What payoffs are positionally determined for deterministic two-player antagonistic games on finite directed graphs? In this paper we study this question for payoffs that are continuous. The main reason why continuous positionally determined payoffs are interesting is that they include the multi-discounted payoffs. We show that for continuous payoffs, positional determinacy is equivalent to a simple property called prefix-monotonicity. We provide three proofs of it, using three major techniques of establishing positional determinacy -- inductive technique, fixed point technique and strategy improvement technique. A combination of these approaches provides us with better understanding of the structure of continuous positionally determined payoffs as well as with some algorithmic results.