Egbert Rijke ; Michael Shulman ; Bas Spitters - Modalities in homotopy type theory

lmcs:3826 - Logical Methods in Computer Science, January 8, 2020, Volume 16, Issue 1 -
Modalities in homotopy type theoryArticle

Authors: Egbert Rijke ; Michael Shulman ; Bas Spitters ORCID

    Univalent homotopy type theory (HoTT) may be seen as a language for the category of $\infty$-groupoids. It is being developed as a new foundation for mathematics and as an internal language for (elementary) higher toposes. We develop the theory of factorization systems, reflective subuniverses, and modalities in homotopy type theory, including their construction using a "localization" higher inductive type. This produces in particular the ($n$-connected, $n$-truncated) factorization system as well as internal presentations of subtoposes, through lex modalities. We also develop the semantics of these constructions.

    Volume: Volume 16, Issue 1
    Published on: January 8, 2020
    Accepted on: September 20, 2019
    Submitted on: August 1, 2017
    Keywords: Mathematics - Category Theory,Computer Science - Logic in Computer Science,Mathematics - Logic,F.3.1, F.4.1,F.3.1,F.4.1

    2 Documents citing this article

    Consultation statistics

    This page has been seen 2666 times.
    This article's PDF has been downloaded 911 times.