Home

Indivisibility and uniform computational strength
Authors: Kenneth Gill.


A countable structure is indivisible if for every coloring with finite range there is a monochromatic isomorphic subcopy of the structure. Each indivisible structure naturally corresponds to an indivisibility problem which outputs such a subcopy given a presentation and coloring. We investigate the Weihrauch complexity of the indivisibility problems for two structures: the rational numbers $\mathbb{Q}$ as a linear order, and the equivalence relation $\mathscr{E}$ with countably many equivalence classes each having countably many members. We separate the Weihrauch degrees of both corresponding indivisibility problems from several benchmarks, showing in particular that the indivisibility problem for $\mathbb{Q}$ cannot solve the problem of finding a monochromatic rational interval given a coloring for which there is one; and that the Weihrauch degree of the indivisibility problem for $\mathscr{E}$ is strictly between those of $\mathsf{RT}^2$ and $\mathsf{SRT}^2$, two widely studied variants of Ramsey's theorem for pairs whose reverse-mathematical separation was open until recently.


Published on June 11, 2025
The Identity Problem in the special affine group of $\mathbb{Z}^2$
Authors: Ruiwen Dong.


We consider semigroup algorithmic problems in the Special Affine group $\mathsf{SA}(2, \mathbb{Z}) = \mathbb{Z}^2 \rtimes \mathsf{SL}(2, \mathbb{Z})$, which is the group of affine transformations of the lattice $\mathbb{Z}^2$ that preserve orientation. Our paper focuses on two decision problems introduced by Choffrut and Karhum\"{a}ki (2005): the Identity Problem (does a semigroup contain a neutral element?) and the Group Problem (is a semigroup a group?) for finitely generated sub-semigroups of $\mathsf{SA}(2, \mathbb{Z})$. We show that both problems are decidable and NP-complete. Since $\mathsf{SL}(2, \mathbb{Z}) \leq \mathsf{SA}(2, \mathbb{Z}) \leq \mathsf{SL}(3, \mathbb{Z})$, our result extends that of Bell, Hirvensalo and Potapov (2017) on the NP-completeness of both problems in $\mathsf{SL}(2, \mathbb{Z})$, and contributes a first step towards the open problems in $\mathsf{SL}(3, \mathbb{Z})$.


Published on June 9, 2025
Relating Reversible Petri Nets and Reversible Event Structures, categorically


Causal nets (CNs) are Petri nets where causal dependencies are modelled via inhibitor arcs. They play the role of occurrence nets when representing the behaviour of a concurrent and distributed system, even when reversibility is considered. In this paper we extend CNs to account also for asymmetric conflicts and study (i) how this kind of nets, and their reversible versions, can be turned into a category; and (ii) their relation with the categories of reversible asymmetric event structures.


Published on June 5, 2025
Stochastic Window Mean-Payoff Games


Stochastic two-player games model systems with an environment that is both adversarial and stochastic. The adversarial part of the environment is modeled by a player (Player 2) who tries to prevent the system (Player 1) from achieving its objective. We consider finitary versions of the traditional mean-payoff objective, replacing the long-run average of the payoffs by payoff average computed over a finite sliding window. Two variants have been considered: in one variant, the maximum window length is fixed and given, while in the other, it is not fixed but is required to be bounded. For both variants, we present complexity bounds and algorithmic solutions for computing strategies for Player 1 to ensure that the objective is satisfied with positive probability, with probability 1, or with probability at least $p$, regardless of the strategy of Player 2. The solution crucially relies on a reduction to the special case of non-stochastic two-player games. We give a general characterization of prefix-independent objectives for which this reduction holds. The memory requirement for both players in stochastic games is also the same as in non-stochastic games by our reduction. Moreover, for non-stochastic games, we improve upon the upper bound for the memory requirement of Player 1 and upon the lower bound for the memory requirement of Player 2.


Published on June 5, 2025
Discounted-Sum Automata with Multiple Discount Factors
Authors: Udi Boker ; Guy Hefetz.


Discounting the influence of future events is a key paradigm in economics and it is widely used in computer-science models, such as games, Markov decision processes (MDPs), reinforcement learning, and automata. While a single game or MDP may allow for several different discount factors, nondeterministic discounted-sum automata (NDAs) were only studied with respect to a single discount factor. It is known that every class of NDAs with an integer as the discount factor has good computational properties: It is closed under determinization and under the algebraic operations min, max, addition, and subtraction, and there are algorithms for its basic decision problems, such as automata equivalence and containment. Extending the integer discount factor to an arbitrary rational number, loses most of these good properties. We define and analyze nondeterministic discounted-sum automata in which each transition can have a different integral discount factor (integral NMDAs). We show that integral NMDAs with an arbitrary choice of discount factors are not closed under determinization and under algebraic operations and that their containment problem is undecidable. We then define and analyze a restricted class of integral NMDAs, which we call tidy NMDAs, in which the choice of discount factors depends on the prefix of the word read so far. Among their special cases are NMDAs that correlate discount factors to actions (alphabet letters) or to the elapsed time. We show that for every […]


Published on June 5, 2025

Managing Editors

 

Stefan Milius
Editor-in-Chief

Brigitte Pientka
Fabio Zanasi
Executive Editors


Editorial Board
Executive Board
Publisher

eISSN: 1860-5974


Logical Methods in Computer Science is an open-access journal, covered by SCOPUS, DBLPWeb of Science, Mathematical Reviews and Zentralblatt. The journal is a member of the Free Journal Network. All journal content is licensed under a Creative Commons license.