Matthew de Brecht - A generalization of a theorem of Hurewicz for quasi-Polish spaces

lmcs:4106 - Logical Methods in Computer Science, February 6, 2018, Volume 14, Issue 1 - https://doi.org/10.23638/LMCS-14(1:13)2018
A generalization of a theorem of Hurewicz for quasi-Polish spacesArticle

Authors: Matthew de Brecht

    We identify four countable topological spaces S2, S1, SD, and S0 which serve as canonical examples of topological spaces which fail to be quasi-Polish. These four spaces respectively correspond to the T2, T1, TD, and T0-separation axioms. S2 is the space of rationals, S1 is the natural numbers with the cofinite topology, SD is an infinite chain without a top element, and S0 is the set of finite sequences of natural numbers with the lower topology induced by the prefix ordering. Our main result is a generalization of Hurewicz's theorem showing that a co-analytic subset of a quasi-Polish space is either quasi-Polish or else contains a countable Π02-subset homeomorphic to one of these four spaces.


    Volume: Volume 14, Issue 1
    Published on: February 6, 2018
    Accepted on: November 29, 2017
    Submitted on: November 29, 2017
    Keywords: Mathematics - General Topology,Computer Science - Logic in Computer Science

    1 Document citing this article

    Consultation statistics

    This page has been seen 2353 times.
    This article's PDF has been downloaded 546 times.