2006 Editors: Vladimiro Sassone, Michele Bugliesi, Colin Stirling
We show that the higher-order matching problem is decidable using a game-theoretic argument.
In this paper, we first introduce a lower bound technique for the state complexity of transformations of automata. Namely we suggest first considering the class of full automata in lower bound analysis, and later reducing the size of the large alphabet via alphabet substitutions. Then we apply such technique to the complementation of nondeterministic \omega-automata, and obtain several lower bound results. Particularly, we prove an \omega((0.76n)^n) lower bound for Büchi complementation, which also holds for almost every complementation or determinization transformation of nondeterministic omega-automata, and prove an optimal (\omega(nk))^n lower bound for the complementation of generalized Büchi automata, which holds for Streett automata as well.
The fully enriched μ-calculus is the extension of the propositional μ-calculus with inverse programs, graded modalities, and nominals. While satisfiability in several expressive fragments of the fully enriched μ-calculus is known to be decidable and ExpTime-complete, it has recently been proved that the full calculus is undecidable. In this paper, we study the fragments of the fully enriched μ-calculus that are obtained by dropping at least one of the additional constructs. We show that, in all fragments obtained in this way, satisfiability is decidable and ExpTime-complete. Thus, we identify a family of decidable logics that are maximal (and incomparable) in expressive power. Our results are obtained by introducing two new automata models, showing that their emptiness problems are ExpTime-complete, and then reducing satisfiability in the relevant logics to these problems. The automata models we introduce are two-way graded alternating parity automata over infinite trees (2GAPTs) and fully enriched automata (FEAs) over infinite forests. The former are a common generalization of two incomparable automata models from the literature. The latter extend alternating automata in a similar way as the fully enriched μ-calculus extends the standard μ-calculus.
We provide a complete description of the Wadge hierarchy for deterministically recognisable sets of infinite trees. In particular we give an elementary procedure to decide if one deterministic tree language is continuously reducible to another. This extends Wagner's results on the hierarchy of omega-regular languages of words to the case of trees.
We study mechanisms that permit program components to express role constraints on clients, focusing on programmatic security mechanisms, which permit access controls to be expressed, in situ, as part of the code realizing basic functionality. In this setting, two questions immediately arise: (1) The user of a component faces the issue of safety: is a particular role sufficient to use the component? (2) The component designer faces the dual issue of protection: is a particular role demanded in all execution paths of the component? We provide a formal calculus and static analysis to answer both questions.
We study Recursive Concurrent Stochastic Games (RCSGs), extending our recent analysis of recursive simple stochastic games to a concurrent setting where the two players choose moves simultaneously and independently at each state. For multi-exit games, our earlier work already showed undecidability for basic questions like termination, thus we focus on the important case of single-exit RCSGs (1-RCSGs). We first characterize the value of a 1-RCSG termination game as the least fixed point solution of a system of nonlinear minimax functional equations, and use it to show PSPACE decidability for the quantitative termination problem. We then give a strategy improvement technique, which we use to show that player 1 (maximizer) has \epsilon-optimal randomized Stackless & Memoryless (r-SM) strategies for all \epsilon > 0, while player 2 (minimizer) has optimal r-SM strategies. Thus, such games are r-SM-determined. These results mirror and generalize in a strong sense the randomized memoryless determinacy results for finite stochastic games, and extend the classic Hoffman-Karp strategy improvement approach from the finite to an infinite state setting. The proofs in our infinite-state setting are very different however, relying on subtle analytic properties of certain power series that arise from studying 1-RCSGs. We show that our upper bounds, even for qualitative (probability 1) termination, can not be improved, even to NP, without a major breakthrough, by giving two […]