Beohar, Harsh and König, Barbara and Küpper, Sebastian and Silva, Alexandra and Wißmann, Thorsten - A coalgebraic treatment of conditional transition systems with upgrades

lmcs:4330 - Logical Methods in Computer Science, February 28, 2018, Volume 14, Issue 1
A coalgebraic treatment of conditional transition systems with upgrades

Authors: Beohar, Harsh and König, Barbara and Küpper, Sebastian and Silva, Alexandra and Wißmann, Thorsten

We consider conditional transition systems, that model software product lines with upgrades, in a coalgebraic setting. By using Birkhoff's duality for distributive lattices, we derive two equivalent Kleisli categories in which these coalgebras live: Kleisli categories based on the reader and on the so-called lattice monad over $\mathsf{Poset}$. We study two different functors describing the branching type of the coalgebra and investigate the resulting behavioural equivalence. Furthermore we show how an existing algorithm for coalgebra minimisation can be instantiated to derive behavioural equivalences in this setting.


Source : oai:arXiv.org:1612.05002
DOI : 10.23638/LMCS-14(1:19)2018
Volume: Volume 14, Issue 1
Published on: February 28, 2018
Submitted on: August 22, 2017
Keywords: Computer Science - Logic in Computer Science


Share

Consultation statistics

This page has been seen 100 times.
This article's PDF has been downloaded 49 times.