Jörg Endrullis ; Jan Willem Klop ; Roy Overbeek - Decreasing Diagrams for Confluence and Commutation

lmcs:5145 - Logical Methods in Computer Science, February 20, 2020, Volume 16, Issue 1 - https://doi.org/10.23638/LMCS-16(1:23)2020
Decreasing Diagrams for Confluence and CommutationArticle

Authors: Jörg Endrullis ORCID; Jan Willem Klop ; Roy Overbeek ORCID

    Like termination, confluence is a central property of rewrite systems. Unlike for termination, however, there exists no known complexity hierarchy for confluence. In this paper we investigate whether the decreasing diagrams technique can be used to obtain such a hierarchy. The decreasing diagrams technique is one of the strongest and most versatile methods for proving confluence of abstract rewrite systems. It is complete for countable systems, and it has many well-known confluence criteria as corollaries. So what makes decreasing diagrams so powerful? In contrast to other confluence techniques, decreasing diagrams employ a labelling of the steps with labels from a well-founded order in order to conclude confluence of the underlying unlabelled relation. Hence it is natural to ask how the size of the label set influences the strength of the technique. In particular, what class of abstract rewrite systems can be proven confluent using decreasing diagrams restricted to 1 label, 2 labels, 3 labels, and so on? Surprisingly, we find that two labels suffice for proving confluence for every abstract rewrite system having the cofinality property, thus in particular for every confluent, countable system. Secondly, we show that this result stands in sharp contrast to the situation for commutation of rewrite relations, where the hierarchy does not collapse. Thirdly, investigating the possibility of a confluence hierarchy, we determine the first-order (non-)definability of the notion of confluence and related properties, using techniques from finite model theory. We find that in particular Hanf's theorem is fruitful for elegant proofs of undefinability of properties of abstract rewrite systems.


    Volume: Volume 16, Issue 1
    Published on: February 20, 2020
    Accepted on: October 15, 2019
    Submitted on: January 31, 2019
    Keywords: Computer Science - Logic in Computer Science
    Funding:
      Source : OpenAIRE Graph
    • ECiDA: Evolutionary changes in Distributed Analysis; Code: 628.011.003

    1 Document citing this article

    Consultation statistics

    This page has been seen 1899 times.
    This article's PDF has been downloaded 454 times.