A finer reduction of constraint problems to digraphsArticleAuthors: Jakub Bulín

; Dejan Delic ; Marcel Jackson

; Todd Niven
0000-0001-5235-8715##NULL##0000-0002-8149-1141##NULL
Jakub Bulín;Dejan Delic;Marcel Jackson;Todd Niven
It is well known that the constraint satisfaction problem over a general relational structure A is polynomial time equivalent to the constraint problem over some associated digraph. We present a variant of this construction and show that the corresponding constraint satisfaction problem is logspace equivalent to that over A. Moreover, we show that almost all of the commonly encountered polymorphism properties are held equivalently on the A and the constructed digraph. As a consequence, the Algebraic CSP dichotomy conjecture as well as the conjectures characterizing CSPs solvable in logspace and in nondeterministic logspace are equivalent to their restriction to digraphs.
Comment: arXiv admin note: substantial text overlap with arXiv:1305.2039
Volume: Volume 11, Issue 4
Published on: December 29, 2015
Imported on: June 25, 2014
Keywords: Computer Science - Computational Complexity, Computer Science - Logic in Computer Science, Mathematics - Combinatorics
Funding:
Source : OpenAIRE Graph- Funder: Natural Sciences and Engineering Research Council of Canada
- Complexity in Algebra and Algebra in Complexity: the role of finite semigroups and general algebra; Funder: Australian Research Council (ARC); Code: DP1094578
- Structure of relations: algebra and applications; Funder: Australian Research Council (ARC); Code: FT120100666
- Computation in direct powers; Funder: Australian Research Council (ARC); Code: P 24285