Krishnendu Chatterjee ; Laurent Doyen ; Thomas A. Henzinger ; <br> Jean-Francois Raskin - Algorithms for Omega-Regular Games with Imperfect Information

lmcs:1094 - Logical Methods in Computer Science, July 27, 2007, Volume 3, Issue 3 - https://doi.org/10.2168/LMCS-3(3:4)2007
Algorithms for Omega-Regular Games with Imperfect InformationArticle

Authors: Krishnendu Chatterjee ; Laurent Doyen ; Thomas A. Henzinger ; Jean-Francois Raskin

    We study observation-based strategies for two-player turn-based games on graphs with omega-regular objectives. An observation-based strategy relies on imperfect information about the history of a play, namely, on the past sequence of observations. Such games occur in the synthesis of a controller that does not see the private state of the plant. Our main results are twofold. First, we give a fixed-point algorithm for computing the set of states from which a player can win with a deterministic observation-based strategy for any omega-regular objective. The fixed point is computed in the lattice of antichains of state sets. This algorithm has the advantages of being directed by the objective and of avoiding an explicit subset construction on the game graph. Second, we give an algorithm for computing the set of states from which a player can win with probability 1 with a randomized observation-based strategy for a Buechi objective. This set is of interest because in the absence of perfect information, randomized strategies are more powerful than deterministic ones. We show that our algorithms are optimal by proving matching lower bounds.


    Volume: Volume 3, Issue 3
    Published on: July 27, 2007
    Imported on: January 3, 2007
    Keywords: Computer Science - Logic in Computer Science,Computer Science - Computer Science and Game Theory,F.4.1
    Funding:
      Source : OpenAIRE Graph
    • ITR: Foundations of Hybrid and Embedded Software Systems; Funder: National Science Foundation; Code: 0225610
    • Interfaces and Model Checking for Software; Funder: National Science Foundation; Code: 0234690

    55 Documents citing this article

    Consultation statistics

    This page has been seen 1992 times.
    This article's PDF has been downloaded 718 times.