2005

Succinctness is a natural measure for comparing the strength of different logics. Intuitively, a logic L_1 is more succinct than another logic L_2 if all properties that can be expressed in L_2 can be expressed in L_1 by formulas of (approximately) the same size, but some properties can be expressed in L_1 by (significantly) smaller formulas. We study the succinctness of logics on linear orders. Our first theorem is concerned with the finite variable fragments of first-order logic. We prove that: (i) Up to a polynomial factor, the 2- and the 3-variable fragments of first-order logic on linear orders have the same succinctness. (ii) The 4-variable fragment is exponentially more succinct than the 3-variable fragment. Our second main result compares the succinctness of first-order logic on linear orders with that of monadic second-order logic. We prove that the fragment of monadic second-order logic that has the same expressiveness as first-order logic on linear orders is non-elementarily more succinct than first-order logic.

In this paper we systematically investigate the connections between logics with a finite number of variables, structures of bounded pathwidth, and linear Datalog Programs. We prove that, in the context of Constraint Satisfaction Problems, all these concepts correspond to different mathematical embodiments of a unique robust notion that we call bounded path duality. We also study the computational complexity implications of the notion of bounded path duality. We show that every constraint satisfaction problem $\csp(\best)$ with bounded path duality is solvable in NL and that this notion explains in a uniform way all families of CSPs known to be in NL. Finally, we use the results developed in the paper to identify new problems in NL.

The higher-order pi-calculus is an extension of the pi-calculus to allow communication of abstractions of processes rather than names alone. It has been studied intensively by Sangiorgi in his thesis where a characterisation of a contextual equivalence for higher-order pi-calculus is provided using labelled transition systems and normal bisimulations. Unfortunately the proof technique used there requires a restriction of the language to only allow finite types. We revisit this calculus and offer an alternative presentation of the labelled transition system and a novel proof technique which allows us to provide a fully abstract characterisation of contextual equivalence using labelled transitions and bisimulations for higher-order pi-calculus with recursive types also.

This note shows that split-2 bisimulation equivalence (also known as timed equivalence) affords a finite equational axiomatization over the process algebra obtained by adding an auxiliary operation proposed by Hennessy in 1981 to the recursion, relabelling and restriction free fragment of Milner's Calculus of Communicating Systems. Thus the addition of a single binary operation, viz. Hennessy's merge, is sufficient for the finite equational axiomatization of parallel composition modulo this non-interleaving equivalence. This result is in sharp contrast to a theorem previously obtained by the same authors to the effect that the same language is not finitely based modulo bisimulation equivalence.

Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.

A fully abstract and universal domain model for modal transition systems and refinement is shown to be a maximal-points space model for the bisimulation quotient of labelled transition systems over a finite set of events. In this domain model we prove that this quotient is a Stone space whose compact, zero-dimensional, and ultra-metrizable Hausdorff topology measures the degree of bisimilarity such that image-finite labelled transition systems are dense. Using this compactness we show that the set of labelled transition systems that refine a modal transition system, its ''set of implementations'', is compact and derive a compactness theorem for Hennessy-Milner logic on such implementation sets. These results extend to systems that also have partially specified state propositions, unify existing denotational, operational, and metric semantics on partial processes, render robust consistency measures for modal transition systems, and yield an abstract interpretation of compact sets of labelled transition systems as Scott-closed sets of modal transition systems.