Milius, Stefan and Moss, Lawrence S and Schwencke, Daniel - Abstract GSOS Rules and a Modular Treatment of Recursive Definitions

lmcs:1180 - Logical Methods in Computer Science, September 30, 2013, Volume 9, Issue 3
Abstract GSOS Rules and a Modular Treatment of Recursive Definitions

Authors: Milius, Stefan and Moss, Lawrence S and Schwencke, Daniel

Terminal coalgebras for a functor serve as semantic domains for state-based systems of various types. For example, behaviors of CCS processes, streams, infinite trees, formal languages and non-well-founded sets form terminal coalgebras. We present a uniform account of the semantics of recursive definitions in terminal coalgebras by combining two ideas: (1) abstract GSOS rules l specify additional algebraic operations on a terminal coalgebra; (2) terminal coalgebras are also initial completely iterative algebras (cias). We also show that an abstract GSOS rule leads to new extended cia structures on the terminal coalgebra. Then we formalize recursive function definitions involving given operations specified by l as recursive program schemes for l, and we prove that unique solutions exist in the extended cias. From our results it follows that the solutions of recursive (function) definitions in terminal coalgebras may be used in subsequent recursive definitions which still have unique solutions. We call this principle modularity. We illustrate our results by the five concrete terminal coalgebras mentioned above, e.\,g., a finite stream circuit defines a unique stream function.


Source : oai:arXiv.org:1307.2538
DOI : 10.2168/LMCS-9(3:28)2013
Volume: Volume 9, Issue 3
Published on: September 30, 2013
Submitted on: December 8, 2010
Keywords: Computer Science - Logic in Computer Science,Mathematics - Category Theory


Share

Consultation statistics

This page has been seen 66 times.
This article's PDF has been downloaded 110 times.