T T;u;FFGn/a) iviEF(exTa)(G) T,a:T);v;F,GFH
Iiv; FE (exTa) (G) Iiv;E,F-H

(Fa Intro) B (Fa Elim)

agF T,a:T;v;,F-G v FEEaTa)(G) ThER:T

Iio; FE(faT o) (G) L;v; F = G[r/al

Hoare Rules.

Hoare Rules

I
FFu,w:UW W fefldU)
;v F {PointsTo(u.f, 1, W) }u.f=w{PointsTo(u.f,1,w)}

(F1d Set)

F'Fu,m,w:Uperm W W fefldU) W <:T'(0)

Get
;v F {PointsTo(u.f, m,w) }=u.f{PointsTo(u.f, m,w) * £ == w} (Get)

C<Ta>cct TH7:T[r/a] C<a><:T(¥)

(New)
;v b {true}{ =new C<7>{l.init * C classof (}

mtype(m, t<7>) = <T a> requires G; ensures (o) (G);
U m (t<7> 19, W 7)
o= (u/10,7/a,w/7) TFu, 7 w:t<w> Tlo],Wlo] Ulo] <:T(¥) (Call)
Tio b {ut=null* Glo]H=um(@@){(ex Ulo] &) (¢/ == £ * G'[o])}

Do FEGw/a)] TRw:U<:T T,a:UFG:o
Dok {F}lw: T{(U o) (&)}

(Val)

64 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(¢ F,G T,0:Tywk {Fx{==df(T)}c: U{G}

(Dcl)
;o E{F}T 4 c: U{G}

1€ F,G,o THL:T To:TyoE{F*1==(}c: U{G}

(Fin Del)
Dyo b {F}T 1=4; c: U{G}
vk (Fyhe{F'} Tivk {Fle:T{G} (g
Tyv - {Flhe;e: T{G}
;v {F}hc{G} T+ H:o fv(H)Nwrites(hc) =10 (Frame)

Dok {FxH}he{G*H}
T;o b {F'}he{G"}
Ly FEF TG G

(Consequence)
;o {F}he{G}

Tya:T;vkF {F}he{G}

(Exists)
Diok {(exT) (F)thef{(ex T o) ()}
F'Fw:T) (Var Set)
;o b {true}l =w{l == w}
I'F op(w) : T'(¢) (Op)

;v b {true}l = op(w){l == op(w)}

F'Fw:bool Thuk {F*w}c:void{G} T;vk {Fx'lw}d :void{G}
o {F}if (w){c}else{c'H{G}

(If)

ke, F:bool,o vk {F&e}c:void{F}
;o b {F}invariant F; while(e){c} : void{F & !e}

(While)

v FEG
;v b {F}assert(G){F}

(Assert)

'Fv:T T;0;FFGv/a] T<:U
Le:Ujob{(exTa)(a==0* G)}c: V{H} (Return)
I ¢:U;oF {F}=return(v); c: V{H}

Remarks. The rule is defined for a specification-only assert statement, that is
formally defined on page [Tl Intuitively, assert (G) expresses that G should hold at that
point in the execution. It is used to express a corollary about partial correctness of a verified
program. The rule is for the auxiliary return statement, defined in Section
As explained, source code programs do not contain this statement, but we need the rule to

prove soundness of the proof system.

Well-formedness. The following presents formal definitions of well-formed predicate types,

method types and verified interfaces

Well-formed Predicate Types, Method Types , Verified Interfaces :
1

FFT:_O (Pred Type) I'FF:o (Ax)
I'Fpred P<T'a>: ¢ I'Faxiom F': o

PERMISSION-BASED SEPARATION LOGIC FOR MULTITHREADED JAVA PROGRAMS 65

a:T,7:VFT,FUV:o T,a:T,1:V,result:UFG:o

- - (Mth Type)
I'F<T @a>requires F;ensuresG; U m(V7) : o

_ I<T a> type-extends U init ¢ dom(pt*)
a:THT,U,pt*:o a:T,this: I<a>F az, mt* : o

interface I<T a>ext U {pt* az* mt*} : o
L 1

(Int)

We write cfv(c) for the set of variables that occur freely in an object creation command
in ¢. Rule below is the main judgment for verifying classes. Premises C<T &> ext U
and C<T a> impl V enforce class C' to be sane. Premise C<T &> sound enforces C’s axioms
to be sound. Premise & : T, this : C<a> = fd*, ax™, md* : o enforces C’s methods (md*)
to be verified.

Rule below verifies methods. In this rule, we prohibit object creation commands
to contain logical method parameters because our operational semantics does not keep track
of logical method parameters (while it does keep track of class parameters).

Verified Classes, cl : o:
1

 C<Ta>extU C<Ta>impl V. C<T'a>sound init ¢ dom(pd*)
a:THFT,UV:o a:Tkpd*:0inC<a> a:T,this: C<a> b fd*, az*, md* : o
class C<T a> ext U impl V {fd* pd* az* md*} : o

(Cls)

'=T:o I'Fpred P<T'a>:o TI,this:U,a:T+FF:o

"1 () L _ (Pred)
'ETf:o I'kFpred P<Ta>=F:0inU
'l <T a>requires F;ensuresG; U m(V1) : o cfv(c)na =10
I"=T,a:T,1:V TI';thisk {F* this # null}c: U{(result) (G)} (Mth)

I' - <T a>requires F;ensures G; U m(V){c}: o

Sanity Conditions for Class Extensions and Interface Implementations. In the definition
below, we treat the partial functions mtype and ptype (formally defined in [AT]) as total
functions that map elements outside their domains to the special element undef. Further-
more, we extend the subtyping relation:

< ={(T,U)|T <: U} U {(undef, undef)}

U is a parameterized class
B R f edom(fld(U)) = f & declared(C)
C<Ta>extU = (VYm, mt)(mtype(m,U) = mt =
a: T+ mtype(m, C<a>) <: mt)
(VP, pt)(ptype(P,U) = pt = ptype(P,C<a>) <: pt)

U is a (parameterized) interface
(Ym, mt)(mtype(m,U) = mt =
I<T &> type-extends U = a: T - mtype(m, I<a>) <: mt)
(VP, pt)(ptype(P,U) = pt =
ptype(P, I<a>) <: pt)

I<T a> type-extends U = (YU e U)(I<T a> type-extends U)

66 A. AMIGHI, C. HAACK, M. HUISMAN, AND C. HURLIN

(U is a (parameterized) interface
(Vm, mt)(mtype(m,U) = mt =
B N mtype(m, C<a>) # undef)
C<T a> impl U =< (VP pt)(ptype(P,U) = pt = ptype(P, C<a>) # undef)
(Vm, mt)(mtype(m,U) = mt =
a: T + mtype(m, C<a>) <: mt)
(VP, pt)(ptype(P,U) = pt = ptype(P,C<a>) <: pt)

C<Ta>impl U = (YU € U)(C<T a> impl U)

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://creativecommons.org/licenses/by-nd/2.0/ or send a
letter to Creative Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or
Eisenacher Strasse 2, 10777 Berlin, Germany

	1. Introduction
	1.1. Motivation and Context
	1.2. Separation Logic Informally
	1.3. Contributions
	1.4. Earlier Papers and Overview

	2. The Sequential Java-like language
	2.1. Syntax
	2.2. Operational Semantics
	2.3. Validity of Resource Formulas
	2.4. Verification
	2.5. Verified Programs
	2.6. Example: Sequential Mergesort

	3. Separation Logic for dynamic threads
	3.1. A Java-like Language with Fork/Join
	3.2. Assertion Language for Fork/Join
	3.3. Contracts for Fork and Join
	3.4. Verified Programs
	3.5. Examples of Reasoning

	4. Separation Logic for Reentrant Locks
	4.1. Separation Logic and Single-Entrant Locks
	4.2. A Java-like Language with Reentrant Locks
	4.3. Separation Logic for Reentrant Locks
	4.4. Hoare Triples
	4.5. Verified Programs
	4.6. Examples of Reasoning with Reentrant Locks

	5. Related Work
	6. Conclusion
	Acknowledgments
	References
	Appendix A. Auxiliary Definitions
	A.1. Definitions of lookup functions
	A.2. Semantics of operators
	A.3. Semantics of specification values and expressions.
	A.4. Small-step reduction
	A.5. Typing rules
	A.6. Verification

