McCusker, Guy - A Graph Model for Imperative Computation

lmcs:919 - Logical Methods in Computer Science, January 12, 2010, Volume 6, Issue 1
A Graph Model for Imperative Computation

Authors: McCusker, Guy

Scott's graph model is a lambda-algebra based on the observation that continuous endofunctions on the lattice of sets of natural numbers can be represented via their graphs. A graph is a relation mapping finite sets of input values to output values. We consider a similar model based on relations whose input values are finite sequences rather than sets. This alteration means that we are taking into account the order in which observations are made. This new notion of graph gives rise to a model of affine lambda-calculus that admits an interpretation of imperative constructs including variable assignment, dereferencing and allocation. Extending this untyped model, we construct a category that provides a model of typed higher-order imperative computation with an affine type system. An appropriate language of this kind is Reynolds's Syntactic Control of Interference. Our model turns out to be fully abstract for this language. At a concrete level, it is the same as Reddy's object spaces model, which was the first "state-free" model of a higher-order imperative programming language and an important precursor of games models. The graph model can therefore be seen as a universal domain for Reddy's model.


Source : oai:arXiv.org:0910.5399
DOI : 10.2168/LMCS-6(1:2)2010
Volume: Volume 6, Issue 1
Published on: January 12, 2010
Submitted on: May 14, 2009
Keywords: Computer Science - Logic in Computer Science,F.3.2


Share

Consultation statistics

This page has been seen 47 times.
This article's PDF has been downloaded 9 times.