Albert Atserias ; José L. Balcázar ; Marie Ely Piceno - Relative Entailment Among Probabilistic Implications

lmcs:3791 - Logical Methods in Computer Science, February 6, 2019, Volume 15, Issue 1 - https://doi.org/10.23638/LMCS-15(1:10)2019
Relative Entailment Among Probabilistic ImplicationsArticle

Authors: Albert Atserias ; José L. Balcázar ; Marie Ely Piceno

    We study a natural variant of the implicational fragment of propositional logic. Its formulas are pairs of conjunctions of positive literals, related together by an implicational-like connective; the semantics of this sort of implication is defined in terms of a threshold on a conditional probability of the consequent, given the antecedent: we are dealing with what the data analysis community calls confidence of partial implications or association rules. Existing studies of redundancy among these partial implications have characterized so far only entailment from one premise and entailment from two premises, both in the stand-alone case and in the case of presence of additional classical implications (this is what we call "relative entailment"). By exploiting a previously noted alternative view of the entailment in terms of linear programming duality, we characterize exactly the cases of entailment from arbitrary numbers of premises, again both in the stand-alone case and in the case of presence of additional classical implications. As a result, we obtain decision algorithms of better complexity; additionally, for each potential case of entailment, we identify a critical confidence threshold and show that it is, actually, intrinsic to each set of premises and antecedent of the conclusion.


    Volume: Volume 15, Issue 1
    Published on: February 6, 2019
    Accepted on: December 21, 2018
    Submitted on: July 17, 2017
    Keywords: Computer Science - Logic in Computer Science,Computer Science - Databases,Computer Science - Machine Learning
    Funding:
      Source : OpenAIRE Graph
    • A Unified Theory of Algorithmic Relaxations; Funder: European Commission; Code: 648276

    Consultation statistics

    This page has been seen 1822 times.
    This article's PDF has been downloaded 463 times.