Platzer, Andre - The Structure of Differential Invariants and Differential Cut Elimination

lmcs:809 - Logical Methods in Computer Science, November 21, 2012, Volume 8, Issue 4
The Structure of Differential Invariants and Differential Cut Elimination

Authors: Platzer, Andre

The biggest challenge in hybrid systems verification is the handling of differential equations. Because computable closed-form solutions only exist for very simple differential equations, proof certificates have been proposed for more scalable verification. Search procedures for these proof certificates are still rather ad-hoc, though, because the problem structure is only understood poorly. We investigate differential invariants, which define an induction principle for differential equations and which can be checked for invariance along a differential equation just by using their differential structure, without having to solve them. We study the structural properties of differential invariants. To analyze trade-offs for proof search complexity, we identify more than a dozen relations between several classes of differential invariants and compare their deductive power. As our main results, we analyze the deductive power of differential cuts and the deductive power of differential invariants with auxiliary differential variables. We refute the differential cut elimination hypothesis and show that, unlike standard cuts, differential cuts are fundamental proof principles that strictly increase the deductive power. We also prove that the deductive power increases further when adding auxiliary differential variables to the dynamics.


Source : oai:arXiv.org:1104.1987
DOI : 10.2168/LMCS-8(4:16)2012
Volume: Volume 8, Issue 4
Published on: November 21, 2012
Submitted on: April 10, 2011
Keywords: Computer Science - Logic in Computer Science,Mathematics - Classical Analysis and ODEs,Mathematics - Dynamical Systems,Mathematics - Logic,math.CA


Share

Consultation statistics

This page has been seen 195 times.
This article's PDF has been downloaded 60 times.