Metcalfe, George and Röthlisberger, Christoph - Admissibility in Finitely Generated Quasivarieties

lmcs:733 - Logical Methods in Computer Science, June 25, 2013, Volume 9, Issue 2
Admissibility in Finitely Generated Quasivarieties

Authors: Metcalfe, George and Röthlisberger, Christoph

Checking the admissibility of quasiequations in a finitely generated (i.e., generated by a finite set of finite algebras) quasivariety Q amounts to checking validity in a suitable finite free algebra of the quasivariety, and is therefore decidable. However, since free algebras may be large even for small sets of small algebras and very few generators, this naive method for checking admissibility in $\Q$ is not computationally feasible. In this paper, algorithms are introduced that generate a minimal (with respect to a multiset well-ordering on their cardinalities) finite set of algebras such that the validity of a quasiequation in this set corresponds to admissibility of the quasiequation in Q. In particular, structural completeness (validity and admissibility coincide) and almost structural completeness (validity and admissibility coincide for quasiequations with unifiable premises) can be checked. The algorithms are illustrated with a selection of well-known finitely generated quasivarieties, and adapted to handle also admissibility of rules in finite-valued logics.


Source : oai:arXiv.org:1305.3530
DOI : 10.2168/LMCS-9(2:9)2013
Volume: Volume 9, Issue 2
Published on: June 25, 2013
Submitted on: November 30, 2012
Keywords: Computer Science - Logic in Computer Science,Mathematics - Logic


Share

Consultation statistics

This page has been seen 70 times.
This article's PDF has been downloaded 70 times.