Chong, C. T. and Hoi, Gordon and Stephan, Frank and Turetsky, Daniel - Partial functions and domination

lmcs:1592 - Logical Methods in Computer Science, September 21, 2015, Volume 11, Issue 3
Partial functions and domination

Authors: Chong, C. T. and Hoi, Gordon and Stephan, Frank and Turetsky, Daniel

The current work introduces the notion of pdominant sets and studies their recursion-theoretic properties. Here a set A is called pdominant iff there is a partial A-recursive function {\psi} such that for every partial recursive function {\phi} and almost every x in the domain of {\phi} there is a y in the domain of {\psi} with y<= x and {\psi}(y) > {\phi}(x). While there is a full {\pi}01-class of nonrecursive sets where no set is pdominant, there is no {\pi}01-class containing only pdominant sets. No weakly 2-generic set is pdominant while there are pdominant 1-generic sets below K. The halves of Chaitin's {\Omega} are pdominant. No set which is low for Martin-L\"of random is pdominant. There is a low r.e. set which is pdominant and a high r.e. set which is not pdominant.


Source : oai:arXiv.org:1506.06869
DOI : 10.2168/LMCS-11(3:16)2015
Volume: Volume 11, Issue 3
Published on: September 21, 2015
Submitted on: August 28, 2014
Keywords: Computer Science - Logic in Computer Science


Share

Consultation statistics

This page has been seen 83 times.
This article's PDF has been downloaded 45 times.