Eike Neumann ; Martin Pape ; Thomas Streicher - Computability in Basic Quantum Mechanics

lmcs:3222 - Logical Methods in Computer Science, June 19, 2018, Volume 14, Issue 2 - https://doi.org/10.23638/LMCS-14(2:14)2018
Computability in Basic Quantum Mechanics

Authors: Eike Neumann ; Martin Pape ; Thomas Streicher

    The basic notions of quantum mechanics are formulated in terms of separable infinite dimensional Hilbert space $\mathcal{H}$. In terms of the Hilbert lattice $\mathcal{L}$ of closed linear subspaces of $\mathcal{H}$ the notions of state and observable can be formulated as kinds of measures as in [21]. The aim of this paper is to show that there is a good notion of computability for these data structures in the sense of Weihrauch's Type Two Effectivity (TTE) [26]. Instead of explicitly exhibiting admissible representations for the data types under consideration we show that they do live within the category $\mathbf{QCB}_0$ which is equivalent to the category $\mathbf{AdmRep}$ of admissible representations and continuously realizable maps between them. For this purpose in case of observables we have to replace measures by valuations which allows us to prove an effective version of von Neumann's Spectral Theorem.


    Volume: Volume 14, Issue 2
    Published on: June 19, 2018
    Accepted on: June 19, 2018
    Submitted on: March 28, 2017
    Keywords: Computer Science - Logic in Computer Science,03B70, 03F60, 18C50, 68Q55
    Fundings :
      Source : OpenAIRE Research Graph
    • Computing with Infinite Data; Funder: European Commission; Code: 731143

    Share

    Consultation statistics

    This page has been seen 603 times.
    This article's PDF has been downloaded 720 times.