Succinctness is a natural measure for comparing the strength of different
logics. Intuitively, a logic L_1 is more succinct than another logic L_2 if all
properties that can be expressed in L_2 can be expressed in L_1 by formulas of
(approximately) the same size, but some properties can be expressed in L_1 by
(significantly) smaller formulas.
We study the succinctness of logics on linear orders. Our first theorem is
concerned with the finite variable fragments of first-order logic. We prove
that:
(i) Up to a polynomial factor, the 2- and the 3-variable fragments of
first-order logic on linear orders have the same succinctness. (ii) The
4-variable fragment is exponentially more succinct than the 3-variable
fragment. Our second main result compares the succinctness of first-order logic
on linear orders with that of monadic second-order logic. We prove that the
fragment of monadic second-order logic that has the same expressiveness as
first-order logic on linear orders is non-elementarily more succinct than
first-order logic.
Given a formula in quantifier-free Presburger arithmetic, if it has a
satisfying solution, there is one whose size, measured in bits, is polynomially
bounded in the size of the formula. In this paper, we consider a special class
of quantifier-free Presburger formulas in which most linear constraints are
difference (separation) constraints, and the non-difference constraints are
sparse. This class has been observed to commonly occur in software
verification. We derive a new solution bound in terms of parameters
characterizing the sparseness of linear constraints and the number of
non-difference constraints, in addition to traditional measures of formula
size. In particular, we show that the number of bits needed per integer
variable is linear in the number of non-difference constraints and logarithmic
in the number and size of non-zero coefficients in them, but is otherwise
independent of the total number of linear constraints in the formula. The
derived bound can be used in a decision procedure based on instantiating
integer variables over a finite domain and translating the input
quantifier-free Presburger formula to an equi-satisfiable Boolean formula,
which is then checked using a Boolean satisfiability solver. In addition to our
main theoretical result, we discuss several optimizations for deriving tighter
bounds in practice. Empirical evidence indicates that our decision procedure
can greatly outperform other decision procedures.
We consider the model checking problem for probabilistic pushdown automata
(pPDA) and properties expressible in various probabilistic logics. We start
with properties that can be formulated as instances of a generalized random
walk problem. We prove that both qualitative and quantitative model checking
for this class of properties and pPDA is decidable. Then we show that model
checking for the qualitative fragment of the logic PCTL and pPDA is also
decidable. Moreover, we develop an error-tolerant model checking algorithm for
PCTL and the subclass of stateless pPDA. Finally, we consider the class of
omega-regular properties and show that both qualitative and quantitative model
checking for pPDA is decidable.
We present a general method for introducing finitely axiomatizable "minimal"
two-sorted theories for various subclasses of P (problems solvable in
polynomial time). The two sorts are natural numbers and finite sets of natural
numbers. The latter are essentially the finite binary strings, which provide a
natural domain for defining the functions and sets in small complexity classes.
We concentrate on the complexity class TC^0, whose problems are defined by
uniform polynomial-size families of bounded-depth Boolean circuits with
majority gates. We present an elegant theory VTC^0 in which the provably-total
functions are those associated with TC^0, and then prove that VTC^0 is
"isomorphic" to a different-looking single-sorted theory introduced by
Johannsen and Pollet. The most technical part of the isomorphism proof is
defining binary number multiplication in terms a bit-counting function, and
showing how to formalize the proofs of its algebraic properties.
We study the existence of automatic presentations for various algebraic
structures. An automatic presentation of a structure is a description of the
universe of the structure by a regular set of words, and the interpretation of
the relations by synchronised automata. Our first topic concerns characterising
classes of automatic structures. We supply a characterisation of the automatic
Boolean algebras, and it is proven that the free Abelian group of infinite
rank, as well as certain Fraisse limits, do not have automatic presentations.
In particular, the countably infinite random graph and the random partial order
do not have automatic presentations. Furthermore, no infinite integral domain
is automatic. Our second topic is the isomorphism problem. We prove that the
complexity of the isomorphism problem for the class of all automatic structures
is \Sigma_1^1-complete.