Sadegh Esmaeil Zadeh Soudjani ; Alessandro Abate - Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions

lmcs:1584 - Logical Methods in Computer Science, September 4, 2015, Volume 11, Issue 3 -
Quantitative Approximation of the Probability Distribution of a Markov Process by Formal Abstractions

Authors: Sadegh Esmaeil Zadeh Soudjani ; Alessandro Abate

    The goal of this work is to formally abstract a Markov process evolving in discrete time over a general state space as a finite-state Markov chain, with the objective of precisely approximating its state probability distribution in time, which allows for its approximate, faster computation by that of the Markov chain. The approach is based on formal abstractions and employs an arbitrary finite partition of the state space of the Markov process, and the computation of average transition probabilities between partition sets. The abstraction technique is formal, in that it comes with guarantees on the introduced approximation that depend on the diameters of the partitions: as such, they can be tuned at will. Further in the case of Markov processes with unbounded state spaces, a procedure for precisely truncating the state space within a compact set is provided, together with an error bound that depends on the asymptotic properties of the transition kernel of the original process. The overall abstraction algorithm, which practically hinges on piecewise constant approximations of the density functions of the Markov process, is extended to higher-order function approximations: these can lead to improved error bounds and associated lower computational requirements. The approach is practically tested to compute probabilistic invariance of the Markov process under study, and is compared to a known alternative approach from the literature.

    Volume: Volume 11, Issue 3
    Published on: September 4, 2015
    Submitted on: November 12, 2014
    Keywords: Computer Science - Logic in Computer Science
    Fundings :
      Source : OpenAIRE Research Graph
    • Modeling, verification and control of complex systems: From foundations to power network applications; Funder: European Commission; Code: 257005
    • Advanced Methods in Building Diagnostics and Maintenance; Funder: European Commission; Code: 324432

    Linked data

    Source : ScholeXplorer IsReferencedBy DOI 10.1007/978-3-030-30281-8_19
    • 10.1007/978-3-030-30281-8_19
    • 10.1007/978-3-030-30281-8_19
    Safety Guarantees for the Electricity Grid with Significant Renewables Generation
    Peruffo, Andrea ; Guiu, Emeline ; Panciatici, Patrick ; Abate, Alessandro ;

    6 Documents citing this article


    Consultation statistics

    This page has been seen 427 times.
    This article's PDF has been downloaded 463 times.