2004

Editors: Andrei Voronkov, Leonid Libkin

Succinctness is a natural measure for comparing the strength of different logics. Intuitively, a logic L_1 is more succinct than another logic L_2 if all properties that can be expressed in L_2 can be expressed in L_1 by formulas of (approximately) the same size, but some properties can be expressed in L_1 by (significantly) smaller formulas. We study the succinctness of logics on linear orders. Our first theorem is concerned with the finite variable fragments of first-order logic. We prove that: (i) Up to a polynomial factor, the 2- and the 3-variable fragments of first-order logic on linear orders have the same succinctness. (ii) The 4-variable fragment is exponentially more succinct than the 3-variable fragment. Our second main result compares the succinctness of first-order logic on linear orders with that of monadic second-order logic. We prove that the fragment of monadic second-order logic that has the same expressiveness as first-order logic on linear orders is non-elementarily more succinct than first-order logic.

Given a formula in quantifier-free Presburger arithmetic, if it has a satisfying solution, there is one whose size, measured in bits, is polynomially bounded in the size of the formula. In this paper, we consider a special class of quantifier-free Presburger formulas in which most linear constraints are difference (separation) constraints, and the non-difference constraints are sparse. This class has been observed to commonly occur in software verification. We derive a new solution bound in terms of parameters characterizing the sparseness of linear constraints and the number of non-difference constraints, in addition to traditional measures of formula size. In particular, we show that the number of bits needed per integer variable is linear in the number of non-difference constraints and logarithmic in the number and size of non-zero coefficients in them, but is otherwise independent of the total number of linear constraints in the formula. The derived bound can be used in a decision procedure based on instantiating integer variables over a finite domain and translating the input quantifier-free Presburger formula to an equi-satisfiable Boolean formula, which is then checked using a Boolean satisfiability solver. In addition to our main theoretical result, we discuss several optimizations for deriving tighter bounds in practice. Empirical evidence indicates that our decision procedure can greatly outperform other decision procedures.

We present a general method for introducing finitely axiomatizable "minimal" two-sorted theories for various subclasses of P (problems solvable in polynomial time). The two sorts are natural numbers and finite sets of natural numbers. The latter are essentially the finite binary strings, which provide a natural domain for defining the functions and sets in small complexity classes. We concentrate on the complexity class TC^0, whose problems are defined by uniform polynomial-size families of bounded-depth Boolean circuits with majority gates. We present an elegant theory VTC^0 in which the provably-total functions are those associated with TC^0, and then prove that VTC^0 is "isomorphic" to a different-looking single-sorted theory introduced by Johannsen and Pollet. The most technical part of the isomorphism proof is defining binary number multiplication in terms a bit-counting function, and showing how to formalize the proofs of its algebraic properties.

We consider the model checking problem for probabilistic pushdown automata (pPDA) and properties expressible in various probabilistic logics. We start with properties that can be formulated as instances of a generalized random walk problem. We prove that both qualitative and quantitative model checking for this class of properties and pPDA is decidable. Then we show that model checking for the qualitative fragment of the logic PCTL and pPDA is also decidable. Moreover, we develop an error-tolerant model checking algorithm for PCTL and the subclass of stateless pPDA. Finally, we consider the class of omega-regular properties and show that both qualitative and quantitative model checking for pPDA is decidable.

We study the existence of automatic presentations for various algebraic structures. An automatic presentation of a structure is a description of the universe of the structure by a regular set of words, and the interpretation of the relations by synchronised automata. Our first topic concerns characterising classes of automatic structures. We supply a characterisation of the automatic Boolean algebras, and it is proven that the free Abelian group of infinite rank, as well as certain Fraisse limits, do not have automatic presentations. In particular, the countably infinite random graph and the random partial order do not have automatic presentations. Furthermore, no infinite integral domain is automatic. Our second topic is the isomorphism problem. We prove that the complexity of the isomorphism problem for the class of all automatic structures is \Sigma_1^1-complete.