Selected Papers of the Conference "Algebraic and Coalgebraic Methods in Computer Science 2007"

2007 Editor: Till Mossakowski


1. Rational streams coalgebraically

J. J. M. M. Rutten.
We study rational streams (over a field) from a coalgebraic perspective. Exploiting the finality of the set of streams, we present an elementary and uniform proof of the equivalence of four notions of representability of rational streams: by finite dimensional linear systems; by finite stream circuits; by finite weighted stream automata; and by finite dimensional subsystems of the set of streams.

2. Bisimilarity and Behaviour-Preserving Reconfigurations of Open Petri Nets

Paolo Baldan ; Andrea Corradini ; Hartmut Ehrig ; Reiko Heckel ; Barbara König.
We propose a framework for the specification of behaviour-preserving reconfigurations of systems modelled as Petri nets. The framework is based on open nets, a mild generalisation of ordinary Place/Transition nets suited to model open systems which might interact with the surrounding environment and endowed with a colimit-based composition operation. We show that natural notions of bisimilarity over open nets are congruences with respect to the composition operation. The considered behavioural equivalences differ for the choice of the observations, which can be single firings or parallel steps. Additionally, we consider weak forms of such equivalences, arising in the presence of unobservable actions. We also provide an up-to technique for facilitating bisimilarity proofs. The theory is used to identify suitable classes of reconfiguration rules (in the double-pushout approach to rewriting) whose application preserves the observational semantics of the net.

3. Bootstrapping Inductive and Coinductive Types in HasCASL

Lutz Schröder.
We discuss the treatment of initial datatypes and final process types in the wide-spectrum language HasCASL. In particular, we present specifications that illustrate how datatypes and process types arise as bootstrapped concepts using HasCASL's type class mechanism, and we describe constructions of types of finite and infinite trees that establish the conservativity of datatype and process type declarations adhering to certain reasonable formats. The latter amounts to modifying known constructions from HOL to avoid unique choice; in categorical terminology, this means that we establish that quasitoposes with an internal natural numbers object support initial algebras and final coalgebras for a range of polynomial functors, thereby partially generalising corresponding results from topos theory. Moreover, we present similar constructions in categories of internal complete partial orders in quasitoposes.

4. Neighbourhood Structures: Bisimilarity and Basic Model Theory

Helle Hvid Hansen ; Clemens Kupke ; Eric Pacuit.
Neighbourhood structures are the standard semantic tool used to reason about non-normal modal logics. The logic of all neighbourhood models is called classical modal logic. In coalgebraic terms, a neighbourhood frame is a coalgebra for the contravariant powerset functor composed with itself, denoted by 2^2. We use this coalgebraic modelling to derive notions of equivalence between neighbourhood structures. 2^2-bisimilarity and behavioural equivalence are well known coalgebraic concepts, and they are distinct, since 2^2 does not preserve weak pullbacks. We introduce a third, intermediate notion whose witnessing relations we call precocongruences (based on pushouts). We give back-and-forth style characterisations for 2^2-bisimulations and precocongruences, we show that on a single coalgebra, precocongruences capture behavioural equivalence, and that between neighbourhood structures, precocongruences are a better approximation of behavioural equivalence than 2^2-bisimulations. We also introduce a notion of modal saturation for neighbourhood models, and investigate its relationship with definability and image-finiteness. We prove a Hennessy-Milner theorem for modally saturated and for image-finite neighbourhood models. Our main results are an analogue of Van Benthem's characterisation theorem and a model-theoretic proof of Craig interpolation for classical modal logic.

5. Applications of Metric Coinduction

Dexter Kozen ; Nicholas Ruozzi.
Metric coinduction is a form of coinduction that can be used to establish properties of objects constructed as a limit of finite approximations. One can prove a coinduction step showing that some property is preserved by one step of the approximation process, then automatically infer by the coinduction principle that the property holds of the limit object. This can often be used to avoid complicated analytic arguments involving limits and convergence, replacing them with simpler algebraic arguments. This paper examines the application of this principle in a variety of areas, including infinite streams, Markov chains, Markov decision processes, and non-well-founded sets. These results point to the usefulness of coinduction as a general proof technique.